
A Computational Theory of
Early Mathematical Cognition

by

Albert Goldfain
June 1, 2008

Dissertation Committee:
William J. Rapaport (Major Professor)

Stuart C. Shapiro
Douglas H. Clements

A dissertation
submitted to the Faculty of the Graduate School

of State University of New York at Buffalo
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Department of Computer Science and Engineering



Copyright by
Albert Goldfain

2008

ii



Contents

1 Introduction 1
1.1 Mathematical Cognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Two “Foundations” Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 The “Burning” Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Computational Math Cognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5.1 Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.2 SNePS for Mathematical Cognition . . . . . . . . . . . . . . . . . . . . . 5
1.5.3 Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Previous Work on Mathematical Cognition 9
2.1 Research from the Branches of Cognitive Science . . . . . . . . . . . . . . . . . . 9

2.1.1 Psychology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1.1 Piaget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1.2 Gelman and Gallistel . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1.3 Wynn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1.4 Butterworth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Neuroscience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2.1 Dehaene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3.1 Shapiro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3.2 Wittgenstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3.3 Glasersfeld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.4 Linguistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4.1 Lakoff and Ńuñez . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4.2 Wiese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.5 Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.5.1 Schoenfeld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.5.2 Sfard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.6 Anthropology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iii



2.1.6.1 Sapir and Whorf . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.6.2 Hutchins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Research in Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.0.3 Polya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.0.4 Mac Lane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Research in Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Automated Theorem Proving . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Production-System Simulations . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2.1 Klahr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2.2 Fletcher and Dellarosa . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3 Heuristic Driven Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3.1 Lenat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3.2 Ohlsson and Rees . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.4 Connectionist Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.5 Tutoring Systems and Error Models . . . . . . . . . . . . . . . . . . . . . 35

2.3.5.1 Nwana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.5.2 Brown and VanLehn . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.6 Word-Problem Solving Systems . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.6.1 Bobrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Understanding and Explanation: Towards a Theory of Mathematical Cognition 39
3.1 Claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Multiple Realizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2 Representability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.3 Performability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.4 Empirical Testability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 SNePS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 Overview of SNePS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1.1 GLAIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1.2 SNIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.1.3 SNeRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1.4 SNeBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 SNePS for Mathematical Cognition . . . . . . . . . . . . . . . . . . . . . 46
3.3 Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Modes of Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Understanding in SNePS . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 Characterizations of Understanding . . . . . . . . . . . . . . . . . . . . . 50

3.3.3.1 Logical Characterizations . . . . . . . . . . . . . . . . . . . . . 50
3.3.3.2 Educational Characterizations . . . . . . . . . . . . . . . . . . . 52
3.3.3.3 Computational Characterizations . . . . . . . . . . . . . . . . . 55

3.4 From Knowledge to Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.1 Formalizations of JTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1.1 Belief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

iv



3.4.1.2 Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1.3 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 JTB in SNePS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.3 First-person knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.4 Understanding as a Gradient of Features . . . . . . . . . . . . . . . . . . . 60

3.5 Exhaustive Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.1 A Turing Test for Mathematical Understanding . . . . . . . . . . . . . . . 61
3.5.2 The Endpoint of an Explanation . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.3 Multiple Justifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.4 Behavior and Procedural Understanding . . . . . . . . . . . . . . . . . . . 65

4 Abstract Internal Arithmetic 68
4.1 Representations for Abstract Internal Arithmetic . . . . . . . . . . . . . . . . . . . 68

4.1.1 A Case-Frame Dictionary for Mathematical Cognition . . . . . . . . . . . 69
4.1.1.1 Counting Case-Frames . . . . . . . . . . . . . . . . . . . . . . 70
4.1.1.2 Arithmetic Acts . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.1.3 Evaluation and Result Case-Frames . . . . . . . . . . . . . . . . 73
4.1.1.4 Results as Procepts . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 A Taxonomy of Arithmetic Routines . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Semantic Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.1.1 The Greater-Than Relation . . . . . . . . . . . . . . . . . . . . 79

4.3.2 Count-Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.3 Count-Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.4 Iterated-Addition Multiplication . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.5 Iterated-Subtraction Division . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.6 Inversion Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Cognitive Arithmetic Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5 UVBR and Cognitive Plausibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6 Syntactic Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6.1 Multidigit Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6.2 Extended Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.7 Questions in SNePS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.8 Why Questions and Procedural Decomposition . . . . . . . . . . . . . . . . . . . 95
4.9 Conceptual Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.10 Questions in Natural Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.11 A Case Study: Greatest Common Divisor . . . . . . . . . . . . . . . . . . . . . . 99

4.11.1 Human Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.11.2 A Commonsense Natural-Language GCD Algorithm . . . . . . . . . . . . 101
4.11.3 An Idealized Dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.11.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.11.5 Cassie’s Exhaustive Explanation of GCD . . . . . . . . . . . . . . . . . . 104

v



5 Embodied External Arithmetic 109
5.1 Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.1 Representations of Quantity . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.1.1.1 Category Systems . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.1.1.2 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.1.1.3 Natural Language . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1.2 Quantities for Embodied Arithmetic . . . . . . . . . . . . . . . . . . . . . 115
5.1.3 Natural Numbers in Quantities (n) . . . . . . . . . . . . . . . . . . . . . . 115
5.1.4 Sortals (s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.1.5 Relations Between Numbers and Sortals (r) . . . . . . . . . . . . . . . . . 117

5.1.5.1 Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.1.5.2 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.1.5.3 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1.6 Grounding Quantities in Perception (p) . . . . . . . . . . . . . . . . . . . 121
5.1.6.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.1.6.2 Grounded Quantities in SNePS . . . . . . . . . . . . . . . . . . 123

5.2 Embodied Enumeration and Its Applications . . . . . . . . . . . . . . . . . . . . . 125
5.2.1 Models of Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2.3 KL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2.4 PML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.4.1 PMLa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.4.1.1 BuildEnumFrame . . . . . . . . . . . . . . . . . . 132
5.2.4.1.2 Perceive . . . . . . . . . . . . . . . . . . . . . . . 133
5.2.4.1.3 DistinguishByColor . . . . . . . . . . . . . . . 133
5.2.4.1.4 DistinguishByShape . . . . . . . . . . . . . . . 133
5.2.4.1.5 AddToCollection . . . . . . . . . . . . . . . . . 133
5.2.4.1.6 AttendToNewObject . . . . . . . . . . . . . . . . 134
5.2.4.1.7 CheckIfClear . . . . . . . . . . . . . . . . . . . . 134

5.2.4.2 PMLb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2.4.2.1 threshold-classify . . . . . . . . . . . . . . . 134
5.2.4.2.2 clock-wise-chain-code . . . . . . . . . . . . . 134
5.2.4.2.3 object-gamma . . . . . . . . . . . . . . . . . . . . 136
5.2.4.2.4 wipe-object . . . . . . . . . . . . . . . . . . . . . 136

5.2.4.3 PMLc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2.5 Sample Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2.6 Representing Experience with a Sortal . . . . . . . . . . . . . . . . . . . . 140

5.3 Assignment Numeracy and its Applications . . . . . . . . . . . . . . . . . . . . . 140
5.3.1 Self-Action Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.1.2 Sample Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3.2 Ordinal Assignment to Self-Action . . . . . . . . . . . . . . . . . . . . . 145

vi



5.3.3 The Jail-Sentence Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3.4 The Breakfast-Always-Served Problem . . . . . . . . . . . . . . . . . . . 148

5.4 A Model of Count-Addition Strategy Change . . . . . . . . . . . . . . . . . . . . 150
5.4.1 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.4.2 Computational Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.4.3 Abstraction of Counting Targets . . . . . . . . . . . . . . . . . . . . . . . 152
5.4.4 Commutativity, Comparison, and Cardinalities . . . . . . . . . . . . . . . 152
5.4.5 CA to CO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.4.6 CO to COF >: Metacounting . . . . . . . . . . . . . . . . . . . . . . . . 154
5.4.7 CO to COF >: Duration Estimation . . . . . . . . . . . . . . . . . . . . . 154

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6 A Unified View of Arithmetic 156
6.1 Multiple Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.2 The Abstraction of Arithmetic: A Functional Analysis . . . . . . . . . . . . . . . 158

6.2.1 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.2 Embodied Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.2.3 From Embodied Experience to Abstract Facts . . . . . . . . . . . . . . . . 163
6.2.4 BRIDGE in SNePS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.3 The Ontogeny of Sortals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7 Conclusion and Further Work 169
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.2 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.3 Attacks on Multiple Realizability . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.4 Extensions and Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.4.1 Integers, Rationals, and Reals . . . . . . . . . . . . . . . . . . . . . . . . 176
7.4.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.4.3 Scaling Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.4.4 Syntactic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.4.5 Quantity Disposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.4.6 Multi-agent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.4.7 Cognitive Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.5 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A SNePS Implementation 183

vii



List of Figures

3.1 Two paths back to first principles. . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Ways of understanding division. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Possible interactions between an interrogator and acting agent. . . . . . . . . . . . 66

4.1 Cassie’s belief that 2 + 3 = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Numeron-numerlog association.m1,m2, andm3establish the finite initial segment

of the natural-number progression up to three.m4, m5, m6, andm7associate this
progression with the numerals 1, 2, 3, and 4.m8, m9, m10, andm11associate this
progression with the number names. . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Path based inference of 5> 1. Thelesserarc ofm5 is implied by pathp1 (from
m1to n1) and thegreaterarc ofm5is implied by pathp2 (from m1to n5 . . . . . . 80

4.4 Representing an extended layer (EL), and its interaction with the knowledge layer
(KL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Procedural Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 Two grounding relations for the quantity 3 apples: (1) Perceived and (2) Visualized 124
5.2 Two models of enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3 (a) Original 2D image (b) Ideal extracted object pixels . . . . . . . . . . . . . . . 135
5.4 Chain-code representation of shape . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.5 The delta values computed from an object’s top-left object-pixel and its chain code. 136

6.1 A functional description of GLAIR. . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.2 The generalization of “3 + 2”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3 The actCountAdd ignores the (grayed out) embodied representation. . . . . . . . 165
6.4 Linear discrimination of apple exemplarsA from uncategorized exemplarsB. . . . 167

7.1 Classes of objections to multiple realizability. . . . . . . . . . . . . . . . . . . . . 173
7.2 The procept “a count of x”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

viii



List of Tables

5.1 Aristotelian Categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 Kantian Categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 Husserl’s Object Category-System . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 Category System of Hoffman and Rosenkrantz. . . . . . . . . . . . . . . . . . . . 112

7.1 Quantity Dispositions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

ix



Acknowledgments

Throughout the process of writing this dissertation I have enjoyed the support of many great minds
and patient ears. I owe the largest debt to my major professor (and good friend) Bill Rapaport. Bill
helped steer my idea from its sketchy infancy to something I am proud of. He consistently provided
precise guidance, but also allowed me to discover the implications of my ideas (and allowed them
to bemy ideas). Bill has an uncanny skill for suggesting just-the-right-reading at just-the-right
moment, and is able to take on the guise of philosopher, computer scientist, and cognitive scientist
with equal expertise. Against the stereotype, I never dreaded our weekly one-on-one meeting (in
fact, it is one of the things I will miss most).

I want to thank Stu Shapiro for his incredible dedication to both SNePS and the remarkable
research group that has developed and maintained it for several decades. Stu inspired and encour-
aged the “AI by agent-building” approach that my work employed. His experience as a researcher
was of great help in the “under-charted” waters of math cognition.

Since joining my dissertation committee, Doug Clements has been a great source of inspiration.
He notes the urgency of providing a better mathematical education for children, and he has noted
the importance of applying research-based methods towards this end. His comments were very
insightful and he offered a unique perspective on my work. Remarkably, this was done while
juggling his own papers, books, pilot studies, and service on a presidential childhood mathematics
panel.

I want to especially thank Len Talmy for introducing me to the depth, complexity, and beauty
of cognitive science. For a large part of my graduate career, I served as a TA for Adrienne Decker.
I want to thank her for allowing me to develop my teaching skills and for providing a wealth of
advice along the way.

I owe very much to the past, present, and future versions of SNeRG: Carl Alphonce, Josephine
Anstey, Jonathan Bona, Deb Burhans, Trupti Devdas Nayak, Paul Heider, Michael Kandefer, David
Pierce, Mike Prentice, Fran Johnson, Scott Settembre, and Patrice Seyed. I also received great in-
terdisciplinary motivation from some superb linguists: Shane Axtel, Paula Chesley, Yana Petrova,
Shakthi Poornima, Fabian Rodriguez, and Andy Wetta (and another special one who I acknowl-
edge below), and from debating high-powered philosophers: John Corcoran, Randall Dipert, Mike
McGlone, Steve Haladay, Amanda Hicks, Adam Taylor, and Bill Duncan.

I want to thank Peter Scott and Hung Ngo for being great mentors to me in the early stages of
my graduate studies. I may not have gone on to get a PhD without their early encouragement. Also,
I want to acknowledge the support of several co-workers at Welch Allyn (my perpetual ”summer
job” in the ”real world”), especially: Ron Blaszak, Matt Bobowski, Song Chung, Chad Craw, Jim

x



Dellostritto, Frank Lomascolo, and David Rynkiewicz. In my opinion, these guys dream as big as
anyone in academia.

This is also for all of those friends who saw to it that I finished my work and had some sem-
blance of a “life” during my graduate career: Chris Bierl, Chris Clader (who I thank for reading
an earlier version of this work), Jill Foley, Mike Gaudet, Rich Giomundo, Uday Kodukula, Hugh
McNeill, and Jason Uronis.

Finally, this work is dedicated to my family. They brought me to this country and helped me
flourish here. To my mother, for her love of language; to my father, for his love of science; to
my brother, for his love of music and nature; to my grandparents, aunt, uncle, and cousin, for
showing genuine interest in my progress; and to Kirsta, for keeping me sane, motivated, and loved
throughout this journey.

xi



For my family

xii



Abstract

The primary focus of this dissertation is a computational characterization of developmentally early
mathematical cognition. Mathematical cognition research involves an interdisciplinary investiga-
tion into the representations and mechanisms underlying mathematical ability. Significant con-
tributions in this emerging field have come from research in psychology, education, linguistics,
neuroscience, anthropology, and philosophy. Artificial intelligence techniques have also been ap-
plied to the subject, but often in the service of modeling a very restricted set of phenomena. This
work attempts to provide a broader computational theory from the perspective of symbolic artificial
intelligence. Such a theory should serve two purposes: (1) It should provide cognitively plausible
mechanisms of the human activities associated with mathematical understanding, and (2) it should
serve as a suitable model on which to base the computational implementation of math-capable
cognitive agents.

In this work, a theory is developed by synthesizing those ideas from the cognitive sciences
that are applicable to a formal computational model. Significant attention is given to the develop-
mentally early mechanisms (e.g., counting, quantity representation, and numeracy). The resulting
model is validated by a cognitive-agent implementation using the SNePS knowledge representa-
tion, reasoning, and acting system, and the GLAIR architecture. The implementation addresses
two aspects of early arithmetic reasoning: abstract internal arithmetic, which is characterized by
mental acts performed over abstract representations, and embodied external arithmetic, which is
characterized by the perception and manipulation of physical objects.

Questions of whether or not a computer can “understand” something in general, and can “un-
derstand mathematics” in particular, rely on the vague and ambiguous term “understanding”. The
theory provides a precise characterization of mathematical understanding, along with an empirical
method for probing an agent’s mathematical understanding called ‘exhaustive explanation’. This
method can be applied to either a human or computational agent.

As a case study, the agent is given the task of providing an exhaustive explanation in the task
of finding the greatest common divisor of two natural numbers. This task is intended to show
the depth of the theory. To illustrate the breadth of the theory, the same agent is given a series
of embodied tasks, several of which involve integrating quantitative reasoning with commonsense
non-quantitative reasoning.



Chapter 1

Introduction

In this dissertation, I develop a computational theory of developmentally early mathematical cogni-
tion. This chapter serves as a brief introduction to the field of mathematical cognition (sometimes
called the cognitive science of mathematics or mathematical idea analysis (Lakoff and Núñez,
2000)) and motivates the need for computational theories. An outline of my specific research
focus and my approach to developing a computational theory is given here.

1.1 Mathematical Cognition

Mathematical cognition1 is an interdisciplinary investigation of the representations and mecha-
nisms underlying mathematical ability. The domain of mathematics provides human beings with
a robust set of tools for general-purpose reasoning, as well as a syntactic language through which
real-world quantitative phenomena can be expressed. This makes it a potentially fruitful domain
for cognitive science research. Currently, mathematical cognition is an emerging sub-field of cog-
nitive science and has seen contributions from psychology, linguistics, anthropology, philosophy,
and education. For the most part, mathematical cognition has focused on the cognitive abilities
of humans (with the notable exception of animal-studies research on the mathematical abilities
of non-human primates, birds, and dogs; see Chapter 2 for details). The primary focus has been
on examining the earliest mathematical representations and mechanisms (i.e., number concepts,
counting, mental arithmetic) rather than the workings of professional mathematicians.

The field of artificial intelligence (qua sub-field of cognitive science) is also in a position to
make a significant contribution to mathematical cognition research. Computational modeling and
simulation have become standard techniques in cognitive science, and computationalism pervades
many theories of how the human mind works (Rapaport, 1993).

1I will use “mathematical cognition” to refer to both the ability and the field of study. The intended sense should
be clear from context.

1



1.2 Motivation

This work is both motivated by, and a response to, the theory of embodied mathematical cognition
put forward by Lakoff and Ńuñez (2000). Their work has come to be viewed as one of the most
influential (and controversial) in the field of mathematical cognition. One of its major claims is
that mathematics isnotpurely syntactic, disembodied, and objective, but rather a highly semantic,
embodied, and subjective endeavor. This is primarily a rejection of the Platonist conception of
mathematics: the objects and operations of mathematics are not in an ideal Platonic realm, but
rather are constructed by human beings.

I am very sympathetic to this view. I believe that meaning in early mathematics flows from our
experiences as agents situated and acting in the world, our interactions with objects in the world,
and our abstractions from these experiences. This is especially the case in the early conceptual-
ization of numbers, counting, and arithmetic operations. I believe that any theory of mathematical
cognition (computational or otherwise) cannot treat mathematics asjust symbol manipulation or
disembodied calculation.

However, in their argument for rejecting Platonic realism, Lakoff and Núñez conclude that
mathematical understanding can only be realized in ahumancognitive agent along with its partic-
ular embodiment, representations, and inference mechanisms:

Mathematics as we know it is human mathematics, a product of the human mind . . . a
product of the neural capacities of our brains, the nature of our bodies, our evolution,
our environment, and our long social and cultural history. (Lakoff and Núñez, 2000)

Thus, the implementation of mathematical cognition in a computational medium cannot result in a
system that understands mathematics. In many ways, this is an argument against strong AI, using
mathematical reasoning as a counterexample.

I disagree with this position, and I will argue for the multiple realizability of mathematical
cognition. That is, a suitable theory of math cognition can yield a computational agent that under-
stands mathematics. The defense of this position rests on two points: (1) The embodied activities
that provide a semantics for arithmetic are performable by computational agents and (2) abstrac-
tion from these activities yields representations that can be reasoned with by such agents (while
still remaining associated with the originating embodied activities).

1.3 Two “Foundations” Programs

Mathematics is among the historically oldest and developmentally earliest of human activities,
yet taking a cognitive science approach towards the foundations of mathematics has not been very
common. It is worth identifying two separate foundations programs in recent mathematical history.
Themathematicalfoundations program took place at the turn of the twentieth century and is most
often associated with Frege, Hilbert, Russell, Whitehead, Gödel and others. This was a movement
initiated by mathematicians for the purpose of making mathematics more rigorous. This effort
largely rested on re-phrasing the various branches of mathematics in the language of formal logic
and set theory. Interestingly, this movement emphasized the exclusion of psychology:

2



It may, of course, serve some purpose to investigate the ideas and changes of ideas
which occur during the course of mathematical thinking; but psychology should not
imagine that it can contribute anything whatever to the foundation of arithmetic (Frege,
1884/1974).2

The exclusion of psychology from the mathematical foundations program is not surprising. Cogni-
tive science did not yet exist as a unified science, and the psychological methods of the time were
not characterized by the rigor and precision that the mathematicians were seeking.

Throughout the twentieth century, researchers such as Piaget set the epistemic groundwork
for a new sort of foundations program (Piaget, 1965; Beth and Piaget, 1966). At the turn of the
twenty-first century, acognitivefoundations program emerged:

The central question we ask is this: How can cognitive science bring systematic rigor
to the realm of human mathematical ideas, which lies outside the rigor of mathematics
itself? Our job is to help make precise what mathematics itself cannot: the nature of
mathematical ideas (Lakoff and Núñez, 2000)

I will not go as far as to claim that mathematical idea analysis is necessarily outside the scope of
mathematics. However, I do believe that just attempting to provide a computational account of
math cognition can shed some light on the cognitive semantics of mathematics (i.e., that such an
accountis a kind of mathematical idea analysis).

Another trend of this cognitive foundations camp is to separate mathematics from the logical
foundations of mathematics for the purposes of educating students:

[M]athematics could find itself thus reduced to logic, which is certainly not a view that
it would be worthwhile conveying to students (Sierpinska, 1994)[p.70]

I do not think that either mathematical foundations program needs to segregate itself from the
other. In fact, they are both useful perspectives with different goals and “tools of the trade”. Rather
than banish psychology or logic, I will develop a foundation that borrows from both foundations
programs and is augmented with computational techniques. The prevalence of computationalism
in cognitive science is actually evidence for the compatibility of psychology and logic since un-
derstanding the brain as a computer requires both disciplines.

The mathematical foundations program cannot tell the whole story of mathematical cognition
because it insists on minimal ontology and a policy of reductionism (i.e., everything is sets and
logic). The cognitive foundations program is incomplete and dispersed across disciplines. Perhaps
importing aspects of both foundations programs into a computational theory will help to overcome
these difficulties. Brian Butterworth, in a preface to the very first volume of the journalMathemat-
ical Cognition, seems to call on philosophers and logicians for an integration of the foundations
programs:

One issue that has only recently arisen as a problem for empirical research is the
best way to characterise and individuate mathematical concepts, and what it means to
understand them. Here philosophers and logicians can be of real help. (Butterworth,
1995)

2Frege was reacting primarily to the psychologically motivated theories of John Stuart Mill (1843/2002)

3



The question of what it means to understand a mathematical concept will occupy the majority of
this work, and I believe, like Butterworth, that it is an empirical one.

1.4 The “Burning” Questions

While any field of inquiry can be characterized by its achievements and accomplishments, it is also
sometimes useful to characterize it by its open questions. This is especially useful for the young
sub-disciplines of cognitive science. Some of the “burning questions” in mathematical cognition
are:

1. An Innateness Question:How much mathematical ability is innate?Do we have some
mathematical concepts “hard-wired” into our brains at birth? Or, perhaps, as Locke would
claim, we are born with a “blank slate” and must construct such concepts from our earliest
experiences. If some numerical abilities are innate, then how do we look for these abilities in
infants and non-human animals in a scientifically rigorous way? These are specific instances
of the more general nature-vs-nurture questions in cognitive science.

2. An Embodiment Question:How do our bodies impact the way we learn and understand
mathematics?Does having ten fingers lead us to prefer a decimal notation? How is mathe-
matical ability “implemented” across individuals, cultures, and (perhaps) species?

3. A Dissociability Question:To what degree can mathematical cognition be dissociated from
other cognitive systems?In particular, can mathematical cognition be dissociated (i.e., vary
in a neurologically independent way) from language cognition?

4. The Relational Question: A family of questions of the form ”What is the relationship be-
tweenX and mathematical cognition?” whereX can be perception, action, metacognition,
logical cognition etc.

More specific questions can be raised when examining mathematical cognition from a particular
sub-discipline of cognitive science. For example, a neuroscientist may be interested in which parts
of the brain are active during numeric reasoning, or determining how mathematical reasoning is
impacted by a stroke. From the perspective of AI, we are interested in questions of representation
and implementation.

1.5 Computational Math Cognition

I believe that a large part of early mathematical cognition can be expressed in a computational
theory and hence, can be implemented in a computational cognitive agent. The extent of such an
implementable part is an empirical question and, even if this portion turns out to be smaller than
expected, we will gain some understanding in the attempt.

Any computational theory that defends multiple realizability of a human activity must be based
on an abstraction from that activity and an implementation of this abstraction in some computa-
tional medium (Rapaport, 1999; Rapaport, 2005). The abstraction, by its very nature, must ignore

4



some details of the original implementation (i.e., the implementation of mathematical cognition
in human beings) in order to remain general. I will base my abstraction of human mathematical
cognition on the relevant cognitive science research, looking for those features of human math-
ematical ability that are suitable for a computational implementation. The re-implementation of
the abstraction in a computational medium will fill in the details removed by the abstraction, but
perhaps in different ways and with implementation side effects. As such, there are two places
where a computational theory can be praised or criticized: the abstraction and the computational
implementation.

Various mathematical abilities are worthy candidates for abstraction and various computational
paradigms might be considered suitable for the implementation medium. This work will focus on
the representations and abilities required for early mathematical understanding and an implemen-
tation of these in a symbolic AI medium.

1.5.1 Understanding

It is worth asking why a computational cognitive theory should concern itself with foundations
at all (mathematical or cognitive). The answer lies in the nature of mathematical understanding.
Following Rapaport (1988,1995) I believe that understanding is recursive. We always understand
something in terms of other, antecedently understood things. Because understanding is possible,
this recursion must have a basis, and it is worth looking at the foundations programs for such a
basis.

Despite claiming an ultimate reliance on the embodied human mind, Lakoff and Núñez (2000)
claim that mathematical proceduresquaalgorithms can be detached from the human embodiment
completely:

. . . one of the best things about mathematical calculation—extended from simple arith-
metic to higher forms of mathematics—is that the algorithm, being freed from mean-
ing and understanding, can be implemented in a physical machine called a computer,
a machine that can calculate everything perfectly without understanding anything at
all (Lakoff and Ńuñez, 2000)[p.86]

The question then arises: Can a computational agent come to understand human mathematics?
More narrowly, can a computational agent come to understand human arithmetic? Importantly, we
can treat these questions as empirical ones once we have a criterion for mathematical understand-
ing in hand. Throughout this work we will be concerned with the conditions for mathematical
understanding in its various guises.

1.5.2 SNePS for Mathematical Cognition

The SNePS knowledge representation, reasoning, and acting system (Shapiro and Rapaport, 1987;
Shapiro and Rapaport, 1995; Shapiro, 2000; Shapiro and SNePS Implementation Group, 2008) is
an ideal target for implementing such a computational theory of mathematical cognition. SNePS
is a general model of cognition that does not make presuppositions about the domain in which the

5



knowledge engineer is working. This strength is reinforced by the applications in which SNePS
agents have been deployed.

SNePS falls within the tradition of symbolic artificial intelligence. This work is not intended to
exclude other approaches from (e.g., connectionist, production-system models). Indeed, the project
of mathematical cognition is ambitious enough to require input from all areas in AI. However, I
will defer a justification of why a symbolic approach was used until the conclusion (see§7.3). At
that point, there will be an agent implementation on the table (i.e., something whose relative merits
and flaws can be discussed).

This research is the first application of SNePS to a theory of mathematical cognition. Agents
developed in SNePS are often provided with anad hocway of doing the task-specific math they
need. This dissertation strives towards providing a more general method of providing mathematical
reasoning to SNePS agents.

1.5.3 Focus

Early mathematical cognition is a rich enough topic to involve almost every aspect of early reason-
ing. Without narrowing this research, a mathematical theory of early math cognition could become
what Shapiro (1992) calls an “AI-complete” problem, i.e., a problem whose solution would require
the solution of all major research problems in AI.

This research can be viewed from several perspectives, some of which will receive more atten-
tion than others. I hope this dissertation will serve as each of the following:

• A reply to the position of Lakoff and Ńuñez that the human mind, along with its particu-
lar embodiment, representations, and inference mechanisms, is privileged with respect to
mathematical understanding.

• A computational model of human mathematical cognition.

• A philosophical investigation of the necessary and sufficient conditions for mathematical
understanding.

• A definition of mathematical understanding broad enough to apply to both human and com-
putational agents, together with a set of empirical tests for features of mathematical under-
standing.

• A computational approach to the cognitive semantics of mathematics.

• A specification of the representations and inference rules necessary for mathematical cogni-
tion in SNePS.

1.6 Significance

This research can be viewed from a variety of perspectives. It can be taken as a work of compu-
tational psychology or computational philosophy, which are two important aspects of AI research

6



(Shapiro, 1992; Rapaport, 1993). As a work of computational psychology, it can be seen as being
that part of current psychological theory and data that is readily applied to a computational im-
plementation. It also may serve as a simulation of human behavior and a platform for predicting
human outcomes in various quantitative tasks. As a work of computational philosophy, it should
be seen as a response to Lakoff and Núñez (2000), as well as a philosophical investigation of
fundamental questions from a computational perspective. This is significant because answering a
question “What is a number?” must be precise to be useful in an implementation.

This work may also be significant to education researchers. The agent’s understanding will
very much depend on the order of acquired concepts and abilities (the agent progresses through
something like Piaget’s stages of development). This work can provide evidence as to why some
students find it hard to understand (and explain) certain concepts.

A good deal of effort concerns computational semantics. This work can also be seen as a
computational account of how such an abstract realm of human concepts and acts ends up meaning
so much and finding such widespread application.

Finally, as the prevalence of the word “computational” above may suggest, I believe this is a
significant project for computer science. It investigates how to build a better computational agent,
equipped with plausible representations and powerful general rules of inference. AI researchers
have taken up the challenges presented by language (in the AI subfield of computational linguistics)
and have found a wealth of research potential pursuing it. I believe that a similar effort should be
put towards computational mathematical cognition and that, with such an effort, a wealth of new
cognitive science projects may arise. This work is significant because it pursues this end.

I want to stress that this work outlines a preliminary theory. I certainly have not solved all of the
problems in mathematical cognition, nor have I given the final answers to the burning questions.
However, I do believe that developing this computational theory makes the important issues much
clearer.

1.7 Methodology

I will offer an in-depth investigation of a particular application requiring abstract arithmetic: find-
ing the greatest common divisor (GCD) of two natural numbers. Clearly, the concept of GCD is
clearly acquired and deployed “after” anything which might be calledearly mathematical reason-
ing. However, GCD is useful in demonstrating the theory’s ability to scale beyond counting and
arithmetic. Moreover, I will use a commonsense algorithm that can be decomposed into the early
(and often used) early arithmetic routines.

After examining the GCD probelm, I will investigate the theory’s applicability to a breadth of
embodied (external) applications. In so doing, I will examine how suitable the representations and
inference mechanisms are across applications.

I will strive to make the agent implementation of the theory cognitively plausible. Wherever
this is not possible, I will analyze the obstacles to plausibility.

The agent implementation is described from a bottom-up perspective. Counting is described
first, and other abstract arithmetic abilities are built up from this starting point. Counting will then
be shown to occupy a sort of “middle ground” in an agent’s path to numeracy. Indeed, the path

7



leading to count-based abstract arithmetic includes embodied experiences.
As mentioned above, my implementation will primarily use the techniques of symbolic AI (as

opposed to connectionist techniques) and will focus on numeric reasoning (as opposed to geometric
reasoning). Among other reasons, this helps focus the work. However, this is in no way intended
to diminish the importance of investigating the different aspects of mathematical cognition using
different computational formalisms.

1.8 Outline

In Chapter 2, I will review the relevant literature for this research. I will survey the contributions
from the cognitive sciences outside of AI and attempt to extract features that are usable in a compu-
tational theory of math cognition. I will also survey the existing models of mathematical reasoning
within the AI literature.

In Chapter 3, I will elaborate the varieties of mathematical understanding and their conditions.
The totality of an agent’s understanding will be treated as a gradient of features. An attempt
to describe necessary and sufficient conditions for several features of computational math under-
standing will be made. These conditions are derived by extending the classic conditions for knowl-
edge from epistemology. Also in Chapter 3, I will describe the SNePS knowledge-representation,
reasoning, and acting system which will serve as the underlying representation, logic, and agent-
implementation platform for my theory.

In Chapter 4, I will discuss a computational theory of abstract (internal) arithmetic and will
provide an extended case study involving greatest common divisors.

In Chapter 5, I will discuss a computational theory of embodied (external) arithmetic and some
non-mathematical applications of numeracy.

In Chapter 6, I will unify and generalize the perspectives offered in chapters 4 and 5 by demon-
strating how the external-internal gap is bridged.

8



Chapter 2

Previous Work on Mathematical Cognition

In this chapter I survey the relevant literature in mathematical cognition. First, I briefly review
the significant contributions from the branches of cognitive science: psychology, neuroscience,
philosophy, linguistics, education, and anthropology. I also group with these some contributions
from professional mathematicians who have considered the cognitive aspects of their discipline. I
then review in detail the existing work from artificial intelligence (and its subfields). I will defer a
review of the mathematical-understanding literature until the next chapter, where that theme will
be discussed in more detail.

This chapter is by no means an exhaustive list of relevant readings, but instead a broad survey
of the major influential works in the field.1 My specific contribution is in the area of knowledge-
representation and reasoning, using the symbolic AI approach, so I will necessarily restrict myself
to those research threads informing this work. I hope that, after reading this chapter, the reader
will feel that there is a definite niche for symbolic computational theories of math cognition.

2.1 Research from the Branches of Cognitive Science

Cognitive science is a unification of disparate disciplines. This multidisciplinary aspect is signif-
icant, because it forces the cognitive science researcher to consider a handful of methodologies
and to select from a variety of vocabularies when laying out a theory. In this section, I consider
contributions from the sub-disciplines of cognitive science.

2.1.1 Psychology

The field of psychology has provided the longest and broadest sustained effort in the investigation
of mathematical cognition. Psychologists from Piaget onward set a “bottom-up” agenda for math
cognition by focusing on the earliest abilities of counting and arithmetic in children rather than on
the thought processes of expert mathematicians.

Psychological investigations of mathematical ability tend to focus on the following questions:

1Another survey of the field of mathematical cognition is Gallistel (2005) and an anthology of important readings
can be found in Campbell (2004).

9



• Innateness: Are mathematical representations and abilities innate? Psychologists consider
an ability to be innate if its presence can be empirically detected in human infants or non-
human primates. Thus a bulk of the psychologist’s task is to develop experiments that will
demonstrate certain abilities in these non-verbal subjects.

• Universality: Is mathematical reasoning distributed universally across different reasoning
tasks, across different cultures, or across different species?

• Development: What are the stages of numeracy? How do representations change during
learning and across tasks?

• Abnormal Psychology: What can pathologies such as number-blindness or dyscalculia tell
us about mathematical ability and its relation to other cognitive systems?

Many psychological issues stemming from these questions have been examined theoretically and
experimentally.

2.1.1.1 Piaget

Jean Piaget (1965) studied young children’s numerical abilities within his larger framework involv-
ing the stages of cognitive development. Mathematical competence, in his view, develops stage by
stage alongside spatial and temporal reasoning abilities. In particular, he looked at abilities such
as conservation of discrete and continuous quantity, provoked and spontaneous one-to-one corre-
spondence, ordination, and cardination.

Piaget saw a parallel development of numerical and logical ability:

Our hypothesis is that the construction of number goes hand-in-hand with the devel-
opment of logic, and that a cardination-numerical period corresponds to a pre-logical
level (p. viii)

With this in mind Piaget was also troubled by the banishment of the psychological from the math-
ematical foundations program (cf. Chapter 1):

[T]he connections established in the field of experimental psychology needed to be
verified in the field of logistics. In studying the literature on the subject, we were
surprised to find to what extent the usual point of view was ‘realist’ rather than ‘opera-
tional’ . . . [t]his fact accounts for the connections, many of them artificial, established
by Russell, which forcibly separated logistic investigation from psychological analy-
sis, whereas each should be a support for the other in the same way as mathematics
and experimental physics (p. ix)

Of particular importance to my theory is Piaget’s method. His is a “procedure of free conver-
sation with the child, conversation which is governed by the questions put, but which is compelled
to follow the direction indicated by the child’s spontaneous answers” (p. vii). Piaget makes the
tacit assumption that children can verbalize their mental procedures and representations and that

10



this verbalization is a window into their understanding. Also, the fact that a conversation is com-
pelled to follow a course dictated by responses proves important to my conception of a method of
exhaustive explanation during a mathematical Turing test (see Chapters 3 and 4).

An important consequence of a staged-theory of cognitive development for computational mod-
eling is that we can treat a given computational agent at a given time as being a “snapshot” of a
particular developmental stage. We can then attempt to model the mechanisms involved in the
transition to the next stage or else ask what competencies the agent can exercise while occupying
the stage. As an example, we might attempt to model the transition of a child in stages of count-
ing. In an early stage, the child requires physical objects to be wholly present in order to count,
whereas, in a later stage, they can “count in their head”.

Piaget (1955) also addressed the importance of sensori-motor experience in the very earliest
stage of cognitive development. The ability to initiate actions from an embodiment (however
limited) is foundational to any further development.

2.1.1.2 Gelman and Gallistel

An influential and in-depth study on preschool mathematical cognition is given by Rochel Gelman
and Charles R. Gallistel (1978) . Their count-centric approach is evident from the outset:

[I]t appears that the child’s arithmetic reasoning is intimately related to the repre-
sentations of numerosity that are obtained by counting. The domain of numerosities
about which the child reasons arithmetically seems to expand as the child becomes
able to count larger and larger numerosities. Although it remains possible that chil-
dren younger than age 2 can recognize differences in numerosity without counting,
representations of numerosity obtained by direct perception do not appear to play a
significant role in arithmetic reasoning (p. 72)

The authors treat subitization, i.e., the automatic recognition of the cardinality of a collection,
as an organizing principle that facilitates counting, not as a replacement for counting. As evidence
for this, Gelman and Gallistel cite situations in which small subitizable collections are shown to
young children for very short intervals, and, even when naming the correct cardinality, the children
complain that they were not given enough time to count the items. I attempt to integrate knowledge-
level counting and perceptual-level subitization in the task of embodied enumeration described in
Chapter 5.

Gelman and Gallistel point out that the counting model for adults is agreed upon and well
analyzed:

It involves the coordinated use of several components: noticing the items in an array
one after another; pairing each noticed item with a number name; using a conventional
list of number names in the conventional order; and recognizing that the last name used
represents the numerosity of the array [p. 73]

However, the child’s counting model is significantly different from the adult’s. In particular, chil-
dren know how to count before they know the count words of their particular language. The authors

11



call the pre-verbal mental tags used in countingnumerons. Numerons must be unique and applied
in a fixed order (p. 76). Numerons are contrasted withnumerlogs, which are the actual counting
words of a language. I maintain the numeron-numerlog distinction in my computational theory.

The most cited aspect of Gelman and Gallistel (1978) is the proposed “how-to-count principles”
employed in the child’s counting model:

1. The One-One Principle: Use one and only one numeron for each item in the array to be
counted. This involves two processes: (1) partitioning the array into counted and uncounted
sets, and (2) “summoning” distinct numerons for items as needed. The coordination of these
processes is helped by pointing to each item as it is tagged (p. 77).

2. The Stable-Order Principle: The numerons used to tag items in the array must be “arranged
in a stable — that is repeatable — order” (p. 79).

3. The Cardinal Principle : The ability to designate the last numeron used as the numerosity
(cardinality) of the array (p. 80).

4. The Abstraction Principle: “The preceding principles can be applied toanyarray or col-
lection of entities” (p. 80).

5. The Order-Invariance Principle : “The order of enumeration is irrelevant . . . the order in
which items are tagged, and hence which item receives which tag, is irrelevant” (p. 82).

When discussing the stable-order principle, Gelman and Gallistel make the following point:

It is well known that the human mind, unlike the computer, has great difficulty in
forming long, stably recallable lists of arbitrary names...having no generating rules
underlying the sequence (p. 79).

Thus, to make a computational theory of early numerical processing plausible, the number of
numerons will be kept to 10.

When discussing the abstraction principle, Gelman and Gallistel point out:

[F]or the purposes of counting, perceptual entities may be categorized in the most
general way, asthings. Eventhingsmay be too limiting a specification of what chil-
dren and adults regard as countable. We have observed children counting thespaces
between items in an array. From the standpoint of the adult, this extremely general
category of what is countable may seem highly abstract. The view that the ability to
classify physical events as things is indeed very abstract and is implicit in theories
of cognitive development that postulate an elaborate hierarchy of subcategories as the
basis for categorization skills (p. 81).

I refer to this abstracted class of countable things as “sortals” (see Chapter 5).

12



2.1.1.3 Wynn

Karen Wynn is best known for her remarkable preferential looking time experiments described in
Wynn (1992,1995), designed to show the innateness of numerical representation by testing infants.
After undergoing a process of habituation, infants tend to stare longer at results that are arithmeti-
cally unexpected, i.e., at a situation that violates an arithmetic fact. In Wynn’s experiment, two
puppets are shown and then covered by a screen. The infant then sees one puppet removed and the
screen is lifted. The infant stares for a shorter time when the result is the expected result (one pup-
pet), but stares longer (indicating surprise) when there are zero or two puppets when the screen is
lifted. Some empiricist-leaning psychologists have pointed out some problems with Wynn’s exper-
iment (Carey, 2002), but it is generally agreed that some aspects of numeracy must be innate or else
develop in infancy. What this result indicates is that it is perfectly plausible for a computational
theory of early math cognition to assume some hard-wired facts or pre-programmed primitives.
It is, of course, debatable as towhich abilities can be plausibly hard-wired into a computational
system, but the goal should be to limit these to those features introduced by the computational
formalism itself (e.g., the fact that I use SNePS implies that my agent inherits the “innate” ability
to perform the sorts of inferences SNePS agents are capable of) and to otherwise keep this set as
small as possible.

Wynn (1996) examines an infant’s ability to individuate and enumerate actions. The action in
question is the number of hops of a puppet. Her findings show that “infants can individuate and
enumerate actions in a sequence, indicating that their enumeration mechanism is quite general in
the kinds of entities over which it will operate” (p. 164). This sequential action enumeration is a
more general case of a notion of self-action enumeration I present in Chapter 5. Action enumer-
ation provides a unique challenge that is not present in object enumeration. Human infants have
been shown to subitize small numbers of objects. However, a sequence of two or three actions can-
not be subitized because the actions must unfold in time. Thus, actions are an altogether different
kind of entity to be counted:

If infants’ numerical discrimination ability results from a pattern-recognition pro-
cess, it should not apply to kinds of entities other than objects or depictions of ob-
jects . . . Alternatively, the underlying mechanism may be inherently unrestricted in the
kinds of entities it can count (p. 164).

In subsequent chapters, we shall see that even actions can be the target of counting for a com-
putational agent. My computational agent is able to count its own actions because those actions
are reified as nodes in the agent’s semantic network, which is a representation of its mind.

In SNePS, agent actions are explicitly individuated from neighboring actions. Each distinct
act is either primitive, or given in terms of a well-defined action that can can be decomposed into
individuated primitives. Self-action enumeration is significant as a computational theory in light
of Wynn’s commentary on human action enumeration:

. . . virtually nothing is known about how people individuate actions. The individuation
of actions is likely to be complex because actions are not definable purely in terms of
objective properties. Frege’s observation that number is not an inherent property of

13



portions of the world applies as much to actions as it does to physical matter. Just as
a given physical aggregate may be an instance of many different numbers . . . so may a
given portion of an activity (one dance may equally be an instance of 437 steps, one
speech may be an instance of 72 utterances) (p. 165).

Sharon and Wynn (1998) extend Wynn (1996) by demonstrating how infants can “parse a
stream of motions into distinct actions” (p. 357). The restrictions on the enumeration ability is that
“action boundaries are specified by motionlessness . . . [infants] are not able to parse heterogeneous
actions from a continuous, nonpatterned stream of motion” (p. 361). The “stream of motion” is
only significant for a computational agent if the agent has an ontological conception of entities in
that stream. This is supported by Sharon and Wynn’s psychological findings:

[A]dults watching someone perform a leap followed seamlessly by a bow are aided
in the perception of two actions by their concepts of “leap” and “bow.” The fact
that infants were unable to parse jumps and falls from an ongoing stream of motion
suggests that they lack concepts for these basic-level actions (p. 361).

The nature of what makes an action “basic” has been dealt with in the philosophical literature as
well (Baier, 1971).

2.1.1.4 Butterworth

Brian Butterworth (1999) puts forth and defends a “Mathematical Brain” hypothesis. This is a
view that “the use of numbers is so universal that it is reasonable to infer that everyone is born
with a Number Module” (p. 21). By Number Module, he is referring to a dedicated component
for numerical cognition (specifically the recognition of numerosities). The idea of cognitive mod-
ule comes from Jerry Fodor’s modular theory of cognition (Fodor, 1983). In Fodor’s view, the
processing of numerosities is a “central process”. As such, numerical ability is a general-purpose
skill, but not necessarily a fast automatic ability. The fast automatic abilities (like color percep-
tion) are called “cognitive modules” in Fodor’s theory. Butterworth argues against Fodor’s view
to demonstrate the existence of a dedicated Number Module. He does this in order to argue for
the ubiquity of numerical representations in human life. This supports his view that numbers were
independently and spontaneously conceived across various cultures rather than originating from a
single “inventor” (or a single culture) and spreading around the world.

Butterworth’s theory is number-centric and, as such, highlights the importance of counting. He
identifies a variety of number types deployed in numerical cognition:

1. NumerositiesA number associated with a collection. I call such numbers “cardinals”.

2. Ordinal Numbers Used for specifying positions in a sequence.

3. Numerical LabelsUsed to tag things for identification (e.g., a zip code). I call such numbers
“nominals”.

4. Fractions The rational numbers (i.e., ratios of natural numbers).

14



5. Measure NumbersAnswer the questions “How much?”, “How long”, “How heavy” etc. I
call these “measure quantities binding to a unit sortal”.

6. Cyclical Numbers A set of numbers with a largest element that acts as a modulus and thus
causes a repetition in the numbers. The prototype example is clock time. I do not deal with
such numbers extensively in my theory.

7. Infinite Numerosities Cantorian transfinite cardinal and ordinal numbers.

It should be stressed that although these various conceptions are unified by being number types,
they often originate in vastly different conceptual systems. For example, Butterworth indicates that
ordinal numbers and nominal labels are often expressed by unrelated words in natural language.

Butterworth takes great care to demonstrate what he calls the “cognitive archeology” of nu-
merical abilities and representations. Numbers have sprung up in all cultures and at all points in
history (some of the earliest human artifacts are mathematical representations).

A well-studied phenomenon in mathematical psychology is a child’s transition between count-
addition strategies in addition. This cognitive leap represents a spontaneous optimization of pro-
cedures and is observed almost universallybeforeformal mathematical instruction.

Butterworth et al. (2001) provides a unique model of this transition, in which a comparison
of addends is made before any counting begins. This develops into a “count-on-from-greater”
strategy, which is guaranteed to be at least as fast (if not faster) than the count-on strategy.

As experience of addition increases, counting on from the larger addend could serve as
the basis for the organization of facts in memory . . . It also implies that the process of
solving a simple addition problem involves comparing the two addends to determine
the larger and transforming, if necessary, a smaller-larger sum to a larger-smaller sum
(p. 1009).

Butterworth’s model is relevant for our computational-agent implementation. First, it indicates
that the notion of “greater-than” is developed as early as counting and count-addition. This is of
particular interest, because we would like to have a computational agent explain the “greatest”
component of a greatest common divisor. Secondly, it suggests that the commutativity of addition
is discovered before formal arithmetic is taught.

I will defer further discussion of other computational models of count-addition strategy shifts
until Chapter 5, where I discuss how this is modeled in SNePS.

2.1.2 Neuroscience

Recent advances in brain imaging techniques (e.g., fMRI and PET-scan) have led to significant
results from the field of neuroscience. In the area of mathematical cognition, the neuroscientist is
interested in the following questions:

• Locating Math in the Brain : What brain areas are active during mathematical problem
solving? How does processing shift between brain areas responsible for different tasks?

15



• Approximate vs. Exact Representation: How does the brain handle the representation of
small, exact quantities and large, approximate quantities?

• Mental Number Line : How do the architecture and memory limitations of the human brain
impact the representation of the mental number line?

There is indeed some overlap between these questions and those posed by psychologists. The
field of cognitive neuroscience is still quite young, and I suspect that several exciting results about
human math cognition are not far off.2

2.1.2.1 Dehaene

Stanislas Dehaene (1992,1997) provides a broad theory of numerical cognition. One of his cen-
tral arguments is for the dissociability of different numerical abilities and representations that are
sometimes lumped together under the umbrella of the “number concept”. He uses evidence from
patients with “aphasic acalculia” to show the following:

The processing of arabic numerals . . . can be dissociated neuropsychologically from
the processing of verbal numerals . . . The neuropsychological approach has culminated
in identifying dissociation of lexical and semantic transcoding processes (Dehaene,
1992, p 5)

He makes a case for an independent “number sense” that is dissociable from (and not purely
generated from) the language system. This suggests that a computational cognitive agent may
require special mechanisms that extend the abilities of a purely linguistic processing system.

Dehaene (1997, Ch 8) discusses the possibilities of using brain-imaging techniques to uncover
brain processing during a mathematical task.

In the past few years, new tools . . . have begun to provide pictures of brain activity
in living, thinking humans. With modern brain imaging tools, a short experiment is
now sufficient to examine which brain regions are active while a normal subject reads,
calculates, or plays chess. Recordings of the electrical and magnetic activity of the
brain with millisecond accuracy allow us to unveil the dynamics of cerebral circuits
and the precise moment they become active (p. 208).

Dehaene also discusses theproblem-size effectin early arithmetic: “The time to solve single-
digit addition or multiplication problems such as 2 + 3 or 4× 7 increases with the size of the
operands”3(Dehaene, 1992, p 6). I will examine the problem-size effect in the context of a com-
putational implementation of count-addition in Chapter 5.

2As the subfield of cognitive science that is most closely associated with the actual human “hardware” (i.e., the
brain), we might expect that neuroscience has little to offer computational theories. However, very recent results in
Anderson (2007) use ACT-R to build computational models that match actual brain-region functionality.

3See Ashcraft (1992) for various models of the response-time delay relating to the problem-size effect.

16



2.1.3 Philosophy

The philosophy of mathematics is chiefly concerned with three questions:

• Ontology: What is the ontological status of mathematical objects (numbers, sets, lines, etc.)?

• Epistemology: What are the knowledge conditions for mathematical propositions?

• Semantics: What is the meaning of mathematical expressions?

These questions have divided philosophers into “camps” (e.g., the ontology issue separates philoso-
phers into realists and antirealists).

2.1.3.1 Shapiro

Despite working in a fully-intensional system like SNePS, I find the structuralist realism of Shapiro
(1997) to be the most informative ontology for my theory. This is a realist position (i.e., a position
that mathematical objects have an objective existence that can be learned and referred to intersub-
jectively). Similar positions have been elaborated by Isaacson (1994) and Resnik (1997). Shapiro
makes clear “what is at stake” when choosing a position on the semantic question as well:

One strong desideratum is that mathematical statements have the same semantics as or-
dinary statements, or at least respectable scientific statements . . . scientific language is
thoroughly intertwined with mathematical language. It would be awkward and coun-
terintuitive to provide separate semantic accounts for mathematical and scientific lan-
guage, and yet another account of how various discourses interact (p. 3).

This is an issue even in a theory of early cognition, because the child must square the meaning of
statements presented formally (e.g., 1 + 2) and statements presented in terms of concrete real-world
objects (e.g., 1 cow + 2 dogs = ? animals).

Under the structuralist view, mathematical objects such as numbers are positions in instantia-
tions of structures (places in instantiations of patterns for Resnik (1997)). A useful metaphor is to
think of such objects as offices. When I make the assertion “The vice-president is next in the line
of succession to the president”, I can make inferences about:

1. exemplars: all pairs of office-holders in these offices, from Washington and Adams to Bush
and Cheney

2. future (possible) exemplars: the unspecified future holders of these offices

3. the structure itself: a part of the hierarchical organization of the American government re-
garding line-of-succession.

Another useful example (from Shapiro): When I assert “The shortstop is the hardest position in a
baseball defense”, I can make a general inference about any player instantiating the position (e.g.,
for the particular player who may be filling that role for the New York Yankees). The instantiations
of positions in a structure “inherit” the structural properties of the particular position within the

17



structure. Mathematical assertions such as “8 is divisible by 2” are really saying something about
a relationship between positions in any instantiation of the natural-number progression (and, as
it happens, any instantiation of the real-number progression). This assertion is saying something
about a relationship between whatever may be playing the role of 8 and whatever may be playing
the role of 2 in any instantiation.

Shapiro details three “flavors” of structuralism:

1. Ante RemStructuralism : “Structures and their places exist independently of whether there
are any systems of objects that exemplify them” (p. 9).

2. Eliminative Structuralism : “Statements [of mathematics] are not about specificobjects.
Rather each such statement is a generalization over natural-numbersystems” (p. 9)

3. Modal Structuralism : “Statements [of mathematics] are about allpossiblenatural-number
systems” (p. 10).

Shapiro aligns himself withAnte Remstructuralism, but I make no commitment to which of these
positions is correct.

If mathematics is all about structures having an independent existence, then understanding
mathematics amounts to understanding these structures. One philosophical reason I believe a com-
puter can come to understand mathematics is that a computer can access the same exemplifications
of structures as human beings.

2.1.3.2 Wittgenstein

Ludwig Wittgenstein (1939/1976) adopted a “meaning-is-use” approach to addressing the semantic
issue in mathematics:

The use of the word “understand” is based on the fact that in an enormous majority of
cases when we have applied certain tests, we are able to predict that a man will use the
word in question in certain ways. If this were not the case, there would be no point in
using the word “understand” at all (p. 23).

He brings up an important problem for a computational assessment of understanding by pointing
out that a person (or computer) could just be programmed with a large lookup table of rules which
determines the use of terms perfectly, but that understanding must be more than mere behavior.

Wittgenstein also addresses the notion of mathematical discovery:

There is no discovery that 13 follows 12. That’s our technique—wefix, we teach, our
technique that way. If there’s a discovery—it is that this is a valuable thing to do (p.
83).

I believe that a great majority of early mathematics is just learning conventions and “proper use”,
but I also believe that Wittgenstein underestimates (or ignores) intuition and genuine learning.
Unfortunately, aspects of mathematical intuition are not usually made rigorous.4 Without such
rigor, it is difficult to have computational models of mathematical intuition.

4An exception might be Kurt G̈odel, who posited that mathematical intuition worked like one of the senses.

18



2.1.3.3 Glasersfeld

Ernst von Glasersfeld (2006) develops a constructivist position towards the philosophy of mathe-
matics. Under this view:

[T]he meaningof both natural language and mathematical symbols is not a matter of
‘reference’ in terms of independent existing entities, but rather of subjective mental
operations which, in the course of social interaction in experiential situations, achieve
a modicum of intersubjective compatibility (p. 63).

That this view seems to go against the realism (certainly Platonic realism, and to a lesser degree
structuralist realism) is not as important as the emphasis on mental operations and experiential
situations. Indeed, I believe there is enough right and wrong about both realism and constructivism
to warrant a metaphysics that incorporates both (e.g., the participatory view developed by Smith
(1996)).

Glasersfeld also sets up some motivation for the present work:

[I]t seems reasonable to ask what the most elementary building blocks could be that
might serve as a basis for the constitution of the mysterious structures or “objects” that
mathematics develops. To pursue that quest requires empirical investigation, where
“empirical” has its original meaning and refers toexperience. But clearly it will not
be sensory experience that matters, but the experience of mental operations.

[W]e have to devise a model of how elementary mathematical ideas could be con-
structed — and such a model will be plausible only if the raw material it uses is itself
not mathematical (p. 64).

I believe that sensory experience is important, but equally important is an agent’s ability to abstract
away from particular sensory experiences. Glasersfeld’s insistence that the abstraction should be
from the non-mathematical to the mathematical foreshadows the discussion in chapter 6.

Glasersfeld emphasizes the importance of counting as the essential initial act involved in the
development of number:

[I]f we did not count, it is unlikely that we should ever have arithmetic and mathemat-
ics, because without counting there would be no numbers (p. 64).

Even in the case of numbers that are higher than we could ever actually reach by count-
ing, the tacit knowledge that there is a procedure by means of which, theoretically, we
could reach them, constitutes the first (but by no means the only) characteristic of
numberas an abstract concept (p. 66).

A counting act that has the potential to generate arbitrarily large numbers “latently” gives the agent
a conceptual framework to deal with all of the natural numbers.

19



2.1.4 Linguistics

Linguists study mathematics as a system of communication and investigate its relationship to ver-
bal natural-languages. Broadly speaking, linguistics investigates these math cognition issues:

• Associability of Math and Natural Language: Given the dissociability of the two brain
systems responsible for language and mathematics as given by neuroscience, how much
overlap is there between the two cognitive modules?

• Mathematical Discourse: What makes certain discourses (or proofs) easier to process than
others? How should mathematical statements be parsed when presented alongside natural
language?

• Cognitive Semantics: How can linguistic devices such as conceptual metaphors and figure-
ground schemata be applied to mathematical idea analysis.

2.1.4.1 Lakoff and Núñez

George Lakoff and Rafael Ńuñez (2000) provide a detailed basis for mathematical cognition using
the device of conceptual metaphor. They believe that mathematics is a subjective, human creation,
that has resulted from the human embodiment.

Mathematics as we know it is limited and structured by the human brain and human
mental capacities. The only mathematics we know or can know is a brain-and-mind
based mathematics . . . the only conceptualization that we can have of mathematics is
a human conceptualization (p. 1–2).

This would seem to immediately fly in the face of any attempt at developing computational agents
with humanmathematical understanding. However, any implementation of such computational
agents will likely be programmed by human beings. Those human programmers will provide these
agents with some encoded form ofhumanmathematics (since this is the only form of mathematics
the programmers know, or can know). The problem of different embodiments for humans and
computers can also be overcome. It may be the case that either a computational embodiment will
result in a sufficiently similar mathematics to that of human beings or that the computational agent
will need an interface through which to describe its own mathematics to the human. In terms of just
mathematical ability, a pocket calculator already does this. The “binary” embodiment produces a
binary numerical answer that is translated to a “human readable” format before it is displayed on
the LCD.

Lakoff and Ńuñez describe the initial innate abilities of infants and show how these abilities
can be built on to produce more complex mathematics. They claim that the central driving force
behind this development is conceptual metaphor. Conceptual metaphors come in two varieties:

The first are what we callgrounding metaphors— metaphors that allow you to project
from everyday experiences (like putting things into piles) onto abstract concepts (like
addition). The second are what we calllinking metaphors, which link arithmetic to
other branches of mathematics (p. 53).

20



This distinction strongly supports a bottom-up approach to designing computational agents with
mathematical understanding. Even though we have not used conceptual metaphors in our cognitive
agent’s math lessons, the presence of linking metaphors from arithmetic to other branches of math-
ematics suggests that an agent will be able to answer questions from those branchesin terms ofits
arithmetic understanding. Conceptual metaphors form the basis for what Lakoff and Núñez call an
“Embodied Arithmetic”. They claim that understanding of arithmetic comes from: “(1) the most
basic literal aspects of arithmetic, such as subitizing and counting, and (2) everyday activities such
as collecting objects into groups or piles, taking objects apart and putting them together, taking
steps, and so on” (p. 54). Corresponding to these embodied activities, four grounding metaphors
are given:

1. Arithmetic Is Object Collection : “arises naturally in our brains as a result of regularly using
innate neural arithmetic while interacting with small collections of objects. The metaphor is
so deeply ingrained in our minds that we have to think twice to realize that numbers are not
physical objects and so do not literally have a size” (56).

2. Arithmetic Is Object Construction : “makes it possible to understand a number, which is an
abstraction, as being ‘made up’, or ‘composed of’, other numbers, which are ‘put together’
using arithmetic operations” (65).

3. The Measuring Stick Metaphor: “when you form a blend of physical segments and num-
bers, constrained by the measuring stick metaphor, then within the blend there is a one-to-
one correspondence between physical segments and numbers. The fateful entailment is this:
Given a fixed unit length, it follows that for every physical segment there is a number” (70).

4. Arithmetic Is Motion Along a Path : “There is a simple relationship between a path of
motion and a physical segment. The origin of the motion corresponds to one end of a physical
segment; the endpoint of the motion corresponds to the other end of the physical segment;
and the path of motion corresponds to the rest of the physical segment” (72).

The target domains for these metaphors give rise to very special meanings for one and zero:

. . . zero, in everyday language, can symbolically denote emptiness, nothingness, lack,
absence, destruction, ultimate smallness and origin . . . one [can take on] the symbolic
values of individuality, separateness, wholeness, unity, integrity, a standard, and a
beginning (p. 75).

These meanings can be used in non-mathematical domains or can serve to lend numerical cognition
to an agent functioning in a non-mathematical domain.

Lakoff and Ńuñez then go on to describe how the human embodiment has influenced the lan-
guage of arithmetic and representation of numerals:

Our linear, positional, polynomial-based notational system is an optimal solution to
the constraints placed on us by our bodies (our arms and our gaze), our cognitive
limitations (visual perception and attention, memory, parsing ability), and possibilities
given by conceptual metaphor (p. 86).

21



The organization of other mathematical languages follows that of arithmetic. For example, a ‘3’ in
a counting sequence, a coefficient ‘3’ in an algebraic equation, and a ‘3’ in a matrix are all related
by their “threeness”. We take it for granted that, in any new branch of mathematics, the numerals
will retain the same meaning. Lakoff and Núñez show how this is also the case for arithmetic
operators. The ‘+’ sign brings some notion of summation to a branch of math, regardless of
whether the operands are natural numbers, integers, fractions, imaginary numbers, or transfinite
ordinal numbers. Often, ‘+’ will need to be reinterpreted and overloaded when given different
operands. This requires an author to introduce and explain how the use of ‘+’ differs from the
intuitive, arithmetic sense that has been formed by the grounding metaphors. The presence of such
shared symbols across mathematical languages is why I claim that mathematics is expressed in
a “family” of formal languages. Ideally, a mathematical agent that was expected tolearn a new
branch of mathematics should have some intuition of what ‘+’ means in its simple arithmetic sense.

It should be noted that, despite the cognitive foundation for the positional number system and
for the privileged status of number zero, these were concepts that did need invention and acceptance
into mathematics. In some sense, the broader multicultural mathematical community is much like
an individual in that it ends up adopting the most useful conceptual tools and best practices. With
the further developments made possible by conceptual tools such as zero and the positional number
system, these concepts became indispensable.

For my research interests, the most significant commentary in Lakoff and Núñez (2000) is the
discussion of procedural arithmetic and its relation to computability and understanding:

When we learn procedures for adding, subtracting, multiplying, and dividing, we
are learning algorithms for manipulating symbols—numerals, not numbers. What is
taught in grade school as arithmetic is, for the most part, not ideas about numbers but
automatic procedures for performing operations on numerals—procedures that give
consistent and stable results. Being able to carry out such operations does not mean
that you have learned meaningful content about the nature of numbers, even if you
always get the right answers!

There is a lot that is important about this. Such algorithms minimize cognitive
activity while allowing you to get the right answers. Moreover, these algorithms
work generally—for all numbers, regardless of their size. And one of the best things
about mathematical calculation—extended from simple arithmetic to higher forms of
mathematics—is that the algorithm, being freed from meaning and understanding, can
be implemented in a physical machine called a computer, a machine that can calculate
everything perfectlywithout understanding anything at all(emphasis added, p. 86).

This ability to manipulate numbers without a sense of their “meaning”, i.e., in a purely syntactic
way is reminiscent of Shapiro’s (1977) suggestion to use a syntactic network to handle numeri-
cal operations as opposed to a semantic network. However, I believe that a computational agent
can achieve understanding by treating numbers semantically, i.e., by considering their meaning
in a given system. Lakoff and Ńuñez (2000) represents a “call to arms” to develop agents that
can understand the algorithms that produce the “consistent and stable results”. I will claim that
understanding and meaning can be drawn from the same mechanical device that performs the cal-
culating.

22



2.1.4.2 Wiese

Heike Wiese (2003) speculates that several faculties of language set up numerical cognition in
a very natural way. Both the linguistic and mathematical cognitive systems develop in parallel.
Language is a tool with which correspondences can be made. There is a link formed between
an internalized word and its external referent (or an internalized model of the external referent).
Numbers, when treated as words, can also be used to make such correspondences.

The flexibility of numbers is demonstrated by their multiplicity of uses in their assignments to
objects. Wiese brings up the three-way distinction made between number assignments:nominal,
cardinal, andordinal. Nominal number assignments are applied to an object and serve to identify
the object. For all practical purposes, nominal assignments function as proper nouns (e.g., “Num-
ber three scored the most points in last week’s game”). Cardinal number assignments are applied
to sets of objects and serve as an enumeration (or size) for the set. An ordinal number assignment
is applied to an object in order to indicate its relative position in space and time. Nominal number
assignments can be handled computationally by any agent capable of natural-language processing.
Cardinal number assignments are also used as a “proof” of quantity for a set:

. . . if I ask you to prove to me that the pens on my desk are actually three, what you
are most likely to do is to assign every pen a counting word, starting with ONE, and
use the last counting word, THREE, to identify the cardinality of the entire set of pens
(p. 90).

Wiese also shows that an object can simultaneously receive multiple assignments:

. . . the number that is assigned to a house does not only identify it, but can often also
tell us something about its position among other houses (p. 39).

Wiese describes the act of counting linguistically. The counting act provides an unlimited set
of identifiers that are immediately well-ordered

[Children] learn thecounting sequenceof their language, the set of words like ONE,
TWO, THREE, etc. that are used for counting objects, but that also appear in a more
basic usage, as part of a recited series of words . . . you cannot only give me new count-
ing words endlessly, but you can also tell their positions relative to each other (p.
68–69).

The sequence of identifiers is also unique (and this is the case in all natural languages):

There are no two counting words that share the same phonological representation; each
occurs only once within the counting sequence, and this is exactly because counting
words function as numbers (p. 71).

Thus, Wiese shows how number words, which are integrated into natural language, are fully func-
tional as numbers.

Linguistically, when numbers serve to quantify nouns, the noun determines the scale of quan-
tification.

So, for instance, the fruits I have here in a bowl on my desk can count as six fruits, or
as two apples, three bananas, and one orange (p. 101).

23



2.1.5 Education

The pedagogical implications of cognitive science research in mathematics have also received sig-
nificant attention. Math education researchers, as well as classroom teachers themselves, are inter-
ested in how to apply psychological results to improve student instruction. Some of the questions
of interest from the educational perspective are:

• How should the various “isms” be reflected in the curriculum?Associationism,
Gestaltism, behaviorism, and constructivism all point to different theories of learning and
different styles of instruction.

• What should be tested for, and how should it be tested for?How can mathematical
knowledge be measured by performance in producing the right results and performing the
correct procedures?

• What is the impact of using multiple representations for a single concept?There is
evidence that operational and structural representations for the same concept are essential to
mathematical understanding. The interplay of different representations is therefore important
to quality instruction.

2.1.5.1 Schoenfeld

Alan H. Schoenfeld (1987) presents a chronological review of how different cognitive theories
have impacted mathematics education. He begins with the associationists. Associationists believe
that bonds (i.e., associations between sets of stimuli and the responses to them) that “go together”
should be taught together. “Translated into pedagogical terms their theoretical approach yielded
‘drill and practice’ ”(p. 3). This approach is associated with “rote learning” and flash cards. Asso-
ciationism does not take into consideration how arithmetic facts are stored in memory.

Schoenfeld presents Gestaltistm as a response to associationism. “Gestaltists believed in very
rich mental structures and felt that the object of instruction should be to help students develop them.
The main difficulty was that the [G]estaltists had little or no theory of instruction” (p. 4). The sorts
of “rich mental structures” the Gestaltists seek mirrors the search for robust representations in a
computational theory.

Behaviorism is then presented as a counter to gestaltism. Behaviorists believe that learning
can be achieved by programmed instruction and heavy prompting, with an emphasis on small
steps and careful sequencing of individual environmental interactions. These interactions would
be behavioral observables (p. 5).

Constructivism in mathematical education, as inspired by Piaget (see§2.1.1.1), reaches the
conclusion that mathematical reality is constructed from individual experiences and is based on
the stage of development. This leads to the classic mistakes involving object permanence and
conservation of volume at early developmental stages, and also to subtle systematic mistakes in
arithmetic at later stages.

The contrast between these methodologies is one of where the research focus should be. To
some degree, the associationist and behaviorist camps tend to favor external observables and ignore

24



the internal cognitive structure of an agent, so I do not believe they are as useful to a computational
model of an individual student of mathematics.

Schoenfeld correctly emphasizes the tendency of education research focusing on theproduct
of problem solving as opposed to the cognitive science stress on theprocessof problem solving:

Educational research has traditionally emphasized product, the bottom line being the
correct answer or the number of problems a student, or group of students, can correctly
answer . . . In general, “having an ability” has been defined as scoring well on a test for
that ability . . . For the most part, classic educational research that claimed to explore
“problem solving performance” did not examine what people were doing—or trying
to do—when they worked problems (p. 8).

Worse than this, a focus on only the products of problem solving can lead to a student with a
skewed perception of his or her own understanding. Schoenfeld discusses how certain students
come to believe that a problem is understood only if it can be solved in under five minutes (p. 27).
I will have more to say about the distinction between ability and understanding in the next chapter.

Schoenfeld criticizes Polya’s work on problem-solving (see§2.2.0.3 below) for being descrip-
tive, rather than prescriptive:

[T]here is a huge difference betweendescription, which merely characterizes a proce-
dure in sufficient detail for it to be recognized, andprescription, which characterizes
a procedure in precise enough detail so that the characterization serves as a guide for
implementing the strategy.

As a result, Polya’s strategy descriptions actually correspond to several different prescriptions
applicable across problem domains. For example, working with small instances in order to un-
derstand a general problem actually means different things in different problem contexts (see p.
19). Computational theories of problem solving are necessarily prescriptive because they must be
implemented via a precise, unambiguous programming language. Thus, such theories can yield a
more precise recommendation for a curriculum.

2.1.5.2 Sfard

Anna Sfard (1991) gives a detailed analysis of the operational and structural distinction underlying
mathematical concepts.

. . . seeing a mathematical entity as an object means being capable of referring to it as
if it were a real thing—a static structure, existing somewhere in space and time. It also
means being able to recognize the idea “at a glance” and to manipulate it as a whole,
without going into details . . . [I]interpreting a notion as a process implies regarding
it as a potential rather than actual entity, which comes into existence upon request in
a sequence of actions . . . [T]here is a deep ontological gap between operational and
structural conceptions (p. 4).

25



Both operational and structural information in my implementation is represented in the same
knowledge base and uses the same representational structures (i.e., nodes in a semantic network).
This allows the agent to treat a procedure as an object of belief. Thus, any SNePS solution to the
ontological problem will not require a shift in representational structure.

Sfard notes the importance of considering mathematical objects structurally and operationally
to mathematical understanding

. . . the ability of seeing a function or a number as both a process and an object is
indispensable for a deep understanding of mathematics, whatever the definition of
“understanding” is (p. 5).

. . . in order to speak about mathematicalobjects, we must be able to deal withproducts
of some processes without bothering about the processes themselves (p. 10).

The resulting object becomes a replacement for the procedure that generated it. This is consistent
with my implementation of counting (see Appendix). The agent uses a set of syntactic rules for
counting up to a given numbern. As a consequence of performing this procedure, the agent will
believe that all of the numbers it has said in order to achieve its goal (i.e., to complete counting
to n) are themselves numbers. Thus, the process of counting ton generates the usable objects 1
. . .n−1. The agent does not have to count ton−1 to use it as a number, because it has already
counted ton−1 while counting ton.

Sfard describes a process ofcondensation, which allows for the reification of mathematical
procedures. This is presented using a computational metaphor:

[condensation] is like turning a recurrent part of a computer program into an au-
tonomous procedure: from now on the learner would refer to the process in terms
of input-output relations rather than by indicating any operations. As in the case of
computer procedures, a name might be given to this condensed whole. This is the
point at which a new concept is “officially” born (p. 18–19).

The cognitive load is dramatically reduced when a student only has to think about the results of a
process. This is something our implementation desperately needs. Currently, our agent stores all
of the procedural information (e.g., how to count from 13 to 14) along with the declarative results
(e.g., the digit strings representing the numbers 13 and 14). When it is not involved in counting, it
would be best to ignore the counting procedures.

2.1.6 Anthropology

Anthropology has attempted to examine the place of mathematics in various cultures at various
periods of human history. An anthropologist would be interested in tracing the development of the
quantitative concepts and numeration systems as they migrated and were adopted. The nature of
mathematical tools and artifacts are also of interest, as are social factors impacting mathematical
reasoning.

Crump (1990) presents a review of existing research in the anthropology of numbers. In this
work it is apparent that numerical cognition has a vast cultural impact, creating diverse influences

26



in: cosmology, ethnoscience, economy, society, politics, time, games, art, architecture, music,
poetry and dance.

2.1.6.1 Sapir and Whorf

The famous Sapir-Whorf hypothesis (Sapir, 1921; Whorf, 1956) is an anthropological claim that
the language spoken by a set of people will directly determine the ways in which those people
think and behave. This hypothesis is relevant to our research in two ways: (i) Mathematics is
a form of language that (although more formal and uniform than natural language) is performed
differently in different cultures (e.g., the procedural differences between Asian and non-Asian
students when solving elementary arithmetic problems reported by Campbell and Xue (2001)) ,
and (ii) any computational agent we develop will be a product of its lessons, and thus constrained
by both system formalisms and the representational choices of the programmer.

The Sapir-Whorf hypothesis is a divisive issue among cognitive scientists. Recently, it has been
claimed that members of the Amazonian Pirahã tribe lack complex numerical cognition because
they lack number words beyond two (Biever, 2004; Holden, 2004). If true, this would provide some
evidence for the Sapir-Whorf hypothesis. However, this finding is still controversial. Interestingly
though, a computational implementation is the perfect vehicle for simulating how an agent with
two number-words might reason, a sort of predictive computational anthropology.

2.1.6.2 Hutchins

Edwin Hutchins (1995) has studied the operations of a naval crew in order to determine their com-
munal use of information and their reliance on external media to augment their cognitive abilities.
He makes several important points regarding the importance of external tools for mathematical
cognition:

[T]ools permit us to transform difficult tasks into ones that can be done by pattern
matching, by the manipulation of simple physical systems. These tools are used pre-
ciselybecausethe cognitive processes required to manipulate them are not the compu-
tational processes accomplished by their manipulation. The computational constraints
of the problem have been built into the physical structure of the tools (p. 170–171).

A computational cognitive agent should also be given access to tools that extend its cognitive
abilities. This, along with the “extended mind” hypothesis of Clark and Chalmers (1998), is the
impetus behind implementing an external calculator for the SNePS agent implementation.

Hutchins also addresses the possibility of human-computer collaboration:

By failing to understand the source of the computational power in our interactions with
simple “unintelligent” physical devices, we position ourselves well to squander oppor-
tunities with so-called intelligent computers. The synergy of psychology and artificial
intelligence may lead us to attempt to create more and more intelligent artificial agents
rather than more powerful task-transforming representations.

27



2.2 Research in Mathematics

Surely, for as long as we have been doing mathematics, we have been thinking abouthowwe do it,
whywe do it, andwhat it means. Unfortunately, this how, why, and what have only recently been
properly treated asscientificsubjects of inquiry. As a result, such reflections did not find their ways
into the “polished”, published results of mathematicians. There have been notable exceptions:

What distinguishes Archimedes’ work in geometry from that of Euclid is that
Archimedes often presents his method of discovery of the theorem and/or his analysis
of the situation before presenting a rigorous synthetic proof. The methods of discovery
of several of his results are collected in a treatise calledThe Method. . .The Method
contains Archimedes’ method of discovery by mechanics of many important results
on areas and volumes, most of which are rigorously proved elsewhere(Katz, 1998, p
111).

Even at our current position in mathematical history, it is the rigorous result that is considered to
have lasting value. Textbooks are written so that the reader can follow the logical progression from
one theorem’s proof to the next, from one abstract concept to the next, and from one subject matter
to the next. All of the messy (yet creative) aspects of the mathematician’s labor are swept under
the rug.

After a discovery has been completed and its ideas well-digested, one quite under-
standably wishes to go back and clean it up, so that it appears elegant and pristine.
This is a healthy desire, and doing so certainly makes the new ideas much easier and
prettier to present to others. On the other hand, doing so also tends to make one forget,
especially as the years pass, how many awkward notations one actually used, and how
many futile pathways one tried out (Hofstadter, 1995, p 21).

In this section, I review the work of a few mathematicians who introspectively examined their
methods in a cognitive way.

2.2.0.3 Polya

George Polya (1945) was interested in the various kinds of useful problem-solving techniques.

Studying the methods of solving problems, we perceive another face of mathemat-
ics. Yes, mathematics has two faces; it is the rigorous science of Euclid, but it is also
something else. Mathematics presented in the Euclidean way appears as a systematic,
deductive science; but mathematics in the making appears as an experimental, induc-
tive science. Both aspects are as old as the science of mathematics itself. But the
second aspect is new in one respect; mathematics “in statu nascendi”, in the process
of being invented, has never before been presented in quite this manner to the student,
or to the teacher himself, or to the general public (p. vii).

28



He develops a four-part general strategy consisting of: (1) understanding the problem, (2) devising
a plan, (3) carrying out the plan, and (4) looking back (to check the result and understand it). Thus
mathematical understanding is required “before-the-job” and “after-the-job” of problem solving.
Polya stresses the assimilation of what is newly understood after a problem:

Try to modify to their advantage smaller or larger parts of the solution, try to improve
the whole solution, to make it intuitive, to fit it into your formerly acquired knowledge
as naturally as possible (p. 36)

This insistence on modifying the solution demonstrates that performing a task is not necessarily a
pathway to understanding. A result must be “made compatible” with an agent’s existing knowledge
before it can be assimilated.

2.2.0.4 Mac Lane

Saunders Mac Lane (1981) developed a category theoretic stance towards the different branches of
mathematics, in an attempt to show how each branch arose from an “originating” human activity:

[M]athematics started from various human activities which suggest objects and oper-
ations (addition, multiplication, comparison of size) and thus lead to concepts (prime
number, transformation) which are then embedded in formal axiomatic systems (Peano
arithmetic, Euclidean Geometry). These systems turn out to codify deeper and nonob-
vious properties of the various originating human activities(Mac Lane, 1981)

The following activities are given:

Activity Branch of Mathematics
Counting Arithmetic, Number Theory
Measuring Real Analysis, Calculus
Shaping Geometry, Topology
Forming Symmetry, Group Theory
Estimating Probability, Measure Theory, Statistics
Moving Mechanics, Calculus, Dynamics
Calculating Algebra, Numerical Analysis
Proving Logic
Puzzling Combinatorics, Number Theory
Grouping Set Theory, Combinatorics

Mac Lane thus provides a potential explanation for the effectiveness of mathematics in science
(and experience in general). A branch of mathematics is a source of understanding in part because
it is encoded experience.

29



2.3 Research in Artificial Intelligence

The AI literature, while extensive, has relatively few studies of mathematical cognition (relatively
few compared to other forms of reasoning, e.g., natural-language processing). I believe that there
are two fundamental reasons for this: (1) mathematical cognition has only recently emerged as
a serious topic in the cognitive sciences, and (2) computers and calculators have demonstrated a
great deal of mathematicalability. Thus, some might feel that all there is left to study is the limits
of this ability. What work there has been can be put into one of five general categories: automated
theorem proving, production-system simulations, heuristic-driven models, connectionist models,
and tutoring systems.

2.3.1 Automated Theorem Proving

The most common activity undertaken by human mathematicians is theorem proving. This deduc-
tive activity can be automated by encoding the set of premises (or hypotheses) as logical formulas
and mechanically applying rules of inference until a desired conclusion is reached. In this applica-
tion, computers have proven fruitful assistants to professional mathematicians (cf. Bundy 1983 for
a review of automated theorem proving). Indeed, automated theorem proving has become a full-
fledged topic of its own. Unfortunately, for our investigation of mathematical understanding, this
topic does not have very much to offer. What is being automated by an automated-theorem-prover
is the logic behind the act of proof, not the understanding of what a resulting proof means. Further-
more, automated theorem prover implementations pay very little attention to cognitive plausibility.
The logical inference rule of resolution (a driving force behind many automated theorem provers)
is very efficient, but very few humans would actually apply the rule to prove a theorem.

This claim runs against the tradition of “natural” deduction systems. Rips (1983) claims that
untrained subjects produce proofs in a manner similar to that of a natural-deduction system. How-
ever, I believe the rules of such systems are only “natural” in the context of logical problem-solving.
Following the mathematical foundations program, we might try to reduce any arithmetic problem
to a logical problem. However, in undertaking this reduction, I believe the “naturalness” of such
rule following would disappear.

Even though the techniques of theorem proving are a large part of the professional mathemati-
cian’s repertoire, they are not among the most common mathematical tools applied in everyday,
“common sense” mathematical reasoning. The early mathematical abilities (such as counting and
arithmetic) are more frequently applied by the non-mathematician, and are more central to the core
of human intelligence. Thus, the logical rules used in the SNePS agent implementation are used to
specify commonsense acts, rather than proof-theoretic inferences.5

5Even though, at a certain level of granularity, these act consist of specific system-level inferences, the agent is not
“aware” of the acts construed in this way.

30



2.3.2 Production-System Simulations

A production system is a computational model of cognition. The model stresses the distinction
between short-term “working” memory and long-term memory. External stimuli enter working
memory and interact with stored knowledge in long term memory. Problem solving can be sim-
ulated by developing a production system that behaves correctly when presented with the proper
sequence of external stimuli.

2.3.2.1 Klahr

Production systems have been a fertile platform for the cognitive simulation of early mathematical
activities. Klahr (1973) designed a production-system simulation of counting and subitization. The
system worked on a principle Klahr called template matching:

Subitizing is viewed as a combination of template matching and sequential transfer
from LTM [Long Term Memory] to STM [Short Term Memory] of both template
“pieces” and number names (p. 533).

What Klahr would call “counting”, I would refer to as “enumeration”, namely, the matching of
number names with corresponding entities in an agent’s perception. Klahr calls such entities
tolerance-space atoms:

Template pieces are symbols representing tolerance space atoms (TSAs), the elemen-
tary unit of “countableness”. Somewhere in the system, there must be a class of sym-
bols that represents what “countable” things are. Although the TSAs are defined as
primitives, the decision about what things in the environment will be considered uni-
tary objects is dependent upon such things as goal of the quantification attempt, the
discriminatability and saliency of cues, and the current state of the system (p. 535).

My theory will utilize the philosophical notion of a sortal, similar to Klahr’s TSAs. A detailed
computational account of how sortals can be used by agents to perform knowledge-level acts of
embodied enumeration on perceptual representations is given in Chapter 5.

2.3.2.2 Fletcher and Dellarosa

Fletcher (1985) and Dellarosa (1985) have implemented production-system models of arithmetic
word-problem solving. Fletcher’s program, WORDPRO, implements a theory proposed by Kintsch
and Greeno (1985). A high-level description of the model is given:

Given the propositional representation of a text, WORDPRO constructs a bi-level rep-
resentation which it then uses to derive the solution. The two levels are referred to
as the text base and the problem model. The text base is an organized set of proposi-
tions. Such a representation is assumed to result from reading or listening to any text,
regardless of the domain. The problem model is a non-propositional, domain-specific
representation which drives the problem solving process (Fletcher 1985: 365)

31



Both levels of representation raise interesting research questions. First, how is a mathematical
natural-language text best represented? Secondly, how can domain-specific information help the
problem solver?

Dellarosa’s program, SOLUTION, is an extension and enhancement of WORDPRO. Both pro-
grams demonstrate the power of simulating cognitive performance in a mathematical domain.

I do not believe that Klahr, Fletcher, or Dellarosa have used production systems in any particu-
lar way that would be incompatible with a semantic-network implementation. Unlike WORDPRO
and SOLUTION, I would like my agent to be able to remember the steps it took so that it might
answer questions when it is done (it is difficult to see how this might be done with just a trace of
production-rule firings in SOLUTION). Also, I would like my agent to be able to reason metacog-
nitively, that is, about its own reasoning process, to demonstrate its understanding.

2.3.3 Heuristic Driven Models

Many problems in AI can be boiled down to searching through a sizable search space for the
solution to some particular problem. For many problems, the time complexity of an exhaustive
search renders a brute-force solution unmanageable. Moreover, an exhaustive approach is very
rarely used by human problem solvers. Even when applying a “trial and error” technique to solve
a problem, a human agent will very rarely choose the “trials” in an arbitrary fashion. The heuristic
represents a “rule of thumb” by which the potential worth of a line of reasoning (or a solution) can
be evaluated. Heuristics allow the problem solver to reduce the search space and thereby focus the
search. Inherent in this process is the potential need for backtracking. That is, a heuristic is neither
a perfect metric of evaluation nor a guaranteed path to an optimal solution.

2.3.3.1 Lenat

Doug Lenat developed AM (the Automated Mathematician system) (Lenat, 1979; Davis and Lenat,
1982) and its successor EURISKO (Lenat and Brown, 1984) to investigate the process of mathe-
matical discovery. The AM system was populated with an initial pool of set-theoretic concepts and
heuristics. Lenat was most interested in seeing where the heuristics would guide the creation and
investigation of new concepts:

[AM’s] source of power was a large body of heuristics, rules which guided it toward
fruitful topics of investigation, toward profitable experiments to perform, toward plau-
sible hypotheses and definitions. Other heuristics evaluated those discoveries for util-
ity and “interestingness”, and they were added to AM’s vocabulary of concepts (Lenat
and Brown, 1984, p. 269)

AM was also guided by occasional user interactions in which the user was allowed to specify
the interestingness of certain discoveries. Concepts in AM are represented as frames containing
slots for: name, generalizations, specializations, examples, isa, in-domain-of, in-range-of, views,
intuitions, analogies, conjectures, definitions, algorithms, domain/range, worth, interestingness.
Some slots in a concept frame may be open. One of the ways in which AM applies heuristics is by
considering how open slots might be filled.

32



AM was able to discover sophisticated mathematical concepts such as Goldbach’s conjecture
and the property of unique prime factorization. One of the things that held AM back was that
it could not discover domain-specific heuristics while it discovered new mathematical domains.
EURISKO attempted to add heuristic-discovery as a capability.

These results have not been without controversy. Ritchie and Hanna (1984) called the method-
ology of AM into question. Regardless of whether AM and EURISKO were as successful as
initially claimed, I believe that these systems shed some light on computational math cognition.
AM showed that from a minimal starting concept set, a system can produce concepts that surprise
the human designer. Furthermore, it can do this without access to a very rich natural language
system, proof theory, or complicated algorithm. These systems also spotlight the very different
techniques appropriate for the context of mathematical discovery (as contrasted with the context
of mathematical justification).

2.3.3.2 Ohlsson and Rees

Stellan Ohlsson and Ernest Rees (1991) present a nice heuristic-driven model of early mathematical
learning that is very much relevant to our research:

We have implemented our theory in the Heuristic Searcher (HS), a computer model
that learns arithmetic procedures. We have simulated (a) the discovery of a correct and
general counting procedure in the absence of instruction, feedback, or solved exam-
ples; (b) flexible adaptation of an already learned counting procedure in response to
changed task demands; and (c) self-correction of errors in multicolumn subtraction (p.
103).

The activities involved inlearning how to count occur even earlier than the starting point of our
implementation. Ohlsson and Rees are most interested in how conceptual knowledge can influence
the acquisition and construction of procedures. In their model, learning can be done in a relatively
isolated state (i.e., without instruction or feedback) by an agent who understands the “constraints”
in a given problem space. In fact, such state constraints form the foundation of conceptual under-
standing for Ohlsson and Rees:

. . . we use the termunderstandingto refer to a collection of general principles about
the environment, formulated as constraints on problem states

To understand a particular situation within a domain is to subsume that situation under
the general principles for that domain . . . An alternative view is that to understand a
procedure is to know the purpose of each step in the procedure. Such an understanding
is sometimes called a “teleological semantics” for the procedure (VanLehn and Brown
1980: 95). A related view is that to understand a procedure is to know the justification
for the procedure, that is, the reasons why the procedure works. A complete theory of
understanding would specify the nature and function of each of these types of under-
standing. We focus in this research on understanding as knowledge of the principles of
a domain, because we are interested in the hypothesis that understanding the principles
of arithmetic facilitates the learning of arithmetic procedures (p. 109).

33



This sets up a meaningful link between learning and understanding. Learning occurs when a state
constraint is violated during the agent’s problems solving attempt. Unfortunately, Ohlsson and
Rees put too much emphasis on this type of learning, ignoring the kind of learning that can occur
with metacognitive reflection (i.e., consciously considering the procedure that was carried out after
it is over and deliberating about how to perform the task the next time it is performed). This is a
form of learning I address in my computational implementation (see Chapter 5).

I speculate that “knowing the purpose of each step within a procedure” yields more than an
understanding of the procedure. This is also the key to knowing when two different procedures are
effectively doing the same thing. The “justification” for a procedure is what we are most interested
in having an agent answer to. This is the heart of procedural understanding.

Ohlsson and Rees also describe how the procedural and conceptual components of arithmetic
can come in two separate “doses”:

Models of empirical learning are quite successful in explaining human learning in
cases in which a procedure is acquired in isolation from its conceptual basis . . .
Arithmetic procedures are constructed in order to produce (or reproduce) particular
sequences of steps, with little attention to the mathematical meaning of those steps (p.
105).

Here, Lakoff and Ńuñez would interject that the “meaning” of the steps comes from counting and
the grounding metaphors of arithmetic, but would agree that, because of the mechanical nature of
arithmetic, the focus of attention is not on mathematical meaning.

Ohlsson and Rees voice the same frustration with the lack of computational models of mathe-
matical cognition that I share:

In spite of the large amount of research devoted to the psychology and pedagogy of
elementary arithmetic, and in spite of the increasing use of computer simulation in the
study of educationally relevant task domains (Ohlsson 1988), only three computational
models of the acquisition of arithmetic procedures have been proposed prior to the
work reported here. The two process models — the strategy transformation model by
Robert Neches and the procedure induction/repair model by Kurt VanLehn (p. 167).

I will have more to say about the heuristic models of Neches and Van Lehn when I discuss count-
addition strategy change in Chapter 5.

2.3.4 Connectionist Models

Zorzi, Stoianov, and Umilta (2005) presents a nice summary of connectionist models of numerical
cognition.

[C]onnectionist simulations of mental arithmetic take theassociativeapproach . . . that
mental arithmetic is a process of stored fact retrieval. We will distinguish two types of
modeling approaches: (a) learning models, in which the knowledge about arithmetic
facts is acquired through a learning algorithm and stored in a distributed form; and
(b) performance models, in which the architecture is hard-wired and set up by the
modeler(s) according to specific representational and processing assumptions (p. 69).

34



The connectionist approach uses the computational formalism of an artificial neural-network,
whereas my theory is in the symbolic AI tradition. In addition to this difference in underlying
formalism, there is also a dramatic difference in the target phenomena that connectionist models
are attempting to represent. Among these phenomena are:

• The representation of the mental number line. The mental representation of distance along
the number line is not linear. It takes on a compressed logarithmic form. Subjects therefore
exhibit effects when estimating distances based on numeric size.

• Response times in numerical comparison. There are various “problem size effects” impacted
by the numeric size of arguments as well as distance between arguments. There are also
correlations between problem size and error rates.

• Retrieval times. In the adult model, facts stored in memory are accessed with different
response times.

• Simulation of artificial lesions to model discalculia. The neural network formalism includes
weighted connections, making it possible to systematically simulate problems which might
impact quantitative reasoning.

In both my symbolic approach and the various connectionist approaches there is a clear sense
of individual differences between agents. For the connectionist, this arises because of differences
in training data sets. In the symbolic approach, these differences are the byproduct of differences
in the order and type of arithmetic lessons.

Connectionist networks may be better equipped than a purely symbolic system to model noisy
or imprecise features of mathematical cognition, such as an agent’s ability to estimate large quan-
tities (and the capacity to estimate in general). However, they have not been applied to the higher-
cognitive purposes of mathematical understanding and explanation, where the symbolic approach
appears to be more natural. However, as we shall see, SNePS agents are built with an architec-
ture that permits low-level perception routines to be written in any paradigm the designer chooses.
Connectionist approaches may be integrated with symbolic approaches to form hybrid agents.

2.3.5 Tutoring Systems and Error Models

Although my implementation is built as a single “self-serving” cognitive agent that is given the
correct algorithms for arithmetic, several existing computational implementations come in the form
of mathematical tutoring systems and models of human error cases. An important subclass of
tutoring systems interact with a human user. These systems require an explicit model of the user
and behave interactively to learn about the user’s needs and abilities. Error models attempt to
highlight why particular mistakes are made by a human user during the performance of a task.
These can often inform a tutoring system as to why a class of mistakes occurs.

35



2.3.5.1 Nwana

Hyacinth Nwana (1993) presents a series of collaborative tutoring systems called mathematical
intelligent learning environments. These differ from traditional “drill and practice” computational
tutors in that they do more than pose a series questions for the user and present knowledge about
the solution as hints. They also differ from problem solving software developed to only to simulate
problem solving situations (in the form of games, adventures, or stories). Rather, intelligent learn-
ing environments strive to provide informed guidance and feedback specific to the current user’s
needs.

Computational theories of mathematical understanding would benefit in both modeling the user
and creating a software environment that is most likely to help the user learn with understanding.
LeBlanc (1993) (in Nwana (1993)) presents an environment based on theories of mathematical
reading. His environment components EDUCE and SELAH provide feedback in the form that
very closely simulates the grounding metaphor of object collection.

2.3.5.2 Brown and VanLehn

John Seely Brown and Kurt VanLehn (1982) have conducted some interesting work in modeling
procedural “bugs” in arithmetic procedures. They treat such bugs as variants of correct arithmetic
procedures:

[Incorrect] answers can be precisely predicted by hypothetically computing the an-
swers to given problems using a procedure that is a small perturbation in the fine
structure of the correct procedure (p. 118).

An attempt is then made to categorize the systematic errors that will result from following a
“buggy” procedure. Some bugs in a routine for multi-digit subtraction include (see p. 119):

1. Smaller-From-Larger. Instead of borrowing, the student takes the top digit, which is smaller,
from the bottom one, which is larger.

2. Borrow-From-Zero. When borrowing from a zero, the student changes the zero to a nine, but
doesn’t go on to borrow from the next digit to the left.

3. Diff-0 - N = N. When the top digit is zero, the student writes down the bottom digit as the
column answer.

Frequently, a composition of multiple bugs will also lead to systematic errors. The authors attempt
to generate a series of errors for a given skill by programatically introducing bugs into correct
procedures and to predict likely errors human students will make.

Although I am more interested in what an agent can do withcorrectarithmetic routines, this
work says a lot about the computational approach towards mathematical cognition. In particular,
it shows the strength of the “student as computer following a program” metaphor.

36



2.3.6 Word-Problem Solving Systems

Systems that accept natural-language input have been researched in the context of mathematical
word-problem solving. The important additional capacity required in solving word problems, as
opposed to simply producing arithmetic results, is the ability to see what kind of operation the
word problem is calling for. Computationally, this task is approached by transforming a parse of
the input into a usable representation and then applying arithmetic operations to this representation.

As such the natural-language capacity is simply a “front-end” module for the arithmetic pro-
cessing. I believe there is an important semantic distinction between systems that can associate op-
erational natural-language with arithmetic operations (e.g., “Alice gives Bob three apples” means
“Add three apples to the number Bob has”) and systems that can actually perform the acts the lan-
guage is referring to (e.g., “giving Bob three apples”). The former type of system simply makes
an association between symbols denoting objects; the latter associates a symbol denoting an object
with a symbol denoting an act. I will have more to say about this distinction later.

2.3.6.1 Bobrow

Bobrow (1968) developed theSTUDENTsystem to solve algebra story problems given in natural
language. Some examples of problemsSTUDENTcan solve are:

• The distance from New York to Los Angeles is 3000 miles. If the average speed of a jet
plane is 600 miles per hour, find the time it takes to travel from New York to Los Angeles by
jet.

• The price of a radio is 69.70 dollars. If this price is 15 percent less than the marked price,
find the marked price.

• The sum of two numbers is 111. One of the numbers is consecutive to the other number.
Find the two numbers.

Bobrow decides to conflate language understanding and mathematical understanding, and assesses
the overall understanding of the system using the following operational definition:

I have adopted the following operational definition of “understanding.” A computer
understandsa subset of English if it accepts input sentences which are members of
this subset and answers questions based on information contained in the input. The
STUDENT system understands English in this sense (p. 146).

Understanding in this sense makes a black box out of the internal operations of the system, in-
cluding how the English input is parsed and transformed. However, Bobrow elaborates on three
dimensions of understanding along which a system’s extent of understanding can be measured:
syntactic, semantic, and deductive. Syntactic understanding can be measured by the breadth of
natural language input the system can accept. If the subset of English is quite large, then the sys-
tem will be more robust. Semantic understanding is measured by the degree to which the system
can represent correspondences between words and objects. Although Bobrow is not perfectly clear

37



on the matter, a system that can map more words to the appropriate mathematical operations will
have a greater semantic understanding. Deductive understanding is the system’s ability to answer
questions not explicitly given in the input. This adds an additional deductive step that the system
must perform after parsing the input to determine what is really being asked for.

Bobrow stresses that a system should not only be evaluated for its capacity to understand along
these three dimensions, but also by how easily the system’s understanding can be extended and the
degree to which the system must interact with the user (p. 150).

Several important methodological features can be taken from the design of theSTUDENT
system. First, it is unreasonable to assume that a system can take in input from the entire set
of permissible English sentences.STUDENTworks with a constrained subset and minimizes the
language understanding and background knowledge to what is explicitly necessary for the problem:

The STUDENTprogram considers words as symbols, and makes do with as little
knowledge about the meaning of words as is compatible with the goal of finding a
solution to a particular problem (p. 155).

The STUDENTsystem utilizes an expandable store of general knowledge to build a
model of a situation described in a member of a limited class of discourses (p. 158).

In my agent implementation, I will also use a minimal set of linguistic and background knowledge,
allowing that each of these can be easily extended without interference.

It is also important to notice that the input is not only in natural language, but is in the form
of a question. There is something to be “filled in”, so the system must not only understand what
the statement of the problem means, but what is being sought by the question. The significance of
question answering as a measure of understanding will be discussed in the next chapter.

38



Chapter 3

Understanding and Explanation: Towards a
Theory of Mathematical Cognition

This chapter presents a high-level description of a computational theory of early mathematical
cognition. This is done with an eye towards honoring the existing work presented in the previ-
ous chapter and with an eye toward formalizing my theory for a computational implementation.
After outlining a series of claims my theory makes, I give an overview of the SNePS knowledge-
representation, reasoning, and acting system and the GLAIR architecture that collectively serve as
my agent implementation platform. I then present a characterization of mathematical understand-
ing as a gradient of features, deriving the epistemic conditions for understanding from the classical
justified-true-belief view of knowledge. Finally, I describe a method of exhaustive explanation that
empirically tests for mathematical understanding.

3.1 Claims

The previous chapter showed that there are many approaches towards mathematical cognition.
Each of these approaches is motivated by particular research goals and entrenched in particular
disciplinary traditions. In this section, I make a series of claims about the nature of early mathe-
matical cognition. These claims are all conducive to computational modeling, and many of them
can be read off as requirements for the design of an agent. Collectively, these claims constitute my
theory.

3.1.1 Multiple Realizability

Following Rapaport (1999,2005), I maintain that implementation is a three-place relation:I is an
implementation of an abstractionA in a mediumM. This construal of implementation yields a two-
step process for developing computational theories of human cognition: (1) abstraction from the
activities and representations associated with the human implementation, and (2) (re)implementation
of the abstraction in a computational medium. If both of these steps are possible, then the abstrac-
tion is multiply realizable. The relevant picture of multiple realizability for arithmetic is as follows:

39



Arithmetic

implementation

$$I
IIIIIIIIIIIIIIIIIII

Human Arithmetic

abstraction

::uuuuuuuuuuuuuuuuuuuu
SNePS Arithmetic

Step 1 is achieved by abstracting the essential features from the human case. This can be done
by giving a logical analysis of the essential features. Step 2 is achieved by (re)implementing
these features in a computational medium (such as SNePS/GLAIR). This can be done by writing a
computer program.

The multiplicity of realizations is to be taken in several ways. First, the abstraction may be
implemented in a computational system other than SNePS. Secondly,differentSNePS implemen-
tations could give rise todifferentSNePS agents. In this respect, the abstraction is realizable in
many different SNePS agents. Finally, the physical implementation media can vary to some degree.
In the course of my work, I have run my agent implementation on Linux, Solaris, and Windows
machines. Sometimes the machine was networked; sometimes the agent code was running locally.
Under the relevant sense of implementation, each of these is also a distinct realization (i.e. each of
these implementations counts towards multiple realizability).

• Claim 1: A portion of early mathematical reasoning is multiply realizable.

The portion in question can be measured by actual content covered, but also by the ease of exten-
sibility (i.e., how easily the agent “scales up” from the implemented portion). It is my aim to cover
counting and arithmetic. I hope to show the sufficiency of the SNePS/GLAIR platform for this
purpose.

• Claim 2: Mathematics is embodied.

Although the implementation medium can be easily swapped for other similar media (e.g., swap-
ping a Linux for MacOS), the relevant work presented in the previous chapter suggests embodiment
does have an important role to play in the resulting agent. In particular, the (real or simulated) sen-
sors and effectors present on the computational platform will steer the course of embodied activi-
ties that rely on perceiving and acting in the world. This becomes more dramatic if the perception
and motor control aspects of embodiment are implemented in a robotic system as opposed to a
simulated embodiment.

3.1.2 Representability

The grounding metaphors of arithmetic result from acting in the world. These meaningful acts
must be represented by the agent and must also involve representations of the objects being acted
upon and representations of the results of those actions. These representations are all located in
the agent’s mind, but they depend (in a causal way) on the world and the agent’s perceptual field.

40



A critic of representations like Rodney Brooks may claim that the early stage of modeling
grounding metaphors can be done without representations (although it would seem that representa-
tions are indispensable for full-blown arithmetic). The critic might say that mathematical behavior
can be guided by perception and action alone. However, not all of the early representations need
to be at the knowledge level (i.e., in a part of the agent that permits propositional representation).
Even an unconscious, repeatable motor act can be treated as a representation.

• Claim 3: Mathematics is represented publicly and privately.

The representations used in early mathematical reasoning are constructed in a very subjective and
agent-relative way but, at the same time, are alignable with (and end up flourishing within) an
established, socially constructed system. I will describe how a SNePS agent can align its internal
representation with natural language and public numeration systems in the next chapter.

• Claim 4: Mathematical reasoning utilizes extended cognition.

Tools for mathematical reasoning are plentiful. These range from marks on paper, to the abacus,
to the pocket calculator, and include countless improvised, ad-hoc representations used to solve
specific problems for specific agents. An agent situated in the world can affect reality in such
a way that external tools can be configured and utilized to extend the cognitive capacity of the
agent. This, of course, requires that the agent knows how to use the tool effectively. In order
to be useful, external tools have to produce results in a predictable way, and the agent must be
able to interpret these results. Proper interpretation of results includes the seamless integration of
extended-cognition representations with each other and with existing belief representations.

• Claim 5: Quantities can be usefully considered as a complex consisting of a number
and a sortal.

Although arithmetic fundamentally involves the manipulation of numbers, the grounding-metaphor
acts have a fundamentally different “data type”. The agent is reasoning with a number of objects
or a magnitude measuring a number of units. The representation of these objects and units needs
careful treatment in a computational implementation. A theory of sortals and grounded quantities
will be presented to address this claim in Chapter 5.

• Claim 6: An agent must be able to shift between operational and structural meanings
to understand mathematics.

To represent the acts and objects is not enough. An agent must be able to effectively shift between
different representations. Most notably, an agent needs to be able to alternate between operational
and structural perspectives when dealing with processes (e.g., counting) and the results of those
processes (e.g., a cardinality).

41



3.1.3 Performability

Semantics is usually taken to study the relationship between a domain of signs (qua abstract con-
stituents of some language) and objects (in the actual world or possible worlds). The domain of
signs is usually part of a socially constructed language (and it is certainly this way in the case of
mathematics), which allows its users to pick out the target objects in a systematic, rule-governed
way. In the case of mathematics, however, meaning is found in the acts generating signs (qua
abstract constituents of the agent’s language of thought). I want to draw attention to the corre-
spondence between signs denoting acts and the behavior that performances of these acts produce
(whether internal to the agent or in the external world). The relationship between act-denoting
signs and behavioral products of performances is just as much an analysis of meaning as the rela-
tionship between signs and objects in the (traditional) sense.

• Claim 7: Numbers obtain abstract meaning through the act of counting

The activity-driven nature of mathematical cognition is present at the ground floor (or, as we shall
see, on the middle floor). Properly applying the counting principlesduring the act of counting
reliably results in an exemplification of a finite initial segment of the natural-number progression.
Initially, it is only within the framework of the natural-number progression that natural-numbers
have an “abstract” meaning. The way this is achieved in SNePS is described in the next chapter.
However, several prenumerical (embodied) competences are essential in getting an agent to the
counting stage.

• Claim 8: Mathematical reasoning utilizes metacognition

During problem solving, an agent needs a method of self-regulation and self-observation to prevent
“wild-goose chases”. This involves reasoning online about which plans are being selected, reason-
ing about the efficiency of selected procedures, and reasoning about the context-appropriateness of
procedures.

3.1.4 Empirical Testability

A theory is only as good as the evidence that supports it. Ideally, supporting evidence should come
in the form of empirically testable claims. Building an agent and testing its performance against a
set of requirements is an important method for testing the claims made by a computational theory.

• Claim 9: Understanding can be treated as an analyzable gradient of features

This claim will be discussed in detail below. An important aspect of the features in question is that
they be empirically testable.

• Claim 10: The ability to justify results through the method of exhaustive explanation
demonstrates mathematical understanding.

The method of exhaustive explanation to be described in§3.5 allows an agent to demonstrate
various aspects of its understanding. Such an explanation utilizes various inference techniques
and capabilities. As such, this method may be considered as constituting several experiments.
Exhaustive explanation is used to test the depth of an agent’s understanding of a particular concept.

42



• Claim 11: The ability to apply quantitative reasoning to non-mathematical domains
demonstrates mathematical understanding.

The ubiquity of quantitative reasoning in commonsense reasoning implies that a part of mathemat-
ical understanding involves the ability to import mathematical knowledge into various contexts.
The number of contexts an agent can successfully apply quantitative reasoning to is used to test
the breadth of an agent’s understanding.

3.2 SNePS

SNePS is a knowledge-representation, reasoning, and acting system (Shapiro, 1979; Shapiro and
Rapaport, 1987; Shapiro and Rapaport, 1995). SNePS 2.7 (Shapiro and SNePS Implementation
Group, 2008), the version of SNePS I will be using throughout this work, is implemented in ANSI
Common Lisp. SNePS can be viewed as a system that simultaneously supports various formalisms;
it is a semantic network, a logic, and a frame system. In any of these guises, SNePS represents the
first-person beliefs of a computational cognitive agent called Cassie. SNePS is distinguished from
other formalisms by being a fully-intensional propositional system. SNePS isfully intensionalin
that every term in the logic of SNePS (or node in a SNePS network) denotes a unique intensional
entity. No term in the logic of SNePS denotes an extensional entity. SNePS ispropositionalin
that propositions are represented as first-class objects in the logic of SNePS. This means that a
proposition can appear in an argument position of other propositions. SNePS makes a distinction
between asserted and unasserted propositions. The former are believed to be true by Cassie, and
the latter she has no truth commitment to (see (Shapiro and SNePS Implementation Group, 2008)
for more specific details).

SNePS provides two interface languages for the agent developer: SNePSUL and SNePSLOG.
SNePSUL has a Lisp-like syntax that exposes the relations that hold between intensional enti-
ties. These entities are represented by nodes, and the relations by directed labeled arcs connecting
nodes. SNePSLOG has a syntax resembling first-order predicate logic. “Under the hood”, SNeP-
SLOG is translated into SNePSUL. My agent implementation is done exclusively in SNePSLOG,
but I will occasionally include a semantic network representation when I believe that displaying
the relational structure of Cassie’s belief space is useful.

3.2.1 Overview of SNePS

SNePS is a very robust, flexible, and extensible agent implementation platform that comprises
several subsystems. In the sections that follow, I briefly give an overview of the components of
SNePS and describe how they will be used in implementing my theory.

3.2.1.1 GLAIR

GLAIR, the Grounded Layered Architecture with Integrated Reasoning, is an architecture for em-
bodied SNePS agents (Hexmoor and Shapiro, 1997; Shapiro and Ismail, 2003). This architecture

43



has been implemented in various physically embodied agents (robots) and agents with simulated
embodiments (softbots). GLAIR is composed of three layers:

• Knowledge Layer (KL): Contains Cassie’s beliefs, plans, and policies. Implemented in
SNePSLOG.

• Perceptuo-Motor Layer (PML): Contains Cassie’s primitive actions and low-level functions
for controlling her embodiment and perception. Implemented in Lisp.

• Sensori-Actuator Layer (SAL): Low-level routines for sensing and affecting the outside world.
This layer is sometimes omitted or simulated in softbots. Implemented in the particular de-
vice implementation language(s) of the selected embodiment.

The PML is actually divisible into three finer-grained sub-layers, but I will defer discussing this
until chapter 5.

Using GLAIR makes Cassie an agent that can be situated in the real-world or any number of
simulated virtual worlds. This allows her to perform concrete embodied activities that will impact
her abstract KL beliefs.

GLAIR enforces a methodological knowledge-perception dualism by separating Cassie’s men-
tal representations (the KL) and her bodily representations (the PML and SAL). In theory, the same
mind can be attached to various implementations of a body andvice versa.

3.2.1.2 SNIP

SNIP, theSNePSInferencePackage, enables inferential operations over the beliefs in Cassie’s
network. This allows SNePS to serve as a logical rule-based system. Commands for finding
and deducing nodes (representing propositions) allow the user to ask Cassie questions and are the
foundation for a suite of inference techniques. These include:

• Rule-based inference (also called Formula-based inference): Natural-deduction style infer-
ence rules for the introduction and elimination of logical connectives.

• Path-based inference: When SNePS is construed as a semantic network, a relation between
nodes in a given network may be inferred by the presence of a certain path between those
nodes.

• Slot-based inference: When SNePS propositions are construed as frames, this inference
method allows an agent to infer from a proposition-valued frame another frame with a subset
of slots filled.

Paths in SNePS networks are ordered sequences of arc-labels between nodes. Paths are specified
using a syntax similar to regular expressions (Shapiro, 1978). Path-based techniques can be used
as a model of unconscious inference for SNePS agents (Shapiro, 1991). This is an “unconscious”
activity, because the newly inferred relation is added to the agent’s belief space without an explicit
knowledge-level deduction. Path-based inference takes advantage of the fact that Cassie’s knowl-
edge is stored in a semantic network, in which a node’s “meaning” is determined by its position

44



in the network relative to other nodes (Quillian, 1968; Rapaport, 2002). Rule-based inference is
construed as “conscious” reasoning, because it generates new KL beliefs from existing KL beliefs.

3.2.1.3 SNeRE

SNeRE, theSNePSRationalEngine, is Cassie’s subsystem for acting. SNeRE provides a set of
dedicated constructs for representing acts. Unlike propositions, acts are subject to performance.
However, an act can also occur as a term within a proposition. This allows Cassie to hold beliefs
about her actions and to reason about them before, during, and after their performance. There are
three kinds of acts in SNeRE:

• User Primitive Acts: A set of user-defined acts representing the fundamental routines for the
agent. These are implemented in Lisp.

• SNeRE Primitive Acts: Mental acts to believe or disbelieve a proposition and a set of system-
defined acts used to sequence, iterate, and select over user-primitive acts and mental acts.
These are implemented in SNePSLOG.

• Complex1 Acts: An act that is neither user-primitive nor SNeRE-primitive. Complex acts
require plans to carry them out. A plan in SNePS usually consists of a series of SNeRE-
primitive acts applied to user-primitive acts. These are also implemented in SNePSLOG.

The SNeRE constructs I will use for my agent implementation, along with their semantics, are
as follows2:

• ActPlan(a1,a2) : The way to perform the acta1 is to perform the acta2 (p. 66).

• Effect(a,p) : The effect of performing the acta is that the propositionp will hold (p.
66).

• believe(p) : p is asserted. If the negation ofp is believed, then the negation is
disbelieve d andp is asserted (p. 65).

• disbelieve(p) : The propositionp, which must be a hypothesis (i.e., an axiom for the
system), is unasserted (p. 65).

• snsequence(a1,a2) : Performa1 , and then performa2 .

• withsome(?x,p(?x),a(?x),da) : Deduce which entities (if any) satisfy the open
propositionp(?x) (here, ?x denotes a variable term). If any do, nondeterministically
choose one, saye, and perform the acta(e) . If no entity satisfiesp(?x) , perform the
actda (p. 65).

1A more fine-grained distinction is made between “composite” and “defined” complex acts in (Shapiro et al., 2007).
I am using the terminology of (Shapiro and SNePS Implementation Group, 2008).

2Note that some of these acts are not used in their most general form (Shapiro and SNePS Implementation Group,
2008)

45



• snif( {if(p1,a1),else(a2) }) : Deduce whetherp1 holds. If it does, then perform
the acta1 , otherwise, perform the acta2 (p. 65).

SNeRE also has constructs for policies. An adopted policy represents a condition under which an
action will be taken. I will make use of the following policy:

• wheneverdo(p,a) : If SNIP forward chains intop, perform the acta.

What is most important for our current purposes is that Cassie reasonswhile acting, and she
leaves a trail of beliefs as an act unfolds. This trail of propositions represents an episodic memory
of the particular act that was performed.

3.2.1.4 SNeBR

SNeBR, theSNePSBelief Revision subsystem, is a component of SNePS devoted to maintaining
the consistency of Cassie’s belief space (see Shapiro and SNePS Implementation Group (2008)).
In some cases, SNeBR allows Cassie to resolve contradictions on her own. When this is not
possible, SNeBR prompts the user when Cassie derives a contradiction during inference. The user
has a choice of which beliefs to discard in an attempt to restore consistency. Because SNePS is a
paraconsistent logic, Cassie can hold contradictory beliefs without inferring everything from this
contradiction.

3.2.2 SNePS for Mathematical Cognition

SNePS has traditionally been used as a knowledge-representation system in support of natural
language applications (e.g., Shapiro (1989),Rapaport and Ehrlich (2000)). However, the recent
trends in SNePS agent development have included a greater emphasis on acting and embodiment
(e.g., Shapiro et al. (2007)). As was noted above, acting and embodiment are central to my
computational theory of mathematical cognition.

SNePS is well suited for a math-capable agent, because procedural and declarative information
is stored side-by-side in the same way (i.e., propositionally) and in the same knowledge base.

SNePS allows for metacognition in the form of metapropositions (i.e., second order beliefs
about beliefs) (see (Shapiro et al., 2007) for a survey of metacognitive techniques used by SNePS
agents).

SNePS agents also produce beliefswhile reasoning. These beliefs can serve as an episodic
memory of agent’s experiences. In my implementation, a difference in experiences will result in a
different belief space, and this has some impact during explanation.

Finally, SNePS provides the user the ability to ask questions. This is an absolutely essential
feature, because it provides an empirical way to test my theory by probing Cassie’s knowledge and
demonstrating her inferential capacity.

46



3.3 Understanding

The necessary and sufficient conditions for mathematical understanding have never been precisely
fixed in mathematics education, the philosophy of mathematics, or mathematics itself. The term
“understanding” is notoriously imprecise because it is used in many disciplines, and the precision
of mathematical activities does not alleviate this problem for the term “mathematical understand-
ing”. Despite a vagueness and ambiguity of meaning, understanding is universally described as
a desirable feature. Students, teachers, and mathematicians alike strive to understand the abstract
subject matter of mathematics.

Understanding is sometimes taken to be related to (or even synonymous with) knowledge, but
usually something that goes beyond knowledge. However, specifying how knowledge is a prereq-
uisite for understanding or how the two are distinct can be done in many ways. The conditions
for knowledge are much better studied than those of understanding. In§3.4, I will examine how
the classical epistemic view of knowledge as justified true belief impacts our characterization of
mathematical understanding.

Understanding is also taken to be related to ability (or performability). To understand is to be
able todosomething. This “something”, whatever it is, happens in parallel with learning and must
be done afterward as well.

Like both knowledge and ability, understanding changes as beliefs and situations change and
as new abilities are learned. In§3.5.3, I will consider what it means to understand the same thing
in different ways.

A general theory of understanding, whatever it might look like, may still not find applicability
when the objects to be understood are those of mathematics. In this section, I willnot under-
take the project ofdefiningmathematical understanding, but instead will consider the features of
mathematical understanding that can be exhibited and empirically tested for in both human and
computational agents.

We knowa priori that whatever features of understanding go into a computational theory must
be built from the constructs of the computational medium and will be limited by the abilities of the
system. All SNePS agents serve as models of computational theories only insofar as they represent
the right beliefs, perform the right acts, and are embodied in a suitable way. As such, a successful
theory and implementation will elicit a pattern of belief, action, and embodiment thatbehaviorally
demonstrates its mathematical understanding.

3.3.1 Modes of Understanding

Some of the ambiguity surrounding understanding involves the ontological category of the thing
being understood. One might have: anunderstanding that X, which fixesX as a proposition;
an understanding how to X, which fixesX as an act; anunderstanding of X, which fixesX as a
“concept” (or, perhaps more usefully, as a basic-level category as per Rosch (1978)), or anun-
derstanding what X means, which fixesX as a symbol or expression in a language (in our case,
a formal language). Collectively I will call these the different “modes” of understanding. The
following are some concrete examples :

47



Mode Example
understanding that X (declarative) understanding that 2 + 3 = 5
understanding how to X (procedural) understanding how to add 2 and 3
understanding of X (conceptual/categorial)understanding of addition

understanding of numbers
understanding what X means (semantic) understanding what ‘2’ means

understanding what ‘+’ means
understanding what ‘2 + 3 = 5’ means

In addition to these, there are several usages of “understanding” that correspond directly to math-
ematical question-answering. Of these, “understanding why X” will be most important. We will
discuss this later in the context of explanation. Also, “understanding when to X” can be considered
as a form of contextual or situational understanding. We will discuss this later in the context of
metacognition.

One might claim that noticing these distinct modes only amounts to noticing an artifact of the
English language, i.e., noticing something about contexts in which theword “understanding” is
used. However, a careful analysis of these modes of understanding reveals that they demand very
different things from a cognitive agent.

Declarative understanding presupposes that an agent can detect when a proposition holds or
is the case (or, if it is a negative proposition, to detect whether a proposition does not hold or
is not the case). Depending on the kind of proposition, this presupposes vastly different abilities.
Even restricting ourselves to mathematical propositions, we can see that the propositions expressed
by P1: “2 + 3 = 5” andP2: “A collection of two apples and three oranges is a collection of five
fruit” have different verification requirements. Furthermore, an agent might understand a particular
fact expressed byP2 based on some isolated experience, without correlating this experience with
the abstraction expressed byP1. This example seems to suggest that there is a greater degree of
declarative understanding when the perceivable becomes abstractable.

Procedural understanding presupposes that an agent can retrieve or form a plan for a particular
act. Interestingly, this does not entail that the act is performable by the agent. For example,
without actually being able to fly, I may understand in great detail the procedure used by birds to
fly. For this reason, we might say that there is a declarative aspect of procedural understanding
(e.g., “Knowing thatA can be done by doingX”) and a non-declarative aspect (e.g., “Knowing
how to doA in the current context with my current embodiment”). Also associated with this
non-declarative aspect of procedural understanding is something which might be called qualitative
understanding, i.e., knowing “what it feels like” to perform the act. Procedural understanding can
also be demonstrated: (1) when the agent understands the role of an act in a larger act, (2) when
the agent knows the preconditions or effects of an act, and (3) when the agent can relate one way
of performing the act to other ways of performing the act.

Conceptual or categorial understanding may presuppose a certain degree of declarative under-
standing if the concept or category in question is a (potentially abstract) thing, or it may presuppose
a degree of procedural understanding if the concept or category is a (potentially abstract) operation.
This may include a broad understanding of the concept’s or category’s extension.

48



Semantic understanding is best studied in the context of natural-language understanding. Un-
derstanding a language is understanding the meaning of a linguistic object: a word, a sentence, or
an entire discourse. Rapaport (1995) construes semantic understanding as “understanding in terms
of”:

Semantics and correspondence are co-extensive.Whenevertwo domains can be put
into a correspondence (preferably, but not necessarily, a homomorphism) one of the
domains (which can be considered to be thesyntactic domain) can be understood in
terms of the other (which will be thesemantic domain) (p. 60).

It is up to the agent to understand syntactic-domain entities using the semantic-domain entities by
noticing (or, more accurately, constructing) the correspondence between the domains.

3.3.2 Understanding in SNePS

Of particular importance to a SNePS implementation is the fact that each of the modes of under-
standing can be represented propositionally (i.e., a reduction can be made from each mode to the
propositional mode), semantically (i.e., using a syntactic and semantic domain), and subjectively
(i.e., in a first-person way).

The SNePS ontology3 includes things like propositions (subject to belief or disbelief), acts
(subject to performance), and policies (subject to adoption or unadoption), but all of these are
expressed propositionally (i.e., every well-formed formula in the logic of SNePS is a proposition).
As such, our theory should capture the various modes of understanding in a propositional way. By
performing such a reduction, understanding becomes a propositional attitude.4

The modes of understanding can be expressed propositionally as follows:

• All cases of declarative understanding are already propositional, because understanding that
X is the case implies thatX is a proposition.

• All cases of procedural understanding in the form “understanding how toX” are expressed
as “understanding that the way toX isY”, whereY is a plan for doingX. AlthoughX is still
not a proposition, thatY is a way of doingX can be expressed as a proposition.

• Cases of conceptual or categorial understanding can be expressed as an understanding of
propositions in which the concept or category and the members of its extension participate.

• Cases of semantic understanding involving a term can be expressed as an understanding of
propositions in which that term participates.

• Cases of semantic understanding involving propositions, i.e., where one proposition is un-
derstood in terms of another, are already propositional.

3As of SNePS 2.7
4Unlike the propositional attitudes of knowing and believing, I have not been able to find a logic with an under-

standing operator.

49



If anything is lost in this reduction, it is the non-declarative aspect of procedural understanding as
described above (i.e., “understanding how to perform an act with the current embodiment and in the
current context”). However, it is important to note that the empirical evidence of non-declarative,
procedural understanding is bound to be the agent exhibiting the right sorts of behaviors. SNePS is
distinguished as a system that allows for acting. Thus, the agent can exhibit such actsandexplain
what it is doing (to cover the part of procedural understanding that is reducible to propositional
understanding). This will be discussed further below.

SNePS is a fully-intensional system that represents the mind of a computational cognitive
agent. The agent’s mental entities are denoted by terms in the language of thought (i.e., one of
the SNePS interface languages). It is therefore necessary to treat understanding in a subjective
way within our theory. It may be argued that understanding is not purely subjective: that, like
meaning, it may have a social component. However, this has not been the way understanding is
treated in the literature:

All [authors] agree that understanding is a mental experience. Understanding is always
‘in the head’. While the meaning is public, at least for some authors, understanding
remains private. The confrontation of understandings through social interactions and
communications are only steps in a personal process of understanding; they can give
an impulse for a change in understanding, but whether the change will be introduced
or not remains an individual problem (Sierpinska, 1994, 22–23)

3.3.3 Characterizations of Understanding

Before developing an account of understanding in SNePS, it will be useful to consider various
characterizations. In this section, I will briefly examine how particular philosophers, educators,
and AI researchers have treated the term ‘understanding’.

3.3.3.1 Logical Characterizations

Wittgenstein gives a precise characterization of propositional understanding in theTractatus:

To understand a proposition means to know what is the case, if it is true. (One can
therefore understand it without knowing whether it is true or not.) One understands it
if one understands its constituent parts (4.024).

The early Wittgenstein held propositions to be “picture-like” entities that “show their sense” (4.022).
Although this isn’t quite the view of propositions endorsed in a symbolic system like SNePS, it is
still useful to consider Wittgenstein’s definition. Symbolically, we might represent the definition
for agentA and propositionsp,q, andr, all of which are distinct (i.e.p 6= q, q 6= r, andp 6= r) as:

∀A, p, r[Understands(A, p)≡ (∃q((p⊃q)∧Knows(A, p⊃q))∧(ConstituentO f(r, p)⊃Understands(A, r)))]

50



The first conjunct on the right hand side of this equivalence suggests that an agent must know
some consequences of any proposition that is to be understood (because it would seem unrealistic
to require the agent to knowall consequences), and the second conjunct handles the recursive
nature of understanding.

I translate Wittgenstein’s claim of “knowing what is the case” ifp is true to knowing some
non-trivial consequence ofp. It would seem to be very implausible toknowwhat is the case if “2
+ 2 = 4” is the case, because “what is the case” if this is true includes every mathematical theorem!
Even with the existential quantifier onq, it is clear that there must be a further restriction onq,
namely that it is “immediately relevant” in some sense top.

I completely agree with the idea expressed in the second conjunct. If propositions are given
a semantics that ensures compositionality, it will be through understanding the terms occurring in
the proposition (and the objects they refer to) that we come to understand the proposition. It also
suggests (akin to (Rapaport, 1995)) that some propositions must fail to have constituent parts and
must be understood in terms of themselves. Such propositions are part of domains that can be
understood in terms of themselves. This gives a basis to understanding any proposition. Stuart
Shapiro (personal communication) points out that the basis of understanding may not be proposi-
tional at all, but, rather, it may be some sensory structure. This seems quite plausible. However, if
there is no way to admit propositionsaboutthis sensory structure into an agent’s belief space, then
the agent cannot be expected to realize the source of its understanding.

I am not taking Wittgenstein as a philosopher in isolation; this characterization is also used by
Rudolph Carnap:

Suppose we want to investigate a given sentence with a view towards establishing
its truth-value. The procedure necessary to this end can be divided into two steps.
Clearly we must, to begin with, understand the sentence; thereforethe first stepmust
consist in establishing the meaning of the sentence. Here two considerations enter: on
the one hand, we must attend to the meanings of the several signs that occur in the
sentence (these meanings may perhaps be given by a list of meaning-rules arranged
e.g. in the form of a dictionary); and on the other, we must attend to the form of
the sentence, i.e., the pattern into which the signs are assembled.The second stepof
our procedure consists in comparing what the sentence says with the actual state of
affairs to which the sentence refers. The meaning of the sentence determines what
affairs are to be taken account of, i.e. what objects, what properties and relations of
these objects, etc. By observation (understood in the widest sense) we settle how
these affairs stand, i.e., what the facts are; then we compare these facts with what the
sentence pronounces regarding them. If the facts are as the sentence says, then the
sentence is true; otherwise, false (Carnap, 1958, p 16).

It may seem that, in the case of mathematics, only the first of Carnap’s steps can be carried out,
since there is no (external) state of affairs to which the signs refer. What state of affairs does the
mathematical sentence “2 + 2 = 4” ask one to “take account of”? I believe there are differing states
of affairs that can be used to account for such a sentence, and that understanding such a sentence

51



is notto fix its meaning unambiguously.5

3.3.3.2 Educational Characterizations

Bisanz and LeFevre (1992) also reach the conclusion that understanding is defined “inconsistently,
ambiguously, or narrowly” (p. 113) and that this yields an unclear relationship between cogni-
tive processing and mathematical tasks. The authors develop a framework in which to evaluate
understanding based on student performance in a “contextual space”:

The two dimensions of this space are the type of activity involved (applying, justifying,
and evaluating solution procedures) and the degree of generality with which these
activities are exercised. These two aspects can be used to construct a “profile” that
reflects the contexts in which an individual shows various forms of understanding
(p. 113).

This approach has several advantages: it treats understanding as a gradient of features, it captures
the “show your work” motivation to justify solutions, and it captures the difference between solving
instances correctly and solving the general problems correctly. The implication is that testing
for the various forms of understanding requires a variety of tasks to be set up. This mirrors the
“breadth” requirement from the discussion of claim 11 above.

Bisanz and LeFevre (1992) also suggest that to produce a demonstration of the depth of under-
standing (see claim 10 above), the right sort of tasks must be devised:

After researchers or teachers have identified the domain of understanding, the next
step typically is to select or develop a task to elicit relevant behavioral evidence on
whether the student understands the domain (p. 116).

Thus, to demonstrate that my computational agent understands the domain of arithmetic, I will
develop a GCD task which requires the agent to invoke much of its arithmetic understanding.

The authors place a heavy burden on justification for demonstrating understanding. However,
they warn against the attribution of misunderstanding for a student who cannot produce such a
justification:

When individuals provide an adequate justification for a procedure, it often is rea-
sonable to assume that they have explicit, accessible knowledge about the underlying
principles . . . failure to provide an adequate justification does not imply that the person
lacks the knowledge in question; he or she simply may have difficulty verbalizing that
knowledge (p. 120).

The adequacy of justifications should vary in the computational case in the same way that it does
in the human case. In the computational case, however, the designer-eye view of the agent may

5Much more could be said about the relation of understanding to various philosophical “isms”: semanticism,
inferentialism, representationalism, and deductivism. However, such an investigation is beyond the scope of this
dissertation.

52



detect non-verbalizable features that underpin a justification (e.g., perceptions of objects the agent
has never seen before but can still count).

Sierpinska (1994) provides the longest investigation of mathematical understanding from the
educational perspective. She distinguishes between acts of understanding, which are taken to be
instances of understanding arising in particular situations, and processes of understanding, which
are “lattices” of acts of understanding unfolding over time. Although the terminology is a bit con-
fusing (anact of understanding suggests that understanding is something subject to performance),
I believe the distinction is an important one. “An act of understanding is an experience that occurs
at some point in time and is quickly over” (p. 2). Processes of understanding require the identifica-
tion (what is being understood), discrimination (what isn’t being understood), generalization (how
is this situation a case of other situations), and synthesis (searching for a common link or unifying
principle) of the target concept for an act of understanding (p. 56).

Sierspinska also makes a distinction between “understanding X” and “understanding with X”:

When it is said in ordinary language that a certain person has understood something,
an X, it may mean that X is indeed the object of his or her understanding, or that he
or she has understood something else of which X is seen as forming the ‘essence’ or
most important feature; he or she has understood something else ‘on the basis of X’
(p. 3).

This is the sense of understanding one says things like “I understand geometry” (i.e., understanding
things on the basis of geometry qua subject matter). This distinction shows that acts of understand-
ing involve two domains (see the discussion of Rapaport’s theory in the next section).

Importantly, Sierpinska links early mathematical understanding to embodied action:

Another category of representations seems to impose itself as one studies understand-
ing of mathematics in younger children. Very often they behave as if their understand-
ing was in their fingers rather than in their minds. In their acts of understanding, the
intention of understanding seems to be directed towards an immediate action. It is
based on some kind of ‘feeling’ of an activity which has to be performed here and now
(p. 51).

This echoes the sentiment of embodied action given by Lakoff and Núñez (2000), and, despite
Sierpinska’s skepticism at computational approaches (pp. 70–71), there is nothing inherently un-
computational about these findings. What we should take from this is that understanding requires
an acting agent in all of its realizations.

Greeno (1991) links the number sense with a specific flavor of understanding that he calls “sit-
uated knowing in a conceptual domain”. This is an “environmental” position that Greeno contrasts
with the information-processing approach:

In the information-processing view, concepts and relations are represented in cogni-
tive structure, and reasoning proceeds through activation of connected representations
and interpretation of activated structures. In the environmental view, knowing a set of
concepts is not equivalent to having representations of the concepts but rather involves

53



abilities to find and use the concepts in constructive processes of reasoning. Represen-
tations of concepts and procedures can play an important role in reasoning, as maps
and instructions can help in finding and using resources in a physical environment.
The person’s knowledge, however, is in his or her ability to find and use the resources,
not in having mental versions of maps and instructions as the basis for all reasoning
and action (p. 175).

As is becoming a common theme by now, I take this as indicating that the information-processing
view must be expanded to incorporate action and embodiment in order to attain this environmen-
tal “situated knowing”. Mere representations are not enough, nor is what a user can derive or
prove from those representations; however what the agent cando with its representations to help
it perform in the world is important. This is suggestive of viewing understanding as a potential
application of knowledge. A good analogy would be to say knowledge is potential energy, which
is latent and unobserved until it becomes kinetic energy.

Greeno’s representations involve mental models, which he characterizes in a non-propositional
way:6

A mental model is a special kind of mental representation, in that the properties and
behavior of symbolic objects in the model simulate the properties and behavior of the
objects they represent rather than stating facts about them. Reasoning with a mental
model differs from reasoning with a representation in the form of sentences or for-
mulas that express propositions. A model is a mental version of a situation, and the
person interacts within that situation by placing mental objects in the situation and ma-
nipulating those symbolic objects in ways that correspond to interacting with objects
or people in a physical or social environment (p. 177).

A mental model of the current situation is indeed useful to have as part of the agent implemen-
tation (and it will be part of my agent implementation in the form of the PML, see Chapter 5).
This imagistic, manipulable representation of a situation may also be sufficient for understanding
in the situated knowing sense. However, a mental model is not enough for ademonstrationof
understanding. An agent that needs to explain its actions must link up its mental model with some
form of propositional representation.

Greeno also discusses how quantities function in mental models and how the numeric part of
quantities can be “detached” from the quantity:

In the domain of quantities and numbers, a quantity is an amount of something. Any
physical object or event has many quantitative properties. Each quantitative property
can be described numerically by assigning a unit of measure. Numbers then, are in-
cluded in descriptions of quantitative descriptions of quantitative properties of objects.
Given a choice of units, a number is a property of an object or event. Numbers are also
conceptual objects in their own right. They can be considered either as elements of
the system of numbers or as reifications of properties. In reasoning about quantities,

6Non-propositional in classical approaches towards propositions, not, for example, as Wittgenstein’s picture view
of propositions (see§2.1.3 above).

54



both of these modes of cognition occur. For example, in the calculations for a prob-
lem, numerical operations are carried out that apply to the numbers regardless of their
quantitative embeddings (p. 186).

This matches up nicely with claim 5 given above. The independence of numbers from quantities in
cognition is actually a process that takes significant development. Once an agent is able to abstract
away from the realm of physical objects, numbers are understood in a fundamentally different way.
I will have much more to say about quantities in Chapter 5.

3.3.3.3 Computational Characterizations

Rapaport (1995) presents a computational theory of understanding using SNePS as an example.
Understanding is presented as a recursive relation between two domains. One of these is under-
stood in terms of the other. The essence of semantic understanding is noticing the correspondence
and being able to use it. An important consequence of this “two-domain” view is that not all do-
mains will match up in a way that is useful to an agent. Even though it may be possible to match
up a multiplication domain with both an addition domain and a domain consisting of Beethoven’s
symphonies, this does not entail that multiplication can be understood in terms of both addition and
Beethoven’s symphonies. In the latter case, the correspondence simply isn’t useful for the agent.

There are remarkably few computational characterizations for understanding and mathematical
understanding in particular. This is one of the primary motivations for conducting this research.
However, there has been some commentary on the similarity between human and computational
instances of understanding:

Computers can use certain symbols to denote numbers because they are manipulated
by arithmetical procedures and used as loop counters, address increments, array sub-
scripts, etc. Thus the machine can count its own operations . . . [t]he way a machine
does this is typically very close to the core of a young child’s understanding of number
words—they are just a memorised sequence used in certain counting activities. So: ‘S
refers to a number, for U’ = ‘S belongs to a class of symbols which U manipulates in
a manner characteristic of counting, adding, etc.’ (Sloman, 1985)

3.4 From Knowledge to Understanding

One of the central goals of epistemology is providing the necessary and sufficient conditions for
knowledge. The view that knowledge is justified true belief (i.e., that justification, truth, and belief
are necessary and mutually sufficient for knowledge) is among the earliest and most popular of
these views (see Steup (2006) for a review). Theories of knowledge that accept the necessity and
mutual sufficiency of the justification, truth, and belief conditions (henceforth JTB theories) have
been challenged (most notably by Gettier (1963)). I will take as a working assumption that these
conditions are at least necessary for knowledge.

Knowledge representation (KR), considered as a branch of AI, does not dwell on knowledge
conditions. Under a JTB theory, it would not always be clear “whose” knowledge is being repre-

55



sented in many KR formalisms. Knowledge could be attributed to: a programmer, user, or knowl-
edge engineer; a cognitive agent; several agents; or even a society. While there are some finer
distinctions (such as the distinction between expert and common knowledge), KR takes knowl-
edge as theobjectof representation without requiring all three JTB conditions to be given.

3.4.1 Formalizations of JTB

KR systems often use formal representation languages. Thus, the utility of JTB theories to KR is
dependent on how each of the conditions is formalized. In other words, a KR system that takes
seriously a JTB theory of knowledge must provide a formal theory of justification, truth, and belief
before claiming that it can represent knowledge.

3.4.1.1 Belief

Belief is the most internal, private, and subjective of the JTB conditions. It also seems that be-
lieving a proposition should be an early step on the path to understanding it (perhaps preceded
only by understanding what the proposition means).7 Belief is often treated as a propositional
attitude. The formal characterization of belief most compatible with my computational theory is
called representationalism. Representationalists view that a belief is a stored proposition:

A sentence in the language of thought with some particular propositional content P
is a “representation” of P. On this view, a subject believes that P just in case she has
a representation of P that plays the right kind of role—a “belief-like” role—in her
cognition. That is, the representation must not merely be instantiated somewhere in
the mind or brain, but it must be deployed, or apt to be deployed, in ways we regard
as characteristic of belief (Schwitzgebel, 2006).

This need for deployment binds belief to an agent’s behavior. This is the dispositional aspect of
belief:

Traditional dispositional views of belief assert that for someone to believe some propo-
sition P is for that person to possess one or more particular behavioral dispositions
pertaining to P (Schwitzgebel, 2006).

An agent believes P if it behaves as if P were the case. However this raises a puzzle for beliefs
in the propositions of arithmetic. What would it mean to behave like 2 + 2 = 4 were the case?
What would it mean to behave like 2 + 2 = 5 were the case? Such a characterization seems
to presuppose that the agent is attending to arithmetic while behaving. Otherwise, why would
arithmetic beliefs be relevant to behavior? I will set aside these behavioral issues and focus on the
representation of belief. SNePS has a very natural and robust formalism for belief representation,
as well as: meta-belief representation (i.e., beliefs about beliefs), support forde dictoandde re

7Rapaport (personal communication) nots that often, in higher mathematics, a proof of a theorem is easier to come
by when the theorem is believed.

56



belief report distinctions (Rapaport, Shapiro, and Wiebe, 1997), and a representation mechanism
for propositions not believed by the agent (but which nevertheless need representing).

It is also important to note that belief is defeasible and bound to change. This implies that a
characterization of understanding that extends upon the belief condition will yield agents that do
not understand phenomena in the same way throughout their development. New beliefs can result
in new ways of understanding things.

3.4.1.2 Truth

Truth is the most external, public, and objective of the JTB conditions. To say that a proposition is
true is to say something about reality (however that tricky term might be resolved).

Three dominant theories of what truth consists in are:

• Correspondence: “agreement, of some specified sort, between a proposition and an actual
situation”.

• Coherence: “interconnectedness of a proposition with a specified system of propositions”.

• Pragmatic Cognitive Value: “usefulness of a proposition in achieving certain intellectual
goals” Moser (1999)(p. 274).

One of the most popular formalizations of truth was given by Tarski (1944). Tarski replaced
the notion of truth with the broader notion of satisfiability in a model:

We define a three place relation—calledsatisfaction—which holds between a formula,
a model, and anassignment of values to variables. Given a modelM = (D,F), an
assignment of values to variablesin M . . . is a functiong from the set of variables
to D. Assignments are a technical device which tell us what the free variables stand
for. By making use of assignment functions, we can inductively interpretarbitrary
formulas in a natural way, and this will make it possible to define the concept of truth
for sentences(Blackburn and Bos, 2005, p. 12)

The sentences belong to a formal language. This interpretation of satisfaction is very useful com-
putationally and, thus, this has remained one of the standard theories in formal semantics.

3.4.1.3 Justification

Justification bridges the internal condition of belief and the external condition of truth. For an
agent, a justification is really just a further set of beliefs, but for these beliefs to count as a justifica-
tion, they must conform to some objective standard: evidence, proof, or satisfying an interrogator.
There are many ways in which a proposition may be given justification. Among these are: per-
ception, memory, deduction, and introspection. Epistemology divides theorists into two major
camps: evidentialists, who claim that justification is having evidence for a proposition, and relia-
bilists, who claim that propositions are justified if they originate from a reliable source. Among
evidentialists, there are also differing positions on whether internal or external evidence should be
primary (Steup, 2006).

The justification condition has eluded formalization and incorporation into many theories.

57



Considerations of cognitive agents’justificationsfor their beliefs has not recently been
of central concern to formal computational analyses of knowledge . . . however, once
the appropriate logical foundations for knowledge- and belief-representation are de-
termined, the issue of justification ought once again to become a major area of re-
search (Rapaport, Shapiro, and Wiebe, 1997).

Despite the fact that the justification condition has received the greatest attention in
epistemology it lacked a formal representation (Artemov and Nogina, 2005)

There are exceptions. Chalupsky and Shapiro (1994) provide a formal definition for justified belief
(relative to an agent model) in a subjective logic based on the logic of SNePS.

In the mathematical domain, justification is most often associated with proof. Although proof-
as-explanation is indeed a staple of advanced mathematical reasoning, it is not the commonsense
approach to justification we are after. An explanation should be represented as a set of acts which
operate over beliefs, these may be acquired much later than the beliefs that need justification.

3.4.2 JTB in SNePS

SNePS can be viewed as providing a formal theory for each of the JTB conditions “out-of-the-box”
(i.e., without further modification of SNePS). The clearest is the belief condition (cf. Rapaport,
Shapiro, and Wiebe (1997)). A SNePS agent believes a proposition to be true if and only if that
proposition is asserted. The truth condition has not been as central in SNePS because it is intended
to model a cognitive agent in the first person (a cognitive agent that might, among other things,
maintainfalsebeliefs). In place of truth, there is a well developed notion of consistency in SNePS.
A SNePS agent that encounters a contradiction during reasoning is able to identify the inconsistent
beliefs that led to the contradiction.

Two SNePS features that can be seen as natively implementing the justification condition are
support sets and inference traces.

Every asserted proposition in SNePS is either a hypothesis (i.e., a belief without need of further
support) or derived (i.e., a belief depending on the beliefs from which it is inferred). The support
set of a hypothesis is just a singleton set including only the hypothesis. The support set of a derived
belief is a set including all of the beliefs from which the derived belief was inferred. The following
example illustrates support sets in SNePS:8

wff1: Human(Aristotle) {<hyp,{wff1},{}>}
wff2: all(x)(Human(x)=> Mortal(x)) {<hyp,{wff2},{}>}
wff3: Mortal(Aristotle) {<der,{wff1,wff2},{}>}

wff1 denotes “Aristotle is human” and the support set{〈 hyp, {wff1 }, {}〉} indicates that it is
a hypothesis.wff2 denotes “All humans are mortal” and the support set{〈hyp, {wff2 }, {}〉} in-
dicates that it is also a hypothesis. The belief expressed bywff3 is obtained fromwff1 andwff2
after askingMortal(Aristotle)? . The support set ofwff3 is{〈der, {wff1,wff2 }, {}〉}.

8Support sets can be viewed in SNePS 2.7 by executing theexpert command in SNePSLOG.

58



This indicates thatwff3 is derived fromwff1 andwff2 . wff1 andwff2 are the support set
for the derived beliefwff3 .

I later will consider how asking a SNePS agent a question can be considered a trigger for
justification. In this example, the agent believeswff3 becauseit believeswff1 andwff2 . A
belief in wff1 andwff2 is a justification for believingwff3 (see also Chalupsky and Shapiro
(1994)).

Inference tracing is another feature of SNePS that can be construed to satisfy the justification
condition of knowledge.9 A SNePS user can enable a trace of an agent’s reasoning as it tries to
infer new beliefs. For the above example, this trace includes:

I wonder if Mortal(Aristotle) holds
I wonder if Human(Aristotle) holds
I know wff1 Human(Aristotle)
Since wff2 and wff1, I infer Mortal(Aristotle).

Like support sets, this output demonstrates the dependence ofwff3 onwff1 andwff2 .
Both support sets and inference tracing are cognitively inaccessible to SNePS agents. After the

performance of a particular action, there are no beliefsaboutsupport sets or what was “said” during
inference tracing. In this way, these features represent “third-person” justifications for the agent
designer. The explanation-as-justification view we will develop treats explanation as a conscious,
first-person act, and will not suffer from cognitive inaccessibility.

3.4.3 First-person knowledge

I wish to make the move from knowledge as justified true belief to knowledge as explainable
consistent assertion.10 The primary reason for this is that, as we have seen above, each of the latter
conditions is more applicable to first-person knowledge and each has a very precise meaning in
SNePS. Under this view of knowledge, a SNePS agentknowswffN if and only if the following
three conditions hold:

1. wffN is asserted in the agent’s belief space:wffN! ∈ BS

2. wffN is consistent with the agent’s belief space:{wffN } ∪ BS 6`⊥

3. wffN is explainable from the agent’s belief space:∃p ActPlan(Explain(wffN),p)

Asserted propositions are either hypothetical or derived (or both) in the agent’s belief space. Con-
sistent assertions are those that “survive” inferences without contradiction in the agent’s belief
spaceat a certain time. Thus, consistency (and also knowledge) is evaluated at a “time slice”
using a “snapshot” of an agent’s belief at the time of inference. According to condition 3, an
explainable proposition is one for which the agent can deduce a plan for the actExplain wffN .

9Inference tracing can be enabled in SNePS 2.7 by executing thetrace inference command in SNePSLOG.
10William Rapaport (personal communication) suggests that the term ‘assertion’ is a near synonym for ‘belief’, only

with less anthropomorphic overtones.

59



3.4.4 Understanding as a Gradient of Features

I will claim that the leap from demonstrating knowledge (in the first-person sense I have been
describing) to demonstrating understanding is made when explainable consistent assertionsare
explainedin a particular way. I call this methodexhaustive explanation, and it is described in the
next section.

The method of exhaustive explanation relies on a specific treatment of understanding, namely,
treating understanding as a gradient of features. Rather than singling out any particular feature that
would lead an observer to ascribe understanding to a cognitive agent, the gradient of features ap-
proach attributes a greater understanding to an agent if they have more of these features and lesser
understanding to an agent that exhibits fewer of these features. If these features are empirically
testable, it will allow for the comparison of different computational agents and the comparison of
computational and animal agents. This is, of course, subject to the weight one wishes to give to
particular features of understanding.

The features of mathematical understanding tested for during an exhaustive explanation are:

• The ability to explain complex acts in terms of simple acts.

• The ability to use natural-language semantics in explaining the meaning of mathematical
concepts.

• The ability to appeal to external tools during an explanation.

• The ability to perform embodied acts during an explanation.

• The ability to explain the role of a concept in the entire belief space.

• The ability to choose between different ways of performing an act based on context.

Each ability is a demonstrable feature of understanding if it can be exhibited by an agent during
explanation.

3.5 Exhaustive Explanation

There must be something to explanation over and above having (and representing) reasons. Pro-
ducing an explanation is an act and, therefore, a proposition is explainable only when such an act
is available and performable.

In what follows, I will give an overview of the commonsense mathematical explanation tech-
nique that I have been referring to as “exhaustive explanation”.11 The SNePS implementation of
this technique is carried out in the next two chapters. Exhaustive explanation is formal, which will
make it suitable for a computational implementation, but is alsocommonsensein that it will not
require proof-theoretic techniques employed by professional mathematicians. Instead, it will be an
action-theoretic explanation technique in the following senses:

11For a different perspective on a SNePS agent’s explanation of its plans, see (Haller, 1996).

60



• The theory will treat explanation as an act that must be performed by a cognitive agent.

• Actions and their effects are the principal object of the explanation.

• The cognitive agent will be allowed to perform on-line non-explanatory actions during an
explanation to improve its answers.

Among other things, this will mean that there will be intersubjective differences between expla-
nations of any given proposition. Different agents will begin an explanation with different back-
ground knowledge and with a different set of experiences (most notably, a different set of mental
acts performed before the explanation). This may lead to differing explanations for the same
proposition (see 3.5.3).

3.5.1 A Turing Test for Mathematical Understanding

One of the early “holy grail” standards of AI was the Turing test (Turing, 1950). The Turing test
unfolds as a question-and-answer dialogue between an interrogator and either a human or computer
subject. If the computer succeeds in convincing the interrogator (and perhaps a wide sampling
of other interrogators) that it is a human subject it has “passed” the Turing test. In his original
paper, Turing was interested in devising a behavioral test to answer the question “can machines
think?”, or, rather, to replace that question with one whose answer would be clearer. For our
present purposes, we are after a behavioral test of understanding (specifically early mathematical
understanding). I believe this can also be achieved through a certain sort of question-and-answer
dialogue, namely, an explanatory question-and-answer dialogue.

Although the Turing test has traditionally been viewed as a test for natural-language compe-
tence, Turing never restricted the subject matter of the interrogator’s questions. In fact, Turing
includes a mathematical question among the questions in his original imitation game:

Q: Add 34957 to 70764.
A: (Pause about 30 seconds and then give as answer) 105621 (p. 434).

There is much about this interaction that is interesting. First of all, Turing implies that mathe-
matical questions should remain fair game. Moreover, posing mathematical questions might have
been a good strategy for the interrogator. Computers have always been hailed for their speed of
calculation; a rapid answer to certain mathematical problems would have been a telling feature of
a computer subject. Indeed, 30 seconds is eons for a modern computer. Secondly, the interrogator
is not really asking a question (i.e., what is the sum of 34957 and 70764?) but issuing a command.
Finally, the incorrect sum given as the answer reeks of “humanhood” and, if anything, will help to
fool the interrogator.

For a test of mathematical understanding, the success criterion of fooling the interrogator must
be de-emphasized. Instead we should sacrifice the desire of human-like answers given at human-
like speeds in favor of comprehensive explanatory answers, i.e., answers that, if given by a human
student, would lead a teacher to claim that the student had mathematical understanding. I therefore
will make the following distinction to differentiate the success criteria of a Turing test:

61



• Imitative Turing test: A computational agent strives for “natural” human-like responses,
given in the time it would take a human to make such a response, and perhaps even giving
incorrect answers where humans typically make mistakes.12

• Exhaustive Turing test: A computational agent strives to answer an interrogator’s questions
by producing a full justification of its beliefs. It strives to demonstrate its understanding in
any way possible.

The technique of exhaustive explanation can be specified in terms of this exhaustive Turing
test. The interrogator will be the SNePS user (and thus already know they are dealing with a
computational agent) and will interact with the agent by asking questions (using a constrained
subset of written English) at a command prompt.13 The agent will need to represent the questions
in a consistent and systematic way. The SNePS representation I will use for questions is discussed
in the next chapter. Once the question is represented, the agent will need to classify the kind of
question it is: “what”, “how”, and especially “why” questions will be of central importance.

The “exhaustive” aspect of exhaustive explanation will come in the way the agent answers the
question. Once the agent has determined what kind of answer the question is seeking, it chooses
from a variety of inference techniques to answer the question. These techniques correspond exactly
to the abilities given above as features of mathematical understanding. Importantly, the agent
should answer in such a way that there is a “natural” next question for the interrogator to ask.

3.5.2 The Endpoint of an Explanation

During an exhaustive explanation, an agent must navigate across its knowledge, starting from the
original question and moving towards antecedently inferred propositions. An arithmetic explana-
tion will be most effective (i.e., will satisfy the questioner) if the agent moves “towards” simpler
concepts. Ideally, the agent will eventually reach propositions for which the questioner needs no
explanation. Even more ideally, the agent may reach propositions for whichno questioner needs
an explanation. Such propositions have been given various names (with subtle differences) includ-
ing: axioms, basic truths, hypotheses, self-evident propositions, and first principles. The objective
existence of such propositions, beyond those chosen by convention, is debatable. However, there is
certainly a place where a particular agent must stop its explanation. I will refer to these “endpoints”
of explanation ascognitive axioms. Clearly, the set of propositions that are cognitive axioms will
differ from subject to subject, and this is very much determined by the acts the agent has performed.

Corcoran (in press) is skeptical of the possibility of such backward tracing to reach first princi-
ples:

Even though the overwhelming majority of mathematical cognitions were held to be
the results of inference from axioms or first principles, not one example of such back-
wards tracing has been presented and no one has ever proposed a criterion for deter-

12Johnson-Laird (2006) has demonstrated certain logical problems where even trained logicians tend to make sys-
tematic mistakes!

13SNePS can also be integrated with various speech-to-text software packages that would allow for a verbal inter-
rogation, but I wish to avoid the implementation complexity required for such a system.

62



mining of a given belief whether it is an axiom or an inference. Needless to say, I am
skeptical concerning the hypothesis that knowers have the capacity to trace each of
their cognition-producing chains of reasoning back to cognitive intuitions (Corcoran,
in press).

Corcoran takes “first-principles” to be intuitions that are not inferred from other propositions.
Indeed, it is doubtful that a single objective set of first principles would be cognitively accessible
to an entire community of knowers. Russell (1907/1973) sheds some light on this:

[T]he propositions from which a given proposition is deduced generally give the rea-
son why we believe the given proposition. But in dealing with the principles of math-
ematics, this relation is reversed. Our propositions are too simple to be easy, and thus
their consequences are generally easier than they are. Hence we tend to believe the
premises because we can see that their consequences are true, instead of believing the
consequences because we know the premises to be true (pp. 273–274).

In light of Russell’s other work “the principles of mathematics” can be interpreted as a formal
axiomatic system meant to capture first principles. A proposition like “2 + 2 = 4” is too simple to
be easy.

This all suggests a picture in which the cognitive axioms are the starting point for inferences
we make in mathematics as well as the abstracted end points of particular classes of experiences
(e.g., the grounding metaphors of arithmetic: object collection, object construction, motion along
a path). This is illustrated in Figure 3.1: This is an “hourglass” view of inferences and experiences.

Figure 3.1: Two paths back to first principles.

Abstractions of various experiences narrow towards a set of cognitive axioms, and from these
abstractions the agent expands its mathematical beliefs. Thus, an “explanation back to first prin-
ciples” may involve both a reduction of complex concepts to simpler ones, eventually bottoming
out at the cognitive axioms, or an account of how a set of experiences is abstracted to arrive at the
cognitive axioms. Thus construed, explanation “inverts” the direction of inference and experience.

63



3.5.3 Multiple Justifications

As we shall see in the coming chapters, arithmetic operations can be understood in an external,
embodied way that involves the agent acting, perceiving, and (often) altering the world, or in an
internal, abstract way that requires the agent to rephrase an abstract operation in terms of simpler
arithmetic operations and counting routines.

Even within the broad categories of abstract arithmetic and embodied arithmetic, there exist
a plurality of ways to understand an operation. For example, we can consider two abstract ways
in which an agent might understand the proposition expressed by “6÷ 3 = 2”. An agent may
understand division in terms of iterated subtraction. It would then be justified in believing the
proposition in terms of the propositions expressed by “6− 3 = 3” and “3− 3 = 0”. However,
the agent could understand division equally well in terms of inverted multiplication. In this way,
“6 ÷ 3 = 2” is justified by the proposition “3× 2 = 6”. Both iterated subtraction and inverted
multiplication can be further understood on the basis of facts stemming from iterated addition.
This is illustrated in Figure 3.2.

Figure 3.2: Ways of understanding division.

There is a direct correspondence between a way of understanding division and a way of do-
ing division. That is, a quotient can effectively be found by iterated subtraction or by inverted
multiplication. Thus, whatever we take understanding an arithmetic operation to mean, we must
consider the ways in which the agent in question performs its arithmetic. This is consistent with
the characterization of procedural understanding mentioned earlier.

Less salient for an agent performing division are facts like 0+ 3 = 3 and 3+ 3 = 6, which
justify the propositions of iterated subtraction and inverse multiplication. The demands of attention
during both the performance of arithmetic operations and justification of results are likely to be
significant. However, the fact that both ways of understanding division “reconnect” to iterated
addition in an agent’s “web of understanding” is significant because it provides a computational
way of demonstrating that the two ways ofperformingare functionally equivalent.

64



How would an agent discover that one of the ways of doing division was functionally equivalent
to another way of doing division14? One answer is that the agent might observe the input-output
behavior of each way of doing division for some small inputs and verify that they match up. A
more sophisticated agent could reason about the structural relationships between the operations.
Suppose, in our example, that the agent understands division in terms of iterated subtraction and is
shown the new method of division by inverted multiplication. It might then reason as follows:

• inverted multiplication is really inverted iterated addition because multiplication is really just
iterated addition.

• inverting iterated addition is functionally equivalent to iterating inverted addition.

• iterated inverted addition is really just iterated subtraction.

Through this reasoning, the agent has transformed the unknown way of doing division (inverted
multiplication) into the known way (iterated subtraction) by reasoning about the operations and the
processes of iteration and inversion. Unfortunately, this metacognitive reasoning is very sophisti-
cated and a far cry from the abilities available in early mathematical cognition.15

3.5.4 Behavior and Procedural Understanding

By limiting a Turing test interrogation to questions and answers expressed linguistically, we restrict
our inquiry to the sorts of understanding that can be reduced to propositional understanding.16

However, as I noted in§3.3.2, there is a behavioral aspect of procedural understanding that cannot
be reduced to propositional understanding. Wittgenstein (1922/2003) famously said “Whereof one
cannot speak, thereof one must be silent” (Tractatus, 7). However, it might have been better to
say that whereof one cannot speak, thereof one must act! To capture the “un-sayable” aspect of
understanding that calls for action, we must augment the Turing test17 and allow the agent to act.
In such an augmented test, the interrogator becomes an observer and the agent becomes an actor.18

This method provides a more thorough probe of an agent’s understanding by allowing the agent to
both sayanddo things.

First, if we are going to consider behaviors as part of the test, we need some precise way to
characterize behaviors. For SNePS agents, it is very natural to define a behavior as a process19

invoked by the SNePSLOG commandperform a at the prompt (witha denoting an act). One

14This kind of question, raised by Rapaport (1995), was one of my original motivations for studying mathematical
understanding.

15Note that such metacognitive reasoning is not the only option an agent might have. An imagistic mental model
might provide another approach to seeing the two procedures as doing the same thing. However, the plausibility of
such models also come under pressure when scaling up from early mathematical cognition.

16An interesting analysis of pre-linguistic thinking is given by Bermúdez (2003)
17A similar move is made by Bringsjord, Caporale, and Noel (2000) with their “Total Turing test”.
18Of course, unlike Turing’s initial separate-room teletype layout, this augmented test assumes that the interrogator

can perceive the agent’s behavior.
19Here I mean process in the metaphysical sense, rather than in the technical computer science sense. I will assume

processes are fundamental and will not discuss them further here.

65



may object that it is “cheating” to have a command prompt at all because, in this case, it is not really
the agent behaving autonomously. I will not worry about this objection here, because behaviors
could be triggered in a much more natural way (e.g., as a result of perceiving something or to
achieve some goal) to address agent autonomy.

Now we can consider the different possible interactions between an interrogator (qua observer)
and an agent (qua actor). It is easier to do this if we consider the interrogator as another SNePS
agent and take a “god’s eye” view of both agents. This allows us to talk of about the interrogator’s
beliefs. Figure 3.3 shows a set of possible interactions. In case (i), the interrogator identifies the

Figure 3.3: Possible interactions between an interrogator and acting agent.

behavior as acta because the interrogator knows thatp is a way of doinga. In case (ii), the
interrogator also identifies the behavior as acta, but the agent does not know that by doingp they
are doinga. This can be viewed as a misidentification on the part of the interrogator, or, perhaps
as the agent fooling the interrogator. Alternatively, the interrogator can remain skeptical and just
claim that the agent is just doingp, but such an interrogator would have to say the same thing
in case (i). In case (iii), the interrogator is only able to say that the agent is behaving in some
unspecified way because the interrogator has no name for that behavior, even though the agent
does. Although this case is not of much concern for the domain of early mathematical cognition,
it is possible that a computational agent could classify its behaviors in such a way that certain
interrogators could not identify the acts being performed. Finally, in case (iv), the interrogator is
again just able to note that the agent is behaving in some way and, this time, the agent also has no
named act to associate with its behavior.

These cases can be formalized as follows.
Let KL i be the knowledge layer of the interrogator agenti.
Let KL c be the knowledge layer of the agent Cassiec.
Let per f ormx(p) be a function from the domain of SNePS acts performable by agentx to the do-
main of behaviorsBx demonstrated by agentx while acting, such thatper f ormx(p) is the behavior

66



of agentx when the SNePSLOG commandperform p is invoked.
Let JBel(x,y)K = JxK holds beliefJyK.
DefineACTPERFx⊂ Bx to be a set of behaviors for agentx such that for any agenty (with x and
y possibly denoting the same agent), acta, and planp, the following two properties hold:

• ActPlan(a,p) ∈ KL x⊃ per f ormx(p) ∈ ACTPERFx

• ActPlan(a,p) ∈ KL y⊃ Bel(y, per f ormx(p) ∈ ACTPERFx)

In other words,ACTPERFx is that set of agent behaviors that constitute performances of named
acts for the agent performing them and are believed to be performances of named acts for agents
observing the behavior who also know the name of the acts. Now we consider four cases using this
formalism:

• Case (i).Both Cassie and the interrogator believe thatp is a way of doinga:
ActPlan(a,p) ∈ KL i andActPlan(a,p) ∈ KL c.
In this caseper f ormc(p) ∈ ACTPERFc andBel(i, per f ormc(p) ∈ ACTPERFc).

• Case (ii). The interrogator believes thatp is a way of doinga, but Cassie does not (even
though she can performp):
ActPlan(a,p) ∈ KL i andActPlan(a,p) 6∈ KL c.
In this caseper f ormc(p) ∈ Bc−ACTPERFc andBel(i, per f ormc(p) ∈ ACTPERFc).

• Case (iii). The interrogator does not believe thatp is a way of doinga, but Cassie does:
ActPlan(a,p) 6∈ KL i andActPlan(a,p) ∈ KL c.
In this caseper f ormc(p) ∈ ACTPERFc andBel(i, per f ormc(p) ∈ Bc−ACTPERFc).

• Case (iv). Both Cassie and the interrogator do not believe thatp is a way of doinga (even
though Cassie can performp):
ActPlan(a,p) 6∈ KL i andActPlan(a,p) 6∈ KL c.
In this caseper f ormc(p)∈Bc−ACTPERFc andBel(i, per f ormc(p)∈Bc−ACTPERFc).

These interaction cases are by no means exhaustive. If the interrogator has two names for a
given act (e.g.,ActPlan(a1,p) ∈ KL i andActPlan(a2,p) ∈ KL i) then they may attribute
eithera1 or a2 to the agent’s behavior. There may be many cases in which the agent’s acts don’t
correspond to observable behaviors (e.g., as is the case with mental acts).20 Another issue arises
when considering the objects external to the agent involved in behaviors. Here, I have considered
the acts apart from the objects over which the acts are performed. However, the interrogator may
fail to label the actbecausethey are unfamiliar with the performance of a sort of act with the
object(s) the agent is employing (e.g., if I wash my hands with broth, not many people would say
I am washing my hands).

Despite these simplifications, I believe that a function likeper f ormx(p) would be interesting
to investigate. Even thoughper f ormx(p) does not operate in line with classical semantic theories
(e.g., it is not like theλ of lambda calculus), it is a useful tool in measuring procedural understand-
ing. Unfortunately, a further investigation is beyond the scope of this dissertation.

20This would involve the interrogator discriminating between a mental act and no behavior at all. This “NULL”
behavior is only detectable from a god’s eye view

67



Chapter 4

Abstract Internal Arithmetic

An embodied theory of mathematical cognition should present a unified view of how we do mathe-
matics “in our heads” and how we do mathematics “in the world”. In early mathematical cognition,
embodied routines over physical objects form the basis for the arithmetic we eventually do ”in our
heads”. The latter I will callabstract internal arithmetic. In this chapter, abstract internal arith-
metic is presented in isolation, taking for granted that it is abstractable from an embodied external
arithmetic (this part of the story is put off until the next chapter).

I first provide the syntax and semantics for the SNePS representations I utilize in implementing
abstract internal arithmetic. A taxonomy is given according to which arithmetic routines can be
classified. I focus on a class of “semantic routines” to develop a set of count-based routines in a
bottom-up way. These routines exhaust the four basic arithmetic functions: addition, subtraction,
multiplication, and division. To empirically demonstrate a depth-of-understanding, a case study
is described in which the agent attempts to demonstrate its understanding of the greatest common
divisor (GCD) of two natural numbers. To achieve this, a question and answer dialogue is carried
out. This dialogue is intended to induce an exhaustive explanation from Cassie. I discuss how each
type of question is parsed and represented in SNePS. Depending on the type of question, different
inference techniques are employed by the agent. I will focus on the techniques ofprocedural
decompositionandconceptual definition.

4.1 Representations for Abstract Internal Arithmetic

In SNePS, the structure of representations is set up by the designer before running an agent. While
active, Cassie perceives, acts, and deduces new beliefs within her framework of representations.
In my implementation, Cassie does not alter her representations on the fly, so the representation
choices determine, in large part, Cassie’s ultimate effectiveness.

As mentioned in the previous chapter (see§3.2), SNePS represents intensional entities. Accord-
ing to Shapiro and Rapaport (1987) (pp. 268–269), intensional entities must satisfy five criteria:

1. Non-substitutability in referentially opaque contexts.

2. Indeterminacy with respect to some properties.

68



3. Intensional entities need not exist.

4. Intensional entities need not be possible.

5. Intensional entities can be distinguished even if they are necessarily identical.

Cassie’s representations for arithmetic will fulfill all of these criteria. For a few examples, consider:
Cassie may believe “1 + 1 = 2” without believing “gcd(8,6) = 2” (thus, we cannot just substitute
for ‘2’ and a fact like “gcd(8,6) = 1 + 1” is something Cassie must discover); Cassie can conceive
of 1

0, which cannot exist or be possible even in realist ontologies!; and, as Shapiro and Rapaport
note, Cassie can entertain different intensional objects for “the sum of 2 and 2” and “the sum of 3
and 1”.

4.1.1 A Case-Frame Dictionary for Mathematical Cognition

In this section, I provide the syntax and semantics for the most widely used representations in my
agent implementation. The schematic form of a wff is called a case-frame; each case-frame below
is given in terms of SNePSLOG syntax, thedefine-frame command that generates the frame,
and the semantic network structure associated with the frame. The syntax of thedefine-frame
command is as follows:

define-frame P( r0, r1, . . ., rn)

which enables the system to assert wffs of the formP( x1, x2, . . ., xn) . Such an assertion generates
the following network structure:

GFED@ABCm!

r0
~~

~~

~~~~
~ r1

��
r2

AA
AA

  A
AA rn

TTTTTTTTTT

))TTTTTTTTTT

P x1 x2 xn

The nodesP,x1,x2, . . . ,xn are calledbase nodes. Base nodes have no arcs emanating from them.
The nodem! is called a molecular node. Molecular nodes have arcs emanating from them. The ‘!’
in the molecular nodem! indicates that this is an asserted proposition. Optionally, if the relationr0

is set tonil in thedefine-frame command, then there will be no arcr0 pointing to nodeP.
I have tried to keep the number of case-frames to a minimum while representing a cognitively

plausible amount of information for each arithmetic task Cassie must perform. The semi-formal
semantics and a sample usage of each case-frame is also provided. In giving the semantics, I use
the double-bracket symbol to distinguish between nodes and the entities the nodes represent. Ifx
is a node,JxK denotes the entity represented byx.

69



4.1.1.1 Counting Case-Frames

Number
Syntax:

Definition SNePSLOG Network

define-frame Number(class member)Number(x) GFED@ABCm!

member
��

class

$$H
HHHHHHHHH

x Number

Semantics:JmK is the proposition thatJxK is a number. Numbers in my theory are positions in a
structure exemplifying a finite initial segment of the natural number progression. Cassie constructs
this structure during counting (see below) and each term (quaposition) reached in the process is
asserted as being a number using this case-frame.

Sample Use:Number(n3) asserts thatn3 is a number.

As a convention, I will writenx to denote the number corresponding to the Arabic numeralx.
However, in the implementation, this convention is not guaranteed to be followed. In one mode
of operation, Cassie will follow this convention, so, for examplen3 will denote the number three.
In another mode of operation, Cassie will obtain randomly named symbols via Lisp’sgensym
function to denote numbers. These represent the numerons of Cassie’s private language (or “men-
talese”). These symbols will be unknown to the designer between runs of the agent. All of Cassie’s
mathematics can be performed on the basis of these private numerons. For further discussion on
why this sort of representation is important, see§7.3.

Successor
Syntax:

Definition SNePSLOG Network

define-frame Successor(nil succ pred)Successor(y,x) GFED@ABCm!

succ
��

pred

��@
@@

@@
@@

@

y x

Semantics:JmK is the proposition thatJyK is the (immediate) successor ofJxK in the natural-number
progression.

Sample Use:Successor(n3,n2) asserts thatn3 is the successor ofn2 .

NumeralOf
Syntax:

70



Definition SNePSLOG Network

define-frame NumeralOf(nil numeral number)Numeral(x,y) GFED@ABCm!

numeral
��

number

��@
@@

@@
@@

@

x y

Semantics:JmK is the proposition thatJxK is the Arabic numeral associated with the numberJyK.
This case-frame allows Cassie to associate her (internal) numbers with the numerals of a public-
communication number-system. In my implementation, this is the Arabic decimal system. A
similar construct would be necessary for interfacing with (e.g.) the Roman numerals (I, II, III, IV,
etc.) or the English number words (‘one’, ‘two’, ‘three’, ‘four’, etc.).

Sample Use:NumeralOf(3,n3) asserts that3 is the Arabic numeral for the numbern3 .

NumberName
Syntax:

Definition SNePSLOG Network

define-frame NumberName(nil name number)NumberName(x,y) GFED@ABCm!

name
��

number

��@
@@

@@
@@

@

x y

Semantics:JmK is the proposition thatJxK is the English number-name associated with the number
JyK. This case-frame allows Cassie to associate her (internal) numbers with the linguistic names of
a public-communication number-system.

Sample Use:NumberName(three,n3) asserts thatthree is the English number-name for
the numbern3 .

Zero
Syntax:

Definition SNePSLOG Network

define-frame Zero(nil zero) Zero(x) GFED@ABCm!

zero
��
x

Semantics:JmK is the proposition thatJxK is the number zero.

Sample Use:Zero(n0) asserts thatn0 is the number zero.

As was briefly mentioned in§2.1.4.1, the number zero has a special meaning for an agent. For

71



Cassie, zero comes up in describing the base case of recursively implemented arithmetic acts. In
order to pick out which of Cassie’s nodes refers to zero, it is handy to have a distinguished case-
frame likeZero . However, the agent designer cannot assume thatn0 will denote the number zero
just because of our convention. What we need is for Cassie to assertZero for whatever numeron
corresponds to the numerlog 0. This is achieved by:1

perform withsome(?n,
NumeralOf(0,?n),
believe(Zero(?n)),
Say(‘‘The numeral 0 is not associated with any number’’))

This guarantees that Cassie picks out the right numeron for zero even between runs wheregensym
establishes different symbols for zero.

4.1.1.2 Arithmetic Acts

The following is a case-frame schema for every two-argument arithmetic act. The uniformity of
representation is maintained across all of the specific ways of performing a general routine (e.g.,
count-addition and addition have the same argument structure).
Arithmetic Act Schema
Syntax:

Definition SNePSLOG Network

define-frameA(action object1 object2) A(x,y) ?>=<89:;m
action

��~~
~~

~~
~~

ob ject1
��

ob ject2

��?
??

??
??

?

A x y

Semantics:JmK is a functional term2 representing the act consisting of the actionJAK with ar-
gumentsJxK andJyK.

Sample Use:perform Add(n2,n3) is the SNePSLOG invocation to perform the act of adding
n2 and n3.

Additionally, the implementation makes use of three primitive actsSay, SayLine , and
SayLine+ , which produce properly formatted output of utterances Cassie makes while acting.
These are included only as a convenience for the SNePS user. If these were stripped out of the
implementation (thus making it an implementation ofpurely mental arithmetic), the user could
still determine Cassie’s beliefs using SNIP deductions.

If the task at hand were to design an agent that is simply able to do arithmetic, it would not be
necessary to use many more case frames than the ones already defined. However, the needs of an
agent who must explain itself in demonstration of its understanding needs some more machinery.
Specifically, we need a way for an agent to link together results of various mathematical acts. I

1Thewithsome SNeRE primitive was defined in§3.2.
2Shapiro and Rapaport (1987) have also called these structured individuals.

72



will describe my representational solution, result, and evaluation frames, in the next section, but
first I wish to motivate the need for these frames by discussing the nature of mathematical acts.

I believe mathematical acts are an interesting ontological category of acts, but this claim needs
some elaboration and justification. It is not clear at all what makes an act mathematical, and it
is also unclear what makes a non-mathematical act non-mathematical. Dijkstra (1974) points out
some features of mathematical “activity”:

With respect to mathematics I believe, however, that most of us can heartily agree upon
the following characteristics of most mathematical work: (1) Compared with other
fields of intellectual activity, mathematical assertions tend to be unusually precise.
(2) Mathematical assertions tend to be general in the sense that they are applicable
to a large (often infinite) class of instances. (3) Mathematics embodies a discipline
of reasoning allowing such assertions to be made with an unusually high confidence
level . . . when an intellectual activity displays these three characteristics to a strong
degree, I feel justified in calling it ”an activity of mathematical nature”, independent
of the question whether its subject matter is familiar to most mathematicians (Dijkstra,
1974).

Dijkstra’s three criteria of precision, generality, and confidence collectively point towards a fourth
criterion for an activity to be considered mathematical. This might be called the purposiveness
criterion: when performing a mathematical act, an agent expects the performance of the act to
produce a particular result. Moreover, this result is not a trivial past-tensing of the act, i.e., the
effect of actA is not simply “having doneA”, but instead, it is the production of something that
can be considered a result.

Mathematical acts are not detached from acting in general. For example, consider a child
performing an act of subtraction for the problem 9−1. The child may be doing this for the purpose
of obtaining the answer 8, or for the purpose of updating their belief about how many planets there
are in our solar system (after the recent decision that Pluto is not a planet3). The act of updating
the number of planets is doneby subtraction, an act which produces a result (i.e., a difference) for
the larger act of updating a belief about our solar system.

Effect(a,p) is Cassie’s belief that, after performing acta, propositionp will hold. One
of the necessary and sufficient conditions fora being an addition act is thata produces sums. In
general, one of the necessary and sufficient conditions of any mathematical act is that it produces
a particular result.

4.1.1.3 Evaluation and Result Case-Frames

Result
Syntax:

3As of this writing, this result is still somewhat controversial!

73



Definition SNePSLOG Network

define-frame Result(nil resultname arg1 arg2)Result(x,y,z) ?>=<89:;m
resultname

����
��

��
��

arg1
��

arg2

��?
??

??
??

?

x y z

Semantics:JmK is a functional term representing the result namedJxK with argumentsJyK and
JzK. Since aResult is not a proposition, it must occur as a constituent part of a larger wff. Re-
sults are treated asproceptsas given in (Gray and Tall, 1994). This is discussed further in the next
section.

Sample Use:Result(Sum,n2,n3) is a term denoting the procept “the sum of 2 and 3”.
NOTE: Result case-frames are not used by themselves.BecauseResult s are not proposi-
tions, they can only occur in other propositions in Cassie’s belief space. This type of usage is
illustrated bym2in Figure 4.1.

Evaluation
Syntax:

Definition SNePSLOG Network

define-frame Evaluation(nil result value)Evaluation(x,y) GFED@ABCm!

result
��

value

��@
@@

@@
@@

@

x y

Semantics:JmK is the proposition that the resultJxK evaluates toJyK. Evaluation frames effec-
tively decouple the representation of the (proceptual) result from its evaluation. The benefits of
this representation will be described below.

Sample Use:Evaluation(Result(Sum,n2,n3),n5) asserts that the sum ofn2 andn3 is
(i.e., evaluates to)n5 .

Evaluated
Syntax:

Definition SNePSLOG Network

define-frame Evaluated(property object)Evaluated(x) GFED@ABCm!

property
��

ob ject

$$I
IIIIIIIIIII

Evaluated x

74



Semantics:JmK is the proposition thatJxK has a value. This is used as a “helper” frame to the
Evaluation frame by indicating that a (proceptual) result has a value that Cassie knows. This
can be expressed logically by:

∀r,a1,a2(Evaluated(Result( r, a1, a2)) ⊃ ∃v Evaluation(Result( r, a1, a2), v ) )

4.1.1.4 Results as Procepts

Gray and Tall (1994) discussed the notion of a “procept” in arithmetic. A procept is a complex
symbol that can be ambiguously interpreted as a process or a concept. The expression “2 + 3” can
be thought of as the process of adding 2 and 3 or as another “name” for 5 (a concept).4 While
most theories of reference frown on ambiguity, the ability to fluidly oscillate between “summing”
and “the sum” is actually quite useful for a cognitive agent (also see the operational-structural
distinction given by Sfard (1991)). The proceptual nature of “2 + 3” is not just a mark of the econ-
omy of (mathematical) language, but allows an agent to be flexible in interpreting more complex
expressions (i.e., expressions in which multiple procepts may occur). As procepts, result frames
play very different roles before and after an arithmetic act. Before performing an arithmetic act, a
result frame represents an object of thought that must be evaluated (presumably by the act). After
performing an arithmetic act, a result frame functions as a descriptive name for the value obtained
by the act. It is also a residue of the act that generated the value.

A procept may be deployed in either the public-communication languages utilized by an agent
or in the agent’s language of thought. Due to the uniqueness principle in SNePS, a result frame
cannotdenoteboth a process and a concept, but isassociablewith both a process and a concept as
follows:

• Effect(Add(n2,n3),Evaluated( Result(Sum,n2,n3))) . ProceptResult(Sum,n2,n3)
associated with the process (act) of addition.

• Evaluation( Result(Sum,n2,n3),n5) . ProceptResult(Sum,n2,n3)associated with the
number (concept) n5.

As such, Cassie only deals with “factored” procepts; a procept is either explicitly related to an act
or to a number. After performing the act of adding 2 and 3, Cassie will have the subnetwork in
Figure 4.1 in her belief space. This synthesizes theEvaluation , Evaluated , andResult
case-frames and will be usable in the context of question answering. Another way to interpret this
representation is to say that it intensionally separates an equation likex+ y = z into its right and
left hand sides.

Decoupling results from evaluations solves a “cart-before-the-horse” representation problem
for Cassie. Before performing an arithmetic act, Cassie does not know the value of the result,
even though she expects the result to have some value. In an earlier implementation, the result
and its evaluation were stored in a single case-frameResult(r,x,y,z) which meant that the
operationr applied tox andy yieldedz . However, this representation makes it impossible to

4Also, there may be a “neutral” reading of “2 + 3” as “two plus three” that does not commit an agent to either a
process or a concept.

75



Figure 4.1: Cassie’s belief that 2 + 3 = 5

represent the expected effect of an act without knowing the value ofz in advance. Thus, the game
would be given away if we represented the effect as:

all(x,y,z)( {Number(x),Number(y) } &=>
Effect(Add(x,y),Result(Sum,x,y,z))).

Notice that this representation fails because it asserts thateverythingis the result of adding two
numbers. We simply have nothing to saya priori aboutz . The existential quantifier might be used
in the consequent, but this is not supported in SNePS 2.7. Using a Skolem function (i.e., using
f (x,y) in place ofz, above) is not as elegant as a decoupled proceptual solution.

Another benefit of the decoupled proceptual representation is that it provides a nice way of
scaling the theory from natural numbers to rational numbers. Also, using result and evaluation
frames, we can represent undefined results (e.g., 8÷ 0). The agent should initiallyexpectsuch
divisions to have results, and the value needs an intensional representation even if there is no
extension associated with it. These issues will be discussed in the conclusion.

4.2 A Taxonomy of Arithmetic Routines

I distinguish three categories of early mathematical routines.

• Semantic: Characterized by a dependence on previously learned routines, natural-language
semantics (when the meaning of a concept is fixed in part by a linguistic description), and
action-theoretic semantics (when the meaning of an operation is fixed in part by an activity
performed on external entities, for example, the link between the operation of division and
the act of evenly sharing candies between friends).

• Syntactic: Characterized by formal operations performed on positional number systems
(e.g., the decimal number system) using column-wise operations (e.g., carrying and bor-
rowing).

76



• Extended: Characterized by reliance on a trusted outside source (e.g., a calculator or teacher)
and usually involving non-mathematical acts such as pushing buttons or asking questions.

These categories do not form sharp boundaries around mathematical routines. Indeed, most
routines will require elements from all three categories. For example, syntactic multiplication re-
quires the previously learned routine of syntactic or semantic addition (this is a feature of semantic
routines). Syntactic multiplication may also require an agent to make marks on paper to keep track
of intermediate results (this is a feature of extended routines). However, we would classify syntac-
tic multiplication as being of the syntactic type because its main feature is performing column-wise
operations on numbers positioned in a particular way. These operations are done without regard
to the semantic significance of each operation and without reliance on the extended medium to
directly provide the solution.

An agent must synthesize results produced by routines in each of these categories. Whether the
result 129+23= 152 is discovered by paper and pencil, by calculator, or by counting, the result
must be represented in a uniform way. Despite this consistent representation, not all routines are
created equally when it comes to understanding. I will claim that semantic routines are the most
important for an agent’s understanding and for an agent’s demonstration of understanding.

4.3 Semantic Arithmetic

In this section, I will demonstrate how a series of acts can implement the basic four functions of
arithmetic (i.e., addition, subtraction, multiplication, and division) in such a way that each can be
understood in terms of simpler acts, eventually bottoming out at a counting routine. The counting
routine can be thought of as abasecase of action, and each of the basic arithmetic functions is
a recursivecombination of counting routines. Collectively, I will refer to this series of acts as
“semantic arithmetic” because it is the essence of understanding-in-terms-of as described in the
previous chapter.

Semantic arithmetic is Cassie’s way of understanding all of arithmetic with a counting rou-
tine. However, it is not necessarily a reduction of arithmetic understanding to understanding the
procedure of counting. An agent might accidentally perform the correct sequence of count acts
necessary for an arithmetic operationwithouteven knowing it has performed the arithmetic oper-
ation. Understanding with counting is not just the correct sequence of count acts; the agent must
also understand how the different procedures are related to one another (i.e., how to procedurally
decompose one act into others).

4.3.1 Counting

Counting is the procedural generator of the natural numbers. Quine (1969) had the intuition that
all there is to numbers is what is done to them:

Arithmetic is, in this sense, all there is to number: there is no saying absolutely what
the numbers are; there is only arithmetic (p. 45).

77



Counting requires a cognitive agent that can generate a succession of unique mental symbols
and can associate each unique symbol with a symbol in a public-communication language. Gelman
and Gallistel (1978) call the former symbols “numerons” and the latter “numerlogs”. Since I am
adopting a structuralist ontology, absolutely any node in Cassie’s KL could serve as a numeron.
Human children usually learn counting before they learn what counting is “useful” for (or, more
precisely, what they learn how counting is publicly meaningful), treating the act of counting as a
sort of nursery rhyme. In nursery rhymes, there is a correct first word to say and there is always a
correct next word to say (i.e., a unique successor). Counting only becomes meaningful when the
mental numerons are aligned with the publicly accepted numerlogs.

Cassie counts using two primitive actionsConceiveInitialElement and
ConceiveSuccessor . ConceiveInitialElement creates a base node that will denote
the number zero for Cassie.5 This is a primitive action, and it is performed once. Every time
ConceiveSuccessor is performed, Cassie creates a new base node and relates it to the previ-
ously created base node using theSuccessor relation. Repeating this performance results in a
structure instantiating a finite initial segment of the natural-number progression. The
ConceiveOrdering action performs theConceiveInitialElement act followed by a
user specified number ofConceiveSuccessor acts. The symbols in this ordering are Cassie’s
private numerons.
Number is asserted of each symbol as it is created.

When Cassie has conceived of an ordering, she has not properly countedin a particular enu-
meration system. To do this, she must associate each numeron with a numerlog of a public-
communication language. This process is illustrated in Figure 4.2. As the Figure shows, Cassie
can make associations with multiple public-communication languages, e.g., numerals and number
names. Numerals are generated in the PML, and the association with numbers is made via the
tell-ask interface. tell is a command that is available in Lisp (and, hence, the PML) that
permits an assertion to be made in the KL.ask is a command that permits a deduction to be made
from Lisp. This sort of generation of numerals treats Lisp as a “syntactic network” that interfaces
with Cassie’s semantic network (Shapiro, 1977).

In the current implementation, number names must be entered manually. It is possible, how-
ever, to have a large set of KL rules for handling the generation of number names, including
the standard English morphology for these names (e.g., 173 is ‘one’ ‘+hundred’ ‘seven’ ‘+ty’.
‘three’).6 Cassie does not produce any number-name outputs in my implementation, so number-
name generation is beyond the scope of the dissertation.

Cassie begins with a very “bare-bones” and abstract representation of numbers. Numbers never
stop being nodes, but those nodes participate in a richer and richer network as Cassie performs
different activities. It is in this way that numbers become more and more meaningful to her.

5Human children do not start with a “zeroqua number” concept. A fuller account of the ontogeny of the zero
concept would need to include non-mathematical notions of “absence”, “lack”, and “emptiness”.

6Wiese (2003) gives a formal account of such a generator (see pp. 304–313).

78



Figure 4.2: Numeron-numerlog association.m1,m2, andm3establish the finite initial segment of
the natural-number progression up to three.m4, m5, m6, andm7associate this progression with the
numerals 1, 2, 3, and 4.m8, m9, m10, andm11associate this progression with the number names.

4.3.1.1 The Greater-Than Relation

For Cassie, what is the natural-number progression a progressionof? Initially, it is just a pro-
gression of symbols. Importantly, Cassie can countthingswith these symbols, i.e., make number
assignments (see Chapter 2,§2.1.4.2). That is, the symbols can be associated in a one-to-one way
with objects being counted in a stable order (this will be dealt with in great detail in the next chap-
ter). Gelman and Gallistel (1978) indicate that once the one-to-one and stable-order “how to count”
principles are present, the cardinal principle may be accessible, i.e., treating the natural-numbers
as a succession of potential cardinalities increasing in size (see Chapter 2,§2.1.1.2).7

The development of the cardinal principle is dealt with extensively by Gelman and Gallistel
(1978). Each number is a potential endpoint of a counting routine. An agent that is well practiced
in making cardinal number assignments will notice that in enumerating a collection of sizen, all
of the cardinalities 1. . .n−1 are passed. After this is noticed for particular concrete collections,
an agent can abstract that passing smaller cardinalities on the way to larger ones will occur when
enumerating any sort of thing. The agent abstracts from the collection sizes and considers only
the numbers themselves (i.e., the number component of the quantity). The number line becomes
a ruler of potential sizes for potential collections. The greater-than> relation is used to compare
these numbers treated as sizes.

The initialSuccessor relationship Cassie applies while counting can be used to produce the

7Note however, that more recent research (Clements and Sarama, 2007) indicates that the one-to-one and stable
order principles may be necessary but insufficient for the emergence of the cardinal principle.

79



GreaterThan relation by applying path-based inference. The relevant case-frames are:

define-frame Successor(nil succ pred)
define-frame GreaterThan(nil greater lesser)

The SNePS relationsgreater andlesser that serve as arc-labels in Cassie’s semantic network,
can be inferred from a particular orientation of nodes in Cassie’s network. A path in SNePS is a
sequence of arcs, nodes, and inverse-arcs (i.e., going against the direction of the arc). Two path-
based inference rules are needed:

define-path greater (or greater (compose succ (kstar (compose pred- ! succ))))
define-path lesser (or lesser (compose pred (kstar (compose succ- ! pred))))

The first rule says that agreater SNePS relation can be inferred whenever there is a path that
includes thegreater relation (the trivial case), or when there is a path consisting of asucc arc
followed by zero or more paths consisting of an inversepred arc, an asserted node! , and asucc
arc. The second rule says that alesser SNePS relation can be inferred whenever there is a path
that includes thelesser relation (the trivial case), or when there is a path consisting of apred
arc followed by zero or more paths consisting of an inversesucc arc, an asserted node! , and a
pred arc.

Used in tandem, these two rules can be used to infer a belief involving theGreaterThan
relation. This is illustrated in Figure 4.3. When a numbery is said after a numberx in the counting

Figure 4.3: Path based inference of 5> 1. Thelesserarc ofm5is implied by pathp1 (from m1to
n1) and thegreaterarc ofm5is implied by pathp2 (from m1to n5 .

sequence, this pair of rules imply thaty > x. This inference is a “subconscious” one for Cassie in
that she does not use KL rules to compare the numbers, but relies instead on the implicit structure
of the network as given by counting. However, this does not preclude the agent designer from
developing a “conscious” comparison act in the KL. In fact, when an agent uses syntactic routines,
the numeric representations cry out for a lexicographic comparison to determine which number
is greater. The important point is that Cassie can support various techniques for attributing the
GreaterThan relation, but all such relationships are captured under a common case-frame.

80



4.3.2 Count-Addition

Count-addition is Cassie’s gateway to arithmetic. When children learn to add by counting, they
progress through a series of successively more efficient strategies. These strategy shifts happen in
conjunction with a shift from concrete representations towards more abstract representations. A
model of strategy shifts will be discussed in great detail in the next chapter. Here, I will describe
one method of count-addition for abstract internal arithmetic known as the COUNT-ON technique.

To compute the sum of two numbersx andy, Cassie says the first addendx and proceeds to
count fory many more numbers: Although I have stated the algorithm iteratively, it is much more

Algorithm 1 Count-Addition ofx+y
Sayx
Sayx+1,x+2, . . . ,x+y

natural to implement it recursively using SNeRE. The expression of these routines as non-recursive
iterations, although more cognitively plausible, imposes a great deal of implausible representa-
tional machinery (e.g., predicates tracking each intermediate value which drastically slow Cassie’s
reasoning). What is more important is that the acts themselves can be computationally expressed
in SNeRE. The complex acts8 involved areCountFromFor andCountAdd :

;;;
;;; To count from x for y numbers, count from x+1 for y-1 numbers.
;;;
all(x,y)({Number(x),Number(y)} &=>

ActPlan(CountFromFor(x,y),
withsome(?xp1,

Successor(?xp1,x),
withsome(?ym1,

Successor(y,?ym1),
snif({if(Zero(?ym1),believe(FinalSum(?xp1))),

else(CountFromFor(?xp1,?ym1))}),
Say("I don’t know how to count add these numbers")),

Say("I don’t know how to count add these numbers")))).
;;;
;;; To Count-Add x and y, count from x for y numbers.
;;;
all(x,y)({Number(x),Number(y)} &=>

{ActPlan(CountAdd(x,y),
snsequence(SayLine+("Count Adding",x,y),
snsequence(CountFromFor(x,y),

withsome(?z,
FinalSum(?z),
snsequence(believe(Evaluation(Result(CountSum,x,y),?z)),

disbelieve(FinalSum(?z))),
SayLine("I could not determine the sum."))))),

Effect(CountAdd(x,y),Evaluated(Result(CountSum,x,y)))}).

The recursion operates as a sequence of calls toCountFromFor : To count fromx for y numbers,
count from the successor ofx for the predecessor ofy many numbers (i.e., count fromx+ 1 for
y−1 many numbers). To count fromx+ 1 for y−1 many numbers, count fromx+ 2 for y−2
many numbers, and so on. Eventually, Cassie reaches the case where she is counting fromx+ y
for 0 numbers. When this occurs, Cassie asserts that the number arrived at is the answer using the
FinalSum case-frame.

8This does not include the variations of this act demanded by the unique-variable binding-rule (UVBR), see§4.5

81



JFinalSum(x)K asserts thatJxK is the sum reached by the current (i.e., attended to) act of count-
addition.

TheCountAdd act then asserts that this number is the value of the procept ”theCountSum
of x andy”. The effect of performing this act is that Cassie will believe that this procept will have
a value.

Cassie will be given a variety of ways to perform each arithmetic routine. We need a way form
an association between a general act (i.e., addition) and a specific way of performing the act (i.e.,
count addition). To link up the fact that this way of finding a sum is a sumsimpliciterand that this
way of adding is an additionsimpliciter, the following rules are used:

;;;
;;;Every counted sum obtained by this method is a sum.
;;;
all(x,y,z)(Evaluation(Result(CountSum,x,y),z) => Evaluation(Result(Sum,x,y),z)).

;;;
;;;CountAdd is a plan for adding.
;;;
all(x,y)({Number(x),Number(y)} &=> ActPlan(Add(x,y),CountAdd(x,y))).

These rules play an important role for the part of Cassie’s KL responsible for explanation because
they link routine-specific results with general results and plans for performing an act with the
general act.

This routine builds on counting by allowing Cassie to begin her count from an arbitrary spot on
her mental number-line. TheSuccessor frame can be used to determine not only the successor
of a number, but also its predecessor. In the recursive implementation, this allows the first addend
to increase as the second is decreasing. This is a model of the “finger-transfer” method children
use, i.e., lowering one finger on the left hand for each finger that is raised on the right hand.

4.3.3 Count-Subtraction

The ability to “reverse” directions on the number line by attending to predecessors gives rise to
count-subtraction. To compute the differencex− y, Cassie saysx and counts down fory many
numbers:

Algorithm 2 Count-Subtraction ofx−y
Sayx
Sayx−1,x−2, . . . ,x−y

The implementation of count-subtraction involves theCountDownFromFor and
CountSubtract complex acts and is similar in structure to that of count-addition:

;;;To count down from x for y numbers, count down from x-1 for y-1 numbers.
all(x,y)({Number(x),Number(y)} &=>

ActPlan(CountDownFromFor(x,y),
withsome(?xm1,

Successor(x,?xm1),
withsome(?ym1,

Successor(y,?ym1),
snif({if(Zero(?ym1),believe(FinalDifference(?xm1))),

else(CountDownFromFor(?xm1,?ym1))}),

82



believe(FinalDifference(x)))))).

;;;
;;; To Count-Subtract y from x, count down from x for y numbers.
;;;
all(x,y)({Number(x),Number(y)} &=>

{ActPlan(CountSubtract(x,y),
snif({if(GreaterThan(y,x),

snsequence(
SayLine("I cannot subtract a larger number from a smaller number."),
believe(Evaluation(Result(CountDifference,x,y),undefined)))),

else(snsequence(SayLine+("Count Subtracting",x,y),
snsequence(CountDownFromFor(x,y),

withsome(?z,
FinalDifference(?z),
snsequence(
believe(Evaluation(Result(CountDifference,x,y),?z)),
disbelieve(FinalDifference(?z))),

SayLine("I could not determine the difference. ")))))})),
Effect(CountSubtract(x,y),Evaluated(Result(CountDifference,x,y)))}).

The major difference is that Cassie first utilizes theGreaterThan relation to determine whether
she is trying to subtract a larger from a smaller number. This is simply done for the sake of the
user. The natural numbers are not closed under subtraction, and, thus, if she tried to subtracty from
x with y > x, she would eventually try to deduce a predecessor for 0. Not finding such an entity in
her KL, she would report that she could not determine the difference.

Using the recursive actCountDownFromFor , Cassie subtractsy from x by subtractingy−1
from x−1, y−2 fromx−2, . . . 0 fromx−y. The numberx−y is the basis of the recursion and is
marked as the result usingFinalDifference .

JFinalDifference(x)K asserts thatJxK is the difference reached by the current (i.e., attended
to) act of count-subtraction. If, in the course of acting, Cassie ever finds herself sutracting a larger
number from a smaller one, she will assign the valueundefined in the value position of the
evaluation frame.9

The effect of performing this act is that Cassie will believe that this procept will have a value.
As with count-addition, these acts are bound to the general acts for subtraction:

;;;
;;;Every counted difference obtained by this method is a difference.
;;;
all(x,y,z)(Evaluation(Result(CountDifference,x,y),z) => Evaluation(Result(Difference,x,y),z)).

;;;
;;;CountSubtract is a plan for subtracting.
;;;
all(x,y)({Number(x),Number(y)} &=> ActPlan(Subtract(x,y),CountSubtract(x,y))).

4.3.4 Iterated-Addition Multiplication

With addition and subtraction expressed in the simpler routine of counting, it is now possible to
phrase multiplication and division in terms of addition and subtraction, respectively. Multiplication
can be expressed as iterated addition, by considering the productx×y as:

9The semantics ofJundefinedK is roughlythat an undefined value of which Cassie cannot predicate anything else.

83



x+x+ . . .+x︸ ︷︷ ︸
y−1 additions

The algorithm can be completely stated using previously defined operations+,−, and>:

Algorithm 3 Iterated-Addition multiplication ofx×y
set PRODUCT← 0
ITERATIONS← x
while ITERATIONS> 0 do

PRODUCT← PRODUCT +x
ITERATIONS← ITERATIONS - 1

end while

We must be particularly careful with the semantics of iteration. In the instruction “to findx×y,
addx to itselfy−1 times”, we are not iterating thesameacty−1 times (i.e., we are not computing
x+x a total ofy−1 times. Instead, we need to repeat an act of the same formy−1 times. This act
takes the resulting sum of each addition and makes it an argument in the subsequent addition.

The embodied analog for iteration in the domain of object collection is an accumulated enu-
meration as object collections are merged. In the domain of object construction, iterating is adding
pieces to an ever larger construction. In iterated-addition multiplication, the added collection or
piece is a temporary representation of the product as it is accumulated or constructed.

The SNePS implementation of iterated-addition multiplication use two complex acts
AddFromFor andAddMultiply :

;;;Base case of add multiplication. To add from x for 0 iterations
;;;just stay at x. Also, believe appropriate SumProduct for unit
;;;multiplication
all(x,y)({ProductResultSoFar(x),Zero(y)} &=>

ActPlan(AddFromFor(x,y),
withsome(?one,

Successor(?one,y),
believe(Evaluation(Result(SumProduct,x,?one),x)),
Say("Problem asserting the unit multiplication"))))).

;;;Recursive case of add multiplication. To repeat the addition of w
;;;for z iterations, add w to itself and repeat the process for z-1
;;;iterations.
all(w,x,y,z)({NumToAdd(w), Successor(z,y),ProductResultSoFar(x)} &=>

ActPlan(AddFromFor(x,z),
snsequence(disbelieve(ProductResultSoFar(x)),
snsequence(Add(x,w),

withsome(?p,
Evaluation(Result(Sum,x,w),?p),
snsequence(believe(ProductResultSoFar(?p)),

AddFromFor(?p,y)),
SayLine(‘‘I could not determine the sum’’)))))).

;;;
;;; To Add-Multiply x and y, add x to itself y-1 times
;;;
all(x,y)({Number(x),Number(y)} &=>

{ActPlan(AddMultiply(x,y),
snsequence(SayLine+("Add Multiplying",x,y),
snsequence(believe(ProductResultSoFar(x)),

84



snsequence(believe(NumToAdd(x)),
snsequence(withsome(?p,Successor(y,?p),AddFromFor(x,?p),

Say("I don’t know how to add-multiply these numbers")),
snsequence(withsome(?z,

ProductResultSoFar(?z),
snsequence(believe(Evaluation(Result(SumProduct,x,y),?z)),

disbelieve(ProductResultSoFar(?z))),
SayLine("I could not determine the product.")),

disbelieve(NumToAdd(x)))))))),
Effect(AddMultiply(x,y),Evaluated(Result(SumProduct,x,y)))}).

To multiply x and y, Cassie adds fromx for a number of iterations equal to the predecessor
of y. This involves invokingAddFromFor , whose recursive plan is to update the temporary
ProductResultSoFar , and addingx before performingAddFromFor for one less iteration.

JProductResultSoFar(x)K represents the belief thatJxK is the temporary value Cassie asso-
ciates with the product (for the multiplication she is attending to).JNumToAdd(x)K denotes the
belief thatJxK is the number being added successively to produce the product.

The basis plan for this recursion is invoked when Cassie has zero more additions to perform.
TheSumProduct then contains the final result. The basis case of the recursion also asserts the
unit productx× 1, because such a product is an iteration of zero additions (in other words, to
multiply x by 1 involves “doing nothing” in terms of addition). The productx× 0 is undefined
using this procedure. All this means is that Cassie does not understand this productin terms of
addition.

The addition “subroutine” used in the act ofAddFromFor is specified in its general form
Add. Rather than forcing Cassie to useCountAdd (one of the ways she knows how to perform
Add), the multiplication act treats the method of addition as a black box. Thus, for every way
Cassie knows how to performAdd, she has a different way of performingAddMultiply .

We see that it is possible to have all of these acts bottom out at counting. Furthermore, the
use of the countingSuccessor relation is also valuable in expressing information for internal
and temporary structures (e.g., the number of iterations to go). The effect of performing this act is
that Cassie will believe that this procept has a value. Again, the link between general and specific
multiplication must be made:

;;;
;;;Every sum product obtained by this method is a product.
;;;
all(x,y,z)(Evaluation(Result(SumProduct,x,y),z) => Evaluation(Result(Product,x,y),z)).

;;;
;;;AddMultiply is a plan for multiplying.
;;;
all(x,y)({Number(x),Number(y)} &=> ActPlan(Multiply(x,y),AddMultiply(x,y))).

4.3.5 Iterated-Subtraction Division

Division, the inverse of multiplication, can be expressed as repeated subtraction, the inverse of re-
peated addition. The method of division by repeated subtraction was used by Euclid (seeElements,
VII.1). The quotientx÷y is the number of timesy can be subtracted fromx (updating the value of
x to this result) until this value reaches zero.

This is an effective procedure only if the quotient is a natural number or ify 6= 0. Cassie’s
implementation addresses these cases.

85



Algorithm 4 Iterated-Subtraction division ofx÷y
QUOTIENT← 0
set DIVIDEND tox
while DIVIDEND 6= 0 do

DIVIDEND ← DIVIDEND −y
QUOTIENT← QUOTIENT+1

end while

The SNePS implementation of iterated-subtraction division consists of the complex acts
SubtractUntilZero , andSubtractDivide as follows:
;;; Base case of subtracting until zero
all(x,z)({Number(x),NumToSubtract(x),QuotientSoFar(z)} &=>

ActPlan(SubtractUntilZero(x,x),
snsequence(Subtract(x,x),

withsome(?s,
Successor(?s,z),
snsequence(believe(QuotientSoFar(?s)),

disbelieve(QuotientSoFar(z))),
SayLine("I could not determine the successor"))))).

;;;
;;; Recursive case of subtracting until zero
;;;
all(x,y,z)({Number(x),NumToSubtract(y),QuotientSoFar(z)} &=>

ActPlan(SubtractUntilZero(x,y),
snsequence(Subtract(x,y),
snsequence(withsome(?s,

Successor(?s,z),
snsequence(believe(QuotientSoFar(?s)),

disbelieve(QuotientSoFar(z))),
SayLine("I could not determine the successor")),

withsome(?r,
Evaluation(Result(Difference,x,y),?r),
SubtractUntilZero(?r,y),
SayLine("I could not determine the difference")))))).

;;;
;;; To Subtract-Divide x by y, subtract y from x until the difference
;;; is 0.
;;;
all(x,y)({Number(x),Number(y)} &=>

{ActPlan(SubtractDivide(x,y),
snif({if(Zero(y),snsequence(Say("I cannot divide by zero."),

believe(Evaluation(DifferenceQuotient,x,y),undefined))),
else(snsequence(SayLine+("Subtract Dividing",x,y),

withsome(?z,Zero(?z),
snsequence(believe(QuotientSoFar(?z)),
snsequence(believe(NumToSubtract(y)),
snsequence(SubtractUntilZero(x,y),
snsequence(withsome(?q,QuotientSoFar(?q),
snsequence(believe(Evaluation(Result(DifferenceQuotient,x,y),?q)),

disbelieve(QuotientSoFar(?q))),
SayLine("I could not determine the difference.")),

disbelieve(NumToSubtract(y)))))),
SayLine(" I could not determine the difference."))))})),

Effect(SubtractDivide(x,y), Evaluated(Result(DifferenceQuotient,x,y)))}).

After checking to see thaty is not zero, Cassie sets the quotient to zero and begins subtractingy

86



from x with the recursiveSubtractUntilZero act. The recursive plan of
SubtractUntilZero stores the accumulating quotient inQuotientSoFar until the basis
plan which updates this value one more time.

JQuotientSoFar(x)K represents the belief thatJxK is the temporary value Cassie associates
with the quotient (for the division she is attending to).

The final value ofQuotientSoFar is set to the quotient. The effect of performing this act is
that Cassie will believe that this procept will have a value. As with the other arithmetic acts, a link
to the general acts are given by:

;;;
;;;Every difference quotient obtained by this method is a quotient.
;;;
all(x,y,z)(Evaluation(Result(DifferenceQuotient,x,y),z) => Evaluation(Result(Quotient,x,y),z)).

;;;
;;;SubtractDivide is a plan for dividing.
;;;
all(x,y)({Number(x),Number(y)} &=> ActPlan(Divide(x,y),SubtractDivide(x,y))).

4.3.6 Inversion Routines

Subtraction and division can be specified in terms of addition and multiplication without iteration
as specified above. Subtraction can be expressed as inverted addition and division can be expressed
as inverted multiplication. In the case of subtraction, Cassie can compute the differencex− y by
finding thez that satisfiesy+z= x:

Algorithm 5 Inverted-Addition subtraction ofx−y
Findz such thaty+z= x

Similarly, the quotientx÷y can be computed by finding thez that satisfiesy×z= x:

Algorithm 6 Inverted-Multiplication division ofx÷y
find z such thaty×z= x

The implementation of subtraction and division through inversion is much the same. Here is
the SNePS implementation of inverted-multiplication division:

;;;
;;; MultIterate multiply every number from 1 to y-1 by y until the
;;; result is x
;;;
all(x,y,z)({Number(x),Number(y),QuotientCandidate(z)} &=>

ActPlan(MultIterate(x,y),
snsequence(Multiply(y,z),
snif({if(Evaluation(Result(Product,y,z),x),

snsequence(believe(Evaluation(Result(InvMultQuotient,x,y),z)),
disbelieve(QuotientCandidate(z)))),

else(withsome(?s,
Successor(?s,z),
snsequence(disbelieve(QuotientCandidate(z)),
snsequence(believe(QuotientCandidate(?s)),

MultIterate(x,y))),

87



SayLine("I can’t perform the division")))})))).

;;;
;;; To InvMult-Divide x by y, find a number z that, when multiplied by y,
;;; yields x.
;;;
all(x,y,z)({Number(x),Number(y),Zero(z)} &=>

{ActPlan(InvMultDivide(x,y),
snsequence(SayLine+("Inverse Multiply Dividing",x,y),
withsome(?z,

(Evaluation(Result(Product,y,?z),x) or Evaluation(Result(Product,?z,y),x)),
believe(Evaluation(Result(InvMultQuotient,x,y),?z)),
snsequence(believe(QuotientCandidate(z)),

MultIterate(x,y))))),
Effect(InvMultDivide(x,y),Evaluated(Result(InvMultQuotient,x,y)))}).

Cassie first checks whether she already has computed the relevant inverse product. If so, she
does not need to do any more work. If not, she performsMultIterate , which tries successive
values ofz= 0,1, . . .n wheren is the largest number Cassie has counted to. The implementation
of inversion routines is not as efficient in SNePS, but they do represent alternative ways to express
subtraction and division in terms of simpler routines.

4.4 Cognitive Arithmetic Shortcuts

A computational model of mental arithmetic should account for the performance differences be-
tween classes of problems where “shortcut” methods can be applied and those where they cannot.
The following is a list of such shortcuts:

Operation Shortcut
Addition n+1 = m whereSuccessor(m,n)

n+0 = n
Subtraction n−1 = p whereSuccessor(n,p)

n−0 = n
n−n = 0
n− p = 1 whereSuccessor(n,p)

Multiplication n∗0 = 0
n∗1 = n

Division n/1 = n
n/n = 1

The use of such shortcuts is indicative of a deeper understanding of arithmetic because it re-
quires an agent to consider the form of the problem while planning how to solve it (Carr and
Hettinger, 2003). In order to deploy such methods, the agent must notice a regularity between
inputs and outputs for a particular operation and essentially rewrite the general procedure for the
class of problems. Moreover, the agent must understand that the shortcut appliesonly to the subset
of problems in a proper form.

These cognitive shortcuts may be introduced to Cassie in such a way that she will always
prefer the shortcut method over other methods. This is done with a special case-frame called

88



Prefer which will be described in detail in the context of count-addition strategy change in the
next chapter. The top-level SNeRE plans for short-cut arithmetic are:

;;;
;;;establish shortcuts as specific ways of doing general operations
;;;
all(x)(Number(x) =>

{ActPlan(Add(x,n0),ShortcutAdd(x,n0)),
Prefer(ShortcutAdd(x,n0)),
ActPlan(Add(x,n1),ShortcutAdd(x,n1)),
Prefer(ShortcutAdd(x,n1)),
ActPlan(Subtract(x,n0),ShortcutSubtract(x,n0)),
Prefer(ShortcutSubtract(x,n0)),
ActPlan(Subtract(x,n1),ShortcutSubtract(x,n1)),
Prefer(ShortcutSubtract(x,n1)),
ActPlan(Subtract(x,x),ShortcutSubtract(x,x)),
Prefer(ShortcutSubtract(x,x)),
ActPlan(Multiply(x,n0),ShortcutMultiply(x,n0)),
Prefer(ShortcutMultiply(x,n0)),
ActPlan(Multiply(x,n1),ShortcutMultiply(x,n1)),
Prefer(ShortcutMultiply(x,n1)),
ActPlan(Divide(x,n1),ShortcutDivide(x,n1)),
Prefer(ShortcutDivide(x,n1)),
ActPlan(Divide(x,x),ShortcutDivide(x,x)),
Prefer(ShortcutDivide(x,x)),
Effect(ShortcutAdd(x,n0),Evaluated(Result(ShortcutSum,x,n0))),
Effect(ShortcutAdd(x,n1),Evaluated(Result(ShortcutSum,x,n1))),
Effect(ShortcutSubtract(x,n0),Evaluated(Result(ShortcutDifference,x,n0))),
Effect(ShortcutSubtract(x,n1),Evaluated(Result(ShortcutDifference,x,n1))),
Effect(ShortcutSubtract(x,x),Evaluated(Result(ShortcutDifference,x,x))),
Effect(ShortcutMultiply(x,n0),Evaluated(Result(ShortcutProduct,x,n0))),
Effect(ShortcutMultiply(x,n1),Evaluated(Result(ShortcutProduct,x,n1))),
Effect(ShortcutDivide(x,n1),Evaluated(Result(ShortcutQuotient,x,n1))),
Effect(ShortcutDivide(x,x),Evaluated(Result(ShortcutQuotient,x,x)))}).

all(x,y)({Number(x),Successor(y,x)} &=>
{ActPlan(Subtract(x,y),ShortcutSubtract(x,y)),

Prefer(ShortcutSubtract(x,y)),
Effect(Subtract(x,y),Evaluated(Result(ShortcutDifference,x,y)))}).

Using SNePS, it is possible to write plans forfully-groundedacts (i.e., specific acts whose ar-
guments are all base nodes such asAdd(n1,n1) ), partially-groundedacts (i.e., acts whose ar-
guments include base nodes and variable nodes such asAdd(x,n1) ), and totally-ungrounded
acts (i.e., general acts whose arguments are all variables such asAdd(x,y) ). These cognitive
shortcuts take advantage of the support for all three types of acts.

The plan for each of the shortcut acts consists of an automatic belief in the answer based on the
form of the problem. Here are some examples:

;;;x + 0 = x
;;;x - 0 = x
;;;x - x = 0
;;;x * 0 = 0
;;;x * 1 = x
;;;x / 1 = x
;;;x / x = 1
all(x)(Number(x) =>

{ActPlan(ShortcutAdd(x,n0),
snsequence(SayLine+("Shortcut Adding",x,n0),

believe(Evaluation(Result(ShortcutSum,x,n0),x)))),
ActPlan(ShortcutSubtract(x,n0),

snsequence(SayLine+("Shortcut Subtracting",x,n0),

89



believe(Evaluation(Result(ShortcutDifference,x,n0),x)))),
ActPlan(ShortcutSubtract(x,x),

snsequence(SayLine+("Shortcut Subtracting",x,x),
believe(Evaluation(Result(ShortcutDifference,x,x),n0)))),

ActPlan(ShortcutMultiply(x,n0),
snsequence(SayLine+("Shortcut Multiplying",x,n0),

believe(Evaluation(Result(ShortcutProduct,x,n0),n0)))),
ActPlan(ShortcutMultiply(x,n1),

snsequence(SayLine+("Shortcut Multiplying",x,n1),
believe(Evaluation(Result(ShortcutProduct,x,n1),x)))),

ActPlan(ShortcutDivide(x,n1),
snsequence(SayLine+("Shortcut Dividing",x,n1),

believe(Evaluation(Result(ShortcutQuotient,x,n1),x)))),
ActPlan(ShortcutDivide(x,x),

snsequence(SayLine+("Shortcut Dividing",x,x),
believe(Evaluation(Result(ShortcutQuotient,x,x),n1))))}).

Cognitive shortcuts are linked into the explanation system just like the other routines and are avail-
able to Cassie during an explanation.

4.5 UVBR and Cognitive Plausibility

The logic of SNePS enforces a unique-variable binding rule (UVBR). This means that any two vari-
ables differing in their syntactic representation are taken to denote different mental entities (Shapiro,
1986). Furthermore, a single syntactic representation (a variable or non-variable) denotes exactly
one mental entity regardless of how many times it occurs in a well-formed formula. Thus, for
example,Connected(x,y) expresses a relation of “connected” holding between two different
entities and does not allow for an object to be “self-connected”. Supposingx andy are variables
ranging over some domainD, then ifx is bound to some particularc, y effectively ranges over the
domainD−{c}.10

At face value, UVBR seems to place a burden on the agent’s belief space because it necessitates
the introduction of additional arithmetic rules. For example, the general act for dividingx andy is
given by a SNePSLOG wff of the form:

wffD : all(x,y)( {Number(x),Number(y) } &=> ActPlan(Divide(x,y), . . .)).

However this says nothing about dividing a number by itself. To handle that case we must add the
rule:

wffDuvbr : all(x)(Number(x) => ActPlan(Divide(x,x), . . .)).

While this leads to a proliferation of specific “UVBR-handling” rules in the agent’s belief
space, there is a plausible philosophical reason to adopt UVBR as well as a plausible psychological
reason.

First we examine the philosophical justification for adopting UVBR. Shapiro (personal commu-
nication) has pointed out that UVBR was defended by Wittgenstein (1922/2003) in theTractatus:

10The order of binding ofx andy is an implementation detail in SNePS.

90



Roughly speaking: to say oftwo things that they are identical is nonsense, and to say
of onething that it is self-identical with itself is to say nothing. I write therefore not
f (a,b)∧a= b but f (a,a) (or “ f (b,b)) and notf (a,b)∧¬(a= b) but f (a,b) (5.5303–
5.531).11

Since I want to adopt a structuralist ontology for mathematics, a number in my theory is a
position in a structure exemplifying the natural-number progression. To say of two positions in
such an exemplifying structure that they are the same position is indeed nonsense and to say of a
given position that it is self-identical is indeed vacuous of any information.

Now we turn to a psychological justification for the plausibility of UVBR. In the previous
section, I discussed certain cognitive “shortcut” routines for performing automatic arithmetic when
a given problem is in a certain form. Interestingly, there is a direct correlation between the UVBR-
handling rules and the cognitive shortcut routines. The fact that dividing a number by itself requires
wffDuvbr is a psychological “hint” to an agent that this is a special form of division. The salience
of wffDuvbr in the agent’s belief space (since it is a top-level rule likewffD ) lays the foundation
for learning a general shortcut, namely that any number divided by itself will yield a quotient of 1.
This sort of learning requires that the agent notices the following:

WheneverwffDuvbr is used in the act of division ofx by itself, then
Evaluation(Result(Quotient,x,x),n1) is the form of the result, where
n1 denotes the number 1.

4.6 Syntactic Arithmetic

Although count-based arithmetic routines are rich in meaning for a young learner, such routines
do not scale up easily. A strain is placed on cognitive resources as operand size increases. This
leads to a higher sensitivity to error. It is very likely that errors will occur even when adults rely
on counting for very large quantities (e.g., the disputed totals and subtotals of Florida votes in the
2000 US election). The system of small subitizable cardinalities represented on the fingers can
no longer be utilized in the same way. Arithmetic only becomes scalable to larger cardinalities by
introducing a new representation for numbers (e.g., a place-value number system) and new routines
to operate over such representations (e.g., place-value arithmetic routines).

Precision is attainable in place-value arithmetic routines largely because an agent can perform a
sequence of precise operations in the familiar small-number system. The results of these operations
must be combined in a well-defined way that respects the compositional semantics of the place-
value system.

Place-value arithmetic routines are characterized by the following features:

• place-value representations of operands (e.g., decimal notation)

• operands written in a column-wise fashion on an extended medium (e.g., pencil markings on
paper)

11I have replaced Wittgenstein’s conjunction sign “.” by∧.

91



• sequential column-wise operations over places

• column-wise accrual of an intermediate or final results

• special written symbolization for temporary variables (e.g., carries, borrows, remainders)

Syntactic arithmetic is not as central to exhaustive explanation as semantic arithmetic (see the
Appendix for the SNeRE implementations). However, there are several representational issues
worth noting if the theory will scale up.

4.6.1 Multidigit Representations

Syntactic routines rely on a positional number system in which the position of a marker within a
syntactic structure is inherent to its meaning in a larger structure. Semantic routines operate over
numbers in their “native” context of meaning, i.e., as positions natural-number progression.

Fuson (1998) describes a series of conceptual supports for representing multidigit numbers.
She describes a series of proto-multidigit representations that precede the full fledged conceptual
system. These include:

• Unitary: 53 is represented as 53 “ones”.

• X-TY: 53 is represented as 50 “ones” and 3 “ones”.

• Count-By-Tens: 53 is represented as 5 groups of “ten ones” and 3 “ones”.

• Place-Value: 53 is represented as 5 “tens” and 3 “ones”.

Each of these representations is treated as a quantity, i.e., a number bound to a sortal. The sortals
in question are units (abstractly considered). Each of these stages of multidigit representation
is representable using the same mechanism used for quantity representation described in the next
chapter. However, since I am not interested in modeling the transition to multidigit representations,
I use a digit-string representation of multidigit numbers instead.

A digit-string is a recursive structure built up from the functional term defined bydefine-frame
S(nil head tail) . To represent 1234 using a digit-string representation, we write
S(S(S(1,2),3),4) . The traversal of this structure, along with the proper semantics, uniquely
specifies the numerical value of the digit-string. Digit-string representations can be associated with
Cassie’s counting numerons via theDigitStringOf case frame.JDigitStringOf(S(S(S(1,2),3),4),n1234)K
is the proposition thatS(S(S(1,2),3),4) is the digit-string for the numbern1234 .

4.6.2 Extended Arithmetic

External tools for arithmetic are plentiful. Humans use pencil and paper, the abacus, and pocket
calculators to assist in problem solving and as an aid to memory. Cassie should also have access
to external tools for these same reasons.

Extended arithmetic involves a translation of a problem into the system required by the ex-
ternal tool. To properly use a calculator, one needs to know how to press buttons, what each

92



button represents, and how to read off an answer. A calculator will display information in a public
communication-language because it is intended to be useful for a community of users.

Although extended cognition relies on external tools, there is an important difference between
extended-arithmetic routines and the embodied-arithmetic routines. In an embodied-arithmetic
act, the interactions with the objects in the world are the mechanism through which arithmetic
is performed. The acts of collecting, constructing, measuring, and moving are the vehicle for
arithmetic. In an extended-arithmetic act, the interactions with external tools requires significant
interpretation on the part of the agent as to what the “outputs” of these tools signify. An act of
pressing buttons on a calculator is not the vehicle for arithmetic; the real arithmetic work is being
doneby the calculator internally.

That having been said, there is clearly an overlap between extended and embodied routines
with respect to certain external tools. For example, the stones of an abacus could be used for
count-adding some small subitizable quantity (literally the number of stones). In this respect,
using the abacus would be an embodied routine. However, the different rows of an abacus could
be used to stand for different “places” in a place-value numeration system. In this case, the value
of outputs can only be determined by an agent with access to the place-value convention. In this
respect, using the abacus would be an extended routine.

Given this similarity between extended and embodied acts, I believe that a SNePS model of
extended arithmetic should follow the architecture of embodiment (i.e., GLAIR). We can designate
a set of Lisp functions as theextended layerthat interacts with the KL in much the same way that
the PML does. This is illustrated in Figure 4.4. Currently, the only implemented component
of Cassie’s extended layer is a Lisp calculator. Thetell-ask interface is deployed to import
numeral representations for Cassie’s numerons (because the calculator (qua public tool) expects
numeral inputs) and to return evaluations to Cassie’s KL. However, as the figure suggests, Cassie
might also be provided with a set of Lisp variables to represent a “scratch-pad” to augment her
KL beliefs. A benefit for cognitive modeling is the fact that the extended layer makes Cassie more
efficient, just as extended cognition makes humans more efficient.

The implementation of the Lisp calculator is provided in the Appendix. As with semantic and
syntactic arithmetic routines, the calculator routines are made available for both explanation and
action.

4.7 Questions in SNePS

It is possible to ask a SNePS agent any question that can be expressed as a SNePSLOG wff with
zero or more free variables. In this section, I will classify several kinds of questions of interest for
an exhaustive explanation. First, we will need some definitions:

• A questionis a SNePLSOG wff containing zero or more free variables terminated by the ‘?’
sign.

• An answer to a question is an asserted SNePSLOG wff in which all of the question’s free
variables have been filled by terms, or else the answer is the terms themselves, or the answer
is “I don’t know” if the agent cannot find terms to bind to the question’s free variables.

93



m1! m2! m3!

n0
n1 n2 n3

m4! 

zero

m5!

one 

m6!

two

m7!

three

pred predpred succsucc succ

object
object

object object 

name name
name name 

m8!

member

m9!

member

m10!

member

m11!

member

Number

class

class
class

class

Numeric KL

KL

EL

number

m15!

3 

numeral 

number

m14!

2 

numeral 

number

m13!

1 

numeral 

number

m12!

numeral 

0 

LISP Calculator LISP Notepad

1 + 2 = 3

(ask "Numeral(?x,n1)")

(tell "Evaluation(Result(Calcsum,1,2),3)")

(carry    (1 0 0))

(operands (1 4 6)
          (2 7 3))

(result   (4 1 9))

Figure 4.4: Representing an extended layer (EL), and its interaction with the knowledge layer
(KL).

The free variables in the questions have usefully been called “queriables” (Belnap and Steel, 1976),
indicating that an agent is seeking to fill those positions in the question form to construct the
answer.

Under this formulation, it is very natural to formalize several types of questions in SNePS using
the evaluation and result frames described above.

• Is/Does 2 + 3 = 5?translates toEvaluation(Result(Sum,n2,n3),n5)? .

• What is 2 + 3? translates toEvaluation(Result(Sum,n2,n3),?x)? .

• How can you find the result of 2 + 3?translates to
Effect(?a,Evaluated(Result(Sum,n2,n3)))? .

The is/does question asks whether or not the evaluation is factual (for the agent being asked). The
answers to such questions are represented by fully-ground (i.e., variable-free) SNePSLOG terms.
The answer to a what-question is the value associated with a particular result frame. This is a
declarative belief (e.g., knowingthat 2 + 3 = 5). The answer to a how-question is an act whose
effect is an evaluated result-frame. This is a procedural belief (e.g., knowinghow to compute 2 +
3).

94



4.8 Why Questions and Procedural Decomposition

Why-questions are the crux of an explanation. While the other type of questions seem to be seeking
a yes/no answer, a result, or a procedure, why-questions are explanation-seeking.

We have seen that what an inquirer is looking for in trying to answer other “wh-” ques-
tions is the ultimate conclusion. In contrast, when an inquirer is trying to cope with a
why-question, she is looking for the argumentative bridge between initial assumptions
and the given ultimate conclusion. The bridge is “the answer” in that it is what is
sought (Hintikka and Halonen, 1995).

Thus, questions of this form12 will be the crux of exhaustive explanation:

• Why is 2 + 3 = 5?

Not surprisingly, why-questions are not as easily formalized in SNePS. As a first attempt at for-
malization, we may just say that answering the why-question is a function of answering the what-
question, is/does-question, and how-question. After all, if an agent knows what the evaluation is,
that the evaluation is factual, and how to compute the evaluation, it already has most of the in-
gredients for answering the why-question. However, we must remember that why-questions are
explanation-seeking. Having all of the ingredients for an explanation is not an explanation. Cassie
must be given an act that puts these pieces together in the right way. Because why-questions are
explanation seeking, they are parsed into imperative commands in SNePSLOG. As such, they are
not treated like questions at all, but as an act given toperform . “Why is 2 + 3 = 5?” would be
parsed as:

perform Explain(Evaluation(Result(Sum,n2,n3),n5))?

I will refer to Cassie’s mechanism for answering why-questions as “procedural decomposi-
tion”. The flow of Cassie’s deductions is shown in Figure 4.5. Why questions contain a presuppo-
sition. For example, the question “Why is 2 + 3 = 5?” presupposes that “2 + 3 = 5”. So Cassie first
asks herself an is/does question. Is the result factual, or is the interrogator attempting a trick? If
she has performed the relevant act, she will begin by saying that she believes the presupposition;
otherwise, she will claim that she does not believe the proposition. This might be the case for two
reasons: (1) she has not performed a relevant arithmetic act, or (2) she has performed a relevant act
but has arrived at a different answer. Response (2) may seem overly cautious, but is the result of
the fact that Cassie is not told that an arithmetic result has exactly one evaluation. So, for example,
the fact that “2 + 3 = 5” does not preclude that “2 + 3” might evaluate to something else.

Cassie then attempts to deduce an act whose effect is to evaluate the result in question. In our
example, she attempts to find acts?a to satisfy the well-formed formula
Effect(?a,Evaluated(Result(Sum,n2,n3))) . In our example, the queriable?a might
be filled by Add(n2,n3) . For each such act, Cassie states the ways she knows of perform-
ing the general act. This is achieved by finding the plans?p1 for the general act?a . In our

12Other formalizations of why-questions are given by (Bromberger, 1992; Mancosu, 2001).

95



Figure 4.5: Procedural Decomposition

example, the queriable?p1 might be filled byCountAdd(n2,n3) . If necessary, another de-
duction of this same form will move from the specific plan?p1 to a still more specific way
of performing ?p1 , namely, ?p2 . This extra step is not necessary for the GCD case-study
described below. Finally, Cassie deduces the effect of performing the specific plan?p1 (or
?p2 if the extra deduction is performed). In our example, the effect ofCountAdd(n2,n3)
is Evaluated(CountSum,n2,n3)) . This tells the interrogatorwhy the plan?p1 for the
general act?a is relevant for the evaluation of the result.

Importantly, Cassie’s answer to the why question should prompt a logical next question for the
interrogator. The resulting procept that is evaluated (marked?x in Figure 4.5) suggests a new ques-
tion to ask Cassie, based on this new procept. To take up a new example: if Cassie is asked “Why
does 2× 3 = 6?”, she will say that she knows the result is correct (if she has performed the relevant
multiplication), and that one way she knows of evaluating 2×3 is by performingAddMultiply
which leaves aSumProduct evaluated. This naturally suggests that the interrogator should probe
Cassie for her knowledge of sums.

The SNePS implementation of procedural decomposition consists of three acts:IsFactual ,
ActExplain , andExplain , as follows:

all(rn,a1,a2)({ResultName(rn),Number(a1),Number(a2)} &=>
ActPlan(ActExplain(Result(rn,a1,a2)),

withsome(?a,
Effect(?a,Evaluated(Result(rn,a1,a2))),
snsequence(SayDescrip(?a),
snsequence(SayLine("And I can do this by performing"),

withsome(?p,
ActPlan(?a,?p),
snsequence(SayDescrip(?p),
snsequence(Say("Which has the effect(s) of"),
withsome(?e,
Effect(?p,?e),
SayDescrip(?e),

96



SayLine("I don’t knowthe effect(s) of that")))),
SayLine("I don’t know any plans for that")))),

SayLine("I don’t know how to evaluate this result")))).

all(rn,a1,a2,r)({ResultName(rn),Number(a1),Number(a2),Number(r)} &=>
{ActPlan(IsFactual(Evaluation(Result(rn,a1,a2),r)),

snif({if(Evaluation(Result(rn,a1,a2),r),
SayLine("I know that the result is correct")),

else(SayLine("I don’t yet know that the result is correct"))})),
ActPlan(Explain(Evaluation(Result(rn,a1,a2),r)),

snsequence(IsFactual(Evaluation(Result(rn,a1,a2),r)),
snsequence(SayLine("Here’s HOW I can find the result"),

ActExplain(Result(rn,a1,a2)))))}).

4.9 Conceptual Definitions

Being able to answer why-questions by applying procedural decomposition will lead Cassie to-
wards her cognitive axioms. However, why-questions do not cover all of the needs for exhaustive
explanation. Although we have seen what-questions applied to results, there is another form of
what-question that seeks a conceptual definition. These include questions like: “what is a num-
ber?”, “what is 2?”, “what is addition?”, “what is a divisor?”. Being able to answer such questions
demonstrates an understanding of themeaningof the concept involved.

Being able to give such a conceptual definition based on an agent’s current beliefs is at the
heart of the contextual-vocabulary acquisition (CVA) project (Rapaport and Ehrlich, 2000). I will
use similar techniques but instead apply them to a KL with mathematical beliefs.

Using conceptual-role semantics (Rapaport, 2002), the meaning of a concept as represented by
a base node is the position of the node within a semantic network. As the network around a node
gets more complex, the node automatically acquires new meanings. Computationally, this implies
that there are “non-local” effects on the meaning of any given item, i.e., as new paths from a given
node to other nodes develop, the given node acquires new meaning without itself being updated in
any way. Under this characterization, any meaning is temporary. A nodeb, in networkN1 may
have a different meaning than the nodeb in networkN2 (with N1 6= N2), becauseN1 andN2
contain different paths leading to or fromb. These differing paths indicate differing relationships
betweenb and the other nodes in the network. Cassie’s network changes over time (i.e., as she
acquires new beliefs, as she is acting, as she discards pre-existing beliefs).

We may not expect a human to answer the “deep questions” that conceptual definitions de-
mand. However, things like “number”, “two”, and “divisor” do occur in the dictionary, and most
people can come up with a dictionary-like definition if pressed. Thus, they should be a part of an
exhaustive explanation.

The SNePS implementation of conceptual definition is Cassie’s complex actDefine :

all(x)(ConceptToDefine(x) => ActPlan(Define(x),
snsequence(GetClassMembers(x),
snsequence(GetClassContainment(x),
snsequence(GetActsWithArgumentType(x),
snsequence(GetOperationsWithResultType(x),
snsequence(GetMannerOfRelationships(x),

97



GetGeneralResultType(x)))))))).

Each of the component acts in the plan is a primitive act that relies on path-based inferences:

• GetClassMembers lists members ofx , if x is a class.

• GetClassContainment lists the classes of whichx is a member.

• GetActsWithArgumentType lists the acts whose antecedent restrictions demand argu-
ment typex .

• GetOperationsWithResultType lists all the specific result types corresponding to
the general result typex .

• GetMannerOfRelationships lists the ways in which an actx can be performed.

• GetGeneralResultType lists the general type of result associated with specific result
typex .

If any of these inferences come up empty, Cassie is silent about the particular inference and adds
nothing to the definition. Unlike the CVA technique, which provides different definition algorithms
for nouns and verbs, this same act is performed for all conceptual definitions.

A more complicated sort of conceptual question is one with an implicit arbitrary reference.
This can be stated as a how question “How do you add?”, which is elliptical for “How do you
add any numbers?”. SNePS 2.7 does not support arbitrary references (the next version of SNePS,
SNePS 3 will). However, in Chapter 7, I briefly consider how such questions might be handled.

4.10 Questions in Natural Language

Natural-language competence is usually taken to be a mark of general intelligence, and, even in the
arithmetic domain, it makes sense to provide a front-end through which Cassie can parse questions
expressed in natural language.

All of the evaluation questions I am interested in can be generated by the following grammar:

<QUESTION> := <ISDOES> <EVAL> | <WHY> <EVAL> | <WHAT> <RES> |
<HOW><RES>| <DEFINE> <CONCEPT> ;

<ISDOES> := is | does ;
<WHY> := why <ISDOES>;
<WHAT> := what is;
<HOW> := how <DOCAN> you <COMPUTE>;
<DEFINE> := define
<DOCAN> := do | can;
<COMPUTE> := ((compute | find) <RES>) | <GENERALACT>;
<GENERALACT> := ((add | multiply) <NUMERAL> and <NUMERAL>) |

(subtract <NUMERAL> from <NUMERAL>) |
(divide <NUMERAL> by <NUMERAL>);

<EVAL> := <RES> = <NUMERAL>;
<RES> := <NUMERAL> <OP> <NUMERAL>;
<OP> := + | - | * | / ;

98



Since this is an NL front-end, the operands are expressed in the public-communication language
as numerals.

A simple recursive-descent parser is designed to handle this grammar. To avoid complicating
the parser with lookahead issues, e.g., “What is 2?” is a conceptual definition question and “What
is 2 + 3?” is a what-question, I have used the terminal “define” to generate conceptual definition
questions. The parser is invoked by the primitive actionanswerQuestion given a well-formed
question. Cassie first classifies the type of question, then represents the question in SNePSLOG
as indicated above. For is/does, what, and how questions, theaskwh interface is used to query
the KL for an answer. For why questions and conceptual definitions,tell perform is used to
invoke the actsExplain andDefine respectively.

4.11 A Case Study: Greatest Common Divisor

The task of finding the greatest common divisor (GCD) of two natural numbers will be used to test
Cassie’s depth of understanding of abstract internal arithmetic. Although GCD is not a concept
usually associated with early mathematical cognition, there are several benefits for using it as a
target problem:

• Sufficient Complexity: Many solutions to the GCD problem require Cassie to use several
arithmetic routines. GCD allows her to demonstrate her understanding of those routines.
However, a solution to the GCD problem need not include the advanced conceptualizations
of algebra or calculus.

• Multiple Solution Methods: There are many algorithms for finding a GCD. These vary in
terms of intuitiveness, efficiency, and technique (e.g., GCD can be solved arithmetically or
geometrically).

• Natural Language Intuitions: People who are not familiar with GCD know that a greatest
common divisor is a greatest common “something”. This ends up yielding a common-sense
algorithm for GCD based on the meanings of “greatest” and “common”.

• Interface to Post-Arithmetic Concepts: To solve a GCD problem, an agent must use some
non-arithmetic representations and acts. Solving a GCD problem shows that the agent can
“scale up” from arithmetic.

The presence of multiple solution methods for GCD immediately implies that some methods will
be easier to understand (and explain) than others. One of the original motivations for this research
was to demonstrate how an agent might determine that a non-intuitive GCD algorithm was also a
GCD algorithm (this problem was originally posed in (Rapaport, 1988)). See§3.5.3 above for a
discussion of multiple justifications.

The exhaustive explanation demonstration given below uses only semantic arithmetic routines.
However, when all arithmetic routine categories are included in the run, Cassie will explain herself
in a non-deterministic way. That is to say, her explanations may differ for the same question. This
is due to the fact that the SNeRE act forExplain utilizes thewithsome SNeRE-primitive act,
which finds and applies its variable non-deterministically.

99



4.11.1 Human Protocols

Observing and interacting with a (non-mathematician) human subject while the subject is solving
a GCD problem is a natural way to extract a commonsense algorithm. In doing this, it is important
to remember that we are not after a simulation of the human subject’s behavior, but to get at
the commonsense techniques applied to the problem. A series of these interactions, which I call
“human protocols”, was performed using simple GCD problems (i.e., GCD problems that used
only one or two-digit arguments).

A typical interaction in such protocols is as follows.JU has a college level understanding of
mathematics and computer science, but has been out of school for five years. I amAG. JU is
looking at a paper with the numbers 12 and 16 written on it:

AG: Do you know how to find the greatest common divisor of two numbers?
JU: I think I used to, but I don’t remember what divisors are.
AG: A “divisor” of a numberx is a number you can dividex by evenly.
JU: What do you mean by “evenly”?
AG: I mean there is no remainder when you divide.
JU: OK.
AG: So what is the greatest common divisor of 12 and 16?
JU: 4.
AG: How did you get that answer?
JU: I just found the biggest divisor for both.
AG: Write down the divisors of both numbers.
JU: [Writes 1, 2, 3, 4, 6 next to 12 and 1, 2, 4, 8 next to 16]
AG: Now write the divisors common to both numbers.
JU: [Circles 1, 2, and 4] and 4 is the biggest.
As is evident in this protocol (and typical for many human protocols), the human subject must
sometimes be prodded into being exhaustive (often being told to write something down or asked to
explain their answer). This underlies the importance of acting and asking “why” questions during
an explanation. Also, it is clear that human subjects likeJU take shortcuts. For example,JU did
not write out 12 and 16 as divisors. This is likely due to the fact that 12 and 16 were already present
on the page (i.e., perceptually available toJU and part ofJU’s extended cognition). Other subjects
would skip over writing 1 as a divisor when it was clear that the arguments were relatively prime.

The initial interaction consists of a clarifying dialogue about divisors in whichJU “builds up”
a definition of “divisor” from simpler concepts. In trying to pin down what I mean by the term,
JU is forced to deal with a new term “evenly”. This is clarified as meaning “with no remainder”.
Currently, Cassie is implemented in such a way so that she has sufficient background knowledge to
determine a term’s definition without a clarifying dialogue. However it is possible that she could
computationally detect when one of her definitions is insufficient or does not match up with the
interrogator’s usage of the term.

JU is able to “zero-in” on a meaning for GCD and a quick “back-of-the-envelope” solution
procedure. Based on a series of similar protocols with different subjects, I have found that most
people quickly notice that a greatest common divisor is a greatest commonsomething, and only

100



need clarification or a reminder for what divisors are. I believe that this is due to the high frequency
of using “greater” and “common” in everyday natural-language situations as compared with the
more technical term “divisor”. Thus, subjects are able to quickly import natural-language meanings
into the task (e.g., greatest as “biggest” and common as “shared feature”) and to integrate these
meanings with the technical meaning of “divisor”. Moreover, natural language seems to steer the
solution procedure: Find the divisors, find the common divisors, find the greatest of the common
divisors. This suggests that a commonsense algorithm for GCD should be guided, in part, by
natural-language.

4.11.2 A Commonsense Natural-Language GCD Algorithm

As exemplified by the human protocols in the previous section, when asked to find the GCD of two
natural numbersx andy, most non-mathematicians who learned GCD at some point, I have found,
come up with a “back-of-the-envelope” algorithm similar to the following:

1. List the divisors of x
2. List the divisors of y
3. List the divisors common to the two lists above
4. Circle the greatest number from the list of common divisors

This “common-sense” algorithm isolates the semantics of “greatest” and “common” (terms which
occur frequently in natural language) from divisor-finding. I would speculate that most non-
mathematicians would respond with a similar algorithm (although I have not subjected this hy-
pothesis to a formal trial), and it would be more surprising to see a non-expert using a recursive
version of the Euclidean GCD algorithm:

gcd(x,y)
if y=0 return x
else return gcd(y, x mod y)
end if

This more efficient and optimized algorithm lacks the intuitive semantics of the common-sense
algorithm.

I will call the the commonsense algorithm a “natural language” GCD algorithm (or NLGCD),
because it relies on the intuitive NL semantics of the words “greatest” and “common”. By per-
forming such an algorithm alongside the semantic-arithmetic routines, Cassie will be in a position
to perform an exhaustive explanation. In the next section, I consider what an idealized version of
such an explanation might look like for the concept of GCD.

4.11.3 An Idealized Dialogue

To probe the understanding of a cognitive agent who believes that the GCD of 8 and 6 is 2, we can
imagine the following idealized question and answer dialogue unfolding:

Q1: Why is 2 the greatest common divisor of 8 and 6?

101



A1: 2 is the greatest of the common divisors of 8 and 6.
Q2: Why is 2 a common divisor of 8 and 6?
A2: 2 is a divisor of 8 and 2 is a divisor of 6.
Q3: Why is 2 a divisor of 6?
A3: There is a number that, when multiplied by 2, gives 6, and that number is 3.
Q4: Why is 2 times 3 = 6?
A4: Multiplication is repeated addition: 2 plus 2 is 4; 4 plus 2 is 6
Q5: Why is 2 plus 2 = 4?
A5: When I count from 2 for two numbers I end up at 4.
Q6: How do you know that you will end up at 4?
A6: I counted two groups of apples, with 2 apples in each, ending up with 4 total apples.
Q7: What is 2?
A7: It is a number and the greatest common divisor of 8 and 6.
Q8: What is a number?
A8: Some examples are 2,4,6 and 8 . . . It is something that can be counted, added, multiplied . . . and some-
thing that can be the result of finding a greatest common divisor

Questions Q1 through Q5 are all why questions. The idealized agent procedurally decomposes
each result until it arrives at certain cognitive axioms. Once it has reached these axioms (e.g., Q6),
it must appeal to embodied experience. This sort of appeal will be described in the next chapter.
Questions Q7 and Q8 are conceptual definition questions.

This idealization is often not reproduced by humans. I have found that most people will stop
somewhere along the line of explaining a complex act in terms of simpler acts and give “It just
is” answers (especially when asked things like “Why is 2 times 3 = 6?”). Nevertheless, I think
such a dialogue is what we should strive for from a computational agent because at each point a
result is justified in terms of simpler, antecedently understood procedures. Humans tend to pack
away the procedural knowledge after an arithmetic operation has been understood at a higher level
of abstraction. For example, once the multicolumn addition is learned, it seems unnatural to cite
counting as a method of addition (see Sfard (1991) for a discussion of this sort of reification).

The dialogue shows the different sources of meaning used in a mathematical justification. Nat-
ural language semantics can be used to address Q1 and Q2. Procedural decomposition is used
for Q3, Q4, and Q5. An empirical embodied activity is cited for Q6. Finally, conceptual-role se-
mantics are applied to answer Q7 and Q8 (for a further discussion of these semantic sources, see
(Goldfain, 2006)).

Again, the point here is not to produce a faithful rendition of an actual dialogue with a particular
human. The point is to probe an agent to answer questions in such a way that the answersif they
had occurred in a dialoguewould leave no skeptic unconvinced that the agent understands GCD.

4.11.4 Implementation
NLGCD is implemented in SNePS using three complex acts and a helper act
UpdateDivisorCandidate . This act is responsible for moving the agent’s attention from one
potential divisor to its successor.

102



all(d)(DivisorCandidate(d) =>
ActPlan(UpdateDivisorCandidate(d),

withsome(?dp1,
Successor(?dp1,d),
snsequence(disbelieve(DivisorCandidate(d)),

believe(DivisorCandidate(?dp1))),
SayLine("I don’t know the successor")))).

CreateDivisorList is Cassie’s way of listing the divisors of each of the arguments. This
includes a plan which establishes that every number is a divisor of itself (when performed, this
act replicates the behavior ofJU above) and a plan for determining the divisors by successively
dividing all other numbers up to the given argument by the candidate number (represented using the
DivisorCandidate case frame). For exhaustive explanation, all such routines are decomposed
into semantic routines. Divisors found are memorized via theDivisorOf case frame.

all(nx)({Dividend(nx),DivisorCandidate(nx)} &=>
ActPlan(CreateDivisorList(nx),

snsequence(believe(DivisorOf(nx,nx)),
snsequence(SayLine("Done with divisor list"),
snsequence(disbelieve(DivisorCandidate(nx)),

disbelieve(Dividend(nx))))))).

all(nx,d)({Dividend(nx),DivisorCandidate(d)} &=>
ActPlan(CreateDivisorList(nx),

snsequence(Divide(nx,d),
withsome(?q,

(Number(?q) and Evaluation(Result(Quotient,nx,d),?q)),
snsequence(Say(d),
snsequence(SayLine(" is a divisor "),
snsequence(believe(DivisorOf(d,nx)),
snsequence(UpdateDivisorCandidate(d),

CreateDivisorList(nx))))),
snsequence(Say(d),
snsequence(SayLine(" is not a divisor"),
snsequence(UpdateDivisorCandidate(d),

CreateDivisorList(nx)))))))).

The list of common divisors is easily ascertained using a conjunctive condition for thewithall
act (i.e., allDivisorOf numbers that appear on both lists are common divisors). This yields the
actCreateCommonList :

all(nx,ny)({Number(nx),Number(ny)} &=>
ActPlan(CreateCommonList(nx,ny),

withall(?div,
(DivisorOf(?div,nx) and DivisorOf(?div,ny)),
believe(CommonDivisorOf(?div,nx,ny)),
SayLine("problems creating common list")))).

The actFindGreatestCommonDivisor iterates through the common divisors and suc-
cessively compares each to the one currently believed to be the greatest. The value is initially set
to one, which is the GCD for relatively prime arguments:

all(nx,ny)({Number(nx),Number(ny)} &=>
ActPlan(FindGreatestCommonDivisor(nx,ny),

snsequence(SayLine("Now finding GCD"),
snsequence(believe(Evaluation(Result(GCD,nx,ny),n1)),

withall(?div,
CommonDivisorOf(?div,nx,ny),

withsome(?g,
Evaluation(Result(GCD,nx,ny),?g),
snif({if(GreaterThan(?div,?g),

snsequence(disbelieve(Evaluation(Result(GCD,nx,ny),?g)),

103



believe(Evaluation(Result(GCD,nx,ny),?div)))),
else(believe(Evaluation(Result(GCD,nx,ny),?div)))}),

SayLine("I can’t find the GCD")),
SayLine("GCD found")))))).

Finally, the top-level complex act for this algorithm isNLGCD:

;;;ActPlan for NLGCD
all(nx,ny,z)({Number(nx),Number(ny),Zero(z)} &=>

ActPlan(NLGCD(nx,ny),
withsome(?one,

Successor(?one,z),
snsequence(believe(DivisorCandidate(?one)),
snsequence(believe(Dividend(nx)),
snsequence(CreateDivisorList(nx),
snsequence(believe(DivisorCandidate(?one)),
snsequence(believe(Dividend(ny)),
snsequence(CreateDivisorList(ny),
snsequence(CreateCommonList(nx,ny),
FindGreatestCommonDivisor(nx,ny)))))))),

SayLine("Problem with NLGCD.")))).

4.11.5 Cassie’s Exhaustive Explanation of GCD
The following is an annotated demonstration of Cassie performing the NLGCD algorithm with
inputsn8 andn6 and exhaustively explaining herself afterward. The justification is not identical
to the idealized dialogue presented above, but is based on the actions Cassie actually performed
during the algorithm.

: perform NLGCD(n8,n6)

First Cassie builds a divisor list for 8:

Subtract Dividing n8 n1
Count Subtracting n8 n1
Count Subtracting n7 n1
Count Subtracting n6 n1
Count Subtracting n5 n1
Count Subtracting n4 n1
Count Subtracting n3 n1
Count Subtracting n2 n1
Count Subtracting n1 n1
n1 is a divisor
Subtract Dividing n8 n2
Count Subtracting n8 n2
Count Subtracting n6 n2
Count Subtracting n4 n2
Count Subtracting n2 n2
n2 is a divisor
Subtract Dividing n8 n3
Count Subtracting n8 n3
Count Subtracting n5 n3
I cannot subtract a larger number from a smaller number n2 n3.
n3 is not a divisor
Subtract Dividing n8 n4
Count Subtracting n8 n4
Count Subtracting n4 n4
n4 is a divisor
Subtract Dividing n8 n5
Count Subtracting n8 n5
I cannot subtract a larger number from a smaller number n3 n5.

104



n5 is not a divisor
Subtract Dividing n8 n6
Count Subtracting n8 n6
I cannot subtract a larger number from a smaller number n2 n6.
n6 is not a divisor
Subtract Dividing n8 n7
Count Subtracting n8 n7
I cannot subtract a larger number from a smaller number n1 n7.
n7 is not a divisor
Done with divisor list

Now she computes the divisor list for 6 and computes the GCD:

Subtract Dividing n6 n1
Count Subtracting n6 n1
Count Subtracting n5 n1
Count Subtracting n4 n1
Count Subtracting n3 n1
Count Subtracting n2 n1
Count Subtracting n1 n1
n1 is a divisor
Subtract Dividing n6 n2
Count Subtracting n6 n2
Count Subtracting n4 n2
Count Subtracting n2 n2
n2 is a divisor
Subtract Dividing n6 n3
Count Subtracting n6 n3
Count Subtracting n3 n3
n3 is a divisor
Subtract Dividing n6 n4
Count Subtracting n6 n4
I cannot subtract a larger number from a smaller number n2 n4.
n4 is not a divisor
Subtract Dividing n6 n5
Count Subtracting n6 n5
I cannot subtract a larger number from a smaller number n1 n5.
n5 is not a divisor
Done with divisor list
Now finding GCD

Now we can ask Cassie some questions. The grammar only supports arithmetic acts, but GCD
is placed in anEvaluation frame like all of the arithmetic results:

: Evaluation(Result(GCD,n8,n6),?x)?

wff4602!: Evaluation(Result(GCD,n8,n6),n2)

CPU time : 0.40

Now we ask Cassie to what the common divisors of 8 and 6 are:

: CommonDivisorOf(?x,n8,n6)?

wff4587!: CommonDivisorOf(n1,n8,n6)
wff4585!: CommonDivisorOf(n2,n8,n6)

CPU time : 0.38

We can also ask what the divisors of 8 and what the divisors of 6 are as two questions:

: DivisorOf(?x,n8)?

wff2343!: DivisorOf(n4,n8)
wff1340!: DivisorOf(n2,n8)

105



wff215!: DivisorOf(n8,n8)
wff201!: DivisorOf(n1,n8)

CPU time : 0.40

: DivisorOf(?x,n6)?

wff4098!: DivisorOf(n3,n6)
wff4041!: DivisorOf(n2,n6)
wff3980!: DivisorOf(n6,n6)
wff3966!: DivisorOf(n1,n6)

CPU time : 0.41

Now we exercise the natural-language interface and force Cassie to do some procedural de-
composition:

: perform answerQuestion("why is 8 / 2 = 4?")

Parsing <QUESTION>
Parsing <WHY>
Parsing <EVAL>
Parsing <RES>
Parsing <ARG1>
Parsing <OP>
Parsing <ARG2>
Parsing =
Parsing <NUMBER>

Question in SNePSLOG:perform Explain(Evaluation(Result(Quotient,n8,n2),n4))

I know that the result is correct
Here’s HOW I can find the result

wff1338: Divide(n8,n2)
And I can do this by performing

wff1358: SubtractDivide(n8,n2)
Which has the effect(s) of wff1364!: Evaluated(Result(DifferenceQuotient,n8,n2))

CPU time : 10.28

: perform answerQuestion("why is 8 - 4 = 4?")

Parsing <QUESTION>
Parsing <WHY>
Parsing <EVAL>
Parsing <RES>
Parsing <ARG1>
Parsing <OP>
Parsing <ARG2>
Parsing =
Parsing <NUMBER>

Question in SNePSLOG:perform Explain(Evaluation(Result(Difference,n8,n4),n4))

I know that the result is correct
Here’s HOW I can find the result

wff2455: Subtract(n8,n4)
And I can do this by performing

wff2510: CountSubtract(n8,n4)
Which has the effect(s) of wff2516!: Evaluated(Result(CountDifference,n8,n4))

CPU time : 10.74

106



: perform answerQuestion("why is 4 - 4 = 0?")

Parsing <QUESTION>
Parsing <WHY>
Parsing <EVAL>
Parsing <RES>
Parsing <ARG1>
Parsing <OP>
Parsing <ARG2>
Parsing =
Parsing <NUMBER>

Question in SNePSLOG:perform Explain(Evaluation(Result(Difference,n4,n4),n0))

I know that the result is correct
Here’s HOW I can find the result

wff2396: Subtract(n4,n4)
And I can do this by performing

wff2619: CountSubtract(n4,n4)
Which has the effect(s) of wff2625!: Evaluated(Result(CountDifference,n4,n4))

CPU time : 10.57

Finally, we ask Cassie some conceptual definition questions:

: perform answerQuestion("define 2.")

Parsing <QUESTION>
Parsing <DEFINE>

Question in SNePSLOG:perform snsequence(believe(ConceptToDefine(2)),Define(2))

2 is a
(Numeral)

CPU time : 7.73

: perform answerQuestion("define n2.")

Parsing <QUESTION>
Parsing <DEFINE>

Question in SNePSLOG:perform snsequence(believe(ConceptToDefine(n2)),Define(n2))

n2 is a
(Number)

CPU time : 8.12

: perform answerQuestion("define CountDifference.")

Parsing <QUESTION>
Parsing <DEFINE>

Question in SNePSLOG:perform snsequence(believe(ConceptToDefine(CountDifference)),Define(CountDifference))

CountDifference is a
(ResultName)

CPU time : 7.85

107



: perform answerQuestion("define Subtract.")

Parsing <QUESTION>
Parsing <DEFINE>

Question in SNePSLOG:perform snsequence(believe(ConceptToDefine(Subtract)),Define(Subtract))

Subtract can be performed via the following acts
(CountSubtract)

CPU time : 7.75

: perform answerQuestion("define Number.")

Parsing <QUESTION>
Parsing <DEFINE>

Question in SNePSLOG:perform snsequence(believe(ConceptToDefine(Number)),Define(Number))

Number has the following class membership
(n10 n9 n8 n7 n6 n5 n4 n3 n2 n1 n0)
Number is an argument for the following acts
(CountFromFor CountAdd Add CountDownFromFor CountSubtract Subtract AddMultiply Multiply SubtractDivide Divide)

CPU time : 7.86

:

108



Chapter 5

Embodied External Arithmetic

In the previous chapter, I examined the depth of Cassie’s understanding by focusing on the GCD
problem in particular. In the current chapter, my aim is to demonstrate my theory’s breadth of
applicability. It would be a weak theory indeed if Cassie’s representations and routines were only
applicable to understanding GCD. Importantly, the KL representations developed in the previous
chapter are redeployed for embodied arithmetic. This demonstrates that the abstracted and the
embodied components of arithmetic can be integrated in a single agent.

Understanding in early mathematical cognition hinges (in part) on the embodied actions and
perceptions of an agent situated in the world. A consequence of this situatedness is that an agent
will have a particular perspective into the world and will act on objects and perceive phenomena
unique to its “corner of reality”. Reality provides different agents with vastly different experiences.
Yet the applicability and power of mathematics is precisely its ability to unify a large set of ex-
periences under a common description. Somehow, with a different set of “sandbox” experiences,
I was able to abstract the same early mathematics as children in sandboxes halfway around the
world. The embodied component of a theory of mathematical cognition should explain why this is
the case.

In this chapter, I address the embodied external arithmetic component of my theory. I am using
the termexternal in two senses. First, some acts described in this chapter require the agent to
represent and collect information from beyond its knowledge layer. As such, information must
flow from Cassie’s “body” (i.e., the lower layers of GLAIR) up to her mind (i.e., the knowledge
layer). Second, some acts described in this chapter are performed for general-purpose problem
solving. This is, in some sense, “external” to (pure) mathematics and “externally” applicable. As
such, these acts are a contrasted with acts like finding the GCD, which is usually done as part of a
larger mathematical task.

In § 5.1, I will describe how the representations developed in the previous chapter can be
extended to account for quantities, the fundamental representation Cassie uses for embodied arith-
metic. In§ 5.2, I describe how Cassie performs the task of enumerating external objects. In§ 5.3,
I discuss a suite of general applications for an agent that can make number assignments. Finally,
in §5.4, I describe a model of count-addition strategy change.

109



5.1 Quantities

The basic building block of embodied arithmetic is the quantity. The term quantity is ambiguous.
Quantity is sometimes used as a synonym for number. In this sense, a quantity answers questions
of the form “How manyX?”, whereX is a unit. This is not how I will use the term. For embodied
arithmetic, it will be important to represent the relevant unitX as part ofthe notion of quantity. I
will characterize the unitX as asortal (a technical term that will be explained in§5.1.4). For now,
it will suffice to take sortals to be countable things like “apples”, “inches”, and “cups of water”.
I will use the term ‘quantity’ to refer to a complex that includes both a number, a sortal, and a
relationship that binds the number to the sortal. I also take the term ‘quantity’ to be a ‘multitude’
of discreteentities rather than a ‘magnitude’, which is usually taken to be a continuous extent.
The magnitude/multitude distinction is clear in the English expression of quantity, where it is
manifested as the count-noun/mass-noun distinction (see below).

The embodied activities of object collection, object construction, and measurement involve
reasoning about quantities in this sense. At the very minimum, any representation for quantities so
taken must account for the following:

1. Representing the number.

2. Representing the sortal.

3. A mechanism for binding the number and sortal, sometimes called anumber assignment
(Wiese, 2003).

These three requirements present a representational challenge beyond the representation of just a
number or sortal. Embodied activities demand an additional requirement:

4. A mechanism for associating a quantity with perceptual symbols derived from sensory input.

The symbolic representation of a quantity should be somehow grounded in perception or somehow
visualized in terms of previous episodes of perception.

5.1.1 Representations of Quantity

Since quantities can appear in natural-language (NL) utterances, they should be somehow handled
in NL processing systems and any knowledge-representation and reasoning systems that attempt
to represent NL. In this section, several formalisms for representing quantities are reviewed to
determine how they might inform a computational representation for embodied arithmetic.

5.1.1.1 Category Systems

Quantity in philosophy (specifically in metaphysics) has been treated as a part of category sys-
tems.1 Category systems are sometimes also used as ontologies, i.e., as theories of what exists

1See (Thomasson, 2004) for a good survey of category systems; the category systems discussed in this section are
drawn from this article.

110



Categories
Substance Quantity
Quality Relation
Place Date
Posture State
Action Passion

Table 5.1: Aristotelian Categories.

and how existing things are related. To be fair, these systems were not intended to be applied to
computational representations, but they do indicate some of the issues involved in characterizing
quantity.

Aristotle considered Quantity to be one of the ten highest “uncombined” categories of being,
taking each of the categories to be a constituent of reality (Aristotle,Categories, trans. Ackrill
1963) . These categories are given in Figure 5.1.

Thus, for Aristotle, quantities are simple unanalyzable constituents of reality. Furthermore,
such a categorization points to what quantities arenot, namely, they are not things like relations,
substances, or places. Although Aristotle’s ontological commitment is crystal clear, this catego-
rization is not particularly useful for representing finer-grained distinctions about quantities.

Kant made Quantity a basic conceptual category, with sub-categories Unity, Plurality, and To-
tality (Kant, 1787/1958). His categories are given in Figure 5.2.

Category Subcategory
Quantity Unity

Plurality
Totality

Quality Reality
Negation
Limitation

Relation Inherence and Subsistence
Causality and Dependence
Community (reciprocity)

Modality Possibility
Existence
Necessity

Table 5.2: Kantian Categories.

Husserl (1913/2000) included “quantity-like” categories in his object category system dis-
tributed across the three categories of Unit, Plurality and Number. His categories are given in
Figure 5.3.

Husserl also developed a framework for categories of meaning that would correlate with the
object categories, but there is no clear correlate for quantity-like entities in this correlated category

111



object categories
object
state of affairs
unit
plurality
number
relation

Table 5.3: Husserl’s Object Category-System

system.
In a modern category system, such as the one given by Hoffman and Rosenkrantz (1994),

the category of Quantity must be built up from unfamiliar pieces. Their categories are given in
Figure 5.4.

Category Subcategory Sub-subcategory
Entity Abstract Property

Relation
Proposition

Concrete Event
Time
Place
Substance Material Object

Spirit
Limit
Collection
Privation
Trope

Table 5.4: Category System of Hoffman and Rosenkrantz.

In such a system, it is hard to identify quantity-like entities (e.g., what has happened to the
category of “Number”?), but at the same time, there seems to be replacement categories that might
work (e.g., Proposition, Collection). Quantity, in the way we need to represent it for embodied
arithmetic, does not occupy a single area in such a system, because the representation we are after
has components that are both abstract and concrete.

From these examples, we see that the category Quantity has had a volatile journey in meta-
physics. It has gone from being a basic constituent of reality in Aristotle’s realism, to being a
basic but divisible subjective phenomenon in Kant’s conceptualism, to being a non-basic category
distributed (or “built-up”) from other categories in Husserl’s descriptivism, to becoming utterly
lost in the categories of a modern ontology. This is not a criticism against any of the category
systems, but the overall trend indicates that some explanation of quantities in category systems
is required, especially since many computational systems rely on ontologies built up from such
categorizations.

112



5.1.1.2 First-Order Logic

Näıvely, we might decide to treat quantities in logic as numbers predicated of sortals. The sen-
tences: (1) “There are red apples on the table” and (2) “There are three apples on the table” share
the same linguistic form, so the naı̈ve approach would be to represent the color term and the nu-
meric term in the same way. For (1), we would expect to see a representation such as:

∃x(CollectionO f(x,Apple)∧∀y(MemberO f(y,x)⊃ Red(y))∧∃z(Table(z)∧On(x,z)))

With the semantics ofRed(y) being something like “Red” is a property of (object)y. If “red” and
“three” work in the same way, we might expect the following representation for (2):

∃x(CollectionO f(x,Apple)∧∀y(MemberO f(y,x)⊃ Three(y))∧∃z(Table(z)∧On(x,z)))

The representationRed(y) makes sense because “redness” (if it is treated as a property at all) is an
intrinsic property. The property of “being red” belongs to each apple in the collection. However,
“threeness” cannot be an intrinsic property of any apple in the collection, and it would be quite
difficult to specify the semantics ofThree(y) in (2).

There is also a method for representing sentences such as “There are (exactly) three apples” in
first-order logic with equality and the usual connectives (∧,∨,¬,⊃):

∃x1∃x2∃x3(Apple(x1)∧Apple(x2)∧Apple(x3)∧∀y(Apple(y)⊃ (y = x1∨y = x2∨y = x3)))

Such a schema is an elegant logical convention. It tells us how to produce an appropriate FOL
formulation for sentences containing exact quantities. However, this leads to several problems
when used as a cognitive representation. This representation introduces a term for each individual.
The implausibility of this as a cognitive thesis for a quantity representation is evident from several
points of view. (1) It would appear harder for a computational cognitive agent to conceive of sen-
tences containing “100 birds” than those containing “3 birds”, the former representation requiring
100 objects of thought and the latter taking only three; yet, are we really straining to think of 100
distinct birds when someone utters sentences containing “100 birds”? (2) It is not even clear that
wecanentertain 100 objects of thought. Psychological evidence has pointed to two mental number
systems, one for the small, precise, subitizable cardinalities, and one for large, approximate cardi-
nalities (Feigenson, Dehaene, and Spelke, 2004). We can conceive of sentences containing “100
senators” and proceed to reason with our conception without being able to name all (or any) of the
senators. We can be sure about the exactness of a quantity without having a mental concept (or
logical term) for each senator.2 These logical representations do not tell us how a quantity should
combine syntactically to meet our representational requirements.

Logicians and linguists have noted some of these issues and have proposed a generalization of
the traditional quantifiers∀ and∃. This has led to a class of such generalizations calledgeneralized
quantifiers(Westerstahl, 2005). Relevant among these are numerical quantifiers. SNePS actually

2Stuart Shapiro suggested this useful example to me.

113



provides a numerical quantifiernexists with the following syntax and semantics (Shapiro and
SNePS Implementation Group, 2008):

nexists(i,j,k)(x)( {P1(x),..., Pn(x) }: {Q(x) }) } means there are
k individuals that satisfyP1(x) ∧ . . .∧ Pn(x) and, of them, at leasti and at mostj
also satisfyQ(x) .

Despite the utility of such a representation, it treatsi, j,andk as natively supported constructs
(rather than as numerons generated during counting).

5.1.1.3 Natural Language

NL provides several clues as to how human cognition represents quantities. From the perspec-
tive of computational systems, NL utterances are raw, pre-representational cognitive content, often
providing better insight into human cognitive organization than the formal, polished, logical rep-
resentations of these utterances.

Several NLs (including English) make a distinction between count-nouns (e.g., ‘apple’) and
mass nouns (e.g., ‘water’). This distinction is marked by a syntactic restriction on how such nouns
can be used in quantities. E.g., “three apples” is grammatical; “three waters” is not: One must
say things like “three cups of water”.X is a count noun in questions of the form “How manyX?”
and a mass noun in questions of the form “How muchX?”. Such a feature of language invites
us to participate in the activity of counting by organizing the world into the countable and the
uncountable.

An interesting (and surprisingly universal) feature of how count nouns can participate in quan-
tities is that quantity is never systematically marked by closed-class forms (i.e., quantity is not
lexicalized). Languages may have a form for singular (apple = 1 apple), plural (apple+s = multiple
apples), and, in some languages, paucal (a few apples), but never a form such as “applethree” to
mean “three apples” (Talmy, 2000). Cognitively primitive structures are encoded in closed-class
forms (such as affixes and adpositions) and not in open-class forms (such as nouns, verbs, and
adjectives) (Talmy, 2000). Some closed-class constructions may be used for concepts up to a small
quantity: the terms unicycle (1 wheel), bicycle (2 wheels), and tricycle (3 wheels) lexicalize the
number of wheels in the vehicle. Yet there is no systematic construction for all quantities, and such
exceptions usually terminate at a very small cardinality. Even though the world provides objects
like 16-wheeler trucks, they are not usually referred to by terms like “hexidecicycle”. As with
modern category systems, the open-class construction of quantities in numeral systems (1,2,3,. . . )
and number-name systems (“one”, “two”, “three”, . . . ) points to the conclusion that quantities are
not a primitive concept.

The distinction of unity and plurality is fundamental to human cognition. This is encoded in the
singular/plural distinction in most of the world’s languages. It also found its way into theElements
of Euclid. Euclid’s ontology was such that 1 was aunit and 2,3,4,. . . werenumbers. Both the unit
and the numbers were geometrically conceived as distances, making number theory a theory of
line segments in Book VII of theElements(trans.Heath, 2002)

114



5.1.2 Quantities for Embodied Arithmetic

To satisfy our four representation requirements (see§5.1), and to utilize the insights from the
previous section, we need a grounded representation for quantity that works in service of embodied
acting. If the semantics for arithmetic really does arise from embodied activities, we need to
consider how a quantity will be represented by an embodied agent that is situated in the real world
and capable of perception.

The four representational requirements suggest a formalization of quantity as a four-tuple. If
n is a number,s is a sortal,r is a particular two-place relation that holds betweenn ands, andp
is a mechanism for perceiving or imagining the relationship given byr(n,s), then〈n,s, r, p〉 is a
quantity. The general form of the SNePS representation of a quantityq = 〈n,s, r, p〉 is as follows:

Definition SNePSLOG

define-frame NumSort(nil number sortal)R(q,NumSort( n, s))
define-frame R(r quantity)

Network

GFED@ABCm2

number
��

sortal

  @
@@

@@
@@

@@
ONMLHIJKm1!

quantityoo

r
��

n s q
OO

p

��

The general semantics for this formalism is as follows:Jm1K is the proposition thatJqK is a
quantity of typeJrK of JnK JsKs grounded by relationJpK. In the following sections, I will discuss
the role each of the componentsn,s,r, andp have to play and the contribution each makes towards
the semantics of quantities.

5.1.3 Natural Numbers in Quantities (n)

As we have seen in the previous chapter, an effective counting routine is just a method for generat-
ing a progression of unique symbols. The complete semantics of these symbols is given simply by
their occurrence in a certain place in the progression. For the purposes of communication, these
symbols can then be systematically associated with a set of numerals or a set of number-names.
The numeral and number-name systems are both guided by a grammar for generating new nu-
merals and number-names. Importantly, once the association with numerals or number-names has
been made, an agent can identify a number without executing the counting routine. Both of these
symbolic systems are equipped with a syntax and semantics. Syntactically, 132 specifies a number,
because the digits ‘1’, ‘3’, and ‘2’ are numerals (which are associated with numbers in a counting
routine). Semantically, 132 is “1 hundred plus 3 tens plus 2”. Thus, a computational agent can

115



conceive of a number without needing to symbolize all of its predecessors in the counting routine.
This avoids the “100 senators” problem we saw earlier.

The primacy of the counting routine is somewhat challenged by the (embodied) phenomenon
of subitization (the automatic and arguably innate recognition of cardinality) exhibited by human
infants and several non-human primates. It has been argued that subitization is simply an orga-
nizing principle used to to assist counting routines (Gelman and Gallistel, 1978). Adopting this
position, we can simply assume an agent capable of performing a counting routine for our present
purposes. I will have more to say about subitization in§5.2.1.

5.1.4 Sortals (s)

I have imported the technical termsortal to refer to the discrete entities a quantity is taken to be a
number of. Sortals have various definitions in philosophy:

A sortal: (1) gives a criterion for counting the items of that kind, (2) gives a criterion
of identity and non-identity among items of that kind, (3) gives a criterion for the
continued existence of that kind, (4) answers the question ‘what is it?’ for things of
that kind, (5) specifies the essence of things of that kind, (6) does not apply to parts of
things of that kind (Grandy, 2006)

These are separate consistent definitions for the term ‘sortal’, and they each capture a relevant
useful feature for a task such as embodied enumeration.

I will add the following computationally relevant definition to the list (not claiming to capture
all of the nuances of the six given definitions):

• S is a sortal predicate(or sortal) for a cognitive agentA and objectx if, wheneverA be-
lievesS(x), A has a decidable procedureP for generating a non-empty set of distinguishing
properties ofx.

• Sis acount sortal predicate(or count sortal) for cognitive agentA and objectx if Sis a sortal
predicate forA andA has a decidable procedureP′ for counting (or measuring)x in some
sensory modalityM.

This makes the discrimination of sortals an agent-relative ability and intimately ties this ability to
the agent’s particular embodiment, sensory capacities, and beliefs.

As an example,Apple is a sortal for Cassie if she can infer from her KB the properties that
distinguish apples from anything else, including, shape, color, and size.Apple is a count sortal
for Cassie if, in addition to being a sortal for her, she is embodied and can use the set of inferred
properties to distinguish and count apples in the actual world through some sensory modality (e.g.,
through a vision system).

Because sortals are agent relative, there will often be disagreement between agents as to the
applicability of a sortal. Sortals such as “game” and “chair” may have precise application condi-
tions for a particular agent even though there are no publicly agreed upon necessary and sufficent
conditions for the application of the sortal.

116



Xu (2007) has investigated the use of sortals in cognitive science. She makes a more fine-
grained distinction between distinguishing properties, breaking these down intoobject individua-
tion, which enables an agent to answer the question “how many?”, andobject identification, which
enables an agent to answer the question “which one?”. Object identity, so characterized, is distinct
from object identity through time.

If an object seen at a different time is labeled with a different count noun, ’Look, a
dog!’, a mental symbol is then created to represent the sortal concept DOG. These
sortal concepts provide the basic criteria for individuation and identity: an object that
falls under the sortal RABBIT cannot be the same object as one that falls under the
sortal DOG. In this sense, the acquisition of basic-level sortal concepts depends on
acquiring basic-level count nouns (Xu, 2007).

I am not as concerned with this fine-grained distinction, but it should be noted that SNePS has
been used to develop an agent capable of tracking an object’s identity over time for the task of
identifying perceptually indistinguishable objects (Santore and Shapiro, 2004).

I will say a sortal is aunit sortal if it (implicitly or explicitly) makes reference to a known
standard. Unit sortals can be metric if the known standard is a fixed unit of measurement (e.g.,
inch, second, pound) or topological if the known standard is not dependent on objective precision
(e.g., a block on a map in “three blocks away”, a story of a building in “three stories high”). A
sortal is acollection sortalif makes reference to a prototypical member of the class (e.g., “apples”)
and that member is not a unit. Quantities, when conceived of as a number bound to a sortal, can
be used to modify a (second) collection sortal: “thee-lego piece”, “three-man team”, “three-egg
omelet”, “three-story building”, “three-inch cut”. I will call these sortalsconstruction sortals.
Also, a mass noun can be quantized by collecting it in units, as in “three cups of water” or “three
pounds of sugar”. I call thesequantity complexes.

5.1.5 Relations Between Numbers and Sortals (r)

To draw out the cognitive distinction between quantities such as “three apples”, “three inches”,
“three-Lego piece” and “three cups of water”, it is not enough to make the classification of unit
sortals, collection sortals, construction sortals, and quantity complexes. It is also important to
consider the activities in which the different kinds of sortals are deployed. Unit sortals tend to be
applied during measurement activities. Collection sortals are used in object collection activities.
Construction sortals are needed for the activity of constructing a unit sortal from a collection (e.g.,
putting three Lego pieces together to form a three-Lego piece). Quantity complexes occur in
activities where mass nouns must be quantized (or, activities involving “unit-excerpting” (Talmy,
2000))

These distinctions are captured in the relationr (and the associated case-frameR). The func-
tional termNumSort(n,s) “relates” the numbern and the sortals in the SNePS “arc-label”
sense of relation, but this is not enough. The relationr specifies the way in which the agent is con-
sidering the relationship betweenn ands to hold. I claim that the relation is properly represented
as an arc-label rather than as a node (recall that this is a model of “subconscious” representation

117



in SNePS), because I believe the subtle distinctions between sortals are not as salient in an agent’s
attention as the activity the quantity is being used for.

5.1.5.1 Collections

The SNePS representation for collections is as follows:
Collection
Syntax:

Definition SNePSLOG

define-frame NumSort(nil number sortal) Collection(q,NumSort(n,s))
define-frame Collection(nil collection quantity)

Network

GFED@ABCm2

number
��

sortal

  @
@@

@@
@@

@@
ONMLHIJKm1!

quantityoo

collection
��

n s q
OO

p

��

Semantics:Jm1!K is the proposition thatJqK is a collection ofJnK JsKs. The agent considersJqK
to consist ofJnK discrete objects that have a sufficient resemblance to a prototypical object of sort
JsK.

Sample Use:Name(b,’Lego’) andCollection(q,NumSort(n3,b)) asserts thatq is
a collection of three Legos.

Collections are unique in that their constituents need not occur contiguously in space or time.
There is also some associated notion of order-invariance with respect to the constituents of a col-
lection (this is also a property of sets in set theory).

5.1.5.2 Constructions

The SNePS representation for constructions is as follows:
Construction
Syntax:

118



Definition SNePSLOG

define-frame NumSort(nil number sortal) Construction(q,NumSort(n,s))
define-frame Construction(nil construction quantity)

Network

GFED@ABCm2

number
��

sortal

  @
@@

@@
@@

@@
ONMLHIJKm1!

quantityoo

construction
��

n s q
OO

p

��

Semantics:Jm1!K is the proposition thatJqK is a construction ofJnK JsKs. The agent considers
JqK to consist of a single contiguous object withJnK discrete sub-parts that have a sufficient resem-
blance to a prototypical object of sortJsK.

Sample Use:Name(b,’Lego’) andConstruction(q,NumSort(n3,b)) asserts thatq
is a construction (e.g., a block) composed of three Legos.

A quantity is viewed as a construction when the constituent members are either spatially or
temporally contiguous, or there is an otherwise “tight” relationship holding between constituents
that is created by the agent. An agent considering a quantity as a construction is considering
the whole as the sum of its parts (i.e., analytically), or as “summing” the parts to make up that
particular whole (i.e., synthetically).

It seems quite natural to ask how a unit becomes a unit in the first place. Following Kitcher
(1984), I will claim that the needs of a community of cognitive agent drives standardization. Stan-
dardization of a unit across a community allows the members of that community to measure quan-
tities in a common, non-arbitrary way. This implies that there is some domain of target entities
whose measurement would be useful to the community. This “need for a description” might be
addressed in imprecise ways by particular individuals. The individual might use a collection sortal
as an ad-hoc description to stand in for the measurement. For example, without dragging out the
measuring tape, I might say that my door is “two-people wide”. A person is a collection sortal
that may be identified by a range of “widths”. Despite the imprecision of this collection sortal
description, I can still be understood by a competent speaker of English. Constructions can thus
be seen as occupying an intermediate step in the standardization of unit sortals from collection
sortals. The constituents of collections are not precise enough for measurements (e.g., the king’s
foot). As a result, collection sortals are brought together in a precise constructions (e.g., a 12-inch
ruler marked off every length of the kings foot), and finally become public standards (e.g., the
reproducible 12-inch ruler).

119



5.1.5.3 Measures

The SNePS representation for measures is as follows:
Measure
Syntax:

Definition SNePSLOG

define-frame NumSort(nil number sortal) Measure(q,NumSort(n,s))
define-frame Measure(nil measure quantity)

Network

GFED@ABCm2

number
��

sortal

  @
@@

@@
@@

@@
ONMLHIJKm1!

quantityoo

measure
��

n s q
OO

p

��

Semantics:Jm1!K is the proposition thatJqK measuresJnK JsKs. The agent considersJqK to be
a single object capable of measuring other objects in units ofJnK JsK.

Sample Use:Name(b,’Lego’) andMeasure(q,NumSort(n3,b)) asserts thatq is a three-
Lego block.

Sortals used in measurements are usually considered to be standardized units. The act of mea-
surement expresses a relationship between physical entities, specifically, a relationship between a
publicly accepted standard and a target object to be measured. It is understood that such a mea-
surement is not a complete description of the target, but rather a partial description of a particular
feature of the target. This is immediately useful for a cognitive agent because it provides a com-
mon metric for comparison between things that may otherwise have very little in common. World
War II and the time spent on a doctoral dissertation may both be measured by four years. The
distance from the Earth to the Moon can be given in miles and so can the distance from Buffalo to
Syracuse. The common unit “miles” is a signal to the agent that the numeric part of the quantities
can be compared.

Moles (1977) has pointed out that acts of measurement yield meanings for abstract arithmetic

Measurement permits the investigator to deal with both magnitudes and relationships
between magnitudes. In other words, we are interested in how many, how much,
and how long and the relationships among them. The use of numbers per se does
not aid in the process of uncovering patterns within data. The connections between
phenomenal relationships and the mathematical relationships used to represent them
should be displayed. Unless this is done, it is difficult, if not impossible, to know what

120



the mathematical manipulations mean (p. 239).

Measuring is an act that can take place in various sensory modalities and is often performed
with the aid of measuring tools. Measuring tools vary in complexity and must be “calibrated” in
some way, or otherwise constructed so as to guarantee standardization to the unit. For example,
a foot-long ruler is usable as a measure of feet insofar as it can be guaranteed to be a foot in
length. Requiring a second measuring tool for rulers invites a regress, since the second measuring
tool would itself require measurement. However, in the act of measurement, a cognitive agent
is usually after approximate precision. This is due not only to the limitations of constructing
measuring tools, but also to the limitations of the agent in precisely “reading off” measurement
quantities from a measuring device. There is a hierarchy of precision for the set of measuring tools
available to a cognitive agent. The more precise tools are exactly those that most closely conform
to the standardized unit.

5.1.6 Grounding Quantities in Perception (p)

In order to perform embodied acts such as collecting, constructing, and measuring with external
objects, the agent needs a way to link what it is reasoning about to what it is perceiving. The
relationshipp between the KL symbol denoting a quantityq and the perceived or imagined repre-
sentation of the quantity residing in the PML is best described in terms of the symbol-grounding
problem. The symbol-grounding problem (Harnad, 1990) requires that a cognitive agent can as-
sociate all of the symbols it uses with meanings (i.e., provide its symbols a complete semantics in
a non-circular way). To avoid a regression in which meaningless symbols are only given mean-
ing in terms of further meaningless symbols, several approaches to the symbol-grounding problem
involve grounding symbols in sensorimotor action and perception, which can be thought of as
“subsymbolic”; thus, a symbol system can be grounded in a non-symbolic system. Shapiro and
Ismail (2001) have presented a SNePS approach to symbol grounding calledanchoring:

Anchoring is achieved by associating (we use the term “aligning”) a KL term with a
PML structure, thereby allowing Cassie to recognize entities and perform actions, but
not to discuss or reason about the low-level recognition or performance (Shapiro and
Ismail, 2001)

Anchoring is similar to the approach I present below in that it establishes associations between the
KL and the lower GLAIR layers.3

I don’t believe that grounding the symbolic in the non-symbolic is actually necessary. I am
sympathetic with Rapaport’s (1995) theory of syntactic semantics in which a complete semantics
can be theoretically given by symbol manipulation (i.e., syntax) alone and with Barsalou’s (1999)
perceptual symbol systems in which all agent percepts can be considered symbolically. However,
any proposed solution to the symbol grounding problem must deal with quantities in some way.

Roy (2005) has given a thorough account of how a cognitive robot might ground its language
in embodied sensory experience. He posits that using grounded language is a catalyst for commu-
nication. However, the scope of the language that can be grounded is restricted:

3See also (Jackendoff, 1987) for an approach to associating linguistic and visual information.

121



Communication gets off the ground because multiple agents can simultaneously hold
beliefs grounded in common external entities such as cups of coffee.

I take beliefs about the concrete, physical world of objects, properties, spatial relations,
and events to be primary. Agents can of course entertain more abstract beliefs, but
these are built upon a physically grounded foundation (Roy, 2005)

5.1.6.1 Challenges

The grounding of a quantity such as “three apples” is problematic because it relies in part on the
abstraction “three”. This can also be construed as a problem of reference. I can point to an apple,
I can point (or otherwise gesture) to a set of three apples, but I cannot point to three. Now, it might
be pointed out that I also cannot point to apple or point to redqua universals, because these are
also abstractions. However, I can point toan apple anda red thing as specific instances. With
the case of numeric reference, it seems difficult to specify what pointing to “an instance of” three
would mean without specifying the sortal the instance is threeof. Numbers in this respect are a
“double” abstraction. Russell (1918/1983) has said:

[A]ll numbers are what I call logical fictions. Numbers are classes of classes, and
classes are logical fictions, so that numbers are, as it were, fictions at two removes,
fictions of fictions. (p. 270)

If we replace “fictions” with “abstractions”, this claim suggests that the number component of
quantity is more abstract than the sortal it binds to.

Despite this apparent difficulty, an agent can come to have many experiencesinvolving“three”,
none of whichis the abstraction. These include writing and reading the numeral ‘3’, observing col-
lections of three items, and identifying the third position in a sequence. Analogy (in Roy’s terms)
or conceptual metaphor (Lakoff and Núñez, 2000) may be sufficient to generate the abstraction
from such sensory experiences, but we can no longer rely on the similarity of experiences from
agent to agent (in the way we might, for example, expect a similarity of experience for a physical
object such as an apple). If agent A has had experiences involving three apples (but never three
oranges), and agent B has had experiences involving three oranges (but never three apples), both
agents should still be able to abstract the same “three” from their experiences.

Learning sortal terms (e.g., what can be counted as an apple) does require some abstraction
(e.g., experiences with red and green apples), but these are always abstractions over experiences
with objects that an agent can find and subsequently internalize through perception (e.g., locating
and pointing to green apples).

Grounding linguistic expressions involving quantities relies on grounding the sortal termand
grounding the number term (i.e., the abstraction). A single sensory experience may be enough to
ground a sortal term, but the grounding of a number, an abstraction that can be applied in a quantity
to all countable things, requires several sensory experiences with at least a few countable things.
Otherwise, the agent cannot know that numbers can be applied to a variety of things.

Another difficulty in grounding quantities arises from the fact that a physical object can be
takento correspond to many quantities. Frege (1884/1974) has said:

122



While I am not in position, simply by thinking of it differently, to alter the colour or
hardness of a thing in the slightest, I am able to think of the Illiad either as one poem,
or as 24 books, or as some large number of verses (p. 28).

Again, we see that choosing the number and sortal determines the correct grounded quantity. For-
tunately, our representation mechanism allows for binding multiple quantities to the same object.
Frege’s example can be given in SNePS by:

;;;The (proper) name of i is Illiad
Name(i,’Illiad’).
;;;The name of (i.e., word for) p is poem
Name(p,’Poem’).
;;;The name of (i.e., word for) b is book
Name(b,’Book’).
;;;The name of (i.e., word for) v is verse
Name(v,’Verse’).

;;;The Iliad taken as one poem
Collection(i,NumSort(n1,p)).
;;;The Iliad taken as twenty-four books
Collection(i,NumSort(n24,b)).
;;;The Iliad taken as 15693 verses
Collection(i,NumSort(n15693,v)).

Because of the uniqueness principle, every occurrence ofi picks out the same node, and this node
can be associated with the very same perceived (or visualized) object.

Another challenge of grounding quantities in perception arises from the very nature of percep-
tion. Perceptual information is often noisy. In just the sensory modality of vision we encounter
several pragmatic obstacles: imperfect lighting, occluded objects, and distortion. Also, perceptual
data is fleeting. Thus, an agent can only have limited experience with each perceptual field; in a
sense, it has an attention span. This places a restriction on the PML that is not present at the KL.

Finally, there are issues with how collections should be treated over time. Embodied acts are
not instantaneous. Suppose an agent is collecting apples and currently has a collection of two
apples. Call this collectionC. Suppose the agent adds three more apples to the collection. Is it still
the same collectionC? Or perhaps it is a new collectionC′. Or perhaps, as each new apple is added,
there is a new collection generatedC1, C2, andC3. Should a collection with a single constituent be
represented as a collection? What if that sole constituent is removed? Should the empty collection
still be represented as such? Each of these questions poses a representational issue of collection
identity over time.

5.1.6.2 Grounded Quantities in SNePS

I do not claim to have a general solution to the symbol-grounding problem, or even a general solu-
tion for the grounding of quantities. However, I believe the SNePS representation addresses several
of the issues raised in the previous section. To focus explicating how quantities are grounded in
perception, I will not dwell on the issues of collection identity over time raised in the last section.
Nevertheless, I believe such issues could be accommodated for in SNePS, because previous work
has addressed acting and reasoning in time (Ismail and Shapiro, 2000), and the representational
issues surrounding collections (Cho, 1992).

123



collection

quantity

number
sortal object name

m1!

m2 m3!

q n3 a apple

Alignment Table

Prototypes

KL Symbol      PML Symbol          Modality

Sortal      Attribute    Value      Thresh

Internalized Representation

Modalities 

Vision

KL

PML

SAL

   q    (location com)  vision

  b1    (location tlop) vision

        (color rgbvals)

        (shape circval)

apple        color       rgbvals      +/- e1

apple        shape      circval      +/- e2

(1)

(2)

Figure 5.1: Two grounding relations for the quantity 3 apples: (1) Perceived and (2) Visualized

I will consider two ways in whichp might ground a quantity:perceptionandvisualization.
An illustration of this mechanism is given in Figure 5.1. Both of these methods require Cassie
to coordinate her KL symbols with her PML symbols. To do this, a data structure known as the
alignment tableis used. The alignment table associates a KL base node with a PML attribute-
value pairing and a sensory modality in which such a pairing is applicable. In the example in
Figure 5.1, the quantityq (“three apples”) is aligned (i.e., has an entry in the alignment table)
with the PML attribute-value pair(location com) in the modality of vision. Thelocation
attribute indicates that the valuecom (a center-of-mass) will help to identify the quantityq as
it appears in the visual field. The perceptual field for any given modality is be represented by
whatever data structures are most appropriate. This is an “internalized” representation of reality
because it is dependent on a particular agent’s sensors (i.e., its embodiment). For the visual field,
a natural data-structure would be a two-dimensional array of pixel-brightness values. A base node
may have more than one entry in the alignment table, and each entry need not be limited to a single
sensory modality. Also illustrated in the figure is the fact that a constituentb1 of the collection (not

124



illustrated in the KL), can occur in the alignment table. This demonstrates some different attribute-
value pairs that can be useful in picking out a constituent of a collection, including the top-left
object-pixel value (tlop ) for tracking the location of an object, red-green-blue pixel brightness
values (rgbvals ) for tracking color, and a circularity value (circval ) for tracking shape. The
modality information specifies which SAL method of perceptual-data acquisition is appropriate.
Using the alignment table, the perceptual data for a given base node is free to vary in the PML as
new perceptual information becomes available while leaving the KL relatively stable.

Another PML mechanism is necessary for determining which objects in the perceptual field
belong to which sort. This is a table ofprototypesand, for each KL sortal, includes prototypical
attribute-value pairs for perceived instances of that sort. These prototypical values may be obtained
in various ways (e.g., averaging over past perceptual encounters with objects of the sort), and can
be updated with each new perceptual encounter with objects of the sort. Also included with each
entry is threshold error valueThresh that specifies the range around the prototypical value an
object of that sort can be permitted to vary and still be called an object of that sort. This value is
also subject to change with further experience.

More of the specifics for these mechanisms will be given in the context of embodied enu-
meration below. However, we are now in a position to describe the two methods of grounding
a quantity. When a quantity is grounded in perception (method (1) in Figure 5.1), the alignment
table associates the quantityq with an internalized representation that originated in an act of per-
ception. I.e., the act invokes the sensory apparatus in the SAL. When a quantity is grounded in
a visualization (method (2) in Figure 5.1), the alignment table associates the quantityq with an
internalized representation that originated in an act of visualization. Such an act would entail the
creation of prototypical objects (via theprototypevalues). In other words, the “faked” perceptual
data is simply “imagined” by the agent without activating any sensors in the SAL.

Now that we have a detailed account each of the four components of quantityq = 〈n,s, r, p〉,
we can deploy quantities in an embodied act.

5.2 Embodied Enumeration and Its Applications

The abstract component of Cassie’s explanations bottom out at counting routines. As we saw in the
previous chapter, nothing besides primitive counting acts are needed to compute sums, differences,
products, quotients, and even GCDs. There is, however, a great distinction between the act of
saying (or thinking about) the number names and countingthingswith numbers. I will call the
latter actenumeration, and when the things being counted are concrete physical objects external
to the agent’s body, I will call thisembodied enumeration. This is the backbone of the object-
collection grounding-metaphor as given by Lakoff and Núñez (2000). Just as counting is a gateway
to abstract arithmetic, embodied enumeration is a gateway to an embodied arithmetic, i.e., a set of
acts that correspond to the four basic operations. In embodied arithmetic, addition can be viewed as
object collection, subtraction as object removal, multiplication as iterated collection, and division
as sharing objects among people.

In this section, I will focus on the act of embodied enumeration and describe how it can be
implemented in Cassie with the help of grounded quantities.

125



5.2.1 Models of Enumeration

The responsibilities assigned to low-level (subconscious) and high-level (conscious) processing
give rise to two different models of enumeration. An early production-system implementation of
both models was given by Klahr (1973). Both models are illustrated using the case of a single
die in Figure 5.2. Under the model shown in Figure 5.2 (a), low-level processing uses pattern

Figure 5.2: Two models of enumeration

recognition to automatically make a cardinal assignment to the number of dots4 on the face of the
die. This ability is known as subitization in the literature (Clements, 1999) and, in human beings,
is considered an innate ability for small numerosities. A low-level pattern recognition routine must
be coupled with a high-level addition routine that accumulates the subitized results.

Under the model shown in Figure 5.2 (b), low-level processing uses object recognition to isolate
each individual dot on the die. The agent uses a high-level routine that assigns a number to each
dot as it is detected and marked in the visual field. The cardinal assignment for the set of dots
is complete once the final dot has been assigned a number; this number is the cardinality for the
entire set. This is the model I will use for Cassie because it will allow me to demonstrate both
the high level KL-processing and the low-level PML processing. An implementation of this model
requires the following from the agent:

1. A system that coordinates the low-level object-recognition routine and the high-level cardi-
nal assignment routine.

2. The ability to mark the counted entities in the sensory (e.g., visual) field.

3. The ability to direct attention to a new entity.

4. The ability to assert of each entity counted that it is a constituent of the accumulating collec-
tion.

5. The ability to detect when all target entities in the sensory field have been assigned a cardinal
number.

6. The ability to tag the entire set with a cardinal number.

4This sortal can be refered to by “dots” or “eyes”, even though the proper term is “pips”.

126



5.2.2 Implementation

Cassie is given the task of enumerating apples in her visual field. Cassie’s embodiment is simu-
lated, with the visual field consisting of three two-dimensional arrays of pixel-brightness values
(one array each for red, green, and blue). I am most interested in the KL-level impact of the
simulated embodiment and grounding of quantities. Thus, I have made several simplifying as-
sumptions about the agent embodiment and environment. I limit Cassie to the modality of vision
and the distinguishing properties color and shape for apples. Each of the test images contains ap-
ples displayed in a characteristic pose with no occlusion (no overlapping apples) and good lighting.
The SAL layer of GLAIR is not required since the embodiment is only simulated. The agent model
of attention is also very primitive. Thus, unlike human foveal vision which has a low-resolution
periphery and a high-resolution center, the entire visual field is represented with equal precision.

I am able to make such assumptions because I am simulating Cassie’s embodiment. It should
be noted that such assumptions must be discarded when an agent is acting and reasoning in the
real world, in real-time, with limited memory and sensory apparatus. However, recent efforts in
robotics have included teaching robots to enumerate objects (Vitay, 2005). Such an effort would
require an expansion of my theory to address more PML issues. However, because GLAIR imposes
a methodological dualism, there is nothing (in principle) preventing a more robust PML from being
attached to Cassie’s KL.

Unlike abstract internal arithmetic, a variety of SNePS representations are necessary to fully
model embodied enumeration. Consider the variety of mental entities needed during the enumera-
tion of apples:

1. The grounded quantity, including:

• The numbers (qua numerons as given in the previous chapter)

• The sortalapple(a universal of which there are particular instances).

• The collection relationship between the number three and the sortal apple which Cassie
is taking the quantity to be.

• The perceived quantity.

2. The prototypical apple, along with its prototypical shape and color.

3. The current apple being attended to, along with its particular shape and color.

4. The particular apples that are instances of the sortal and are constituents of the collection.

Suppose we consider a particular apple in a collection. This is represented as: an array of pixel-
brightness values in the PML, an object being attended to in the PML, an instance of a sortal (if it
resembles the prototype closely enough) in the KL, and a constituent of the collection in the KL.
This distribution of representations must be coordinated by Cassie.

127



5.2.3 KL

Cassie’s knowledge of apples will be represented in the KL. Among this knowledge, we will expect
to find relevant beliefs about the shape and color of apples. Realistically, we should expect Cassie
to also have knowledge involving apples that is completely irrelevant to enumeration. For example,
she may believe that, in the context of the story ofGenesis, Eve gave Adam an apple. This will not
interfere in any way, because the name “apple” can be applied to various non-mathematical ways
in the KL.

Along with the counting case-frames presented in the previous chapter, the following case-
frames are used to model the domain:

Name
Syntax:

Definition SNePSLOG Network

define-frame Name(nil object name)Name(x,y) GFED@ABCm!

ob ject
��

name

��@
@@

@@
@@

@

x y

Semantics:JmK is the proposition thatJxK is the word or proper name forJyK in English.
Sample Uses:Name(b1,Albert) asserts that the proper name ofb is Albert .
Name(b2,cup) asserts that the English word forb2 is cup .

InstanceOf
Syntax:

Definition SNePSLOG Network

define-frame InstanceOf(nil particular universal)InstanceOf(x,y) GFED@ABCm!

particular
��

universal

��@
@@

@@
@@

@

x y

Semantics:JmK is the proposition thatJxK is a particular instance of the universalJyK.
Sample Use:InstanceOf(x,uApple) asserts thatx is a particular instance of the universal
uApple .

128



HasProperty
Syntax:

Definition SNePSLOG Network

define-frame HasProperty(nil object property)HasProperty(x,y) GFED@ABCm!

ob ject
��

property

��@
@@

@@
@@

@

x y

Semantics:JmK is the proposition thatJxK has (i.e., instantiates) the (universal) propertyJyK.
Sample Use:HasProperty(b,uRed) asserts thatb has the propertyuRed.

ConstituentOf
Syntax:

Definition SNePSLOG Network

define-frame ConstituentOf(nil constituent collection)ConstituentOf(x,y) GFED@ABCm!

constituent
��

collection

��@
@@

@@
@@

@

x y

Semantics:JmK is the proposition thatJxK is one of the constituents of the collectionJyK.
Sample Use:ConstituentOf(b,c) asserts thatb is a constituent of collectionc .

Color
Syntax:

Definition SNePSLOG Network

define-frame Color(class member)Color(x) GFED@ABCm!

class
��

member

""D
DD

DD
DD

DD
D

Color x

Semantics:JmK is the proposition that the universalJxK is a color.
Sample Use:Color(uRed) asserts thatuRed is a color.

129



Shape
Syntax:

Definition SNePSLOG Network

define-frame Shape(class member)Shape(x) GFED@ABCm!

class
��

member

""D
DD

DD
DD

DD
D

Shape x

Semantics:JmK is the proposition that the universalJxK is a shape.
Sample Use:Shape(uRound) asserts thatuRound is a shape.

It is first necessary to distinguish between universals and their English names:

;;;The name of Red (the universal) is ’Red’
Name(uRed,Red).

;;;The name of Round (the universal) is ’Round’
Name(uRound,Round).

;;;The name of Apple (the universal) is ’Apple’
Name(uApple,Apple).

This separates the linguistic entities that may be present in Cassie’s KL from the universals
involved in enumeration. The universaluApple will play the role of the sortal in the quantity.

Next, we bind the distinguishing properties to their categories:

;;;Red is a color
Color(uRed).

;;;Round is a shape
Shape(uRound).

These representations do not draw out the distinction between (for example) colors qua universals
(e.g., red) and color instances (e.g., the redness of that apple). This is largely because the color
instances will be accounted for in the PML.

Now we represent the rule “All apples are red and round” as:

all(x)(InstanceOf(x,uApple) => {HasProperty(x,uRed),HasProperty(x,uRound)}).

Collectively, the previous three beliefs represent general knowledge about apples that will guide
Cassie’s expectation of the kinds of objects she is attempting to recognize. This rule models Cassie
as lacking a belief that apples can be green. This disjunctive distinguishing property can be ac-
counted for in SNePS, but I will avoid it in this presentation. As it stands, Cassie would simply not
classify green apples as being apples.

The KL implementation of embodied enumeration uses two complex acts: a top level act
EnumerateApples and helper actUpdateCollection . The former could easily be gen-
eralized for any sortal, and the latter could be generalized for any quantity, but I present the more
specific acts to shorten the exposition. These acts are implemented as follows:

130



ActPlan(UpdateCollection(q),
withsome({?n,?m},

(Collection(q,NumSort(?n,uApple)) and Successor(?m,?n)),
snsequence(disbelieve(Collection(q,NumSort(?n,uApple))),

believe(Collection(q,NumSort(?m,uApple)))),
Say("Something is wrong."))).

all(i)(Image(i)=>
ActPlan(EnumerateApples(i),

snsequence(BuildEnumFrame(uApple),
snsequence(believe(Collection(q,NumSort(n0,uApple))),
snsequence(Perceive(i),
snsequence(withsome({?c,?cn},

(TargetColor(?c) and Name(?c,?cn)),
DistinguishByColor(?cn),
SayLine("I don’t know what color apples are")),

sniterate({if(ObjectsLeft(i),
withsome({?s,?sn},

(TargetShape(?s) and Name(?s,?sn)),
snsequence(DistinguishByShape(?sn),
snsequence(AddToCollection(Apple,q),
snsequence(UpdateCollection(q),
snsequence(AttendToNewObject(i),CheckIfClear(i))))),
SayLine("I don’t know what shape apples are"))),

else(SayLine("Enumeration Complete"))}))))))).

It will be helpful to trace through the act:

1. The primitive actionBuildEnumFrame(uApple) is performed first. With this action,
Cassie imagines a prototypical apple by asserting it (from the PML) as an instance of the uni-
versal sortaluApple . This allows her to infer the color and shape of this prototypical apple,
uRed anduRound respectively. The predicatesTargetColor andTargetShape are
applied to these to distinguish them as the relevant distinguishing properties.

2. Cassie then forms a belief that the quantityq she is about to enumerate is currently a collec-
tion of zero apples.

3. Perceive is invoked with an image name (an artifact of the representation that can be
ignored). This results in a PML perceptual representation of what Cassie sees.

4. The name of the target color is deduced and is passed to the primitive action
DistinguishByColor . This effectively filters the visual field leaving only red objects.

5. Cassie then checks if there are any candidate objects left to enumerate. If there are none, she
declares that her enumeration is complete.

6. If there are still candidate objects in her visual field, Cassie applies the primitive action
DistinguishByShape . This routine considers each object in turn and determines the
circularity of each.

7. At this point, Cassie decides whether or not a candidate from the previous step should be
called an apple and, if she determines she has recognized an apple, she creates a new KL
node to represent the instance she has perceived with theAddToCollection primitive
action. This is followed by an invocation of the complex actUpdateCollection , which
updates the number component of the quantity to its successor.

131



8. Cassie then marks the candidate as accounted for and shifts her attention to the next candi-
date object using theAttendToNewObject primitive action. Going back to Step 5, this
process will stop when she has marked all items as counted.

It is apparent that much of the real work is being done by Cassie’s perceptual system.5 The count-
ing component is isolated to theUpdateCollection primitive action. Cassie accrues the quan-
tity as she is performing the enumeration. Thus, at any point, she has a value for the number of
“apples enumerated so far”.

This act illustrates two different methods of applying distinguishing properties. The distin-
guishing property of color is applied to the entire perceptual field in parallel (i.e., without iterating
over target objects), whereas the distinguishing property of shape is applied serially.

5.2.4 PML

The PML simulates Cassie’s embodiment by providing low-level routines for perception and motor
control. This is her “window” on the world, an interface between the simulated external objects
and the KL. We consider each sublayer of the PML in turn:

5.2.4.1 PMLa

The PMLa is the layer in which we implement Cassie’s primitive actions. The PMLa is written
in Lisp and utilizes the SNePSdefine-primaction function to create primitive actions and
theattach-primaction function to associate each primitive action with a KL base node that
denotes the action. All information flowing from the Cassie’s “body” to her “mind” passes through
the PMLa. The PMLa is responsible for coordinating the low-level routine of object recognition
and the high-level routine of counting.

5.2.4.1.1 BuildEnumFrame TheBuildEnumFrame primitive act is given a sortal and per-
forms inferences to determine the relevant distinguishing properties for instances of this sortal in
the modality of vision. For vision, Cassie uses shape and color as distinguishing properties. The
sensory modality used for the embodied enumeration determines which kinds of properties will be
useful. For example, suppose Cassie had to enumerate Scrabble tiles by placing her hand into a
bag and drawing them out. Then the distinguishing properties of shape, size, and texture would be
most appropriate, but color would not be useful.

Cassie first creates a prototypical instance of the sortal whose name is a concatenation of the
string “proto” and the sortal name. In the case of enumerating apples, this instance is called
protouApple. Then, using thetell interface, this instance is asserted into the KL. At this point, it
can be deduced thatprotouAppleis red and round. These relevant properties are determined using
the askwh interface, which captures KL deductions and returns them to the PML. The relevant
color uRed returned is tagged withTargetColor(uRed) , and the relevant shapeuRound is
tagged withTargtShape(uRound) .

5In fact, for human agents, there is even more “work” to be done at the knowledge level. For example, such work
includes the construction of a spatial plan for sweeping across the perceptual field.

132



This process represents Cassie subconsciously bringing-to-bear the relevant features for object
recognition.

5.2.4.1.2 Perceive The Perceive primitive act is given the name of an image stored in
PMLb. This is a very rudimentary model of Cassie deciding at the KL what she wants to look at.
It is assumed that the relevant image has all of the enumeration targets (i.e., that Cassie does not
have to look somewhere else to finish counting).

The acquired image is implemented as a Lisp class and consists of three arrays of pixel-
brightness values, one for red, one for green, and one for blue. The image is kept very small
(a 16 by 16 matrix) so that pixel values can be displayed on screen for the user. However this can
be scaled up if the user does not require the output to fit on the screen.

5.2.4.1.3 DistinguishByColor Given the nameRed deduced from the universaluRed,
theDistinguishByColor primitive act first accesses the*COLOR-PALETTE* Lisp hash to
obtain prototypical red-green-blue values forRed. These values, along with a threshold error for
the property of color is passed along to the PMLb functionthreshold-classify (described
below). The three arrays are replaced by a single binary array (i.e., an array with only values of 0
and 1) where every candidate-object pixel is labeled with a 1, and every non-object pixel is labeled
with a 0.

5.2.4.1.4 DistinguishByShape Given the nameRound deduced from the universaluRound ,
theDistinguishByShape primitive act first accesses the prototypical compactness for round
objects. The candidate object whose top-left object pixel has the smallest values is attended to. A
chain-code representation of this object’s shape is computed via the PMLb function
clockwise-chain-code . The prototypical compactness value (1.0 for a circle) and object
chain-code are then passed to theobject-gamma PMLb function to determine the candidate
object’s circularity.

5.2.4.1.5 AddToCollection Given a sortal name and collection, theAddToCollection
primitive act creates a new KL base-node to represent a newly recognized instance of the sortal
by concatenating the sortal name and a randomly generated identifier. So, for example, a newly
recognized apple may get the identifierApple1234 . It is then asserted that this instance is a
constituent of the collection being accumulated:ConstituentOf(Apple1234,q) . Another
assertion is made to indicate thatApple1234 is an instance of the universaluApple . Finally, the
new object is entered into the alignment table along with its top-left object-pixel coordinates. The
alignment table is implemented as a Lisp hash*ALIGNMENT-TABLE* . In principle, the top-left
object-pixel values could be used for Cassie to “point” to each constituent of the collection in her
perceptual field.6

6In an earlier implementation, Cassie also tracked the ordinal position of each new constituent of the collection in
terms of which object was countednth. This was removed to reduce the KL complexity. As such Cassie is a model of
an agent who has mastered the order-invariance counting principle (Gelman and Gallistel, 1978).

133



5.2.4.1.6 AttendToNewObject TheAttendToNewObject primitive act effectively marks
each object as it is enumerated and incorporated into the collection. This is done by removing it
from the perceptual field via thewipe-object PMLb function.

5.2.4.1.7 CheckIfClear TheCheckIfClear primitive act checks whether there any can-
didate target objects left in Cassie’s perceptual field. When this is the case, this is the termination
condition for embodied enumeration.

5.2.4.2 PMLb

The PMLb is implemented in Lisp and has no direct access to the KL. In this layer of GLAIR,
I have implemented Cassie’s vision system. This includes a representation of matrices as lists of
lists in Lisp along with routines to access a pixel given its coordinates and converting to and from
the matrix representation. In what follows, I describe the functions called by the primitive acts.

5.2.4.2.1 threshold-classify As described above, the 2D image is stored as three 2-
dimensional arrays of pixel brightness values: a red array, a green array, and a blue array. The
color value at pixel(i, j) is given by the triple(red(i, j),green(i, j),blue(i, j)).

The prototypical feature for “an apple’s redness” is also a red-green-blue (RGB) triple, which
we shall write as(redapple,greenapple,blueapple). The first test is to find the absolute difference
between each pixel component-color and the corresponding prototypical component value. A sum-
mation of these values gives the component error for pixel(i, j):

Err(i, j) = (redapple− red(i, j))+
(greenapple−green(i, j))+
(blueapple−blue(i, j))

A binary 2D arrayBinary(i, j) is then created based on a predefined error threshold for color
Threshcolor,apple.

Binary(i, j) =
{

1, if Threshcolor,apple≤ Err(i, j)
0, otherwise

The binary array represents the candidate object pixels after being filtered for the target color. An
idealized example of such an image is given in Figure 5.3. Realistically, the binary array will be
far more noisy, with stray candidate pixels needing to be rejected by future tests.

5.2.4.2.2 clock-wise-chain-code Shape is represented using an 8-direction chain-code
representation (Sonka, Hlavac, and Boyle, 1999). The chain code for a contiguous set of object
pixels is a list of cardinal directions (i.e., N,NE,E,SE,S,SW,W,NW) on a path around the border of
the object. We begin our chain code from the top left object pixel. A chain-code representation is
illustrated in Figure 5.4. The utility of the chain code representation is that it provides a syntactic
representation of shape that can be used in further operations. Given a chain code(d1,d2, . . .dn)

134



Figure 5.3: (a) Original 2D image (b) Ideal extracted object pixels

Figure 5.4: Chain-code representation of shape

for an objectx, we have the perimeterP(x) is:

P(x) =
n

∑
i=1

l i

wherel i is given by:

l i =
{ √

2, whendi = NE,SE,NW,SW
1, whendi = N,E,S,W

It is also straightforward to compute the area of an object given a chain-code representation.
We determine a bounding box around the object and sum up the number of object pixels inside this
region.

135



5.2.4.2.3 object-gamma Given the perimeterP(x) and the areaA(x) , the circularity of ob-
jectx is given by its compactnessγ(x) (Sonka, Hlavac, and Boyle, 1999):

γ(x) = 1− 4πA(x)
P(x)2

The value ofγ(x) tends towards 0 as the shape ofx tends towards a perfect circle. We classify
the object as “circular enough to be an apple” based on whether the distance of the target object
from perfect circularity falls under a predefined threshold. Circularity in the PML corresponds
with the relevant KL concept “round”. However, we do not want to check forperfectcircularity
in the target object, but an “apple’s circularity”. This would be achieved by retrieving the proto-
typical compactness for an applecompactapple and using it instead of 1 in the measure of “apple”
circularity:

γapple(x) = compactapple−
4πA(x)
P(x)2

Like the “redness of apples”, this value is learned through experience with apples (including the
act of enumeration). Also like color, the candidate object can be classified based on some threshold
Threshcompact,apple.

5.2.4.2.4 wipe-object When an object is determined to be an apple (i.e., its color and shape
fall under the threshold values), the object must be “marked” as counted in the visual field. This
is done by removing it from the binary matrix representation of the image. The removal of object
pixels given a top-left object-pixel and a chain code is a non-trivial procedure. The spatial extension
of the object is represented by three values:delta− i, the number of pixels down from the top-left
object pixel the object occupies,delta− j, the number of pixels to the right of the top-left object-
pixel the object occupies, anddelta−neg− j, the number of pixels to the left of the top-left object
pixel the object occupies. This is illustrated in Figure 5.5. This procedure is not general, as it

tlop

delta-neg-j delta-j 

delta-i 

Figure 5.5: The delta values computed from an object’s top-left object-pixel and its chain code.

does not work for objects with a bottom concavity, but, since our assumption is that apples will be
presented in a characteristic pose, this method is sufficient.

136



5.2.4.3 PMLc

The PMLc includes Cassie’s image acquisition mechanism. Images in JPEG format are exported
to a C Source format using the GIMP (GNU Image Manipulation Project). A small C program
writes out the pixel values in the RGB array form expected by Lisp. These arrays are then pasted
by hand into the Lisp PMLc. The two relevant classes for images are implemented as Lisp classes:

(defclass BinaryImg ()
((width :accessor img-width :initarg :width)

(height :accessor img-height :initarg :height)
(pixels :accessor img-pixels :initarg :pixels)))

(defclass RGB ()
((width :accessor img-width :initarg :width)

(height :accessor img-height :initarg :height)
(red-pixels :accessor img-red-pixels :initarg :red-pixels)
(green-pixels :accessor img-green-pixels :initarg :green-pixels)
(blue-pixels :accessor img-blue-pixels :initarg :blue-pixels)))

In future implementations, this process should be automated using the foreign-function call inter-
face provided in Lisp. Another alternative is to code the PMLc in Java and utilize the JavaSNePS
API (available in SNePS 2.7) for image acquisition.

5.2.5 Sample Run
The following sample run puts all of the pieces together for the task of embodied enumeration.
In this interaction, Cassie enumerates a collection of two apples. The demonstration should be
self-explanatory.

: perform EnumerateApples(img1)
Acquiring image img1
RED PIXELS:
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 128 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 128 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 128 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 128 254 128 254 254 254 254)
(254 254 254 254 254 254 254 254 254 128 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)

GREEN PIXELS:
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 0 0 254 254 254 254 254 254 254 254 254 254 254 254)
(254 0 0 0 0 254 254 254 254 254 254 254 254 254 254 254)
(254 0 0 0 0 254 254 254 254 254 254 254 254 254 254 254)
(254 254 0 0 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 0 0 254 254 254 254 254)
(254 254 254 254 254 254 254 254 0 0 0 0 0 254 254 254)
(254 254 254 254 254 254 254 254 0 0 0 0 0 254 254 254)
(254 254 254 254 254 254 254 254 0 0 0 0 0 254 254 254)
(254 254 254 254 254 254 254 254 254 0 0 0 254 254 254 254)

137



(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)

BLUE PIXELS:
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 0 0 254 254 254 254 254 254 254 254 254 254 254 254)
(254 0 0 0 0 254 254 254 254 254 254 254 254 254 254 254)
(254 0 0 0 0 254 254 254 254 254 254 254 254 254 254 254)
(254 254 0 0 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 0 0 254 254 254 254 254)
(254 254 254 254 254 254 254 254 0 0 0 0 0 254 254 254)
(254 254 254 254 254 254 254 254 0 0 0 0 0 254 254 254)
(254 254 254 254 254 254 254 254 0 0 0 0 0 254 254 254)
(254 254 254 254 254 254 254 254 254 0 0 0 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)
(254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254)

Distinguishing by color Red with threshold 100
Prototype for color is: (255 0 0)
Binary Image:
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0)
(0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0)
(0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0)
(0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0)
(0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0)
(0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0)
(0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

Distinguishing by shape Round with threshold 0.4
Prototype for shape is compactness = 1.0
Chain code for top-left object is (E SE S SW NW W N NE)

Circularity for top-left object is -0.34753005695632955d0
Adding KL constituent to collection.
Updating alignment table.
KLSym: Apple3425 PMLSym: (location (1 2)) Modality Vision
Clearing top-left object
New Binary Image:
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0)
(0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0)
(0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0)
(0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0)
(0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0)

138



(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

I detect more objects to enumerate
Distinguishing by shape Round with threshold 0.4
Prototype for shape is compactness = 1.0
Chain code for top-left object is (E SE E S S SW W N NW SW N N NE)

Circularity for top-left object is 0.11479907880955154d0
Adding KL constituent to collection.
Updating alignment table.
KLSym: Apple3836 PMLSym: (location (5 9)) Modality Vision
Clearing top-left object
New Binary Image:
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

Enumeration Complete

CPU time : 0.36

After Cassie completes the enumeration, we can ask her some questions about the collection.
First, we can ask her to describe the collections in her belief space:
: Collection(?x,?y)?

wff127!: Collection(q,NumSort(n2,uApple))

CPU time : 0.00

We can also ask her to describe the constituents of the collection and the instances of the
universal (sortal) apple she holds beliefs about:
: ConstituentOf(?x,q)?

wff122!: ConstituentOf(Apple3836,q)
wff112!: ConstituentOf(Apple3425,q)

CPU time : 0.01

: InstanceOf(?x,uApple)?

wff123!: InstanceOf(Apple3836,uApple)
wff113!: InstanceOf(Apple3425,uApple)
wff94!: InstanceOf(protuApple,uApple)

CPU time : 0.00

139



Here,wff94 represents Cassie’s belief about the prototypical apple she conceived while perform-
ing BuildEnumFrame .

5.2.6 Representing Experience with a Sortal

Cassie judges a particular apple to be an instance of the sortaluApple on the basis of its resem-
blance to a prototypical instance. This was achieved by considering an error threshold for each
distinguishing feature. However, the embodied enumeration of apples should be counted as ex-
perience with the sortal apple and should impact (however slightly) Cassie’s prototypical values
for an apple’s distinguishing properties. A natural way to do this is to average the instance values
for color and shape into the prototypical value. A more robust implementation would create sub-
prototypes for the different types of apples as Cassie has experiences involving the different type
(e.g., Granny Smith apples are green, red delicious apples are more square than circular).

5.3 Assignment Numeracy and its Applications

Embodied enumeration is a special form of a cardinal number assignment. As mentioned above
(see§2.1.4.2) number assignments are one of the fundamental uses of numbers. When making a
cardinal number assignment, an agent will mark off each element of a counted set with a successive
number in the natural-number sequence. When the final element is counted, the agent “assigns”
the resulting number to the entire set. This number is the cardinality of the set, and acts as thesize
of the set. It is the cardinal number, and not the counting procedure that generated it, that makes
its appearance in language. We say things like: “I saw seventeen birds on the lawn” instead of “I
saw one bird on the lawn, then a second bird on the lawn, . . . then a seventeenth bird on the lawn”.
When making an ordinal number assignment, an agent marks off particular events as they unfold
in time or objects as they occur in space. Thus, an agent could mark a car as being thethird to cross
the finish line after counting a first and second car to cross the finish line. An agent could mark a
car in a parking lot as being thethird from the left by starting at the leftmost car and counting cars
as it moves its gaze right. We shall say that an agent isassignment numerate(or hasassignment
numeracy) if it can properly perform both cardinal and ordinal number assignments.7

In what follows, I will describe some applications of assignment numeracy involving the fun-
damental cognitive ability of reasoning about actions. I will then provide a formalization of two
problem domains in which assignment numeracy yields a solution method. These domains are non-
mathematical (or, at least not overtly mathematical), and are intended to demonstrate a breadth of
applicability for Cassie’s quantitative reasoning.

7I am purposely downplaying an agent’s ability with nominal number assignments (e.g., “Bus number 3”) because
such assignments are meant to be treated simply as identifiers. As such, they are more properly a part of computational
theories of natural language.

140



5.3.1 Self-Action Enumeration

Actions are among the most important abstract entities that an agent can count. This point is made
with some humor in aPeanutscartoon by Charles Schultz. A girl named Lucy is holding a jump
rope and talking to a boy named Rerun:

• Lucy: See Rerun? It’s a jump rope. . . (she starts jumping) you twirl the rope, and you jump
up and down like this. . . then you count how many times you jump. . .

• Rerun: Why?

What this cartoon gets at is that it is utterly natural for children to enumerate repetitive actions,
but it is somewhat unnatural for them to wonder why they do so. Once a child can deploy such
enumerations in service of cardinality assignments, they can characterize the complex act (e.g.,
jumping rope) in terms of a number of iterations of a sub-act (e.g., times jumped over the rope).
This forms the basis of cardinal comparisons (e.g., “How many times can you jump rope?”) and
permits comparison of all “countable” actionsas if they were object collections.

An iterated sub-act will only be enumerable if it has certain “objectual” characteristics:

• Identification Criteria: A way to distinguish a performance of the sub-act from either a non-
performance of the sub-act or the performance of a different sub-act within the complex
act

• Individuation Criteria: A way to distinguish a single (token) performance of the sub-act
within the complex act (i.e., the sub-act must have a clear “boundary”).

There is evidence that children begin to individuate actions from a stream of continuous motion
well before they grasp the principles of counting (Wynn, 1996; Sharon and Wynn, 1998), so ap-
plying action enumeration is just a matter of transferring this skill to a self-actions. I will call this
task self-action enumeration (SAE).

In general, action enumeration involves an “actor” agent performing the actions and a “count-
ing” agent enumerating the actions. SAE is thus a special case of action enumeration in which
the actor agentis the counting agent. This fact makes self-action enumeration easier to implement
than general action enumeration. Since an agent will know when it is initiating an action at the
knowledge layer, it will be able to count initiated actions without any feedback from the external
world. An agent responsible for general action enumeration (or self-action enumeration ofcom-
pletedexternal actions) will require sensory feedback from its perception or proprioception. Such
feedback is a confirmation that the initiated act completed successfully.

Two distinct modes of self-action enumeration can be identified:conscious countingandpost-
action counting. In the conscious counting mode, the agent is informed that one of its actions is to
be countedbeforeit has performed the first such action. The impact of such a request is twofold:
(i) while on the job, the agent must augment its original plan for performing an act by adding an
additional counting step to its procedure, and (ii) if asked after the job, the agent must be able to
retrieve the the number of times an action was performed. Because the agent is keeping track of
the action count while it is performing the actions, it will also be able to answer questions of the
form “How many times did you do actionA?” while still on the job.

141



In the post-action counting mode, an agent is in the middle of performing a set of actions (or
has entirely completed the actions) when the request to enumerate is made. Since the agent has not
been attending to the number of actions it has performed, it must look for some “residue” of action
to serve as evidence that the action took place. This requires an agent that can reason about what
external effects or states in the environment will indicate that the action took place, or to otherwise
consult an internal episodic memory of the act.

5.3.1.1 Implementation

For my implementation, I have developed a version of the conscious counting mode of self-action
enumeration. I will reuse theCollection case-frame as given above. This time, the sortal is
the act to be consciously counted, and the quantity represents the collection of such acts. The
variable tracking this quantity isSAEResult (i.e., the self-action enumeration Result). This is a
special variable, so Cassie can only have one conscious-count active at any given time. This is a
cognitively plausible assumption.

A user indicates that Cassie should consciously count one of her complex actsa by asserting
ConsciousCounting(a)! . The ‘! ’ indicates that forward inference is performed immedi-
ately afterConsciousCounting(a) is asserted. Next, the command
perform ConsciousCountingSetup(a) must be invoked to have Cassie augment her orig-
inal plan with a counting step. This complex act is implemented as follows:

;;;To set up a conscious count of the agent action a, the designer
;;;has the agent perform ConsciousCountingSetup(a) before the job.
;;;The agent discards any plan p for achieving act a and replaces
;;;p with an augmented plan that sequentially increments the count
;;;of a and then performs the original p
all(a,p)({ConsciousCounting(a), ActPlan(a,p)} &=>

ActPlan(ConsciousCountingSetup(a),
snsequence(believe(Collection(SAEResult,NumSort(n0,a))),
snsequence(disbelieve(ActPlan(a,p)),

believe(ActPlan(a,snsequence(IncrementActionCount(a),p))))))).

Cassie first initializes the collectionSAEResult to zero performances ofa. She then temporarily
disbelieves the planp for performinga in favor of a count-augmented plan that includes the step
IncrementActionCount(a) . This complex act is implemented as follows:

;;;Plan for incrementing the conscious count of action a.
all(a,m,n)({Collection(SAEResult,NumSort(m,a)),Successor(n,m)} &=>

ActPlan(IncrementActionCount(a),
snsequence(disbelieve(Collection(SAEResult,NumSort(m,a))),

believe(Collection(SAEResult,NumSort(n,a)))))).

This is a straightforward update of the current number of performances ofa from m to its suc-
cessorn. The agent can be asked at any moment how many times it has performed acta:
Collection(SAEResult,?x)? . At some point, the user will want to tell the agent to stop its
conscious count ofa. This is done withStopConsciousCounting(a) :

;;;Plan for terminating the conscious count. The agent no longer
;;;believes that it is consciously counting act a. It discards
;;;the count-augmented procedure for plan p and restores p as the
;;;plan associated with act a.
all(a,p)({ConsciousCounting(a), ActPlan(a,snsequence(IncrementActionCount(a),p))} &=>

ActPlan(StopConsciousCounting(a),
snsequence(withsome(?n,

142



Collection(SAEResult,NumSort(?n,a)),
SayLine+("The result of SAE is ",?n,a),
SayLine("I could not perform SAE for the act.")),

snsequence(disbelieve(ConsciousCounting(a)),
snsequence(disbelieve(ActPlan(a,snsequence(IncrementActionCount(a),p))),

believe(ActPlan(a,p))))))).

This complex act first deduces the number of timesa has been performed and reports it to the user.
Cassie then disbelieves thata is still being consciously counted and reinstates the original planp
for performinga.

The user may still want to have the result of the conscious count ofa available after the count
has happened. If this value is no longer needed, the complex actClearSAEResult can be
called:
;;;Plan for clearing the conscious count for act a.
all(a,n)(Collection(SAEResult,NumSort(n,a)) =>

ActPlan(ClearSAEResult(a),
disbelieve(Collection(SAEResult,NumSort(n,a))))).

This act simply removes the quantity associated withSAEResult .

5.3.1.2 Sample Run

In this section, I present a sample run of conscious counting. I first give Cassie an act called
Greet() which consists of either saying “hi” or saying “hello” (the choice is made non-deterministically).
The setup is as follows:

: define-frame Greet(action)
Greet(x1) will be represented by {<action, Greet>, <nil, x1>}

CPU time : 0.00

: ActPlan(Greet(),do-one({Say("hi"),Say("hello")})).

wff226!: ActPlan(Greet(),do-one({Say(hello),Say(hi)}))

CPU time : 0.00

: ConsciousCounting(Greet())!

wff239!: ActPlan(ConsciousCountingSetup(Greet()),
snsequence(believe(Collection(SAEResult,NumSort(n0,Greet()))),
snsequence(disbelieve(ActPlan(Greet(),do-one({Say(hello),Say(hi)}))),

believe(ActPlan(Greet(),
snsequence(IncrementActionCount(Greet()),

do-one({Say(hello),Say(hi)})))))))
wff227!: ConsciousCounting(Greet())
wff226!: ActPlan(Greet(),do-one({Say(hello),Say(hi)}))

CPU time : 0.01

: perform ConsciousCountingSetup(Greet())

CPU time : 0.08

At this point, Cassie has adopted a count-incremented plan for the performance ofGreet() . We
can verify that the current count is initialized to zero as follows:

143



: Collection(SAEResult,?x)?

wff89!: Collection(SAEResult,NumSort(n0,Greet()))

CPU time : 0.00

Now we have Cassie performGreet() a few times and check with Cassie how far her con-
scious count has gotten:

: perform Greet()
hi

CPU time : 0.05

: perform Greet()
hello

CPU time : 0.09

: Collection(SAEResult,?x)?

wff137!: Collection(SAEResult,NumSort(n2,Greet()))

CPU time : 0.00

She correctly answers that she is up to two performances ofGreet() . Despite this interruption,
Cassie can continue with her conscious counting:

: perform Greet()
hi

CPU time : 0.07

: perform Greet()
hi

CPU time : 0.07

: perform Greet()
hello

CPU time : 0.07

: Collection(SAEResult,?x)?

wff319!: Collection(SAEResult,NumSort(n5,Greet()))

At this point we can stop the conscious count ofGreet() and clear theSAEResult :

: perform StopConsciousCounting(Greet())
The result of SAE is n5 m81

CPU time : 0.05

: perform ClearSAEResult(Greet())

CPU time : 0.03

144



: Collection(SAEResult,?x)?

CPU time : 0.00

5.3.2 Ordinal Assignment to Self-Action

Ordering is a fundamental mechanism behind the temporal demarcation of events. An agent must
be able to act and reasonin time andwith time (i.e., with temporal knowledge). Some problem-
atic aspects of temporal reasoning are discussed by Ismail and Shapiro (2000). The problem of
temporal reasoning is extremely important in agent design. Large logical frameworks have been
developed solely to address temporal reasoning (Shanahan, 1999).

A numerate agent has the ability to tag sequential actions with natural numbers. Such ordinal
number assignments impose the ordering of the natural numbers onto the ordering of actions. This
approach avoids a “system clock” timestamp for actions, which is itself an ordinal mapping made
to a global (and perhaps less cognitively plausible) set of numbers. We are after an agent that
knows what it did first, second, and third, not one that knows what it did at noon, 12:15, and 12:30.
Indeed, the latter ability can easily be added if the agent makes a mapping from the actions to
global time. As such, the ability to tag actions with numbersis a model of time. Given any pair
of actions, the before-after distinction can be made simply by applying the less than-greater than
comparison on the ordinals assigned to those actions.

In my SNePS implementation of ordinal assignment to actions, the user must use the
OrderedSnsequence instead of the built-in SNeRE control actsnsequence when the ordi-
nal tagging of actions is desired.

;;;An OrderedSnsequence of two actions. If a is primitive then tag it
;;;with the next available ordinal, otherwise, if a is complex, then
;;;just perform a. Next, check if b is primitive. If it is, then
;;;check if a was primitive (i.e., check if an ordinal was used up on
;;;a), if it was then give b the next available ordinal p, otherwise
;;;give b the ordinal n. If b is complex, just perform b.
all(a,b,m,n,p)({Successor(n,m),Successor(p,n),

OrdinalNumberReached(m),OrderableAct(a),
OrderableAct(b)} &=>

ActPlan(OrderedSnsequence(a,b),
snsequence(snif({if(PrimitiveAct(a),

snsequence(a,
snsequence(believe(OrdinalPosition(a,m)),
snsequence(disbelieve(OrdinalNumberReached(m)),

believe(OrdinalNumberReached(n)))))),
else(a)}),

snif({if(PrimitiveAct(b),
snsequence(b,
snif({if(PrimitiveAct(a),

snsequence(believe(OrdinalPosition(b,n)),
snsequence(disbelieve(OrdinalNumberReached(n)),

believe(OrdinalNumberReached(p))))),
else(snsequence(believe(OrdinalPosition(b,m)),

snsequence(disbelieve(OrdinalNumberReached(m)),
believe(OrdinalNumberReached(n)))))}))),

else(b)})))}).

145



This plan handles the four separate ways in which a designer might sequence two acts: (i) a prim-
itive followed by a primitive, (ii) a primitive followed by a complex, (iii) a complex followed by a
primitive, and (iv) a complex followed by a complex.

Ordinal assignments are stored in theOrdinalPosition predicate. The semantics of
OrdinalPosition(a,n) is that acta is thenth (primitive) act performed. This allows for
two types of after-the-job questions:

• Whatquestions. For example, “What is the third act you performed?” is equivalent to the
SNePSLOGOrdinalPosition(?x,3)?

• Whenquestions. For example, “When did you say ‘Albert’?” is equivalent to the SNePSLOG
OrdinalPosition(say(‘‘Albert’’),?x)?

Ordinals are only assigned to primitive actions and not to SNeRE primitive acts or complex
acts. However, the possibility of having an agent correctly respond to ordinal-number questions at
different scales of action complexity is quite intriguing. For one thing, humans will usually respond
to such questions at the action complexity level specified by the context of discourse. Thus, the
question “What is the first thing you did this morning?” might be answered by either “I opened my
eyes” or “I drove to school” with equal validity. However, the question “What did you do before
going to class?” is better answered by “I drove to school” than by “I opened my eyes”. This is
because the act of driving to school and the act of going to class are both at roughly the same level
of complexity. The problem is how to correctly assign an ordinal once the complexity level of
the action is known. The matter is further complicated for a SNeRE-based agent, since primitive
actions can be “factored” into different groupings (by different designers) to achieve effectively
the same complex act.

I believe that there are two solutions to the problem of assigning ordinals at different granulari-
ties of action complexity. The first is to have the agent give the ordinal position of an action relative
to some other action (Rapaport, personal communication). Thus, an agent might say “I opened my
eyes first, relative to getting out of bed” and might say “I drove to school first, relative to going to
class”. This solution introduces a new problem. The agent must either be given the granularity of
action complexity in the question (e.g., “What is first thing you did this morning, relative toX?”),
or else must figure out the granularity from context (this ability, by itself, might make for a long
research project).

Another solution is to saddle the designer with the burden of deciding what actions should
receive ordinal assignments. The designer and agent are in a design partnership, and this may be a
good place for the designer to step in. There are two fundamental choices to be made in the design
of any SNeRE-based agent:

1. Which agent actions should be primitive?

2. How should agent actions be grouped as complex actions?

The first question is both philosophical (Baier, 1971) and practical. Primitive actions in SNePS
agents are written in Lisp, stored at the PML of GLAIR, and form the building blocks of all

146



complex actions available to an agent. Because all agent activities can be decomposed into a
sequence of performed primitive actions, it makes sense to form an ordinal sequence of these. This
sequence will give the agent access to the progression of its most basic functions. Our current
implementation handles the formation of the primitive action ordinal sequence.

The second question forces the designer to decide which groupings of primitive actions (and
groupings of mixtures of primitive and complex actions) should be givenActPlan s. The designer
must make an ontological commitment as to which groupings of primitive actions are themselves
worthy of being called actions. I believe that this level of agent activity, namely, the level of the
ActPlan , also deserves an ordinal sequence. TheActPlan thus becomes ana priori contract
between the designer and agent. When a designer writesActPlan(a,p) in an agent’s source
code, they are saying that the plan for performing acta is p andthat acta is worth ordering.

Another issue, closely related to the ordinal assignment problem, is how the agent will linguis-
tically relate two complex actions when answering a temporal question. Given two complex acts,
a andb, with fa being the ordinal of the first primitive act ofa (possibly after decomposition of
the first complex act ofa), fb being the ordinal of the first primitive act ofb, andla andlb being
the ordinals of the last primitive acts ofa andb respectively, we have six possible orientations of
the two complex acts. Associated with each orientation is a different linguistic description relating
the events:

Primitive Act Structure Linguistic Description
la≤ fb a is beforeb.
lb≤ fa a is afterb.
fa≤ fb≤ la a begins beforeb begins

and ends afterb begins.
fb≤ fa≤ lb b begins beforea begins

and ends aftera begins.
fa≤ fb andlb≤ la b happens duringa
fb≤ fa andla≤ lb a happens duringb

With the last two cases, the use of word “during” does not suggest the presence or absence
of a causal link betweena andb. If a speaker wishes to indicate the presence of such a causal
connection, they might say “I was doinga bydoingb”, whereas, if the speaker wanted to indicate
the absence of a causal connection, they might say “I was doinga whiledoingb”.

5.3.3 The Jail-Sentence Problem

An agent with assignment numeracy can also solve real-world problems in which quantitative
information is used to make a qualitative decision. An interesting class of such problems arises
when the ordinal structure of the natural numbers (and the corresponding ordinal relation “>”)
is mapped to a qualitative domain. Consider a situation in which an agent is presented with the
following information:

• The jail sentence for theft is 1 year in jail.

147



• The jail sentence for murder is 50 years in jail.

• The jail sentence forblicking is 25 years in jail.

Here, “blicking” represents an activity which is unknown to the agent. Suppose that the agent
is asked what it knows about blicking. Two answers seem immediately plausible: (1) blicking
is a crime, and (2) blicking is worse than theft but not as bad as murder. An agent might infer
(1) from contextual information (this is a problem involving crimes, such as theft and murder)
or background knowledge (only crimes receive jail sentences). But how might an agent come to
believe conclusion (2)? Where did the qualitative relations “worse-than” and “not-as-bad-as” come
from?

I suggest that an agent comes to such a conclusion because it has a rule in its knowledge base
that “maps” the ordering of the natural numbers (along with the ’>’ relation that orders them) onto
the domain of crimes (along with the ’worse-than’ relation). In other words, the agent has access
to the rule: “The worse the crime, the longer the jail sentence”. This rule may be formalized as
follows:

∀x,y,m,n((Crime(x)∧Crime(y)∧JailSentence(x,m)∧JailSentence(y,n)∧m> n)⊃
WorseThan(x,y))

In general, given a unary predicateP that fixesx andy in some domain∆, a binary relationL that
links members of∆ with quantities, a binary quantitative ordering relationQuant, and a binary
“qualitative” relationQual, a schema for ordinal-mapping rules can be expressed as:

∀x,y,m,n((P(x)∧P(y)∧L(x,m)∧L(y,n)∧Quant(m,n))⊃Qual(x,y))

Such rules expand the meaning of qualitative relations by imposing the structure of the ordinals be-
tween qualitative relation parameters. How ordinal-mapping rules end up in an agent’s knowledge-
base is another matter. In the ideal case, the agent is simply given the rule; this is our current
simplifying assumption. More realistically, the agent will have to induce the generalization from
several examples. To implement ordinal mapping onto qualitative domains, Cassie will make use
of theGreaterThan relation that orders Cassie’s numerons.

5.3.4 The Breakfast-Always-Served Problem

Relational information is packed away in the meanings of terms in a natural-language. Consider
the English word ‘breakfast’ as used in an expression one might find at a restaurant: “Breakfast
always served”. To a human reasoner, it is immediately clear what the sign means, namely, that
the sort of food one would have in the morning is served all day. However, as immediately obvious
as this might appear, it is a reading that requires some inference. The word ‘breakfast’, like many
words in English, is polysemous.8 ‘Breakfast’ can mean either (1) the first meal of the day or (2)

8I am grateful to Len Talmy (personal communication) for this example.

148



the type of food usually served for the first meal of the day. Both meanings yield a separate reading
of “Breakfast always served”. Using (1), we obtain “The first meal of the day is always served”,
and using (2), we obtain the intended reading.

How would a computational cognitive agent reject the first reading? This is a problem of
word-sense disambiguation. A listener needs some method of picking out an intended sense of
a polysemous word. In this particular example, we are dealing with the ordinal assignment “first
meal of the day”. By reasoning about the ordinal structure of “meals of the day” and about experi-
ences at a restaurant where someone is served their second meal of the day, Cassie can detect that
there is a problem with the reading generated by (1).

For the implementation, suppose thePancake Houseis a restaurant with a sign reading “Break-
fast always served”. Cassie’s KB might include the following:

• wff1: Breakfast, lunch, and dinner are meals.

• wff2: An agent can eat one meal in one location at one time.

• wff4: Breakfast is the first meal of the day.

• wff7: A meal is an event.

• wff8: Events can be ordered.

• wff9: If an event is nth in an order, it has ordinal number n (with respect to the other events
in the order)

• wff16: If two events are in the same ordinal position in the same ordering, they are the same
event.

• wff17: If two events do not occur at the same time, they are not the same event.

• wff26: B1 is a breakfast.

• wff28: B2 is a breakfast.

• wff33: Albert ate B1 at 8am 2/6/06 at home.

• wff37: Albert ate B2 at 3pm 2/6/06 at the pancake house.

From this information, Cassie’s SNeBR subsystem can detect an inconsistency:

A contradiction was detected within context default-defaultct.

The contradiction involves the newly derived proposition:

wff38: EquivEquiv({B2,B1})

{<der,{wff1,wff4,wff7,wff8,wff9,wff16,wff26,wff28},{{wff17,wff33,wff37}}>}

and the previously existing proposition:

wff39: ˜EquivEquiv({B2,B1})

{<der,{wff17,wff33,wff37},{{wff1,wff4,wff7,wff8,wff9,wff16,wff26,wff28}}>}

The B1 and B2 that were served must be breakfastquatype of food, because, when considered
as breakfast-the-event, a contradiction can be derived.

149



5.4 A Model of Count-Addition Strategy Change

I claim that embodied enumeration, discussed earlier in this chapter, is a gateway to the rest of em-
bodied arithmetic. In the previous chapter, I made a similar claim about count-arithmetic routines .
The earliest of these arithmetic techniques is count-addition. Interestingly, count-addition usually
is initially employed as an embodied external routine and only later becomes an abstract internal
routine. In this way, count-addition forms a bridge between embodied arithmetic and abstract ari-
thmetic. I will address a more unified view of the “two arithmetics” in the next chapter, but here
I wish to sketch a more elaborate model of count-addition than the one presented in the previous
chapter.

In this section, I will take ‘count-addition’ to refer to a class of strategies that invoke counting
as the primary method for computing the sum of two positive natural numbers. Count-addition
manifests itself as a progression of successively more efficient routines performed over succes-
sively more abstract representations of the counted objects. As such, count-addition should not be
thought of as a static algorithm, but rather as a set of improving strategies traversed by a cognitive
agent.

5.4.1 Strategies

Childrens’ count-addition strategies have been well studied by cognitive scientists. In particular,
researchers have focused on transitions between strategies (Fuson, 1982; Secada, Fuson, and Hall,
1983; Butterworth et al., 2001) and the spontaneous creation of novel efficient strategies from the
modification of existing routines (Groen and Resnick, 1977; Neches, 1987; Jones and VanLehn,
1994). The variety of count-addition strategies can be seen as resulting from the early position
of count-addition in a child’s mathematical development. The child is leaving behind a domain
of concrete physical objects and moving to the more abstract domain of mental arithmetic, and
still, it is precisely acting on concrete physical objects (e.g., fingers or blocks) that provides some
semantics for the abstract operations of arithmetic. The demands of arithmetic force a cognitive
agent to master an efficient counting routine.

I will focus on three strategies: COUNT-ALL (CA), COUNT-ON (CO), and COUNT-ON-
FROM-GREATER (COF >).9 These strategies are described in the next section.

When using theCAstrategy for computingm+n, the agent forms a collection ofmobjects and
a collection ofn objects (in the variation ofCApresented by Neches (1987), these collections must
be counted out initially). Both collections are assumed to be perceptually available and somehow
separated in the perceptual field. The agent counts the first collection by assigning natural numbers
to each object in the first collection: 1,2, . . . ,m. The agent then counts the objects in the second
collection m+ 1,m+ 2, . . . ,m+ n. The agent interprets the final number assigned as the sum.
AlthoughCA is an early strategy, it relies on several prerequisite skills: object recognition (or, at

9This is the terminology of Fuson (1982) and Butterworth et al. (2001). Elsewhere in the literature (Neches, 1987;
Jones and VanLehn, 1994) these strategies have been called SUM, FIRST, and MIN, respectively, but these names do
not emphasize the centrality of the counting act in the addition.

150



the very least object segmentation), the ability to mark off items in the perceptual field as they are
counted, and the ability to coordinate the current total with the progression through the perceptual
objects. Also, it is assumed that the agent can use its embodiment to help attend to its position in
the counting process (e.g., by pointing at the physical objects or turning its gaze).

TheCO strategy for computingm+ n is to say the numberm and then count on through the
second collection of objectsm+ 1,m+ 2, . . . ,m+ n. This reduces the number of steps fromCA
and, since sayingm becomes a shorthand for counting 1,2, . . . ,m, removes the need to attend to
the first object collection (or to even have one present). When using this strategy, it is assumed that
the agent has a mechanism of tracking the second addendn (e.g., by raising fingers or in memory)
to know when the count-addition is complete.

TheCOF > strategy for computingm+n is to first comparemandn and to apply theCOstrat-
egy from the larger of the two:max(m,n),max(m,n)+1, . . . ,m+n. This produces an improvement
on theCO strategy proportional to the absolute difference of the addends|m−n|.

The shift from one of these to another can take place independently of the type of target being
counted. However, there is a tendency to shift from concrete objects towards abstract objects while
the shift fromCA to COF > is taking place.

There are several variations on intermediate strategies discussed in the literature (see Jones and
VanLehn (1994)) and none of the strategy shifts are “all-or-nothing” (i.e., children will sometimes
adopt a less efficient strategy even after discovering a more efficient one). What is remarkable
about these strategy shifts is that they occur in very young children and in a very uniform, natural,
and unconscious manner. Furthermore, the order of strategy change, fromCA to CO to COF >,
is stable across subjects. The psychological data suggest thatCO andCO> are “spontaneously”
invented by the agent without formal instruction (Neches, 1987; Groen and Resnick, 1977).

5.4.2 Computational Models

Strategy change is a powerful cognitive tool and, as such, computational models of early mathe-
matical cognition should be able to account for these transitions. This account is bound to vary
across computational cognitive architectures. The seemingly spontaneous character of the changes
in strategy can be conveyed computationally in terms of emergent phenomena. For example, given
a computational agentA capable ofCO, there must be properties ofA from which theCOF > strat-
egy emerges. Furthermore these properties should not beCOF > or a simple restatement thereof,
but should be more fundamental.

Neches (1987) describes a production-system model of count-addition strategy change using
a technique called Heuristic Procedure Modification (HPM). The core idea is to enhance perfor-
mance by detecting patterns in the trace of existing procedures and then transforming the pro-
cedure. This pattern matching involves determining the conditions for the application of certain
heuristics. When these conditions are found to hold, modifications are made to the existing proce-
dure, including: retrieving an item rather than recomputing it, eliminating the computation of an
output that no other procedure uses as an input, and trying to use a method that involves less effort
when operating on the same input. It is clear that in this model the spontaneous emergence arises

151



from the application of these heuristics (170).
Jones and VanLehn (1994) also present a production system model capable of modeling count-

addition strategy change. It is called General Inductive Problem Solver (GIPS). GIPS combines a
general problem solving algorithm with a probabilistic learning algorithm. Using both of these al-
gorithms, GIPS is capable of symbol-level learning, which does not increase the deductive closure
of the system’s knowledge, and knowledge-level learning, which involves a change to the knowl-
edge base and deductive capacity (15). The main finding of the work is that children do not invent
COstrategies in response to a gap in knowledge (i.e., an impasse), but as a gradual replacement to
earlier strategies. Hence this is also a model that stresses emergence over explicit instruction.

Both of these models are successful in that they do what the authors set out to do. However,
the authors background issues of embodiment and abstraction change in the target objects (e.g., in
both models, an external object, an internalized prototype, a finger, and a number-word would just
be treated in more or less the same way). Also, both models are applicable to production system
theories of acting and development. Although a popular paradigm, there are other computational
paradigms that are sufficient for the modeling task and can expose different issues in the strategy
shift.

5.4.3 Abstraction of Counting Targets

Steffe and colleagues (1983) have classified childrens’ counting routines according to the kind of
target items being counted. Ordered from most concrete to most abstract these targets are: percep-
tual, figural, motoric, verbal, and abstract. Any of these target types can be deployed in conjunction
with any one of the count-addition strategies. This creates a matrix of possible strategy-target pairs
to model (e.g., aCA strategy over figural items, aCOF > strategy over abstract items). However
the general tendency is to prefer more abstract representations as counting (and count-addition)
becomes more familiar.

As in other areas of cognitive development, the child’s progress in counting is marked
by decreasing dependence on perceptual material. The first step in that direction is the
ability to count figural representations of perceptual items (i.e., visualized images),
which, though presented in the context of the task, are not perceptually available at the
moment (36–37)

The perceptual-to-figural representation shift is highlighted here as an important first step. Each of
the target types can be represented using our implementation platform, but below it will suffice to
examine the differences between perceptual and figural target representations.

5.4.4 Commutativity, Comparison, and Cardinalities

Three significant aspects of the theCOF > strategy are its apparent reliance on the commutative
principle (i.e., thatm+ n = n+ m), the comparison step in the strategy, and the cardinal princi-
ple. The literature is mostly silent about the relationship between theCO to COF > transition and

152



an agent’s understanding the commutativity of addition. If commutativity did not hold, then the
COF > strategy would simply not work. There are two plausible situations regarding the agent’s
state at the time of transition: (1) the agent has not yet grasped the general principle of commuta-
tivity but has noticed an inferential stability of results for past count-additions involving the given
numbers, or (2) the agent has fully grasped the principle of commutativity for addition and is mak-
ing the initial comparison while conscious of addend order irrelevance. Cowan and Renton (1996)
have suggested that children’s application of addend-swapping strategies (such asCOF >) can
occur without explicit knowledge of commutativity. In such cases, the agent isobeyingcommuta-
tivity without understanding the general principle. Thus, because the shift toCOF > can happen
at a developmentally early age, it makes more sense to model an agent in situation (1).

The overall savings afforded by theCOF > strategy become more dramatic as the value|m−n|
increases. This “problem size effect” (Butterworth et al., 2001) is a good example of how an agent
may be sensitive to training examples. An agent is much less likely to realize a difference in the
count additions of 2+3 (3 steps) and 3+2 (2 steps) than in the count additions of 2+8 (8 steps) and
8+2 (2 steps). To become aware of this difference, an agent needs to be able to make comparisons
of more than just the addends.

The overhead cost of comparing the addends may be a road block to the transition between
the CO andCOF > strategy. An agent must either convince itself that the additional cost of
comparison is not significant compared to the steps saved inCOF >, or it must simply improve its
processing of comparison. But since the addends in count-addition may be represented at various
levels of abstraction (as described above), the latter may be more easily achieved if physical object
collections are present, allowing the agent to make a quicker quantity judgment. The presence of
this road block may suggest why the transition is not “all or nothing” as described above.

Fuson (1982) links the need for concrete object collections with a child only having a partial
understanding of cardinal principle. This indicates that the cardinal principle plays an important
role in the process of abstracting from concrete (object collection) addends. An agent can treat a
number as simultaneously representing a process (counting up to a number) and a concept (the size
of a collection) will have a more compact representation of the problem domain.

Before describing the strategy shifts, it is worth considering a list of desiderata for any such
computational model:

• New strategies should emerge from earlier strategies without explicit instruction and without
drastic changes in agent organization and representation.

• Strategy shifts should not require the explicit representation of commutativity.

• The cardinal principle should be represented when modeling theCO andCOF > strategies.

• A model should operate over representations at various levels of abstraction.

153



5.4.5 CA to CO

The plan for theCAstrategy applied tom+n can be expressed as a sequence of two counts. These
counts can take place over the abstract representations, but, following Fuson (1982), I model the
agent usingCA as not yet having mastered the cardinal principle and requiring object collections
to represent both addends. As such the entire process can be done with grounded quantities. This
essentially involves two embodied enumerations as described above.

If the agent is working with perceptual units, there is additional non-counting time taken for
object recognition, the arrangement of addends in the perceptual field, the sweep of attention across
the perceptual field, and the coordination of updating the current count and “marking” each target
object as having been counted. If the agent is working with figural units then some time might
be saved in object recognition (since the perceptual field will retrieve prototypes), but cannot save
much more of the non-counting time.

Thus, the move away fromCA is just a matter of saving time combined with acquiring the
cardinal principle. The cardinal principle can be represented by placing quantity arguments in
result positions of the evaluation frame:

Evaluation(Result(CountSum,b1,b2),b3)
Collection(b1,NumSort(n3,apple))
Collection(b2,NumSort(n2,apple))
Collection(b3,NumSort(n5,apple))

5.4.6 CO to COF >: Metacounting

An intuitive approach to theCO to CO> transition is to consider the number of steps each takes
(this was hinted at above). From the agent’s perspective this requires two abilities: (1) the ability
to count self-actions (SAE as given above) and (2) the ability to attend to two counts at once, the
count of targets and the “metacount” of the number of steps (counting actions).

Using SAE, Cassie metacounts the steps of count-addition. The transition can be made when
the agent notices that the number of steps corresponds to the second addend. Counting on from
m to n will take n steps. As with the commutative principle, the node representingn will play a
double-role, as the second argument to count-addition and as the result of the metacount.

Metacounting seems to bring up attentional issues that might lead to mistakes. The agent can
compensate for this in various ways. Fuson (1982) illustrates a “matching the count” technique
in which the second addend is tracked raising fingers as each number is reached, as well as an
auditory “double count” technique “eight, nine is one, ten is two, eleven is three, twelve is four,
thirteen is five” (74).

5.4.7 CO to COF >: Duration Estimation

Another plausible explanation for the transition is that the agent gets a sense of the different time
requirements form+n andn+m. By this I do not mean an agent using an explicit “stopwatch”,
but rather applying an internal (embodied) clock to estimate an act’s duration. Meck and Church
(1983) proposed an accumulator model that acts very much like such an internal clock. Ismail and
Shapiro (2001) used a similar “bodily feedback” approach to timekeeping in the context of SNePS.

154



The duration estimation method of transition fromCO to COF > is modeled in Cassie as
follows. A primitive acttimed-do is written that invokes a PML timer while the agent performs
an act. When the act is completed the internal timer returns a (real-valued) duration that is added
to the KL. As a base-node, the numerical value has no independent KL meaning, but maintains its
meaning at the PML (i.e., a bodily feeling of how long an act took).

All complex acts are performed via thedo-one SNeRE primitive act. By default, this function
nondeterministically selects between the plans for the given act. However, the user is free to rewrite
this primitive in order to revise this behavior. A more deliberativedo-oneis written to select plans
that the agent prefers. At the KL, Cassie has a rule that preference should be given for acts that
previously had a shorter duration.

Both the implementation oftimed-do and the deliberative re-implementation ofdo-one
can be found in the Appendix. Cassie embodies the desirable features of count-addition strat-
egy change model. Importantly, Cassie’s representation foregrounds the shift in the abstraction of
targets. This shift occurs in parallel with count-addition strategy change and has not been promi-
nently discussed in the relevant literature. Nevertheless, there are aspects of the model that could
be made more realistic. For example, there is nothing in the model to differentiate counting ob-
jects in the world (e.g., apples) from counting objects on the body (e.g., fingers). The familiar and
proprioceptive nature of finger-counting could also be modeled at the PML.

5.5 Summary

This chapter attempts to cover a lot of ground. The formalism of grounded quantities provides
a suitable representation for embodied applications. Such applications include: embodied enu-
meration, self-action enumeration, and ordinal assignment to self actions. The representations
developed are also sufficient in handling several commonsense reasoning tasks (e.g., the “break-
fast always served” problem and “the jail sentence” problem). Finally, I considered the transitions
in count-addition strategy within the larger context of the shift from embodied to abstract arithme-
tic. In the next chapter, I formalize the embodied and abstract aspects of the theory in an attempt
to present a unified picture of Cassie’s arithmetic.

155



Chapter 6

A Unified View of Arithmetic

The previous two chapters showed that an agent can perform an arithmetic act using either (1) an
abstract activity over a mental representation, or (2) a physical action over external objects, as well
as the perceptual representatives of external objects. The purpose was to show that both abstract
internal arithmetic and embodied external arithmetic can be understood computationally. How-
ever, the resulting picture is somewhat disunified. Abstract internal arithmetic proceeds without
sensory input (with “eyes and ears” closed) with the agent just sequencing counting routines in
the appropriate way. Embodied arithmetic is done “in the moment” and “in the world” with the
agent attending to what it perceives as it acts and expecting that the act will yield a configuration
of reality that can be perceived as the result.

Understanding either abstract internal arithmetic or embodied external arithmetic is a signif-
icant achievement for an agent. But, granting that a particular agent has grasped both domains,
the question becomes: is this enough? Is it enough for an agent to learn and understand both of
these domains without making the connection between the two? This comes down to a question of
degreeof understanding. An agent that can understand the connection between the embodied and
the abstract has more understanding than one that does not. For theorists like Lakoff and Núñez
(2000) however, understanding the source and target domains of a conceptual-metaphor mapping
is insufficient for a full understanding of the metaphor. Take for example the metaphor “love is
a journey”. Understanding the domain of human relationships and the domain of transportation
is not enough to understand that, in the metaphor, love plays a role in the human relationship do-
main similar to a journey in the transportation domain. This is a further observation that yields
deeper understanding. Moreover, the grounding metaphors of arithmetic should serve as atool for
an agent trying to learn abstract arithmetic. Thus, understanding the isomorphism between, say, a
collection of objects in an accumulation and a number in an addition is essential.

This chapter unifies and generalizes the results of the previous two chapters. I take a large
part of the philosophy of embodied mathematics seriously (Lakoff and Núñez, 2000, Chapter 16)
and simultaneously hold that arithmetic ability is multiply realizable (in particular, it is realiz-
able in a computational agent). Anyone holding both of these positions should be able to give
a functional analysis of embodied arithmetic and demonstrate how this analysis might yield an
appropriate agent implementation. If successful, this functional analysis should fill in some de-
tails that Lakoff and Ńuñez (2000) leave underspecified. Although they specify the source and

156



target domains for grounding metaphor mappings, and although they describe the origin of the
metaphors in sensorimotor actions and explain why the arithmetic procedures in both domains are
effective (i.e., inference preserving across domains), they do not directly say how the agent makes
the metaphoric mappingthroughaction. I believe it is not enough to say that there is a mapping,
but the mapping must be analyzed “as it is happening”.

The analysis should be general enough to apply to any suitable computational implementation,
not just a SNePS implementation. Thus, I will first review what I mean by the multiple realizability
of arithmetic.

6.1 Multiple Realization

What does an implementation of arithmetic look like? What are the general characteristics ofany
such implementation? Recalling the discussion of multiple realizability in§3.1.1, implementa-
tion is a three-place relation:I is an implementation of an abstractionA in a mediumM. This
construal of implementation yields a two-step process for developing computational theories of
human cognition: (1) abstraction from the activities and representations associated with the human
implementation, and (2) (re)implementation of the abstraction in a computational medium. The
relevant picture for arithmetic is as follows:

Arithmetic

implementation

$$I
IIIIIIIIIIIIIIIIIII

Human Arithmetic

abstraction

::uuuuuuuuuuuuuuuuuuuu
SNePS Arithmetic

A crucial feature of the human case is that humans are able to generalize from embodied exter-
nal arithmetic into abstract internal arithmetic. In this chapter, I attempt to show that the process
of generalizing from embodied external arithmetic into abstract internal arithmetic is itself multi-
ply realizable. This generalizability is given by a theory of human mathematical cognition. The
abstraction and implementation of this generalizability is described by this diagram:

157



Abstract Internal Arithmetic

Embodied External Arithmetic

generalizes−to

OO

implementation

((QQQQQQQQQQQQQQQQQQQQQQQQQQQQ

Human Abstract Internal Arithmetic

abstraction

66mmmmmmmmmmmmmmmmmmmmmmmmmmmm
SNePS Arithmetic

Human Embodied External Arithmetic

generalizes−to

OO

SNePS Embodied External Arithmetic

generalizes−to

OO

The abstraction step is to consider how a human cognitive agent generalizes from embodied expe-
rience. This invariably will include some notion of “mapping” representations from the embodied
domain to the abstract domain. The implementation step requires the designer to computationally
express a theory of how the mapping takes place. The implementation of this abstracted feature
is influenced in part by the outlook that the designer takes towards agent design. Vera and Simon
(1993) point out that embodied situated action can be given a suitable symbolic interpretation even
though several researchers have claimed that symbolic AI approaches are not suitable for this task.
I am sympathetic to this view, and I see noprima facieobstacle to using a fully-symbolic system
in the analysis. This is certainly a biased view, but, at this point in computational math cognition
research, I believe it is important to develop computational agents and to observe their strengths
and weaknesses. Hopefully, such agents will “wear the designer’s bias on their sleeves”. Impor-
tantly, if someone is inclined to develop a non-symbolic (or partially symbolic) implementation, it
will be an empirical matter to weigh the pros and cons of each implementation.

6.2 The Abstraction of Arithmetic: A Functional Analysis

The task at hand is to make precise how embodied external arithmetic becomes internally mean-
ingful for a particular agent. This is done in the context of a fully-symbolic system from an
agent-centric perspective.

6.2.1 Agent

First, we need a logical characterization of an embodied agent. The essential feature that gives an
agent its “agency” is a capacity to initiate acts. As I have mentioned in previous chapters, acts are
important ontologically (see§4.1.1.2) and cognitively (see§3.5.4). An agent is embodied insofar
as these acts are initiated within a specific physical framework of sensory apparatus, effectors, and
representation mechanisms. For the purposes of this logical characterization, I will reduce acting

158



to the notion of computing a mathematical function, and reduce all aspects of the embodiment to
sets of symbols.

Definition 1. An embodied agentA is a three-tuple〈KL ,PML ,SAL〉 such that:

• KL is an ordered pair〈KLSYM ,KLFUNC〉. In SNePS,KLSYM includes a set of symbols
denoting beliefs, acts, and policies.

• PML is a seven-tuple
〈PMLSYM ,PMLFUNCk,PMLFUNCs,PMLFUNCe,PERCEPTS,MODALITIES ,ALIGN〉.

• SAL is a four-tuple〈SENSORSYM,EFFECTORSYM ,SALFUNCs,SALFUNCe〉.

• KLSYM , PMLSYM , SENSORSYM, andEFFECTORSYM are mutually disjoint sets of
symbols.

• KLFUNC is a set of partial functions fromKLSYM to PMLSYM . In SNePS,KLFUNC is
a set of primitive acts.

• PMLFUNCk is a set of partial functions fromPMLSYM toKLSYM . In SNePS,PMLFUNCk

is a set of functions performed by invoking thetell-ask interface from Cassie’s PML
(i.e., unconscious inferences).

• PMLFUNCs is a set of partial functions fromPMLSYM to SENSORSYM. In SNePS,
PMLFUNCs is a set of Lisp functions responsible for initiating active perception (e.g., look-
ing, listening).

• PMLFUNCe is a set of partial functions fromPMLSYM to EFFECTORSYM . In SNePS,
PMLFUNCe is a set of Lisp functions responsible for invoking the activation of effectors
(e.g., grasping, moving, pushing).

• SALFUNCs is a set of partial functions fromSENSORSYM to PMLSYM . In SNePS,
SALFUNCs is a set of hardware-specific functions responsible for sensation or passive per-
ception (e.g., seeing, hearing).

• SALFUNCe is a set of partial functions fromEFFECTORSYM to PMLSYM . In SNePS,
SALFUNCe is a set of hardware-specific functions responsible for proprioception or other
forms of bodily feedback resulting from action.

• PERCEPTSis a binary relation onPMLSYM . I.e., PERCEPTS⊂ PMLSYM × PML-
SYM

• MODALITIES ⊂ PMLSYM . In SNePS,MODALITIES is a set of distinct “channels” of
sensory information available to an agent.

159



• ALIGN is a partial function fromKLSYM to PERCEPTS× MODALITIES . In SNePS,
ALIGN is the alignment table; a representation of the perceived entities an agent is actively
attending to.

Figure 6.1 provides an illustration of the functional relationships between the sets of symbols.
The circles in the figure represent the symbol sets and the block arrows represent the sets of partial

KLSYM

PMLSYM

SENSORSYM EFFECTORSYM

MODALITIES

(x,y)

KLFUNC
PMLFUNC k

PMLFUNC s PMLFUNC e

SALFUNC s SALFUNC e

   ALIGN

Figure 6.1: A functional description of GLAIR.

functions. This is a model of GLAIR agents stripped of the typical interpretations of the layers.1

What remains is just the functional relationship of the layers to one another. GLAIR suggests a
methodological dualism for the agent designer in which the “mind” is associated with the KL and
the “body” is associated with the union of all of the PML layers and the SAL. However, insofar as
these are just sets of symbols, partial functions, and relations, a monist interpretation is possible
by considering all of these in a single set. In fact, the number of “layers” is also generalizable.

6.2.2 Embodied Experience

I now examine the logical structure of certain embodied acts that serve as the originating expe-
riences for numeracy. The first problem we must face is how to describe what it means for an

1For example, there is no distinction made between KL symbols denoting acts, propositions, or policies. There is
no interpretation of attached primitive actions.

160



embodied agent to perform an act on external objects. Is our logical language supposed to cap-
ture the subjective experience or the objective fact? As I stated above, I want to perform this
analysis from the perspective of an agent. This entails that some aspect of the originating experi-
ences may be vastly different between subjects and perhaps even prone to error, but, nevertheless,
such experiences are part of an agent’s history. It is the totality of this history that determines the
abstractability of embodied arithmetic.

First we must describe what an embodied act is for a particular agent. I distinguish between
two species of embodied acts, affecting acts and sensing acts:

Definition 2. Let A = 〈KL ,PML ,SAL〉 be an embodied agent. Leta∈ KLSYM denoteα for A.
Thenα is anembodied affecting actfor A if and only if:

• ∃ f ,g( f ∈ KLFUNC∧g∈ PMLFUNCe∧g( f (a)) ∈ EFFECTORSYM ).

andα is anembodied sensing actfor A if and only if:

• ∃ f ,g( f ∈ KLFUNC∧g∈ PMLFUNCs∧g( f (a)) ∈ SENSORSYM).

α is anembodied actfor A if and only if α is an embodied affecting act or an embodied sensing
act (but not both).

The agent isaware of the embodied actα if and only if, in addition toα being either an
embodied affecting act or an embodied sensing act, the following condition also holds:

• ∃p,h, i(p∈ SENSORSYM∧h∈ SALFUNCs∧ i ∈ PMLFUNCk∧ i(h(p)) ∈ KLSYM )

The agentperforms the embodied actα if it computesg( f (a)) and isaware of its performance
of the embodied actα if it also computesi(h(g( f (a)))).

α does not denote any symbol in the object language (i.e., it is not a member of any of the sets
specified in Figure 6.1). Ratherα is a metalanguage symbol (for the purposes of this functional
analysis) that denotes the computation ofi(h(g( f (a)))) by agentA. The performance of an actis
the computation of a function.

The performance of an act for an embodied agent requires a functional “path” through the
embodiment. A distinction is made between acts in which the agent is affecting the external world
and those in which the agent is sensing the external world. The performance of an embodied act
requires only a “downward” functional path through the layers (i.e., computingg( f (a))) while
the awareness condition requires a “downward” path, to the invoke the body to perform an act,
followed by an “upward” functional path, to sense that the act was performed (i.e., computing
i(h(g( f (a))))). Hexmoor et al. (1993) call the “downward” functional path the “control flow”, and
the upward functional path the “data flow”.

Despite this elaboration, we are still missing a fundamental feature of embodied action, namely,
the set of external objects that the agent affects and senses. Strictly speaking, an agent’s embodied
action operates over internalized representations of external objects. As Kant might say, these are
phenomenal objects, and there remains a gap between an internalization that has been “filtered”

161



through our perception and the noumenal object qua constituent of reality. However, a theory of
mathematical cognition is essentially unaffected by how we interpret its objects. For the agent,
there is no distinction between external embodied experience and what we might callinternal
embodied experience. Both involve operations over phenomenal objects. Whether those objects
are simulations or constituents of reality (i.e., noumenal) will not affect the agent’s understanding.
There are obviously more things to say about the nature of phenomenal objects, but for now, let us
assume that they are internalized symbols that result from embodied sensing acts.

Before formalizing a phenomenal object, there is a small notational issue to address. One prob-
lem concerning the set-of-symbols formalization of the layers of GLAIR is that sets are statically
defined. Often, as a result of perception, Cassie’s PML will contain new items. Thus, a proper for-
malization of the PML should include time-indexed sets such asPMLSYM t0 andPMLSYM t1 for
representing the contents of the PML at timet0 and at timet1 respectively. However, I will avoid
this notation and assume that a set likePMLSYM can grow or shrink in size without changing its
name. Importantly, this allows us to include the addition of a symbol toPMLSYM as part of the
definition for phenomenal object.

Definition 3. ω is a phenomenal objectfor an embodied agentA if and only if, as a result of
performing some embodied sensing act,ω ∈ PMLSYM ∧∃p(ω = i(p)∧ i ∈ PMLFUNCk].

Now it is possible to broadly characterize the token instances of the originating experience. I
will distinguish particular experiences using the subscriptp.

Definition 4. A particular embodied experienceEp is three-tuple〈A,T,α(Ω)〉 whereA is an
embodied agent,α is an act (expressed as a function of arityn) performed byA on a set of phe-
nomenal objectsΩ = {ω1,ω2, . . . ,ωn} (such thatωi corresponds to argumenti for α) over time
intervalT.

To be used in a meaningful way for arithmetic, a particular embodied experience must corre-
spond to one of the source domains of grounding metaphors (see Lakoff and Núñez (2000)); i.e.,α
must be an instance of object collection, object construction, measurement, or motion along a path.
Furthermore, the elements ofΩ should not only be phenomenal objects, but should correspond to
grounded objects in the sense developed in the last chapter. As such, they should be able to serve
as grounded quantities in the formal sense developed in§5.1. Functionally, a grounded object may
be described as follows:

Definition 5. A grounded object o is a four-tuple〈b,a,v,m〉 such thatb ∈ KLSYM , 〈a,v〉 ∈
PERCEPTS, m∈MODALITIES , andALIGN(b) = 〈〈a,v〉,m〉.

We now need a way to represent how an agent forms classes of similar embodied experiences
that it can generalize from. I will use the subscriptg to indicate that an experience is generalized.
This can be broadly characterized as follows:

Definition 6. A generalized embodied experienceEg is a three-tuple〈A,EP,G〉 such thatA is an
embodied agent,EP is a set of particular embodied experiences andG is an equivalence relation
onEP.

162



The equivalence classes ofG will serve as thetypesof experiences that correspond to the
source domains of grounding metaphors. What is abstracted away is the time interval in which
the experienceEP took place and the particular objects involved in those experiences (as well as
the sortal predicates applied in each particular experience). This gives us some indication of what
G should look like. It should, for example, relate two particular experiences if the acts involved
enumerations that resulted in the same cardinality using the same sensorimotor structure. This can
also be the basis of a general “algorithm forα” (i.e., an act type that is effective for all objects).2

6.2.3 From Embodied Experience to Abstract Facts

In the previous section, I traced a functional path over the gap between the noumenal objects of
the real world and the phenomenal objects in an agent’s perception. Phenomenal objects make
external data available for internal manipulation. Acting on phenomenal objects yields a set of
particular experiences that are further abstracted into generalized embodied experience. Now, to
form a unified theory, we have to cross a different gap: how do generalized embodied experiences
become associated with arithmetic facts?

In the framework of this chapter, we are looking for a certain “bridge” function:

• Let EG= {Eg1,Eg2, . . . ,Egk} be a set of generalized embodied experiences.

• Let P⊂ KLSYM be a set of propositions representing arithmetic facts.

• Let BRIDGEbe a function fromEG to P.

The whole process is illustrated in Figure 6.2. The leftmost boxes in the figure represent particular
embodied experiences. These are generalized into the equivalence classes ofG shown in the center
of the figure. These generalized experiences are abstracted into “3 + 2” byBRIDGE.

It is clear from the figure thatBRIDGE is not a one-to-one function, because different gen-
eralized experiences can map to the same arithmetic fact.BRIDGE is also not an onto function.
This is because some arithmetic facts (e.g.,−3×−3 = 9) do not have a clear embodied correlate
and thus are not mapped to by any generalized embodied experience. This is because arithmetic
facts such as−3×−3 = 9 are not simply the result of abstracting from the grounding metaphors
(represented in my theory asEG, the domain of theBRIDGE function), but rather the result of ap-
plying conceptual blends and linking-metaphors to the originating experiences (Lakoff and Núñez,
2000). Thus, the range ofBRIDGE represents the subset of arithmetic facts abstractable from the
grounding metaphors alone.

A theory that unifies embodied external arithmetic and abstract internal arithmetic must spell
out the details of thisBRIDGE function. The previous two chapters can be seen as spelling some

2In undertaking such an analysis, I am implicitly assuming that no phenomenal objects arise out of “direct experi-
ence” (against the views expressed by Brooks, Gibson, and, to a lesser degree, Barsalou). As such, every experience
is filtered through internal processing and mediated by internal representations. Notice, however, that phenomenal
objects occuring at the PML are in some sense “more directly” experienced than those occuring at the KL, since the
former require the composition of fewer functions.

163



Generalized
Embodied
Experiences

Particular
Embodied
Experiences

Collecting 
3 apples and
2 apples at 
time t0

Collecting
3 oranges 
and 2 oranges 
at time t1

Collectingting
3 bananas 
and 2 bananas 
at time t2

Collecting
3 things and
2 (of the same)
things.

Attaching a 
3-lego block 
construction to 
a 2-lego block
construction at
time t3

Attaching a 3 
inch piece of 
wood to the 
end of a 2 inch
piece of wood 
at time t4

Constructing 
something from
a 3-unit piece
and a 2-unit
piece.

Abstracted
Arithmetic

3 + 2

Figure 6.2: The generalization of “3 + 2”.

of this out for a SNePS implementation. Implicit in this is that there is some work for theBRIDGE
function to do. One could take a reductionist position and claim that all mathematics is just embod-
ied external mathematics. However, this does not account for the propositions of higher mathemat-
ics, which express truths that are very difficult to express using just embodied activities. Consider
the concept of GCD. One could view GCD in a completely embodied way as follows: The GCD
of natural numbersx andy is the maximum number of objects that can be evenly shared among
both a group ofx people and a group ofy people.3 However, suppose the task was to show that the
GCD of two Fibonacci numbers was equal to the Fibonacci number indexed by the GCD of those
numbers:

gcd(Fm,Fn) = Fgcd(m,n) (with F1 = 1,F2 = 2,Fn = Fn−1 +Fn−2)

In thinking about this task, it becomes very difficult (if not impossible) to attend to the object-

3Note that this formulation uses only the “basic” sortals OBJECT and PERSON suggested by Xu (2007) to be
innate.

164



sharability conception of GCD. This suggests that, afterBRIDGEhas mapped a generalized em-
bodied experience to an arithmetic fact, the generalized embodied experience can be (at least tem-
porarily) abandoned.

6.2.4 BRIDGE in SNePS

The specifics of theBRIDGE function can be described in various ways, including the use of
cognitive theories of conceptual metaphor or analogy. Importantly, there is nothing to suggest that
these theories cannot be expressed computationally.

In theory, the bridge from embodied arithmetic to abstract arithmetic for Cassie is easily speci-
fied. The abstract arithmetic routines of Chapter 4 are implemented separately from the embodied
arithmetic routines of Chapter 5. This means that Cassie can perform a particular count addition
over numerons that are constituents of grounded quantities or over numerons that are not. The
performance of theCountAdd act is blind to whether or not its arguments are just base nodes
in the progression formed bySuccessor , or if they are base nodes in such a progressionand
playing the number role in several grounded quantities. Thus, Cassie can abstract away from
embodied arithmetic by “ignoring” any sub-networks pertaining to grounded quantities. This is
illustrated in Figure 6.3. By ignoring the embodied representation, Cassie is working with just the

collection

quantity

number
sortal

m1!

m2

q1 n2 uApple

collection

quantity

number
sortal

m3!

q2n3

m4

m5

CountAdd m6!

object1 object2

action act plan

SNeRE plan 
for CountAdd

Figure 6.3: The actCountAdd ignores the (grayed out) embodied representation.

numerons. This effectively cuts the tie with perception and allows her to act solely on the basis of
the numerons.

Although developing such an attention model (in which part of the network is ignored) is
beyond the scope of this dissertation, it is possible to give a sketch of how it could be implemented
in SNePS. Throughout this work I have assumed Cassie uses a single belief space. However,
SNePS provides the mechanism of contexts as a way of partitioning the belief space. Cassie could
create a context of abstract arithmeticfroma context of embodied arithmetic by copying only those

165



representations that are needed for the routines in Chapter 4. If, after doing this, Cassie places the
embodied context in some form of long-term storage (e.g., a database backend), then Cassie would
get the desired performance-boost from her “trimmed down” KL. It is important to emphasize that
Cassie should only “temporarily” ignore her embodied representations (i.e., the long-term storage
should be accessible), since they allow her to appeal to embodied experiences when explaining
herself.

6.3 The Ontogeny of Sortals

In the previous chapter, Cassie was assumed to have a set of sortals she could apply to phenomenal
objects and a set of names for these sortals. Language clearly plays a role in categorization. The
sortal terms we use are the ones our language gives us. A long game of trial and error in the
application of terms may be needed before an agent’s usage conforms to social conventions. Thus,
even an agent that is fluent in a language must perpetually calibrate the way in which it applies
sortal terms.

However, if the psychological math-cognition literature is accurate (§2.1.1), then humans begin
performing embodied arithmetic wellbeforethey have linguistic names for all of the sortals they
need. In this section, I briefly consider the pre-linguistic origin for a sortal. In particular, we need
a model of how the base nodes representing sortals come to be in Cassie’s KL.

Xu (2007) suggests that some very basic sortals may be innate. These include “objects” and
“persons”. In a way, these are handled innately by Cassie via the “object” and “agent” arc-labels
used throughout the implementation. How about more complex sortals? Can they arise before
language is acquired? If so, can this acquisition be modeled computationally?

To answer this last question, we need to consider what might turn an otherwise uncategorized
phenomenal-object into an instance of a universal. Given a set of distinguishing features for a
particular sensory modality, any phenomenal object will exhibit some distribution of these features.
Many computational systems store these features as a feature vector in a “feature space”. The
metaphor of representing phenomenal objects in a feature space replaces the vague notions of
similarity and resemblance with the precise (and computable!) notion of metric distance. A set
of examples of a given sort (often called exemplars in the literature) will be more similar to other
members of the sort and thus will “cluster” around each other in the feature space.

A cluster of exemplars is likelier to represent a category the closer the exemplars are to each
other (i.e., a low within-sort scatter) and the closer the mean value of the cluster in feature space
is from the means of all other clusters. The former property increases exemplar resemblance, and
the later increases the discriminability of a given sort from other sorts.

These two properties are captured in the notion of Fisher linear discriminants (Fisher, 1936).
This is one of many sophisticated pattern classification techniques (Duda, Hart, and Stork, 2001).
The goal of this method is to separate exemplars from two proposed sorts using a linear function
that will partition the feature space. Suppose the proposed sorts are apples and bananas. Further-
more, suppose Cassie has a sortal concept for apples but none for bananas. We are interested in the
ontogeny of Cassie’s banana concept. IfC is the entire set of exemplars and suppose, for simplicity,

166



thatC = A∪B whereA is the set of apple exemplars andB is the set of uncategorized exemplars
(these are uncategorized for Cassie; we know them to be bananas). Additionally, suppose that
|A|= |B|= n and thatA andB are disjoint (i.e.,A∩B= /0). Define themeanof the cluster of apples
asma = 1

n ∑
x∈A

x and thescatterof the apple exemplars assa = ∑
x∈A

(x−ma)2. Similarly, define the

mean of the cluster of uncategorized exemplars asmb =
1
n ∑

x∈B
x and the scatter of the uncatego-

rized exemplars assb = ∑
x∈B

(x−mb)2. Now we can find the linear discriminant by maximizing the

function:

|ma−mb|2

sa +sb

This value increases as the denominator decreases and as the numerator increases. A decreasing
denominator indicates that the total scatter of apples and uncategorized exemplars is low (i.e., high
resemblance). An increasing numerator indicates that the distance between the two means of the
clusters is large (i.e., high differentiability). The distribution of exemplars in feature space might
look something like Figure 6.4. The apple exemplars congregate around red on the color axis,

color

shape (gamma) 

R

O

Y

G

B

I

V

A A A
A A

A

A
A

�B B�
B

B

�B�B �B

�B

Figure 6.4: Linear discrimination of apple exemplarsA from uncategorized exemplarsB.

whereas the uncategorized exemplars congregate around yellow. Along the shape axis, the apple
exemplars congregate around a high circularity (γ as specified in the previous chapter), whereas
the uncategorized exemplars congregate around a low circularity.

The linear discrimination procedure can be iterated. Cassie can pit the uncategorized exemplars
against every set of known-sortal exemplars in her KL. If, after such an iteration, it turns out that
the exemplars occupy a region of feature space that is linearly separable from each known sortal,
then she should create a symbol representing a new sortal. As a KL base-node, this symbol would
initially represent objects in Cassie’s perceptual field that are distinct from apples, oranges, grapes,
plums, . . .. Later, Cassie could associate the linguistic term “banana” with this sortal, but all of
the embodied functionality of the sortal is available pre-linguistically. She has used the cluster’s
discriminability in feature space as the impetus for creating a new node.

167



Of course, answering the question of sortal origin in this way brings up questions regarding
the origin of the distinguishing features. Where do the distinguishing features that make up the
axes in feature space come from? I believe this is a more fundamental question than the question
of sortal origin because it brings us closer to the nature of the sensory apparatus and the mode of
presentation for sensory data. Indeed, the fact that shape and color are distinguishing features is
one of the fundamental ways in which vision differs from the other sensory modalities. Computa-
tionally answering the question of the origin of distinguishing features is beyond the scope of this
dissertation.

As we saw in the previous chapter, acts construed as universals can also be sortals. The method
of linear discrimination applied to a feature space of sensorimotor features can serve as the impetus
for the introduction of act sortals. In fact, such an account can help explain how the equivalence
relationG from the previous section works.G relates two embodied actsα1 andα2 if they cor-
respond to the same grounding metaphor. An agent might notice that collection acts frequently
require the grasping and moving of objects, construction acts require the gluing or snapping to-
gether of objects, and measurement acts require the lining up of a measurement object and its
target. If these primitives are taken as features, the similarities between, for example, instances of
collection acts will yield a dense cluster in feature space.

6.4 Summary

In this chapter, I have attempted to formalize and unify the results of the previous two chapters. The
GLAIR architecture used in the implementation of CASSIE was presented abstractly in terms of
sets of symbols and partial functions between those sets. Under this characterization, the notions of
embodied agent, embodied action, and embodied experience were spelled out. The abstractability
of embodied arithmetic is captured in theBRIDGE function. An account of sortal origin was
sketched using the method of Fisher linear discriminants.

168



Chapter 7

Conclusion and Further Work

There are two primary results of this dissertation: (1) a theory of early mathematical cognition in-
spired by the relevant cognitive-science literature, and (2) a computational implementation guided
by the theory. In this chapter, I summarize the claims of the theory and describe how each of
the claims is addressed in the SNePS-agent implementation. I then consider the significance of
these results (from both a cognitive science and an artificial intelligence perspective). Potential
objections to the multiple realizability of mathematical cognition are addressed. A series of nat-
ural extensions to the computational theory (both representational and operational extensions) are
presented as avenues of further study. These extensions are shown to be coherent with the basis of
arithmetic and counting presented in this work.

7.1 Summary

The claims made by my theory were first presented in§3.1. The implementation of Cassie, as
described in the previous three chapters, addresses the claims as follows:

• Claim 1: A portion of early mathematical reasoning is multiply realizable. The next ten
claims on this list each can be expressed within the framework of the SNePS KRRA system
and GLAIR architecture. Every mathematical ability granted to Cassie is an ability that does
not rely on the human medium for its implementation.

• Claim 2: Mathematics is embodied. The GLAIR architecture is deployed as a model
of Cassie’s embodiment. In chapter 5, I describe some representations and mechanisms
required for embodied activities (e.g., grounded quantities, a list of prototypes, and an align-
ment table), and an implementation of such an activity (embodied enumeration). This activ-
ity demonstrates how mathematical results can flow from embodied perceptions.

• Claim 3: Mathematics is represented publicly and privately.Cassie has representations
for her private “objects-of-thought” (e.g., numerons, pre-linguistic sortals). These symbols
are associated with publicly-accepted names (e.g., numerlogs, sortal names).

169



• Claim 4: Mathematical reasoning utilizes extended cognition.Cassie has access to a
Lisp calculator that she can use to obtain results. The results given by this external tool can
be integrated seamlessly with Cassie’s belief space (i.e., calculator-addition is treated as a
way of adding, and the numeral answers given by the calculator imply the relevant numeron
answers).

• Claim 5: Quantities can be usefully considered as a complex consisting of a number and
a sortal. The formalism of a grounded quantity is developed in chapter 5. The philosophical
notion of a sortal is given a precise computational definition.

• Claim 6: An agent must be able to shift between operational and structural meanings
to understand mathematics.The method of procedural decomposition used in exhaustive
explanations requires Cassie to make inferences based on both the “structural” evaluations of
her acts (represented as SNeREEffect s), and the “operational” procedures for performing
those acts (represented as SNeREActPlan s).

• Claim 7: Numbers obtain meaning through the act of counting.The four fundamental
arithmetic operations can be expressed in terms of count-based routines. Moreover, the
technique of procedural decomposition can be applied in understanding arithmetic actson
the basisof counting routines. TheGreaterThan relationship can be inferred from the
structure Cassie generates during counting. In chapter 4, the complex act of finding GCDs
is shown to “bottom out” at counting routines.

• Claim 8: Mathematical reasoning utilizes metacognition. Cassie is able to select be-
tween various plans for performing the same act. Using a re-implementeddo-one primi-
tive act, she can make a deliberative decision in selecting an appropriate plan on the basis of
a metacognitive preference (i.e., using thePrefer predicate).

• Claim 9: Understanding can be treated as an analyzable gradient of features.The kinds
of inferences an agent makes are evidence for different kinds of understanding. Understand-
ing, in this sense, is a matter of degree. The techniques of procedural decomposition, con-
ceptual definition, and embodied action each correspond to a different component of Cassie’s
understanding.

• Claim 10: The ability to justify results through the method of exhaustive explanation
demonstrates mathematical understanding.A Turing-test style question-and-answer di-
alogue is determined to be a useful way of probing an agent’s mathematical understanding.
An interrogator can conduct such a dialogue in a restricted subset of English by invoking the
answerQuestion act. Based on the type of question, this triggers the appropriate form
of justification.

• Claim 11: The ability to apply quantitative reasoning to non-mathematical domains
demonstrates mathematical understanding.The representations Cassie uses for mathe-
matical reasoning are shown to be applicable in service of basic reasoning tasks, including:

170



self-action enumeration, ordinal assignment to self-action, reasoning about vague relations,
and word-sense disambiguation.

7.2 Significance

A theory is only as significant as the evidence that supports it. A computer program is unique in
that it can both express a theory and serve as evidence for it. I have sought to provide this kind of
support for the theory by applying the methodology of agent building.

The theory and implementation are significant from a computational perspective for several
reasons. By computationally modeling human behavior in the SNePS formalism, with its partic-
ular language and logic, I was forced to flesh out the details of the representations and routines
corresponding to the claims of the theory. In any such effort there are necessarily trade-offs of
functionality for faithfulness to the human psychological data. However, the precision required for
agent programming is one of the great benefits of developing a computational theory, because it
yields a concrete platform for experimental investigation. Johnson-Laird (1981) puts this point as
follows:

There is a well established list of advantages that programs bring to a theorist: they
concentrate the mind marvelously; they transform mysticism into information process-
ing, forcing the theorist to make intuitions explicit and to translate vague terminology
into concrete proposals; they provide a secure test of the consistency of a theory and
thereby allow complicated interactive components to be safely assembled; they are
”working models” whose behavior can be directly compared with human performance.
Yet, many research workers look on the idea of developing their theories in the form of
computer programs with considerable suspicion. The reason...[i]n part...derives from
the fact that any large-scale program intended to model cognition inevitably incor-
porates components that lack psychological plausibility . . . . The remedy . . . is not to
abandon computer programs, but to make a clear distinction between a program and
the theory that it is intended to model. For a cognitive scientist, the single most im-
portant virtue of programming should come . . . from the business of developing [the
program] (pp. 185–186).

Developing computational theories also tests the fundamental mechanisms of an architecture
which strives, as SNePS/GLAIR does, to be a general cognitive architecture and KRRA system.
SNePS holds up well in this respect, because no great “under the hood” modifications of the system
were required. The implementation addresses the extent to which SNePS/GLAIR (in its current
state) can be applied to a theory of early mathematical cognition. Having said this, it is also worth
mentioning that future versions of SNePS will include a more powerful logic and an improved
acting system. Also, the next generation of GLAIR, called MGLAIR, will include a dedicated
mechanism for handling asynchronous input from Cassie’s various sensory modalities. These de-
velopments will be a great benefit to further implementing and expanding the theory.

171



The theory is significant from a psychological standpoint because it utilizes cognitively plausi-
ble representations and broadly applicable reasoning methods. The theory also includes an explicit
model of embodiment. Models of mathematical reasoning seldom incorporate explicit representa-
tions of both embodied perception and logical deduction under the umbrella of a single system.

The theory is linguistically significant in several respects. A GCD algorithm inspired by the
natural-language semantics of “greatest” and “common” was found to be both the most common
“back-of-the-envelope” technique subjects used, and the most easily connected with an exhaustive
explanation. The method of conceptual definition, traditionally applied in the natural-language
setting of contextual-vocabulary acquisition, was found to be sufficient for definitions of mathe-
matical terms. The private language and public language distinctions were made throughout the
work.

The implementation of Cassie is philosophically significant in that it serves as an empirical
counterexample to the claim made by Lakoff and Núñez (2000) that mathematical understanding
cannot be detached from the human embodiment and implemented in a computational agent. Such
a claim echoes similar claims made by Searle (1980), Dretske (1985), Fetzer (1990) and Hauser
(1993). For various reasons, none of these philosophers is likely to see Cassie as a counterexample
to their philosophical positions (see§7.3 below), but I believe putting candidate implementations
on the table furthers the (otherwise murky) discourse.

Finally, the theory is significant from an educational perspective because it computationally
illustrates the effect of individual differences on a student’s performance and overall understanding.
Cassie is very much a product of her “lessons” in that her performance is determined by categories
of acts (e.g., syntactic, semantic, and extended). Additionally, the order in which these acts are
presented, and the particular problems she is given to solve will impact her performance during
explanation.

7.3 Attacks on Multiple Realizability

As mentioned in chapter 6, I have taken the view that an implementation relies on an abstraction
and a medium. Figure 7.1 illustrates five kinds of objections that might be raised against the claim
of multiple realizability of arithmetic. I will address each of these in turn.
(A) Some essential feature of human arithmetic is not abstractable. One could object that some
fundamental part of arithmetic cannot be expressed computationally and, thus, is simply uncom-
putable. The response to this sort of objection may vary depending on the feature in question.
However, given that computation seems to be at the heart of mathematical reasoning, another strat-
egy might be to argue that the feature in question is not really essential (and thus need not be part
of the abstraction).

Fetzer (personal communication) gives an objection along these lines. He has said:

[The] shapes, sizes, and relative locations [of the marks computers manipulate] exert
causal influence upon computers but do not stand for anything for those systems.

172



Arithmetic

Human Arithmetic SNePS Arithmetic

abstraction implementation
essential
feature

Arithmetic

Human Arithmetic SNePS Arithmetic

abstraction implementationessential
feature

Arithmetic

Human Arithmetic SNePS Arithmetic

abstraction implementation

poorly implemented 
essential feature

Arithmetic

Human Arithmetic SNePS Arithmetic

abstraction implementation

        BAD 
SIDE EFFECT

Arithmetic

Human Arithmetic SNePS Arithmetic

abstraction implementation

links to links to

Human Algebra SNePS Algebra
incompatible

(A) (B)

(C) (D)

(E)

Figure 7.1: Classes of objections to multiple realizability.

This is a conjunction of two claims. I will grant the first part of the conjunction. Computers do
function on the basis of the “shapes, sizes, and relative locations” of the marks being manipulated.
However, Fetzer attaches a sense of “mere” symbols to such marks and “mere” symbol manipula-
tion to computations over such marks.1 However, there is nothing “mere” about Cassie’s symbols.
They are symbols grounded in action and perception. In this sense, they are symbolswith a history
of how they came to stand for something for Cassie. Which brings us to the second part of Fetzer’s
conjunction. I would offer the following counterargument to the implication that Cassie’s symbols
do not stand for anything for her:

1. Structuralist ontology of numbers. The natural numbers a cognitive agent refers to are de-
noted by a progression of unique symbols that are ordered by the successor relation. As

1The concrete evidence suggests that humans essentially function on the basis of the “shapes, sizes, and relative
locations” of neuron firings in the brain

173



such, these symbols exemplify a finite initial segment of the natural-number structure.

2. Generation through counting. A finite initial-segment of the natural-number structure can
be generated by Cassie during the act of counting.

3. Meaninglessness for human user. Each symbol in such a structure may be machine-generated
using the Lispgensym function. The resulting symbols (e.g., b4532, b182, b9000) will have
no meaning for a human user who does not have access to how they are ordered.

4. Numeron-Numerlog associability. Such private computer-generated symbols (numerons)
are associable with publicly meaningful symbols (numerlogs) (e.g., b4532 denotes the same
number as the numeral ‘1’, b182 denotes the same number as the numeral ‘2’, b9000 denotes
the same number as the numeral ‘3’, etc).

5. Sufficiency of numerons. Cassie can do mathematics solely on the basis of her private nu-
merons. For example, she can compute gcd(3,2)=1 as gcd(b9000,b182)=b4532.

From these premises, we can derive two conclusions:

1. Cassie’s symbols stand for somethingfor her.

2. Despite the fact that the results obtained in premise 5 are meaningless to us, premise 4 allows
us to check whether they are correct because Cassie associates these symbols with public
symbols we can recognize (e.g., with patterns of pixels on a monitor that we can recognize
as Arabic numerals).

We now turn to the second kind of objection:
(B) Some essential abstracted feature is not implementable. This objection is one against the
implementation platform. In the case of my theory, the claim would be that the feature in question
cannot be implemented in the SNePS formalism. Given that SNePS (along with SNeRE) is Turing-
complete, the objection collapses into a restatement of objection (A). Another way to address this
is to “shop around” for a different formalism.

It is worth saying a few words about why my theory is implemented using the symbolic-AI
paradigm in general and the SNePS/GLAIR system in particular (as opposed to say, artificial
neural-networks). Exhaustive explanation, as I describe it, requires that the agent can traverse
its “lattice” of beliefs, specifically, its beliefs about its own acts and beliefs formed during ac-
tion. In order to do this, these beliefs must persist and be recoverable after action. The neural-
network paradigm utilizes a training procedure that, destroys the “memory” of the network’s be-
liefs. Weights in a neural network are adjusted according to a test set of patterns, but there is
no “memory” of how the weights arrived at certain values. Even supposing that such a memory
mechanism can be devised, it would be hard to recover “answers” from weights or to formulate
questions to be asked of a set of weights. Polk et al. (2001) observes:

Proposals regarding conceptual number knowledge are not as explicit about the nature
of the underlying representation, but descriptions of the knowledge itself suggests a

174



representation that is more symbolic than could be supported by a representation of
analogue magnitude. For example, it is hard to imagine how an analogue number
line representation could represent the fact that multiplication corresponds to repeated
addition (p. 548).

It is precisely this sort of knowledge that needs to be accessible during an explanation, and it is
precisely the symbolic representations that deliver it.
(C) Some essential feature is incorrectly implemented. This objection is the easiest to address.
Either the abstraction of the feature must be corrected (work for the cognitive scientist) or the
implementation must be corrected (work for the computer scientist).
(D) There is a bad side-effect in the implementation. If early computational math cognition was
only possible at the expense of a highly undesirable (or unnatural) implementation detail (e.g., a
very large lookup table for question answering), then the entire theory could be objected to. A
possible response is to claim that the side-effect of the implementation is actually found in the
human case as well. Indeed, this would be an occasion of further discovery and one of the reasons
we build models. Another approach is to bite the bullet and claim that the undesirable feature is
simply a necessary by-product of a computational implementation.
(E) The implementation does not scale-up properly. Even with a good implementation of arithme-
tic, the theory may not scale up to be a useful part of higher mathematics (e.g., in a computational
theory of algebra). Lakoff and Ńuñez (2000) contend that, after the grounding metaphors of ari-
thmetic are established, linking metaphors serve to connect arithmetic with the other branches of
mathematics. This would definitely be a serious objection, but it is not clear why the theory would
not scale-up properly with the right sort of (learning) algorithms. Or, perhaps, the theory might
scale up with some (small) modification (or generalization).

A slightly weaker version of this objection might be that the theory does not scale-”across”,
i.e., that the GCD implementation described in chapter 4 was somehow “rigged” or “biased” in
some way so as to make the claims of my theory trivially true.

To address this sort of objection, I set Cassie to the task of finding the least common-multiple
(LCM) of two natural numbers. LCM is a problem that is (somewhat deceptively) similar to GCD.
Also, like GCD, the LCM ofx andy can be computed using the following commonsense algorithm.

1. List the multiples ofx up tox×y

2. List the multiples ofy up tox×y

3. List the common multiples from the lists in step 1 and 2.

4. Circle the least common multiple from the list in step 3.

Interestingly, both GCD and LCM require some notion of a “default” answer if a “better answer”
isn’t found. For GCD, the default answer is 1. This represents Cassie’s “initialization step” of
assuming that 1 will be the GCD unless something larger is found. Similarly, Cassie assumes
x× y is the LCM unless something smaller is found. The implementation of this commonsense
algorithm (called NLLCM for natural language LCM) is given in the Appendix.

175



In the next section, I will consider a set of extensions to the theory I have developed in this
dissertation.

7.4 Extensions and Further Work

Although some people do not pursue mathematics beyond arithmetic, it is reasonable to expect a
theory of early mathematical cognition to scale up to higher mathematics. This section describes
some representational and operational extensions to the theory.

7.4.1 Integers, Rationals, and Reals

As it stands, the theory is firmly built on the natural-number progression. A very natural extension
can be made to introduce the negative numbers into Cassie’s numeration system. The resulting
numbers are the integers. One way in which Cassie’s counting act could generate a finite segment
of integers is by having Cassie form the belief that−x−1 is the predecessor of−x every time she
forms the belief thatx+1 is the successor ofx. This creates a “mirror” count of the positives on
the negative side of zero.

Importantly, there are embodied analogs of negative numbers. For example, if a dirt pile of
heighth is considered to represent a positive numberh, then a hole of depthh can be considered
to represent the number−h. This metaphor makes results such ash+(−h) = 0 very intuitive (i.e.,
filling a hole of depthh with a pile of dirt of heighth yields no pile or hole).

The next extension could be to introduce the rational numbers. When performing a division
operation, Cassie tacitly assumes that the quotient will be a number. In the current implementation,
if she is given the commandperform Divide(n8,n3) she will not form any beliefs about
the quotient83, because this rational number is simply not in her inventory of concepts. She will
instead believe that the result is undefined.

A natural way to represent rationals is by reusing the framework of evaluation frames. Under
the current implementation, Cassie’s expectation of the division producing a quotient is represented
in theEffect of the general division act:

Effect(Divide(n8,n3),Evaluated(Result(Quotient,n8,n3)))

After performingDivide(n8,n3) , Cassie knows that the result is not a natural number
(i.e., the result does not haveNumber predicated of it. However, she could use this as a reason for
creating a new base node, sayb1 , to stand in for the value as follows:

Evaluation(Result(Quotient,n8,n3),b1)

This creates a strong link between rational numbers and quotients. Cassie “invents” the ra-
tionals as mental representations playing the quotient role in division acts. More properly, Cassie
should have aNaturalNumber case-frame that she applies to the numerons generated during the
act of counting, anIntegerNumber case-frame that she applies to integers conceived of using

176



the “mirror” counting method described above, and aRationalNumber case-frame that she ap-
plies as the result of divisions not yielding naturals or integers. The correct subclass relationships
among these numbers could be represented using the following rules:

all(x)(NaturalNumber(x) => {IntegerNumber(x),RationalNumber(x)}).
all(x)(IntegerNumber(x) => RationalNumber(x)).
all(x)({NaturalNumber(x),IntegerNumber(x),RationalNumber(x)} v=>

Number(x)).

An interesting feature of this method for generating rationals is that a result is presupposed even
when dividing by zero. I would speculate that, unless being told, a child would expect that dividing
by zero is a defined operation. The intensional concept “result of the division of n8 by n0” still
needs mental representation, even if it has no extensional referent. There is no grounding embodied
activity for this division (e.g., there is no way zero people can share eight objects), so this should
tip off the agent to the impossibility of this result.

Unfortunately, this is a very piecemeal way of generating rationals. Unlike natural numbers,
which are introduced through the systematic routine of counting, rationals introduced on this case-
by-case basis do not form a complete number system for the agent. The successor relationship is
all there is to the natural numbers, but the rationals (if they are properly understood), introduce
part-whole relationships and a “dense” number line (i.e., between any two rationals is another
rational).

The irrational numbers make the representation of real numbers, which include both the ratio-
nals and irrationals, even more challenging. The computer (like the human brain) has access to a
finite memory. Thus, no irrational number is represented digit by digit. Rather, we can represent a
number likeπ by alluding to theprocessthat produces it. Consider the following assertions (with
the semantics specified in English:

• Circle(Circ). JCircK is a circle.

• DiameterOf(d,Circ). The diameter ofJCircK is JdK.

• CircumferenceOf(c,Circ). The circumference ofJCircK is JcK

• Effect(Divide(c,d),Evaluated(Result(Quotient,c,d))). The effect of
dividing JcK by JdK is that the proceptJResult(Quotient,c,d)K will have a value.

• Evaluation(Result(Quotient,c,d),b1). Jb1K is the value of
JResult(Quotient,c,d)K.

Here,b1 is apreciseandfinite representation ofπ that an agent could hold beliefs about and use
in reasoning. If the agent ever has the practical need for an approximation ofπ, there are plenty
of algorithms available. Unfortunately, the presence of irrational numbers likeπ means that the
mechanism for generating rationals described above needs modification to distinguish between
rationals and irrationals.

In these proposed intensional representations of integers, rationals, and reals, the key is a refer-
ence back to the process of generating the number concept. The quotient representation ofπ also
relies on geometric concepts which the current implementation does not provide. I consider this
extension next.

177



7.4.2 Geometry

It would be somewhat strange to call geometric reasoning an “extension” of the purely numerical
theory developed thus far. The geometric conception of mathematics develops alongside the nu-
merical conception. Lakoff and Ńuñez (2000) present the conceptual metaphor of motion along
a path as one of the fundamental grounding metaphors. With this metaphor, the framework of
embodied spatial-reasoning is imported into an abstract representation of space. This lays one of
the foundations for geometric reasoning.

One sense in which geometry can serve as an extension to the theory is by having Cassie “rein-
terpret” her numerical representations as geometric ones. This was hinted at in§5.1.5, where rep-
resentations associated with constructions and measures were considered. These representations
clearly have geometric analogs. In fact, Euclid conceived of numbers in just this way, phrasing the
GCD problem as a problem of “greatest common measure”.

To maintain cognitive plausibility, a geometric extension of the theory and implementation
would need to include several features:

• A representation of (and mechanism for) mental imagery.

• A KL symbolic representation of geometric entities (e.g., points, lines, planes, shapes, poly-
gons) and relations between these entities (e.g., intersection, acuteness)

• A PML representation of the agent’s “sensitivity” to figural representations of shape.

• A mechanism for linking geometric representations to topological representations used in
commonsense reasoning (e.g., for some physical object X, there is no exact distance at which
it is appropriate to use “this X” as opposed to “that X”, but the “schema” for appropriate
usage can be spelled out topologically (Talmy, 2000)).

Like arithmetic, geometry has had a variety of axiomatizations (e.g., Hilbert(1899/1980) and Ve-
blen(1904)). This suggests that a technique similar to procedural decomposition might be used to
demonstrate geometric understanding. If lines can beunderstood ascollections of points satisfying
certain properties, an agent can “work back” towards axioms about points in its explanations.

7.4.3 Scaling Up

As indicated above, it should be possible to scale up the theory from arithmetic. Two interesting
areas that are in need of cognitive analysis are algebra and probability.

Algebra imports the familiar operations of arithemtic and extends the mathematical vocabu-
lary by introducing variables. At the system level, Cassie already has a native representation for
variables (i.e., variable terms in SNePSLOG such as?x ). These are used throughout the imple-
mentation to match an “unknown” in rules,withsome s, andwithall s. To give a cognitive
account of algebra, however, would require a semantic account foralgebraicvariables. Also, such
an account should tell a story about the embodied foundations of variables.

Probability is another branch of mathematics that partly hinges on arithmetic priciples. Much
like arithmetic, I believe probabilistic intuitions precede by many years the formal probability

178



theory taught in schools. There are certainly commonsense notions of likelihood, expectation,
and uncertainty agents associate with particular outcomes. One avenue of further research might
extend the current theory to give embodied semantic accounts of probabilistic reasoning.

7.4.4 Syntactic Semantics

As I mention above, I am sympathetic to the theory of syntactic semantics as given in (Rapaport,
1988; Rapaport, 1995; Rapaport, 2006). An interesting aspect of this theory as a recursive the-
ory of understanding is that it requires a basis domain “understandable in terms of itself (or in
terms of ‘innate ideas’ or some other mechanism)”. Moreover, this basis domain must be entirely
internalized (i.e., in the mind of an agent):

My position is this: The mind-world gap cannot be bridged by the mind. There are
causal links between [the mind and the world], but the only role these links play in se-
mantics is this: The mind’s internal representations of external objects (which internal
representations are caused by external objects)canserve as “referents” of other inter-
nal symbols, but, since they areall internal, meaning is in the head and is syntactic
(Rapaport, 1995)

But we have seen that, in the case of a procept, a single internal symbol can be usefully ambiguous,
denoting either a process or a concept. These are both equally “syntactic”, but in the process-
denoting sense, we have left the classical linguistic notion of syntax—we are interested in what a
performance of the act denoted by the symbol means. It would be interesting to see if a common
feature across basis domains is symbols capable of doing the double duty of meaning something
and referring back to themselves.

Procepts in the counting domain are able to do this double duty by referring to numbers and the
act of counting. This is represented by the network in Figure 7.2. The SNePSLOG representation
and semantics for the propositionsm1andm5are:

• m1: Effect(Count(x),Evaluated(Result(Count,x))) . The effect of count-
ing to JxK is that the proceptJResult(Count,x)K will have a value.

• m5: Evaluation(Result(Count,x),x) . The value of the procept
JResult(Count,x)K is JxK.

Nodesm2andm4represent both aspects of the procept “a count of x”.m3represents the effect of
counting tox , namely, thatm4will have a value. In this role,x is a position on the number line
that Cassie is trying to reach.m3 implies the existence ofm5 (the evaluation ofm4) by the rule
given in§4.1.1.3. The value given inm5 refers back tox . In this role,x is an abstraction of the
cardinality (e.g., a count ofx anythings).

7.4.5 Quantity Disposition

The cognitive semantics laid out by Talmy (2000) includes a discussion of how natural languages
deal with configurational structure. One of the features introduced in this analysis is that of quantity

179



Figure 7.2: The procept “a count of x”.

disposition. This account takes “quantity” to include precise number-sortal pairings as I have (e.g.,
“three apples”), but also generalized quantifiers (e.g., “some apples”). The focus is on the sortal
term, and what it contributes to the way an amount of that sortal is conceived. According to Talmy,
the disposition of a quantity includes attributes across the following four categories:

1. Domain. Specifies whether the quantity distributes its elements overspace(manifested as
nouns in English), ortime(manifested as verbs in English).

2. Plexity. “A quantity’s state of articulation into equivalent elements. Where the quantity
consists of only one such element, it isuniplex, and where it consists of more than one, it is
multiplex” (p. 48). This term is introduced to cover the conception quantities of both matter
and actions.

3. State of boundedness. “When a quantity is understood asunbounded, it is conceived as
continuing on indefinitely with no necessary characteristic of finiteness intrinsic to it. When
a quantity is understood asbounded, it is conceived to be demarcated as an individuated unit
entity” (p. 50).

4. State of dividedness. “[R]efers to a quantities internal segmentation” (p. 55). This category
can be eitherdiscreteor continuous.

Talmy gives several examples to illustrate the various ways in which the four-categories can com-
bine. These are shown in Table 7.1. Along with these different dispositions, Talmy presents a series
of cognitive operations for manipulating them. A uniplex quantity can bemultiplexed. Through
multiplexing ‘bird’ becomes ‘birds’, ‘sigh’ becomes ‘kept sighing’. An unbounded quantity can
be subjected tobounding. Through bounding, ‘furniture’ becomes ‘piece of furniture’, ‘breathe’
becomes ‘breathing for some amount of time’, ‘water’ becomes ‘portion of water’, and ‘sleep’

180



Disposition Example
〈 space,uniplex〉 bird
〈 time,uniplex〉 (to) sigh
〈 space,multiplex,bounded,discrete〉 family
〈 time,multiplex,bounded,discrete〉 (to) molt
〈 space,multiplex,unbounded,discrete〉 furniture
〈 time,multiplex,unbounded,discrete〉 (to) breathe
〈 space,multiplex,bounded,continuous〉 (a) sea
〈 time,multiplex,bounded,continuous〉 (to) empty
〈 space,multiplex,unbounded,continuous〉 water
〈 time,multiplex,unbounded,continuous〉 (to) sleep

Table 7.1: Quantity Dispositions.

becomes ‘sleeping for some amount of time’. Boundedness also determines ungrammatical usages
(e.g., one cannot say “He slept in eight hours”, but must say “He slept for eight hours”).

Cassie’s natural-language production capacity has not been directly addressed in this work.
However, a fuller theory would coordinate the representations I have used for precise numerical-
quantities with quantity dispositions. Spelling this out would accommodate an agent that had to
reason with both imprecise quantities (when generating natural language), and precise quantities
(when reasoning mathematically).

7.4.6 Multi-agent Systems

If I am right in claiming that early mathematics is multiply realizable, then there is something
to be said about how communities of agents come to abstract different “private” mathematical
mechanisms, in different locations, within the framework of different cultures, and from different
particular sense-data, and, nevertheless, end up agreeing upon mathematical propositions.2 Com-
putationally, such concerns can be considered in the context of a multi-agent system.

Although SNePS agents are usually deployed in a single-process (single-agent) context, some
work has been done on communicating SNePS agents. Campbell and Shapiro (1998) discuss a
set of algorithms that would allow a “mediator” agent to resolve communication issues between
two different SNePS agents. Rapaport (2003) describes a method by which different agents can
“negotiate” the meanings for the expressions they use. Integrating such components with my
existing theory, we can begin to examine the following questions:

• How does a community of agents come to agree on the mechanisms of mathematical cogni-
tion (e.g., a numeration system and a set of effective algorithms)?

• How can one agent teach another agent to transfer a mathematical skill to a new domain?
For example, an agent that knows how to count apples might teach an agent that has no
conception of the sortal “apple” what the term means on the basis of color and shape. The

2For a detailed philosophical account on the social construction of mathematical knowledge, see (Kitcher, 1981).

181



agent can transfer its enumeration skills to a new target just by learning the new sortal term
and its properties.

• How are new mathematical ideas constructed through social interaction?

Quine (1969) has pointed out several difficulties one would have in attempting to attribute the use
of individuative terms within a community of foreign-language speakers (see pp. 8–10). These
difficulties can be sidestepped in a computational multi-agent system since both the behavior and
the mental content generating that behavior can be probed, adjusted, and experimented with.

7.4.7 Cognitive Robotics

The implementation of Cassie’s embodiment relied on a simulated sensori-actuator layer. Although
simulating the outside world was sufficient to generate the phenomenal objects Cassie needed, a
simulation can only go so far in getting at all of the issues associated with embodiment. Fortu-
nately, GLAIR can be utilized in the context of physically embodied agents (i.e., robots). This
introduces a whole set of engineering challenges (e.g., the vision system cannot make some of the
simplifying assumptions when deployed in the real world), however the resulting agent would be
all the more convincing for skeptics of computational math cognition.

7.5 Final Thoughts

As I have indicated in this chapter, the current theory and implementation of Cassie are just a
starting point and can be greatly expanded and improved. In the introduction to this work, I char-
acterized mathematical cognition as an emerging field and, indeed, it is still emerging. I have by
no means given a complete account of even early mathematical cognition. However, I do believe
that both the theory and the implementation support taking a computational perspective towards
the subject. Moreover, I believe developing computational theories of mathematical cognition will
benefit AI researchers and the broader cognitive science community.

182



Appendix A

SNePS Implementation

This appendix includes the “core” SNePSLOG source code for the implementation of Cassie. I
have not listed here some of the code that is described fully in the body of the dissertation. Cur-
rently, the source files are accessible on any of the UB CSE servers under the following directory:

/project/rapaport/GOLDFAIN/MathCogCassie/

The implementation spans several files. The following two files must bedemoed in order to
run any of the others.

• Config.snepslog: Implements the deliberativedo-one primitive act and sets up SNePS
system variables.

• Counting.snepslog: Provides theConceiveInitialElement andConceiveOrdering
primitive acts.

The following commands should be performed by Cassie before any other files are loaded:

perform ConceiveInitialElement()
perform ConceiveOrdering(10)

The following files implement abstract arithmetic:

• SemArith.snepslog: Implements count addition, count subtraction, iterated-addition multi-
plication, and iterated-subtraction division.

• SynArith.snepslog: Implements syntactic addition.

• ExtArith.snepslog: Implements the Lisp calculator.

• Shortcuts.snepslog: Implements shortcut arithmetic routines.

• GreaterThan.snepslog: Implements path-based inference rules for the greater-than relation.

• NLGCD.snepslog: Implements NLGCD commonsense algorithm.

183



The following files implement embodied arithmetic:

• EmbEnum.snepslog: Implements embodied enumeration.

• Accumulator.snepslog: Implementstimed-do .

• ConsciousCounting.snepslog: Implements conscious counting mode of self-action enumer-
ation.

• OrderedAction.snepslog: Implements ordinal assignment to self-actions.

Finally, the following files implement Cassie’s explanation system:

• Explanation.snepslog: Implements procedural decomposition.

• ConceptualDef.snepslog: Implements conceptual definition.

• QuestionParser.snepslog: Implements the recursive descent parser for NL questions.

The source code is given below along with its comments (lines starting with ‘;’ in SNePSLOG),
but is not otherwise annotated. Code delimited by the double-carat marks ‘g is the Lisp code
implementing Cassie’s PML.

For a discussion of SNePSLOG syntax and semantics, see§3.2 or (Shapiro and SNePS Im-
plementation Group, 2008). For a discussion on SNeRE syntax and semantics, see§3.2.1.3 or
(Shapiro and SNePS Implementation Group, 2008). For a discussion of the syntax and semantics
used for abstract arithmetic, see§4.1.1. For a discussion of the syntax and semantics used for
embodied arithmetic, see§5.1.2.

184



A. Counting
; =======================================================================
; FILENAME: Counting.snepslog
; DATE: 3/20/07
; PROGRAMMER: Albert Goldfain
;
; Lines beginning with a semi-colon are comments.
; Regions delimited by "ˆˆ" are Lisp commands.
; All other lines are SNePSLOG commands.
;
; To use this file: run SNePSLOG; at the SNePSLOG prompt (:), type:
;
; demo "Counting.snepslog"
;
; Make sure all necessary files are in the current working directory
; or else use full path names.
; =======================================================================

define-frame Number(class member)
define-frame ResultName(class member)
define-frame Numeral(class member)

define-frame NumeralOf(nil numeral number)
define-frame Successor(nil succ pred)

define-frame Say(action utterance)
define-frame SayLine(action utterance)
define-frame SayLine+(action utterance arg1 arg2)
define-frame ConceiveOrdering(action num)
define-frame ConceiveInitialElement(action)
define-frame ConceiveSuccessor(action)

;;;Result Frame
define-frame Result(nil result-name arg1 arg2)

;;;Evaluation Frames
define-frame Evaluation(nil result value)
define-frame Evaluated(property object)

;;;General Acts
define-frame Add(action arg1 arg2)
define-frame Subtract(action arg1 arg2)
define-frame Multiply(action arg1 arg2)
define-frame Divide(action arg1 arg2)

ˆˆ
(defparameter *attend-number* 0)
(defparameter *old-number* 0)
(defparameter *attend-numeral* 1)

(define-primaction Say ((utterance))
"Print the utterance (without linebreak)"
(format t "˜A" utterance))

(define-primaction SayLine ((utterance))
"Print a line containing the utterance"
(format t "˜A˜%" utterance))

(define-primaction SayLine+ ((utterance) (arg1) (arg2))
"Print a line containing the utterance followed by arg1 and arg2"
(format t "˜A ˜A ˜A˜%" utterance arg1 arg2))

(define-primaction ConceiveInitialElement ()

185



"Create an initial element in the number sequence"
(let ((newnum "n0"))

(tell (concatenate ’string
"Number(" newnum ")."))

(setf *attend-number* newnum)
(tell "Numeral(0).")
(tell (concatenate ’string

"NumeralOf(0," newnum ")."))))

(define-primaction ConceiveSuccessor ()
"Create a base node to succeed the current node being attended to"
;;;
;;;NOTE: gensym can be substituted to create a randomly named newnum
;;;
(let ((newnum (concatenate ’string "n" (princ-to-string *attend-numeral*))))

(setf *old-number* *attend-number*)
(tell (concatenate ’string

"Number(" newnum ")."))
(setf *attend-number* newnum)
(tell (concatenate ’string "Numeral(" (princ-to-string

*attend-numeral*) ")."))
(tell (concatenate ’string

"NumeralOf(" (princ-to-string *attend-numeral*) "," newnum ")."))
(setf *attend-numeral* (cl::+ 1 *attend-numeral*))
(tell (concatenate ’string

"Successor(" newnum "," (princ-to-string *old-number*) ")."))))

(define-primaction ConceiveOrdering ((num))
"DESCRIPTION"
(loop for i from 1 to (sneps:node-to-lisp-object num)

do (tell "perform ConceiveSuccessor()")))

(attach-primaction Say Say SayLine SayLine SayLine+ SayLine+
ConceiveInitialElement ConceiveInitialElement
ConceiveSuccessor ConceiveSuccessor
ConceiveOrdering ConceiveOrdering)

ˆˆ

;;;Register result names
ResultName(Sum).
ResultName(Difference).
ResultName(Product).
ResultName(Quotient).

;;;Register effects of general acts.
all(x,y)({Number(x),Number(y)} &=>

{Effect(Add(x,y),Evaluated(Result(Sum,x,y))),
Effect(Subtract(x,y),Evaluated(Result(Difference,x,y))),
Effect(Multiply(x,y),Evaluated(Result(Product,x,y))),
Effect(Divide(x,y),Evaluated(Result(Quotient,x,y)))}).

;;;UVBR x for y
all(x)(Number(x) =>

{Effect(Add(x,x),Evaluated(Result(Sum,x,x))),
Effect(Subtract(x,x),Evaluated(Result(Difference,x,x))),
Effect(Multiply(x,x),Evaluated(Result(Product,x,x))),
Effect(Divide(x,x),Evaluated(Result(Quotient,x,x)))}).

186



B. Semantic Arithmetic
; =======================================================================
; FILENAME: SemArith.snepslog
; DATE: 9/17/07
; PROGRAMMER: Albert Goldfain
;
; Lines beginning with a semi-colon are comments.
; Regions delimited by "ˆˆ" are Lisp commands.
; All other lines are SNePSLOG commands.
;
; =======================================================================

;;;Register result names
ResultName(CountSum).
ResultName(CountDifference).
ResultName(SumProduct).
ResultName(DifferenceQuotient).

; =======================================================================
; COUNT-ADDITION
; =======================================================================
;;;
;;;[[Zero(x)]] = [[x]] is the number 0
;;;
define-frame Zero(nil zero)

;;;
;;;[[FinalSum(x)]] = [[x]] is the final sum of count addition
;;;
define-frame FinalSum(nil final-sum)
;;;
;;;[[CountFromFor(x,y)]] = Act of counting from [[x]] for [[y]]
;;;numbers.
;;;
define-frame CountFromFor(action object1 object2)

;;;
;;;[[CountAdd(x,y)]] = Act of performing count-addition on [[x]] and
;;;[[y]]
define-frame CountAdd(action object1 object2)

;;;Establish which numeron is zero
perform withsome(?n,NumeralOf(0,?n),believe(Zero(?n)),Say("I don’t understand what 0 is"))

;;; To count from x for y numbers, count from x+1 for y-1 numbers.
all(x,y)({Number(x),Number(y)} &=>

ActPlan(CountFromFor(x,y),
withsome(?xp1,

Successor(?xp1,x),
withsome(?ym1,

Successor(y,?ym1),
snif({if(Zero(?ym1),believe(FinalSum(?xp1))),

else(CountFromFor(?xp1,?ym1))}),
Say("I don’t know how to count add these numbers")),

Say("I don’t know how to count add these numbers")))).

;;;UVBR x for y
all(x,y)(Number(x)=>

ActPlan(CountFromFor(x,x),
withsome(?xp1,

Successor(?xp1,x),

187



withsome(?xm1,
Successor(x,?xm1),
snif({if(Zero(?xm1),believe(FinalSum(?xp1))),

else(CountFromFor(?xp1,?xm1))}),
Say("I don’t know how to count add these numbers")),

Say("I don’t know how to count add these numbers")))).

;;;
;;; To Count-Add x and y, count from x for y numbers.
;;;
all(x,y)({Number(x),Number(y)} &=>

{ActPlan(CountAdd(x,y),
snsequence(SayLine+("Count Adding",x,y),
snsequence(CountFromFor(x,y),

withsome(?z,
FinalSum(?z),
snsequence(believe(Evaluation(Result(CountSum,x,y),?z)),

disbelieve(FinalSum(?z))),
SayLine("I could not determine the sum."))))),

Effect(CountAdd(x,y),Evaluated(Result(CountSum,x,y)))}).

;;;UVBR x for y
all(x,y)(Number(x) =>

{ActPlan(CountAdd(x,x),
snsequence(SayLine+("Count Adding",x,x),
snsequence(CountFromFor(x,x),

withsome(?z,
FinalSum(?z),
snsequence(believe(Evaluation(Result(CountSum,x,x),?z)),

disbelieve(FinalSum(?z))),
SayLine("I could not determine the sum."))))),

Effect(CountAdd(x,x),Evaluated(Result(CountSum,x,x)))}).

;;;
;;;Every counted sum obtained by this method is a sum per se.
;;;
all(x,y,z)(Evaluation(Result(CountSum,x,y),z) => Evaluation(Result(Sum,x,y),z)).

;;;UVBR x for y
all(x,z)(Evaluation(Result(CountSum,x,x),z) => Evaluation(Result(Sum,x,x),z)).

;;;UVBR y for z
all(x,y)(Evaluation(Result(CountSum,x,y),y) => Evaluation(Result(Sum,x,y),y)).

;;;UVBR x for z
all(x,y)(Evaluation(Result(CountSum,x,y),x) => Evaluation(Result(Sum,x,y),x)).

;;;UVBR x for y and z
all(x)(Evaluation(Result(CountSum,x,x),x) => Evaluation(Result(Sum,x,x),x)).

;;;
;;;CountAdd is a plan for adding per se.
;;;
all(x,y)({Number(x),Number(y)} &=> ActPlan(Add(x,y),CountAdd(x,y))).

;;;UVBR x for y
all(x)(Number(x) => ActPlan(Add(x,x),CountAdd(x,x))).
;=======================================================================
; COUNT-SUBTRACTION
;=======================================================================
define-frame FinalDifference(nil final-difference)
define-frame CountDownFromFor(action object1 object2)
define-frame CountSubtract(action object1 object2)

;;;To count down from x for y numbers, count down from x-1 for y-1 numbers.

188



all(x,y)({Number(x),Number(y)} &=>
ActPlan(CountDownFromFor(x,y),

withsome(?xm1,
Successor(x,?xm1),
withsome(?ym1,

Successor(y,?ym1),
snif({if(Zero(?ym1),believe(FinalDifference(?xm1))),

else(CountDownFromFor(?xm1,?ym1))}),
believe(FinalDifference(x)))))).

;;;UVBR: x for y
all(x)(Number(x) =>

ActPlan(CountDownFromFor(x,x),
withsome(?xm1,

Successor(x,?xm1),
snif({if(Zero(?xm1),believe(FinalDifference(?xm1))),

else(CountDownFromFor(?xm1,?xm1))}),
believe(FinalDifference(x))))).

;;;
;;; To Count-Subtract y from x, count down from x for y numbers.
;;;
all(x,y)({Number(x),Number(y)} &=>

{ActPlan(CountSubtract(x,y),
snif({if(GreaterThan(y,x),

snsequence(SayLine+("I cannot subtract a
larger number from a smaller number.",x,y),

believe(Evaluation(Result(CountDifference,x,y),undefined)))),
else(snsequence(SayLine+("Count Subtracting",x,y),

snsequence(CountDownFromFor(x,y),
withsome(?z,

FinalDifference(?z),
snsequence(believe(Evaluation(Result(CountDifference,x,y),?z)),

disbelieve(FinalDifference(?z))),
SayLine("I could not determine the difference. ")))))})),

Effect(CountSubtract(x,y),Evaluated(Result(CountDifference,x,y)))}).

;;;UVBR x for y
all(x)(Number(x) =>

{ActPlan(CountSubtract(x,x),
snsequence(SayLine+("Count Subtracting",x,x),
snsequence(CountDownFromFor(x,x),

withsome(?z,
FinalDifference(?z),
snsequence(believe(Evaluation(Result(CountDifference,x,x),?z)),

disbelieve(FinalDifference(?z))),
SayLine("I could not determine the difference. "))))),

Effect(CountSubtract(x,x),Evaluated(Result(CountDifference,x,x)))}).

;;;
;;;Every counted difference obtained by this method is a difference per se.
;;;
all(x,y,z)(Evaluation(Result(CountDifference,x,y),z) => Evaluation(Result(Difference,x,y),z)).

;;;UVBR x for y
all(x,z)(Evaluation(Result(CountDifference,x,x),z) => Evaluation(Result(Difference,x,x),z)).

;;;UVBR y for z
all(x,y)(Evaluation(Result(CountDifference,x,y),y) => Evaluation(Result(Difference,x,y),y)).

;;;UVBR x for z
all(x,y)(Evaluation(Result(CountDifference,x,y),x) => Evaluation(Result(Difference,x,y),x)).

189



;;;UVBR x for y and z
all(x)(Evaluation(Result(CountDifference,x,x),x) => Evaluation(Result(Difference,x,x),x)).

;;;
;;;CountSubtract is a plan for adding per se.
;;;
all(x,y)({Number(x),Number(y)} &=> {ActPlan(Subtract(x,y),CountSubtract(x,y))}).

;;;UVBR x for y
all(x)(Number(x) => ActPlan(Subtract(x,x),CountSubtract(x,x))).

;=======================================================================
; ADD-MULTIPLICATION
;=======================================================================

;;;
;;;[[NumToAdd(x)]] = [[x]] is the number subject to repeated
;;; additions.
;;;
define-frame NumToAdd(nil num-to-add)

;;;
;;;[[ProductResultSoFar(x)]] = [[x]] is the temporary result of the
;;;product being computed.
;;;
define-frame ProductResultSoFar(nil product-result-so-far)

;;;
;;;[[AddFromFor(x,y)]] = Act of adding [[x]] to itself the predecessor
;;;of [[y]] times.
;;;
define-frame AddFromFor(action object1 object2)

;;;
;;;[[AddMultiply(x,y)]] = Act of performing add-multiplication on
;;;[[x]] and [[y]].
define-frame AddMultiply(action object1 object2)

;;;Base case of add multiplication. To add from x for 0 iterations
;;;just stay at x. Also, believe appropriate SumProduct for unit
;;;multiplication
all(x,y)({ProductResultSoFar(x),Zero(y)} &=>

ActPlan(AddFromFor(x,y),
withsome(?one,

Successor(?one,y),
believe(Evaluation(Result(SumProduct,x,?one),x)),
Say("Problem asserting the unit multiplication")))).

;;;Recursive case of add multiplication. To repeat the addition of w
;;;for z iterations, add w to itself and repeat the process for z-1
;;;iterations.
all(w,x,y,z)({NumToAdd(w), Successor(z,y),ProductResultSoFar(x)} &=>

ActPlan(AddFromFor(x,z),
snsequence(disbelieve(ProductResultSoFar(x)),
snsequence(Add(x,w),

withsome(?p,
Evaluation(Result(Sum,x,w),?p),
snsequence(believe(ProductResultSoFar(?p)),

AddFromFor(?p,y)),
SayLine(‘‘I could not determine the sum’’)))))).

190



;;;UVBR x for w
all(x,y,z)({NumToAdd(x), Successor(z,y),ProductResultSoFar(x)} &=>

ActPlan(AddFromFor(x,z),
snsequence(disbelieve(ProductResultSoFar(x)),
snsequence(Add(x,x),

withsome(?p,
Evaluation(Result(Sum,x,x),?p),
snsequence(believe(ProductResultSoFar(?p)),

AddFromFor(?p,y)),
SayLine(‘‘I could not determine the sum’’)))))).

;;;UVBR y for w
all(x,y,z)({NumToAdd(y), Successor(z,y),ProductResultSoFar(x)} &=>

ActPlan(AddFromFor(x,z),
snsequence(disbelieve(ProductResultSoFar(x)),
snsequence(Add(x,y),

withsome(?p,
Evaluation(Result(Sum,x,y),?p),
snsequence(believe(ProductResultSoFar(?p)),

AddFromFor(?p,y)),
SayLine(‘‘I could not determine the sum’’)))))).

;;;UVBR z for w
all(x,y,z)({NumToAdd(z), Successor(z,y),ProductResultSoFar(x)} &=>

ActPlan(AddFromFor(x,z),
snsequence(disbelieve(ProductResultSoFar(x)),
snsequence(Add(x,z),

withsome(?p,
Evaluation(Result(Sum,x,z),?p),
snsequence(believe(ProductResultSoFar(?p)),

AddFromFor(?p,y)),
SayLine(‘‘I could not determine the sum’’)))))).

;;;UVBR y for x
all(w,y,z)({NumToAdd(w), Successor(z,y),ProductResultSoFar(y)} &=>

ActPlan(AddFromFor(y,z),
snsequence(disbelieve(ProductResultSoFar(y)),
snsequence(Add(y,w),

withsome(?p,
Evaluation(Result(Sum,y,w),?p),
snsequence(believe(ProductResultSoFar(?p)),

AddFromFor(?p,y)),
SayLine(‘‘I could not determine the sum’’)))))).

;;;UVBR z for x
all(w,y,z)({NumToAdd(w), Successor(z,y),ProductResultSoFar(z)} &=>

ActPlan(AddFromFor(z,z),
snsequence(disbelieve(ProductResultSoFar(z)),
snsequence(Add(z,w),

withsome(?p,
Evaluation(Result(Sum,z,w),?p),
snsequence(believe(ProductResultSoFar(?p)),

AddFromFor(?p,y)),
SayLine(‘‘I could not determine the sum’’)))))).

191



;;;UVBR z for x and z for w
all(y,z)({NumToAdd(z), Successor(z,y),ProductResultSoFar(z)} &=>

ActPlan(AddFromFor(z,z),
snsequence(disbelieve(ProductResultSoFar(z)),
snsequence(Add(z,z),

withsome(?p,
Evaluation(Result(Sum,z,z),?p),
snsequence(believe(ProductResultSoFar(?p)),

AddFromFor(?p,y)),
SayLine(‘‘I could not determine the sum’’)))))).

;;;UVBR w for x and w for y
all(w,z)({NumToAdd(w), Successor(z,w),ProductResultSoFar(w)} &=>

ActPlan(AddFromFor(w,z),
snsequence(disbelieve(ProductResultSoFar(w)),
snsequence(Add(w,w),

withsome(?p,
Evaluation(Result(Sum,w,w),?p),
snsequence(believe(ProductResultSoFar(?p)),

AddFromFor(?p,w)),
SayLine(‘‘I could not determine the sum’’)))))).

;;;UVBR w for y and x for z
all(w,x)({NumToAdd(w), Successor(x,w),ProductResultSoFar(x)} &=>

ActPlan(AddFromFor(x,x),
snsequence(disbelieve(ProductResultSoFar(x)),
snsequence(Add(x,w),

withsome(?p,
Evaluation(Result(Sum,x,w),?p),
snsequence(believe(ProductResultSoFar(?p)),

AddFromFor(?p,w)),
SayLine(‘‘I could not determine the sum’’)))))).

;;;
;;; To Add-Multiply x and y, add x to itself y-1 times
;;;
all(x,y)({Number(x),Number(y)} &=>

{ActPlan(AddMultiply(x,y),
snsequence(SayLine+("Add Multiplying",x,y),
snsequence(believe(ProductResultSoFar(x)),
snsequence(believe(NumToAdd(x)),
snsequence(withsome(?p,Successor(y,?p),AddFromFor(x,?p),

SayLine("I do not know how to add-multiply these numbers")),
snsequence(withsome(?z,

ProductResultSoFar(?z),
snsequence(believe(Evaluation(Result(SumProduct,x,y),?z)),

disbelieve(ProductResultSoFar(?z))),
SayLine("I could not determine the product.")),

disbelieve(NumToAdd(x)))))))),
Effect(AddMultiply(x,y),Evaluated(Result(SumProduct,x,y)))}).

;;;UVBR x for y
all(x)(Number(x) =>

{ActPlan(AddMultiply(x,x),
snsequence(SayLine+("Add Multiplying",x,x),
snsequence(believe(ProductResultSoFar(x)),
snsequence(believe(NumToAdd(x)),
snsequence(withsome(?p,Successor(x,?p),AddFromFor(x,?p),

Say("I do not know how to add-multiply these numbers")),

192



snsequence(withsome(?z,
ProductResultSoFar(?z),
snsequence(believe(Evaluation(Result(SumProduct,x,x),?z)),

disbelieve(ProductResultSoFar(?z))),
SayLine("I could not determine the product.")),

disbelieve(NumToAdd(x)))))))),
Effect(AddMultiply(x,x),Evaluated(Result(SumProduct,x,x)))}).

;;;
;;;Every added product obtained by this method is a product per se.
;;;
all(x,y,z)(Evaluation(Result(SumProduct,x,y),z) => Evaluation(Result(Product,x,y),z)).

;;;UVBR x for y
all(x,z)(Evaluation(Result(SumProduct,x,x),z) => Evaluation(Result(Product,x,x),z)).

;;;UVBR x for z
all(x,y)(Evaluation(Result(SumProduct,x,y),x) => Evaluation(Result(Product,x,y),x)).

;;;UVBR y for z
all(x,y)(Evaluation(Result(SumProduct,x,y),y) => Evaluation(Result(Product,x,y),y)).

;;;UVBR x for y and x for z
all(x)(Evaluation(Result(SumProduct,x,x),x) => Evaluation(Result(Product,x,x),x)).

;;;
;;;Add multiplication is a plan for multiplication per se.
;;;
all(x,y)({Number(x),Number(y)} &=> {ActPlan(Multiply(x,y),AddMultiply(x,y))}).

;;;UVBR x for y
all(x)(Number(x) => ActPlan(Multiply(x,x),AddMultiply(x,x))).

;=======================================================================
; SUBTRACT-DIVISION
;=======================================================================
define-frame NumToSubtract(nil num-to-subtract)
define-frame QuotientSoFar(nil quotient-so-far)
define-frame SubtractUntilZero(action object1 object2)
define-frame SubtractDivide(action object1 object2)

;;; Problem case of subtracting until zero
all(x,z)({NumToSubtract(x),QuotientSoFar(z)} &=>

ActPlan(SubtractUntilZero(undefined,x),
snsequence(believe(QuotientSoFar(undefined)),

disbelieve(QuotientSoFar(z))))).

;;; UVBR x for z
all(x)({NumToSubtract(x),QuotientSoFar(x)} &=>

ActPlan(SubtractUntilZero(undefined,x),
snsequence(believe(QuotientSoFar(undefined)),

disbelieve(QuotientSoFar(x))))).

;;; Base case of subtracting until zero
all(x,z)({Number(x),NumToSubtract(x),QuotientSoFar(z)} &=>

ActPlan(SubtractUntilZero(x,x),
snsequence(Subtract(x,x),

withsome(?s,
Successor(?s,z),
snsequence(believe(QuotientSoFar(?s)),

disbelieve(QuotientSoFar(z))),
SayLine("I could not determine the successor"))))).

;;;UVBR x for z

193



all(x,z)({Number(x),NumToSubtract(x),QuotientSoFar(x)} &=>
ActPlan(SubtractUntilZero(x,x),

snsequence(Subtract(x,x),
withsome(?s,

Successor(?s,x),
snsequence(believe(QuotientSoFar(?s)),

disbelieve(QuotientSoFar(x))),
SayLine("I could not determine the successor"))))).

;;;
;;; Recursive case of subtracting until zero
;;;
all(x,y,z)({Number(x),NumToSubtract(y),QuotientSoFar(z)} &=>

ActPlan(SubtractUntilZero(x,y),
snsequence(Subtract(x,y),
snsequence(withsome(?s,

Successor(?s,z),
snsequence(believe(QuotientSoFar(?s)),

disbelieve(QuotientSoFar(z))),
SayLine("I could not determine the successor")),

withsome(?r,
Evaluation(Result(Difference,x,y),?r),
SubtractUntilZero(?r,y),
SayLine("I could not determine the difference")))))).

;;; UVBR x for z
all(x,y)({Number(x),NumToSubtract(y),QuotientSoFar(x)} &=>

ActPlan(SubtractUntilZero(x,y),
snsequence(Subtract(x,y),
snsequence(withsome(?s,

Successor(?s,x),
snsequence(believe(QuotientSoFar(?s)),

disbelieve(QuotientSoFar(x))),
SayLine("I could not determine the successor")),

withsome(?r,
Evaluation(Result(Difference,x,y),?r),
SubtractUntilZero(?r,y),
SayLine("I could not determine the difference")))))).

;;; UVBR y for z
all(x,y)({Number(x),NumToSubtract(y),QuotientSoFar(y)} &=>

ActPlan(SubtractUntilZero(x,y),
snsequence(Subtract(x,y),
snsequence(withsome(?s,

Successor(?s,y),
snsequence(believe(QuotientSoFar(?s)),

disbelieve(QuotientSoFar(y))),
SayLine("I could not determine the successor")),

withsome(?r,
Evaluation(Result(Difference,x,y),?r),
SubtractUntilZero(?r,y),
SayLine("I could not determine the difference")))))).

;;;
;;; To Subtract-Divide x by y, subtract y from x until the difference
;;; is 0.
;;;
all(x,y)({Number(x),Number(y)} &=>

{ActPlan(SubtractDivide(x,y),
snif({if(Zero(y),snsequence(Say("I cannot divide by zero."),

believe(Evaluation(DifferenceQuotient,x,y),undefined))),
else(snsequence(SayLine+("Subtract Dividing",x,y),

194



withsome(?z,Zero(?z),
snsequence(believe(QuotientSoFar(?z)),
snsequence(believe(NumToSubtract(y)),
snsequence(SubtractUntilZero(x,y),
snsequence(withsome(?q,

QuotientSoFar(?q),
snsequence(believe(Evaluation(Result(DifferenceQuotient,x,y),?q)),

disbelieve(QuotientSoFar(?q))),
SayLine("I could not determine the difference.")),

disbelieve(NumToSubtract(y)))))),
SayLine(" I could not determine the difference."))))})),

Effect(SubtractDivide(x,y), Evaluated(Result(DifferenceQuotient,x,y)))}).

;;;
;;;UVBR x for y
;;;
all(x)(Number(x) =>

{ActPlan(SubtractDivide(x,x),
snif({if(Zero(x),snsequence(Say("I cannot divide by zero."),

believe(Evaluation(DifferenceQuotient,x,y),undefined))),
else(snsequence(SayLine+("Subtract Dividing",x,x),

withsome(?z,Zero(?z),
snsequence(believe(QuotientSoFar(?z)),
snsequence(believe(NumToSubtract(x)),
snsequence(SubtractUntilZero(x,x),
snsequence(withsome(?q,

QuotientSoFar(?q),
snsequence(believe(Evaluation(Result(DifferenceQuotient,x,x),?q)),

disbelieve(QuotientSoFar(?q))),
SayLine("I could not determine the difference.")),

disbelieve(NumToSubtract(x)))))),
SayLine(" I could not determine the difference."))))})),

Effect(SubtractDivide(x,x), Evaluated(Result(DifferenceQuotient,x,x)))}).

;;;
;;;Every difference quotient obtained by this method is a
;;;quotient per se.
;;;
all(x,y,z)(Evaluation(Result(DifferenceQuotient,x,y),z) => Evaluation(Result(Quotient,x,y),z)).

;;;
;;;UVBR x for y
;;;
all(x,z)(Evaluation(Result(DifferenceQuotient,x,x),z) => Evaluation(Result(Quotient,x,x),z)).

;;;
;;;UVBR x for z
;;;
all(x,y)(Evaluation(Result(DifferenceQuotient,x,y),x) => Evaluation(Result(Quotient,x,y),x)).

;;;
;;;UVBR y for z
;;;
all(x,y)(Evaluation(Result(DifferenceQuotient,x,y),y) => Evaluation(Result(Quotient,x,y),y)).

;;;
;;;UVBR x for y and z
;;;
all(x)(Evaluation(Result(DifferenceQuotient,x,x),x) => Evaluation(Result(Quotient,x,x),x)).

;;;
;;;Subtract division is a plan for division per se
;;;

195



all(x,y)({Number(x),Number(y)} &=> ActPlan(Divide(x,y),SubtractDivide(x,y))).

;;;UVBR x for y
all(x)(Number(x) => ActPlan(Divide(x,x),SubtractDivide(x,x))).

196



C. Extended Arithmetic
; =======================================================================
; FILENAME: ExtArith.snepslog
; DATE: 3/10/08
; PROGRAMMER: Albert Goldfain
;
; Lines beginning with a semi-colon are comments.
; Regions delimited by "ˆˆ" are Lisp commands.
; All other lines are SNePSLOG commands.
;
; To use this file: run SNePSLOG; at the SNePSLOG prompt (:), type:
;
; demo "ExtArith.snepslog"
;
; Make sure all necessary files are in the current working directory
; or else use full path names.
; =======================================================================

define-frame CalcAdd(action arg1 arg2)
define-frame CalcSubtract(action arg1 arg2)
define-frame CalcMultiply(action arg1 arg2)
define-frame CalcDivide(action arg1 arg2)

ˆˆ
(define-primaction CalcAdd((arg1) (arg2))

(format t "Calc Adding ˜A ˜A˜%" arg1 arg2)
(let* ((add1 (sneps:node-to-lisp-object arg1))

(add2 (sneps:node-to-lisp-object arg2))
(num1 (sneps:node-to-lisp-object

(cdr (first (first (askwh (concatenate ’string
"NumeralOf("
(princ-to-string add1)
",?x)")))))))

(num2 (sneps:node-to-lisp-object
(cdr (first (first (askwh (concatenate ’string

"NumeralOf("
(princ-to-string add2)
",?x)")))))))

(num3 (sneps:node-to-lisp-object
(cdr (first (first (askwh (concatenate ’string

"NumeralOf("
(princ-to-string (cl:+ add1 add2))
",?x)"))))))))

(tell (concatenate ’string
"Evaluation(Result(CalcSum,"
(princ-to-string add1) "," (princ-to-string add2) "),"
(princ-to-string (cl:+ add1 add2)) ")."))

(tell (concatenate ’string
"Evaluation(Result(Sum,"
(princ-to-string num1) "," (princ-to-string num2) "),"
(princ-to-string num3) ")."))))

(define-primaction CalcSubtract((arg1) (arg2))
(format t "Calc Subtracting ˜A ˜A˜%" arg1 arg2)
(let* ((sub1 (sneps:node-to-lisp-object arg1))

(sub2 (sneps:node-to-lisp-object arg2))
(num1 (sneps:node-to-lisp-object

(cdr (first (first (askwh (concatenate ’string
"NumeralOf("
(princ-to-string sub1)

197



",?x)")))))))
(num2 (sneps:node-to-lisp-object

(cdr (first (first (askwh (concatenate ’string
"NumeralOf("
(princ-to-string sub2)
",?x)")))))))

(num3 (sneps:node-to-lisp-object
(cdr (first (first (askwh (concatenate ’string

"NumeralOf("
(princ-to-string (cl:- sub1 sub2))
",?x)"))))))))

(tell (concatenate ’string
"Evaluation(Result(CalcDifference,"
(princ-to-string sub1) "," (princ-to-string sub2) "),"
(princ-to-string (cl:- sub1 sub2)) ")."))

(tell (concatenate ’string
"Evaluation(Result(Difference,"
(princ-to-string num1) "," (princ-to-string num2) "),"
(princ-to-string num3) ")."))))

(define-primaction CalcMultiply((arg1) (arg2))
(format t "Calc Multiplying ˜A ˜A˜%" arg1 arg2)
(let* ((mult1 (sneps:node-to-lisp-object arg1))

(mult2 (sneps:node-to-lisp-object arg2))
(num1 (sneps:node-to-lisp-object

(cdr (first (first (askwh (concatenate ’string
"NumeralOf("
(princ-to-string mult1)
",?x)")))))))

(num2 (sneps:node-to-lisp-object
(cdr (first (first (askwh (concatenate ’string

"NumeralOf("
(princ-to-string mult2)
",?x)")))))))

(num3 (sneps:node-to-lisp-object
(cdr (first (first (askwh (concatenate ’string

"NumeralOf("
(princ-to-string (cl:* mult1 mult2))
",?x)"))))))))

(tell (concatenate ’string
"Evaluation(Result(CalcProduct,"
(princ-to-string mult1) "," (princ-to-string mult2) "),"
(princ-to-string (cl:* mult1 mult2)) ")."))

(tell (concatenate ’string
"Evaluation(Result(Product,"
(princ-to-string num1) "," (princ-to-string num2) "),"
(princ-to-string num3) ")."))))

(define-primaction CalcDivide((arg1) (arg2))
(format t "Calc Dividing ˜A ˜A˜%" arg1 arg2)
(let* ((div1 (sneps:node-to-lisp-object arg1))

(div2 (sneps:node-to-lisp-object arg2))
(num1 (sneps:node-to-lisp-object

(cdr (first (first (askwh (concatenate ’string
"NumeralOf("
(princ-to-string div1)
",?x)")))))))

(num2 (sneps:node-to-lisp-object
(cdr (first (first (askwh (concatenate ’string

"NumeralOf("

198



(princ-to-string div2)
",?x)")))))))

(num3 (sneps:node-to-lisp-object
(cdr (first (first (askwh (concatenate ’string

"NumeralOf("
(princ-to-string (cl:/ div1 div2))
",?x)"))))))))

(tell (concatenate ’string
"Evaluation(Result(CalcQuotient,"
(princ-to-string div1) "," (princ-to-string div2) "),"
(princ-to-string (cl:/ div1 div2)) ")."))

(tell (concatenate ’string
"Evaluation(Result(Quotient,"
(princ-to-string num1) "," (princ-to-string num2) "),"
(princ-to-string num3) ")."))))

(attach-primaction CalcAdd CalcAdd CalcSubtract CalcSubtract
CalcMultiply CalcMultiply CalcDivide CalcDivide)

ˆˆ

ResultName(CalcSum).
ResultName(CalcDifference).
ResultName(CalcProduct).
ResultName(CalcQuotient).

all(x,nx,y,ny)({NumeralOf(x,nx),NumeralOf(y,ny)} &=>
{ActPlan(Add(nx,ny),CalcAdd(x,y)),

Effect(CalcAdd(x,y),Evaluated(Result(CalcSum,x,y))),
ActPlan(Subtract(nx,ny),CalcSubtract(x,y)),
Effect(CalcSubtract(x,y),Evaluated(Result(CalcDifference,x,y))),
ActPlan(Multiply(nx,ny),CalcMultiply(x,y)),
Effect(CalcMultiply(x,y),Evaluated(Result(CalcProduct,x,y))),
ActPlan(Divide(nx,ny),CalcDivide(x,y)),
Effect(CalcDivide(x,y),Evaluated(Result(CalcQuotient,x,y)))}).

all(x,nx)(NumeralOf(x,nx) =>
{ActPlan(Add(nx,nx),CalcAdd(x,x)),

Effect(CalcAdd(x,x), Evaluated(Result(CalcSum,x,x))),
ActPlan(Subtract(nx,nx),CalcSubtract(x,x)),
Effect(CalcSubtract(x,x), Evaluated(Result(CalcDifference,x,x))),
ActPlan(Multiply(nx,nx),CalcMultiply(x,x)),
Effect(CalcMultiply(x,x), Evaluated(Result(CalcProduct,x,x))),
ActPlan(Divide(nx,nx),CalcDivide(x,x)),
Effect(CalcDivide(x,x), Evaluated(Result(CalcQuotient,x,x)))}).

199



D. Syntactic Arithmetic
; =======================================================================
; FILENAME: SynArith.snepslog
; DATE: 3/10/08
; PROGRAMMER: Albert Goldfain
;
; Lines beginning with a semi-colon are comments.
; Regions delimited by "ˆˆ" are Lisp commands.
; All other lines are SNePSLOG commands.
;
; To use this file: run SNePSLOG; at the SNePSLOG prompt (:), type:
;
; demo "SynArith.snepslog"
;
; Make sure all necessary files are in the current working directory
; or else use full path names.
; =======================================================================
;;;
;;;[[DigitString(x,y)]] = [[x]] is the digit string representation of [[y]]
;;;
define-frame DigitString(nil digit-string number)

;;;
;;;[[S(x,y)]] = A structured individual used to recursively build up the
;;; left-recursive digit string [[x]] [[y]]. NOTE: The
;;; code below only works for two-digit arithmetic.
;;;
define-frame S(nil head tail)

;;;
;;;[[AddInCols(x,y)]] = Act of adding digits [[x]] and [[y]] in the
;;; current column.
;;;
define-frame AddInCols(action arg1 arg2)

;;;
;;;[[AddDS(x,y)]] = Act of adding digit strgins [[x]] and [[y]].
define-frame AddDS(action arg1 arg2)

;;;To add a and b in the current column, use generic Add routine
;;;and then probe for the evaluation.
all(a,b)({Number(a),Number(b)} &=>

{ActPlan(AddInCols(a,b),
snsequence(SayLine+("Adding Column: ",a,b),
snsequence(Add(a,b),

withsome(?r,
Evaluation(Result(Sum,a,b),?r),
snsequence(SayLine+("Column","Result:",?r),

snif({if(GreaterThan(?r,n9),
SayLine("Carry for next column")),

else(SayLine("No carry for next column"))})),
SayLine("Unable to determine sum"))))),

ActPlan(AddInCols(a,a),
snsequence(SayLine+("Adding Column: ",a,a),
snsequence(Add(a,a),

withsome(?r,
Evaluation(Result(Sum,a,a),?r),
snsequence(SayLine+("Column","Result:",?r),

snif({if(GreaterThan(?r,n9),
SayLine("Carry for next column")),

else(SayLine("No carry for next column"))})),
SayLine("Unable to determine sum")))))}).

200



;;;All digit-string permutations of AddDS act.
all(a,b,c,d)({Number(a),Number(b),Number(c),Number(d)} &=>

ActPlan(AddDS(S(a,b),S(c,d)),
snsequence(SayLine("Addition of the form S(a,b) + S(c,d)"),
snsequence(AddInCols(b,d),

AddInCols(a,c))))).

all(a,b,c)({Number(a),Number(b),Number(c)} &=>
{ActPlan(AddDS(S(a,a),S(b,c)),

snsequence(SayLine("Addition of the form S(a,a) + S(b,c)"),
snsequence(AddInCols(a,c),

AddInCols(a,b)))),
ActPlan(AddDS(S(a,b),S(a,c)),

snsequence(SayLine("Addition of the form S(a,b) + S(a,c)"),
snsequence(AddInCols(b,c),

AddInCols(a,a)))),
ActPlan(AddDS(S(a,b),S(c,a)),

snsequence(SayLine("Addition of the form S(a,b) + S(c,a)"),
snsequence(AddInCols(b,a),

AddInCols(a,c)))),
ActPlan(AddDS(S(a,b),S(b,c)),

snsequence(SayLine("Addition of the form S(a,b) + S(b,c)"),
snsequence(AddInCols(b,c),

AddInCols(a,b)))),
ActPlan(AddDS(S(a,b),S(c,b)),

snsequence(SayLine("Addition of the form S(a,b) + S(c,b)"),
snsequence(AddInCols(b,b),

AddInCols(a,c)))),
ActPlan(AddDS(S(a,b),S(c,c)),

snsequence(SayLine("Addition of the form S(a,b) + S(c,c)"),
snsequence(AddInCols(b,c),

AddInCols(a,c))))}).

all(a,b)({Number(a),Number(b)} &=>
{ActPlan(AddDS(S(a,a),S(b,b)),

snsequence(SayLine("Addition of the form S(a,a) + S(b,b)"),
snsequence(AddInCols(a,b),

AddInCols(a,b)))),
ActPlan(AddDS(S(a,b),S(a,b)),

snsequence(SayLine("Addition of the form S(a,b) + S(a,b)"),
snsequence(AddInCols(b,b),

AddInCols(a,a)))),
ActPlan(AddDS(S(a,b),S(b,a)),

snsequence(SayLine("Addition of the form S(a,b) + S(b,a)"),
snsequence(AddInCols(b,a),

AddInCols(a,b)))),
ActPlan(AddDS(S(a,a),S(a,b)),

snsequence(SayLine("Addition of the form S(a,a) + S(a,b)"),
snsequence(AddInCols(a,b),

AddInCols(a,a)))),
ActPlan(AddDS(S(a,b),S(a,a)),

snsequence(SayLine("Addition of the form S(a,b) + S(a,a)"),
snsequence(AddInCols(b,a),

AddInCols(a,a)))),
ActPlan(AddDS(S(a,b),S(b,b)),

snsequence(SayLine("Addition of the form S(a,b) + S(b,b)"),
snsequence(AddInCols(b,b),

AddInCols(a,b))))}).

all(a)(Number(a) =>
ActPlan(AddDS(S(a,a),S(a,a)),

snsequence(SayLine("Addition of the form S(a,a) + S(a,a)"),
snsequence(AddInCols(a,a),

AddInCols(a,a))))).

201



;;;Hook into the rest of the system.
all(x,y,dsx,dsy)({DigitString(dsx,x),DigitString(dsy,y)} &=>

ActPlan(Add(x,y),AddDS(dsx,dsy))).

202



E. NLGCD
define-frame DivisorOf(rel arg1 arg2)
define-frame CommonDivisorOf(rel arg1 arg2 arg3)
define-frame DivisorCandidate(nil divisor-candidate)
define-frame Dividend(nil dividend)

define-frame UpdateDivisorCandidate(action number)
define-frame CreateDivisorList(action number)
define-frame CreateCommonList(action arg1 arg2)
define-frame FindGreatestCommonDivisor(action arg1 arg2)
define-frame NLGCD(action arg1 arg2)

all(d)(DivisorCandidate(d) =>
ActPlan(UpdateDivisorCandidate(d),

withsome(?dp1,
Successor(?dp1,d),
snsequence(disbelieve(DivisorCandidate(d)),

believe(DivisorCandidate(?dp1))),
SayLine("I don’t know the successor")))).

all(nx)({Dividend(nx),DivisorCandidate(nx)} &=>
ActPlan(CreateDivisorList(nx),

snsequence(believe(DivisorOf(nx,nx)),
snsequence(SayLine("Done with divisor list"),
snsequence(disbelieve(DivisorCandidate(nx)),

disbelieve(Dividend(nx))))))).

all(nx,d)({Dividend(nx),DivisorCandidate(d)} &=>
ActPlan(CreateDivisorList(nx),

snsequence(Divide(nx,d),
withsome(?q,

(Number(?q) and Evaluation(Result(Quotient,nx,d),?q)),
snsequence(Say(d),
snsequence(SayLine(" is a divisor "),
snsequence(believe(DivisorOf(d,nx)),
snsequence(UpdateDivisorCandidate(d),

CreateDivisorList(nx))))),
snsequence(Say(d),
snsequence(SayLine(" is not a divisor"),
snsequence(UpdateDivisorCandidate(d),

CreateDivisorList(nx)))))))).

all(nx,ny)({Number(nx),Number(ny)} &=>
ActPlan(CreateCommonList(nx,ny),

withall(?div,
(DivisorOf(?div,nx) and DivisorOf(?div,ny)),
believe(CommonDivisorOf(?div,nx,ny)),
SayLine("problems creating common list")))).

all(nx,ny)({Number(nx),Number(ny)} &=>
ActPlan(FindGreatestCommonDivisor(nx,ny),

snsequence(SayLine("Now finding GCD"),
snsequence(believe(Evaluation(Result(GCD,nx,ny),n1)),

withall(?div,
CommonDivisorOf(?div,nx,ny),

withsome(?g,
Evaluation(Result(GCD,nx,ny),?g),
snif({if(GreaterThan(?div,?g),

snsequence(disbelieve(Evaluation(Result(GCD,nx,ny),?g)),
believe(Evaluation(Result(GCD,nx,ny),?div)))),

203



else(believe(Evaluation(Result(GCD,nx,ny),?div)))}),
SayLine("I can’t find the GCD")),

SayLine("GCD found")))))).

;;;ActPlan for NLGCD
all(nx,ny,z)({Number(nx),Number(ny),Zero(z)} &=>

ActPlan(NLGCD(nx,ny),
withsome(?one,

Successor(?one,z),
snsequence(believe(DivisorCandidate(?one)),
snsequence(believe(Dividend(nx)),
snsequence(CreateDivisorList(nx),
snsequence(believe(DivisorCandidate(?one)),
snsequence(believe(Dividend(ny)),
snsequence(CreateDivisorList(ny),
snsequence(CreateCommonList(nx,ny),
FindGreatestCommonDivisor(nx,ny)))))))),

SayLine("Problem with NLGCD.")))).

204



F. NLLCM
define-frame MultipleOf(rel arg1 arg2)
define-frame CommonMultipleOf(rel arg1 arg2 arg3)
define-frame CurrentBase(nil current-base)
define-frame CurrentMultiple(nil current-multiple)
define-frame GreatestCandidateLCM(nil greatest-candidate-lcm)
define-frame UpdateCurrentMultiple(action arg1 arg2)
define-frame CreateMultipleList(action number)
define-frame CreateCommonMultipleList(action arg1 arg2)
define-frame FindLeastCommonMultiple(action arg1 arg2)
define-frame NLLCM(action arg1 arg2)

;Plan for updating the current multiple
all(nx,m)({CurrentBase(nx),CurrentMultiple(m)} &=>

ActPlan(UpdateCurrentMultiple(m,nx),
snsequence(SayLine+("Updating with rule 1", m, nx),
snsequence(Add(m,nx),

withsome(?s,
Evaluation(Result(Sum,m,nx),?s),
snsequence(disbelieve(CurrentMultiple(m)),

believe(CurrentMultiple(?s))),
SayLine("I don’t know the sum")))))).

;UVBR nx for m
all(nx)(CurrentMultiple(nx)=>

ActPlan(UpdateCurrentMultiple(nx,nx),
snsequence(SayLine+("Updating with rule 2",nx,nx),
snsequence(Add(nx,nx),

withsome(?s,
Evaluation(Result(Sum,nx,nx),?s),
snsequence(disbelieve(CurrentMultiple(nx)),

believe(CurrentMultiple(?s))),
SayLine("I don’t know the sum")))))).

;Plan for creating a multiple list for nx
all(nx,m,gclcm)({CurrentBase(nx),CurrentMultiple(m),GreatestCandidateLCM(gclcm)} &=>

ActPlan(CreateMultipleList(nx),
snsequence(SayLine("UsingRule1"),
snif({if(GreaterThan(gclcm,m),

snsequence(believe(MultipleOf(m,nx)),
snsequence(UpdateCurrentMultiple(m,nx),

CreateMultipleList(nx)))),
else(SayLine("Done with multiple list"))})))).

;UVBR nx for m
all(nx,gclcm)({CurrentBase(nx),CurrentMultiple(nx),GreatestCandidateLCM(gclcm)} &=>

ActPlan(CreateMultipleList(nx),
snsequence(SayLine("UsingRule2"),
snif({if(GreaterThan(gclcm,nx),

snsequence(believe(MultipleOf(nx,nx)),
snsequence(UpdateCurrentMultiple(nx,nx),

CreateMultipleList(nx)))),
else(SayLine("Done with multiple list"))})))).

;UVBR nx for gclcm
all(nx,m)({CurrentBase(nx),CurrentMultiple(m),GreatestCandidateLCM(nx)} &=>

ActPlan(CreateMultipleList(nx),
snif({if(GreaterThan(nx,m),

snsequence(believe(MultipleOf(m,nx)),
snsequence(UpdateCurrentMultiple(m,nx),

205



CreateMultipleList(nx)))),
else(SayLine("Done with multiple list"))}))).

;UVBR nx for m and nx for gclcm
all(nx)({CurrentBase(nx),CurrentMultiple(nx),GreatestCandidateLCM(nx)} &=>

ActPlan(CreateMultipleList(nx),
snif({if(GreaterThan(nx,nx),

snsequence(believe(MultipleOf(nx,nx)),
snsequence(UpdateCurrentMultiple(nx,nx),

CreateMultipleList(nx)))),
else(SayLine("Done with multiple list"))}))).

;UVBR m for gclcm
all(nx,m)({CurrentBase(nx),CurrentMultiple(m),GreatestCandidateLCM(m)} &=>

ActPlan(CreateMultipleList(nx),
snsequence(believe(MultipleOf(m,nx)),

SayLine("Done with multiple list")))).

;Plan for creating common multiple list
all(nx,ny)({Number(nx),Number(ny)} &=>

ActPlan(CreateCommonMultipleList(nx,ny),
withall(?m,

(MultipleOf(?m,nx) and MultipleOf(?m,ny)),
believe(CommonMultipleOf(?m,nx,ny)),
SayLine("problems creating common multiple list")))).

;Plan for finding the LCM
all(nx,ny,gclcm)({Number(nx),Number(ny),GreatestCandidateLCM(gclcm)} &=>

ActPlan(FindLeastCommonMultiple(nx,ny),
snsequence(SayLine("Now finding LCM"),
snsequence(believe(Evaluation(Result(LCM,nx,ny),gclcm)),

withall(?m,
CommonMultipleOf(?m,nx,ny),

withsome(?l,
Evaluation(Result(LCM,nx,ny),?l),
snif({if(GreaterThan(?l,?m),

snsequence(disbelieve(Evaluation(Result(LCM,nx,ny),?l)),
believe(Evaluation(Result(LCM,nx,ny),?m)))),

else(believe(Evaluation(Result(LCM,nx,ny),?l)))}),
SayLine("I can’t find the LCM")),

SayLine("LCM found")))))).

;;;ActPlan for NLLCM
all(nx,ny)({Number(nx),Number(ny)} &=>

ActPlan(NLLCM(nx,ny),
snsequence(Multiply(nx,ny),
snsequence(withsome(?p,

Evaluation(Result(Product,nx,ny),?p),
believe(GreatestCandidateLCM(?p)),
SayLine("I don’t know the product")),

snsequence(believe(CurrentMultiple(nx)),
snsequence(believe(CurrentBase(nx)),
snsequence(CreateMultipleList(nx),
snsequence(disbelieve(CurrentBase(nx)),
snsequence(withsome(?c,

CurrentMultiple(?c),
disbelieve(CurrentMultiple(?c)),
SayLine("There’s a problem")),

snsequence(believe(CurrentMultiple(ny)),
snsequence(believe(CurrentBase(ny)),
snsequence(CreateMultipleList(ny),
snsequence(disbelieve(CurrentBase(ny)),
snsequence(withsome(?c,

206



CurrentMultiple(?c),
disbelieve(CurrentMultiple(?c)),
SayLine("There’s a problem")),

snsequence(CreateCommonMultipleList(nx,ny),
snsequence(FindLeastCommonMultiple(nx,ny),

withsome(?p,
Evaluation(Result(Product,nx,ny),?p),
believe(GreatestCandidateLCM(?p)),
SayLine("I don’t know the product")))))))))))))))))).

207



G. Question Parser
define-frame answerQuestion(action question)

ˆˆ
;;;PMLb

;;;<QUESTION> := <ISDOES> <EVAL> | <WHY> <EVAL> | <WHAT> <RES> | <HOW><RES>| <DEFINE> <CONCEPT> ;
;;;<ISDOES> := is | does ;
;;;<WHY> := why <ISDOES>;
;;;<WHAT> := what is;
;;;<HOW> := how <DOCAN> you <COMPUTE>;
;;;<DEFINE> := define
;;;<DOCAN> := do | can;
;;;<COMPUTE> := ((compute | find) <RES>) | <GENERALACT>;
;;;<GENERALACT> := ((add | multiply) <NUMBER> and <NUMBER>) |
;;; (subtract <NUMBER> from <NUMBER>) |
;;; (divide <NUMBER> by <NUMBER>);
;;;<EVAL> := <RES> = <NUMBER>;
;;;<RES> := <NUMBER> <OP> <NUMBER>;
;;;<OP> := + | - | * | / ;

(defparameter *WhiteSpace* ’(#\Space #\Newline #\Tab #\Page #\Return)
"Characters to be ignored")

(defparameter *QType* ’unknown)

(defun parseQuestion (question)
(format t "˜%Parsing <QUESTION>")
(setf pos 0)
(setf *Input* question)
(setf *QType* ’unknown)
(setf *RType* ’unknown)
(cond ((string= (subseq *Input* pos (+ pos 2)) "is") (parseIsDoes (+ pos 3)))

((string= (subseq *Input* pos (+ pos 4)) "does") (parseIsDoes (+ pos 5)))
((string= (subseq *Input* pos (+ pos 3)) "why") (parseWhy (+ pos 4)))
((string= (subseq *Input* pos (+ pos 4)) "what") (parseWhat (+ pos 5)))
((string= (subseq *Input* pos (+ pos 3)) "how") (parseHow (+ pos 4)))
((string= (subseq *Input* pos (+ pos 6)) "define") (parseDefine (+ pos 7)))
(t (format t "Question Parse Error"))))

(defun parseIsDoes (pos)
(format t "˜%Parsing <ISDOES>")
(when (equal *QType* ’unknown) (setf *QType* ’is-does-question))
(parseEval pos)
(cond ((equal *RType* ’+) (setf *ResultName* "Sum"))

((equal *RType* ’-) (setf *ResultName* "Difference"))
((equal *RType* ’*) (setf *ResultName* "Product"))
((equal *RType* ’/) (setf *ResultName* "Quotient")))

(setf *SNePSLOG-Q* (concatenate ’string "Evaluation(Result("
*ResultName* ",n" *Arg1* ",n" *Arg2* "),n" *Number* ")?")))

(defun parseWhy (pos)
(format t "˜%Parsing <WHY>")
(when (equal *QType* ’unknown) (setf *QType* ’why-question))
(cond ((string= (subseq *Input* pos (+ pos 2)) "is") (parseEval (+ pos 3)))

((string= (subseq *Input* pos (+ pos 4)) "does") (parseEval (+ pos 5))))
(cond ((equal *RType* ’+) (setf *ResultName* "Sum"))

((equal *RType* ’-) (setf *ResultName* "Difference"))
((equal *RType* ’*) (setf *ResultName* "Product"))
((equal *RType* ’/) (setf *ResultName* "Quotient")))

(setf *SNePSLOG-Q*
(concatenate ’string "perform Explain(Evaluation(Result("

*ResultName* ",n" *Arg1* ",n" *Arg2* "),n" *Number* "))")))

208



(defun parseWhat (pos)
(format t "˜%Parsing <WHAT>")
(when (equal *QType* ’unknown) (setf *QType* ’what-question))
(cond ((string= (subseq *Input* pos (+ pos 2)) "is") (parseRes (+ pos 3)))

(t (format t "Not handling yet")))
(cond ((equal *RType* ’+) (setf *ResultName* "Sum"))

((equal *RType* ’-) (setf *ResultName* "Difference"))
((equal *RType* ’*) (setf *ResultName* "Product"))
((equal *RType* ’/) (setf *ResultName* "Quotient")))

(setf *SNePSLOG-Q*
(concatenate ’string "Evaluation(Result("

*ResultName* ",n" *Arg1* ",n" *Arg2* "),?x)?")))

(defun parseHow (pos)
(format t "˜%Parsing <HOW>")
(setf *ActType* nil)
(when (equal *QType* ’unknown) (setf *QType* ’how-question))
(cond ((string= (subseq *Input* pos (+ pos 6)) "do you") (parseCompute (+ pos 7)))

((string= (subseq *Input* pos (+ pos 7)) "can you") (parseCompute (+ pos 8))))
(cond ((equal *RType* ’+) (setf *ResultName* "Sum"))

((equal *RType* ’-) (setf *ResultName* "Difference"))
((equal *RType* ’*) (setf *ResultName* "Product"))
((equal *RType* ’/) (setf *ResultName* "Quotient")))

(if *ActType*
(setf *SNePSLOG-Q*

(concatenate ’string "ActPlan(" *ActType* "(n" *Arg1* ",n"
*Arg2* "),?x)?"))

(setf *SNePSLOG-Q*
(concatenate ’string "Effect(?x,Evaluated(Result("

*ResultName* ",n" *Arg1* ",n" *Arg2* ")))?"))))

(defun parseDefine (pos)
(format t "˜%Parsing <DEFINE>")
(when (equal *QType* ’unknown) (setf *QType* ’definition))
(setf *concept-to-define* (subseq *Input* pos (- (length *Input*) 1)))
(setf *SNePSLOG-Q*

(concatenate ’string "perform snsequence(believe(ConceptToDefine("
(princ-to-string *concept-to-define*)
")),Define("
(princ-to-string *concept-to-define*)
"))")))

(defun parseCompute (pos)
(format t "˜%Parsing <COMPUTE>")
(cond ((string= (subseq *Input* pos (+ pos 3)) "add")

(parseGeneralAct "Add" (+ pos 4)))
((string= (subseq *Input* pos (+ pos 6)) "divide")

(parseGeneralAct "Divide" (+ pos 7)))
((string= (subseq *Input* pos (+ pos 8)) "subtract")

(parseGeneralAct "Subtract" (+ pos 9)))
((string= (subseq *Input* pos (+ pos 8)) "multiply")

(parseGeneralAct "Multiply" (+ pos 9)))
((string= (subseq *Input* pos (+ pos 4)) "find") (parseRes (+ pos 5)))
((string= (subseq *Input* pos (+ pos 7)) "compute") (parseRes (+ pos 8)))))

(defun parseGeneralAct (generalact pos)
(format t "˜%Parsing <GENERALACT>")
(setf *ActType* generalact)
(cond ((or (string= *ActType* "Add") (string= *ActType* "Multiply"))

(parseArg2 (parseAnd (parseArg1 pos))))
((string= *ActType* "Subtract")

(parseArg1 (parseFrom (parseArg2 pos))))
((string= *ActType* "Divide")

(parseArg2 (parseBy (parseArg1 pos))))))

209



(defun parseEval (pos)
(format t "˜%Parsing <EVAL>")
(parseNumber (parseEquals (parseRes pos))))

(defun parseRes (pos)
(format t "˜%Parsing <RES>")
(parseArg2 (parseOp (parseArg1 pos))))

(defun parseOp (pos)
(format t "˜%Parsing <OP>")
(cond ((string= (subseq *Input* pos (+ pos 1)) "+") (setf *RType* ’+))

((string= (subseq *Input* pos (+ pos 1)) "-") (setf *RType* ’-))
((string= (subseq *Input* pos (+ pos 1)) "*") (setf *RType* ’*))
((string= (subseq *Input* pos (+ pos 1)) "/") (setf *RType* ’/))
(t (format t "Error parsing <OP>")))

(+ pos 2))

(defun parseArg1 (pos)
(format t "˜%Parsing <ARG1>")
(setf *Arg1* (subseq *Input* pos (+ pos 1)))
(+ pos 2))

(defun parseArg2 (pos)
(format t "˜%Parsing <ARG2>")
(setf *Arg2* (subseq *Input* pos (+ pos 1)))
(+ pos 2))

(defun parseEquals (pos)
(format t "˜%Parsing =")
(+ pos 2))

(defun parseAnd (pos)
(format t "˜%Parsing and")
(+ pos 4))

(defun parseFrom (pos)
(format t "˜%Parsing from")
(+ pos 5))

(defun parseBy (pos)
(format t "˜%Parsing by")
(+ pos 3))

(defun parseNumber (pos)
;;;make this better

(format t "˜%Parsing <NUMBER>")
(setf *Number* (subseq *Input* pos (+ pos 1)))
(+ pos 2))

;;;PMLa
(define-primaction answerQuestion ((question))

(let ((q (parseQuestion (princ-to-string question))))
(format t "˜%˜%Question in SNePSLOG:˜A˜%˜%" q)
(cond ((equal *QType* ’why-question) (snepslog:tell q))

((equal *QType* ’is-does-question) (snepslog:ask q :verbose t))
((equal *QType* ’what-question)

(snepslog:askwh q :verbose t))
((equal *QType* ’how-question)

(snepslog:askwh q :verbose t))
((equal *QType* ’definition)

(snepslog:tell q)))))

210



(attach-primaction answerQuestion answerQuestion)
ˆˆ

211



H. Exhaustive Explanation
define-frame Explain(action evaluation)
define-frame IsFactual(action evaluation)
define-frame ActExplain(action result)
define-frame SayDescrip(action utterance)

ˆˆ
(define-primaction SayDescrip (utterance)

"DESCRIPTION"
(snepslog:snepslog-print utterance))

(attach-primaction SayDescrip SayDescrip)
ˆˆ

all(rn,a1,a2)({ResultName(rn),Number(a1),Number(a2)} &=>
ActPlan(ActExplain(Result(rn,a1,a2)),

withsome(?a,
Effect(?a,Evaluated(Result(rn,a1,a2))),
snsequence(SayDescrip(?a),
snsequence(SayLine("And I can do this by performing"),

withsome(?p,
ActPlan(?a,?p),
snsequence(SayDescrip(?p),
snsequence(Say("Which has the effect(s) of"),
withsome(?e,
Effect(?p,?e),
SayDescrip(?e),
SayLine("I don’t knowthe effect(s) of that")))),
SayLine("I don’t know any plans for that")))),

SayLine("I don’t know how to evaluate this result")))).

all(rn,a1,a2,r)({ResultName(rn),Number(a1),Number(a2),Number(r)} &=>
{ActPlan(IsFactual(Evaluation(Result(rn,a1,a2),r)),

snif({if(Evaluation(Result(rn,a1,a2),r),
SayLine("I know that the result is correct")),

else(SayLine("I don’t yet know that the result is correct"))})),
ActPlan(Explain(Evaluation(Result(rn,a1,a2),r)),

snsequence(IsFactual(Evaluation(Result(rn,a1,a2),r)),
snsequence(SayLine("Here’s HOW I can find the result"),

ActExplain(Result(rn,a1,a2)))))}).

;;;UVBR a1 for a2
all(rn,a1)({ResultName(rn),Number(a1)} &=>

ActPlan(ActExplain(Result(rn,a1,a1)),
withsome(?a,

Effect(?a,Evaluated(Result(rn,a1,a1))),
snsequence(SayDescrip(?a),
snsequence(SayLine("And I can do this by performing"),

withsome(?p,
ActPlan(?a,?p),
snsequence(SayDescrip(?p),
snsequence(Say("Which has the effect(s) of"),
withsome(?e,
Effect(?p,?e),
SayDescrip(?e),
SayLine("I don’t knowthe effect(s) of that")))),
SayLine("I don’t know any plans for that")))),

SayLine("I don’t know how to evaluate this result")))).

212



all(rn,a1,r)({ResultName(rn),Number(a1),Number(r)} &=>
{ActPlan(IsFactual(Evaluation(Result(rn,a1,a1),r)),

snif({if(Evaluation(Result(rn,a1,a1),r),
SayLine("I know that the result is correct")),

else(SayLine("I don’t yet know that the result is correct"))})),
ActPlan(Explain(Evaluation(Result(rn,a1,a1),r)),

snsequence(IsFactual(Evaluation(Result(rn,a1,a1),r)),
snsequence(SayLine("Here’s HOW I can find the result"),

ActExplain(Result(rn,a1,a1)))))}).

;;;UVBR a1 for r
all(rn,a1,a2)({ResultName(rn),Number(a1),Number(a2)} &=>

{ActPlan(IsFactual(Evaluation(Result(rn,a1,a2),a1)),
snif({if(Evaluation(Result(rn,a1,a2),a1),

SayLine("I know that the result is correct")),
else(SayLine("I don’t yet know that the result is correct"))})),

ActPlan(Explain(Evaluation(Result(rn,a1,a2),a1)),
snsequence(IsFactual(Evaluation(Result(rn,a1,a2),a1)),
snsequence(SayLine("Here’s HOW I can find the result"),

ActExplain(Result(rn,a1,a2)))))}).

;;;UVBR a2 for r
all(rn,a1,a2)({ResultName(rn),Number(a1),Number(a2)} &=>

{ActPlan(IsFactual(Evaluation(Result(rn,a1,a2),a2)),
snif({if(Evaluation(Result(rn,a1,a2),a2),

SayLine("I know that the result is correct")),
else(SayLine("I don’t yet know that the result is correct"))})),

ActPlan(Explain(Evaluation(Result(rn,a1,a2),a2)),
snsequence(IsFactual(Evaluation(Result(rn,a1,a2),a2)),
snsequence(SayLine("Here’s HOW I can find the result"),

ActExplain(Result(rn,a1,a2)))))}).

213



I. Conceptual Definition
define-frame ConceptToDefine(nil concept-to-define)

define-frame GetClassMembers(action classtype)
define-frame GetClassContainment(action member-inst)
define-frame GetActsWithArgumentType(action argtype)
define-frame GetOperationsWithResultType(action resulttype)
define-frame GetMannerOfRelationships(action procedure)
define-frame GetGeneralResultType(action resulttype)
define-frame ProvideExampleOfResult(action result-inst)
define-frame ProvideExampleOfRel(action relation)
define-frame Define(action entity)
ˆˆ
(define-primaction GetClassMembers (classtype)
"Determines the members of the given class type"

(setf result #!((find (member- ! class) ˜classtype)))
(when result (format t "˜&˜A has the following class membership˜%˜A˜%"

(sneps:choose.ns classtype) result))
)

(define-primaction GetClassContainment (member-inst)
"Determines the classes of the given member instance"

(setf result #!((find (class- ! member) ˜member-inst)))
(when result (format t "˜&˜A is a ˜%˜A˜%"

(sneps:choose.ns member-inst) result))
)

(define-primaction GetActsWithArgumentType (argtype)
"Determines which acts have the given argument type"

(setf result #!((find (action- act- cq- ant class) ˜argtype)))
(when result (format t "˜&˜A is an argument for the following acts˜%˜A˜%"

(sneps:choose.ns argtype) result))

)

(define-primaction GetOperationsWithResultType (resulttype)
"Determines which operations have at least one instance of the given
result type"

(setf result #!((find (result-name- ! value member- class) ˜resulttype)))
(when result (format t "˜&˜A is the result type of the following
operations I have already performed˜%˜A˜%"

(sneps:choose.ns resulttype) result))

)

(define-primaction GetMannerOfRelationships (procedure)
"Determines the ways in which the given procedure can be executed"

(setf result #!((find (action- plan- act action) ˜procedure)))
(when result (format t "˜&˜A can be performed via the following acts˜%˜A˜%"

(sneps:choose.ns procedure) result))
)

(define-primaction GetGeneralResultType (resulttype)
"Determines the general type of result for the given particular result
type"

(setf result #!((find (result-name- cq- ant result-name) ˜resulttype)))
(when result (format t "˜&˜A is a specific instance of the following kinds of
result ˜%˜A˜%"

(sneps:choose.ns resulttype) result))
)

(define-primaction ProvideExampleOfResult (result-inst)

214



"Finds one grounded example for the given result"

;(format t "Some examples of ˜A as a result ˜%" result-inst)

#!((perform (build action withsome
vars ($x $y $z)
suchthat (build arg1 *x arg2 *y result ˜result-inst
op *z)
do (build action snsequence

object1 (build action Say object "The ")
object2
(build action snsequence
object1 (build action Say object *z)
object2
(build action snsequence
object1 (build action Say object " of ")
object2
(build action snsequence
object1 (build action Say object *x)
object2
(build action snsequence
object1 (build action Say object " and ")
object2
(build action snsequence
object1 (build action Say object *y)
object2
(build action snsequence
object1 (build action Say object " is ")
object2 (build action SayLine object ˜result-inst))))))))

else (build action Say object " "))))

;;;UVBR x for y
#!((perform (build action withsome

vars ($x $z)
suchthat (build arg1 *x arg2 *x result ˜result-inst
op *z)
do (build action snsequence

object1 (build action Say object "The ")
object2
(build action snsequence
object1 (build action Say object *z)
object2
(build action snsequence
object1 (build action Say object " of ")
object2
(build action snsequence
object1 (build action Say object *x)
object2
(build action snsequence
object1 (build action Say object " and ")
object2
(build action snsequence
object1 (build action Say object *x)
object2
(build action snsequence
object1 (build action Say object " is ")
object2 (build action SayLine object ˜result-inst))))))))

else (build action Say object " "))))

)

(define-primaction ProvideExampleOfRel (relation)
"Finds one grounded example for the given relation"

215



;(format t "Some examples of the ˜A relation˜%" relation)

#!((perform (build action withsome
vars ($x $y $z)
suchthat (build arg1 *x arg2 *y result *z
op ˜relation)
do (build action snsequence

object1 (build action Say object "The ")
object2
(build action snsequence
object1 (build action Say object ˜relation)
object2
(build action snsequence
object1 (build action Say object " of ")
object2
(build action snsequence
object1 (build action Say object *x)
object2
(build action snsequence
object1 (build action Say object " and ")
object2
(build action snsequence
object1 (build action Say object *y)
object2
(build action snsequence
object1 (build action Say object " is ")
object2 (build action SayLine object *z))))))))

else (build action Say object " "))))

;;;UVBR x for z
#!((perform (build action withsome

vars ($x $y)
suchthat (build arg1 *x arg2 *y result *x
op ˜relation)
do (build action snsequence

object1 (build action Say object "The ")
object2
(build action snsequence
object1 (build action Say object ˜relation)
object2
(build action snsequence
object1 (build action Say object " of ")
object2
(build action snsequence
object1 (build action Say object *x)
object2
(build action snsequence
object1 (build action Say object " and ")
object2
(build action snsequence
object1 (build action Say object *y)
object2
(build action snsequence
object1 (build action Say object " is ")
object2 (build action SayLine object *x))))))))

else (build action Say object " "))))
;;;UVBR x for y
#!((perform (build action withsome

vars ($x $z)
suchthat (build arg1 *x arg2 *x result *z
op ˜relation)
do (build action snsequence

object1 (build action Say object "The ")
object2
(build action snsequence

216



object1 (build action Say object ˜relation)
object2
(build action snsequence
object1 (build action Say object " of ")
object2
(build action snsequence
object1 (build action Say object *x)
object2
(build action snsequence
object1 (build action Say object " and ")
object2
(build action snsequence
object1 (build action Say object *x)
object2
(build action snsequence
object1 (build action Say object " is ")
object2 (build action SayLine object *z))))))))

else (build action Say object " "))))
;;; UVBR x for y and x for z
#!((perform (build action withsome

vars $x
suchthat (build arg1 *x arg2 *x result *x
op ˜relation)
do (build action snsequence

object1 (build action Say object "The ")
object2
(build action snsequence
object1 (build action Say object ˜relation)
object2
(build action snsequence
object1 (build action Say object " of ")
object2
(build action snsequence
object1 (build action Say object *x)
object2
(build action snsequence
object1 (build action Say object " and ")
object2
(build action snsequence
object1 (build action Say object *x)
object2
(build action snsequence
object1 (build action Say object " is ")
object2 (build action SayLine object *x))))))))

else (build action Say object " "))))

)

(attach-primaction
GetActsWithArgumentType GetActsWithArgumentType
GetClassMembers GetClassMembers
GetClassContainment GetClassContainment
GetOperationsWithResultType GetOperationsWithResultType
GetMannerOfRelationships GetMannerOfRelationships
GetGeneralResultType GetGeneralResultType
ProvideExampleOfResult ProvideExampleOfResult
ProvideExampleOfRel ProvideExampleOfRel)

ˆˆ
;;;
;;;Define(x): Provides a CVA-style definition by determining class-membership,
;;; argument and result relationships, and manner-of realtionships
;;; between x and other concepts in the network. If x is a relation,
;;; this routine also tries to give an example of the relation.
;;;
;;;

217



all(x)(ConceptToDefine(x) => ActPlan(Define(x),
snsequence(GetClassMembers(x),
snsequence(GetClassContainment(x),
snsequence(GetActsWithArgumentType(x),
snsequence(GetOperationsWithResultType(x),
snsequence(GetMannerOfRelationships(x),

GetGeneralResultType(x)))))))).

;;;snsequence(ProvideExampleOfResult(x),
;;;ProvideExampleOfRel(x)))))))))).

218



J. Embodied Enumeration
define-frame NumSort(nil number sortal)
define-frame Collection(nil collection quantity)
define-frame Construction(nil construction quantity)
define-frame Measure(nil measure quantity)

define-frame Name(nil object name)
define-frame InstanceOf(nil particular universal)

;;; Implementation detail: use arcs embobject embproperty to
;;;avoid redefinition from Evaluated frame
define-frame HasProperty(nil embobject embproperty)
define-frame ConstituentOf(nil constituent collection)

define-frame TargetColor(nil target-color)
define-frame TargetShape(nil target-shape)
define-frame Color(class member)
define-frame Shape(class member)

define-frame Image(class member)
define-frame ObjectsLeft(status image)

define-frame BuildEnumFrame(action sortal)
define-frame Perceive(action image)
define-frame DistinguishByColor(action color thresh)
define-frame DistinguishByShape(action shape thresh)
define-frame AddToCollection(action sortal collection)
define-frame AttendToNewObject(action image)
define-frame CheckIfClear(action image)
define-frame UpdateCollection(action object)

define-frame EnumerateApples(action image)

ˆˆ
(defclass BinaryImg ()

((width :accessor img-width :initarg :width)
(height :accessor img-height :initarg :height)
(pixels :accessor img-pixels :initarg :pixels)))

(defclass RGB ()
((width :accessor img-width :initarg :width)

(height :accessor img-height :initarg :height)
(red-pixels :accessor img-red-pixels :initarg :red-pixels)
(green-pixels :accessor img-green-pixels :initarg :green-pixels)
(blue-pixels :accessor img-blue-pixels :initarg :blue-pixels)))

;;;
;;; Default prototype color pallete.
;;;
(defconstant *COLOR-PALLETE* (make-hash-table :test #’equal)

"Key is color name; Value is list of component values (R G B)" )

(setf (gethash ’Red *COLOR-PALLETE*) ’(255 0 0))
(setf (gethash ’Orange *COLOR-PALLETE*) ’(255 128 0))
(setf (gethash ’Yellow *COLOR-PALLETE*) ’(255 255 0))
(setf (gethash ’Green *COLOR-PALLETE*) ’(0 255 0))
(setf (gethash ’Blue *COLOR-PALLETE*) ’(0 0 255))
(setf (gethash ’Purple *COLOR-PALLETE*) ’(255 0 128))

(defun pixel-error (candidate-val target-val)
"Computes absolute single pixel error"

(abs (cl:- candidate-val target-val)))

219



(defun component-color-error (img target-color)
"Computes component color pixel error for the given img and target-color"
(let ((pix-err-red nil) (pix-err-green nil) (pix-err-blue nil))

(make-instance ’RGB
:width (img-width img)
:height (img-height img)
:red-pixels (dolist (pix (img-red-pixels img) pix-err-red)

(setf pix-err-red
(append pix-err-red

(list (pixel-error pix
(first (gethash target-color *COLOR-PALLETE*)))))))

:green-pixels (dolist (pix (img-green-pixels img) pix-err-green)
(setf pix-err-green

(append pix-err-green
(list (pixel-error pix

(second (gethash target-color *COLOR-PALLETE*)))))))
:blue-pixels (dolist (pix (img-blue-pixels img) pix-err-blue)

(setf pix-err-blue
(append pix-err-blue

(list (pixel-error pix
(third (gethash target-color *COLOR-PALLETE*))))))))))

(defun pixel-err-sum (red-err green-err blue-err)
(cl:+ red-err green-err blue-err))

(defun pixel-classify (err-sum thresh)
(if (> thresh err-sum) 1 0))

(defun threshold-classify (img thresh)
"Performs a binary classification of each pixel in img whose total component error is less than thresh"
(let ((binary-classif nil))

(make-instance ’BinaryImg
:width (img-width img)
:height (img-height img)
:pixels (dolist (err-sum

(mapcar #’pixel-err-sum
(img-red-pixels img)
(img-green-pixels img)
(img-blue-pixels img))

binary-classif)
(setf binary-classif

(append binary-classif
(list (pixel-classify err-sum thresh))))))))

;;;***********************************************************
;;;*****************Lisp Matrix Representation****************
;;;***********************************************************
(defun firstn (n l)

"Returns the first n elements of list l"
(if (cl:= n 0)

nil
(append (list (first l)) (firstn (cl:- n 1) (rest l)))))

(defun val (m i j)
"Returns the value in matrix M at index I,J"

(nth j (nth i m)))

(defun assign (m i j v)
"Assigns value v in matrix m at position i j"
(let ((row (nth i m)))

(append (firstn i m)
(list (append (firstn j row) (list v) (nthcdr (cl:+ j 1) row)))
(nthcdr (cl:+ i 1) m))))

;;;list to array conversion
(defun list-to-array (l w h)

220



"Returns a W x H array filled with the elements of L"
(let ((matrix nil))

(dotimes (i h matrix)
(setf matrix (append matrix (list (firstn w (nthcdr (cl:* i w) l))))))))

(defun print-matrix (m)
(if (endp m)

(format nil "")
(format nil "˜A˜%˜A" (first m) (print-matrix (rest m)))))

(defun check-if-clear-helper (m i j maxrow)
(if (cl:= i maxrow)

t
(if (cl:= 1 (val m i j))

nil
(if (cl:< j (cl:- (length (first m)) 1))

(check-if-clear-helper m i (cl:+ j 1) maxrow)
(check-if-clear-helper m (cl:+ i 1) 0 maxrow)))))

(defun check-if-clear (m maxrow)
(check-if-clear-helper m 0 0 maxrow))

;;;***********************************************************
;;;***********************CHAIN CODING************************
;;;***********************************************************

(defun top-left-object-pixel-helper (m i j)
(if (cl:= 1 (val m i j))

(list i j)
(if (cl:< j (cl:- (length (first m)) 1))

(top-left-object-pixel-helper m i (cl:+ j 1))
(top-left-object-pixel-helper m (cl:+ i 1) 0))))

(defun top-left-object-pixel (m)
"Returns the coordinates of the top leftmost object pixel in m"
(top-left-object-pixel-helper m 0 0))

(defun clockwise-chain-code (m f si sj i j dir)
"Add description"
(if (and (cl:= i si) (cl:= j sj) (cl:= f 1))

nil
(cond

((equal dir ’E)
(cond((cl:= 1 (val m (cl:- i 1) (cl:- j 1))) (append (list ’NW) (clockwise-chain-code m 1

si sj (cl:- i 1) (cl:- j 1) ’NW)))
((cl:= 1 (val m (cl:- i 1) j)) (append (list ’N) (clockwise-chain-code m 1

si sj (cl:- i 1) j ’N)))
((cl:= 1 (val m (cl:- i 1) (cl:+ j 1))) (append (list ’NE) (clockwise-chain-code m 1

si sj (cl:- i 1) (cl:+ j 1) ’NE)))
((cl:= 1 (val m i (cl:+ j 1))) (append (list ’E) (clockwise-chain-code m 1

si sj i (cl:+ j 1) ’E)))
((cl:= 1 (val m (cl:+ i 1) (cl:+ j 1))) (append (list ’SE) (clockwise-chain-code m 1

si sj (cl:+ i 1) (cl:+ j 1) ’SE)))
((cl:= 1 (val m (cl:+ i 1) j)) (append (list ’S) (clockwise-chain-code m 1

si sj (cl:+ i 1) j ’S)))
((cl:= 1 (val m (cl:+ i 1) (cl:- j 1))) (append (list ’SW) (clockwise-chain-code m 1

si sj (cl:+ i 1) (cl:- j 1) ’SW)))))
((equal dir ’SE)

(cond((cl:= 1 (val m (cl:- i 1) j)) (append (list ’N) (clockwise-chain-code m 1
si sj (cl:- i 1) j ’N)))

((cl:= 1 (val m (cl:- i 1) (cl:+ j 1))) (append (list ’NE) (clockwise-chain-code m 1
si sj (cl:- i 1) (cl:+ j 1) ’NE)))

((cl:= 1 (val m i (cl:+ j 1))) (append (list ’E) (clockwise-chain-code m 1
si sj i (cl:+ j 1) ’E)))

((cl:= 1 (val m (cl:+ i 1) (cl:+ j 1))) (append (list ’SE) (clockwise-chain-code m 1

221



si sj (cl:+ i 1) (cl:+ j 1) ’SE)))
((cl:= 1 (val m (cl:+ i 1) j)) (append (list ’S) (clockwise-chain-code m 1

si sj (cl:+ i 1) j ’S)))
((cl:= 1 (val m (cl:+ i 1) (cl:- j 1))) (append (list ’SW) (clockwise-chain-code m 1

si sj (cl:+ i 1) (cl:- j 1) ’SW)))
((cl:= 1 (val m i (cl:- j 1))) (append (list ’W) (clockwise-chain-code m 1

si sj i (cl:- j 1) ’W)))))
((equal dir ’S)

(cond((cl:= 1 (val m (cl:- i 1) (cl:+ j 1))) (append (list ’NE) (clockwise-chain-code m 1
si sj (cl:- i 1) (cl:+ j 1) ’NE)))

((cl:= 1 (val m i (cl:+ j 1))) (append (list ’E) (clockwise-chain-code m 1
si sj i (cl:+ j 1) ’E)))

((cl:= 1 (val m (cl:+ i 1) (cl:+ j 1))) (append (list ’SE) (clockwise-chain-code m 1
si sj (cl:+ i 1) (cl:+ j 1) ’SE)))

((cl:= 1 (val m (cl:+ i 1) j)) (append (list ’S) (clockwise-chain-code m 1
si sj (cl:+ i 1) j ’S)))

((cl:= 1 (val m (cl:+ i 1) (cl:- j 1))) (append (list ’SW) (clockwise-chain-code m 1
si sj (cl:+ i 1) (cl:- j 1) ’SW)))

((cl:= 1 (val m i (cl:- j 1))) (append (list ’W) (clockwise-chain-code m 1
si sj i (cl:- j 1) ’W)))

((cl:= 1 (val m (cl:- i 1) (cl:- j 1))) (append (list ’NW) (clockwise-chain-code m 1
si sj (cl:- i 1) (cl:- j 1) ’NW)))))

((equal dir ’SW)
(cond((cl:= 1 (val m i (cl:+ j 1))) (append (list ’E) (clockwise-chain-code m 1

si sj i (cl:+ j 1) ’E)))
((cl:= 1 (val m (cl:+ i 1) (cl:+ j 1))) (append (list ’SE) (clockwise-chain-code m 1

si sj (cl:+ i 1) (cl:+ j 1) ’SE)))
((cl:= 1 (val m (cl:+ i 1) j)) (append (list ’S) (clockwise-chain-code m 1

si sj (cl:+ i 1) j ’S)))
((cl:= 1 (val m (cl:+ i 1) (cl:- j 1))) (append (list ’SW) (clockwise-chain-code m 1

si sj (cl:+ i 1) (cl:- j 1) ’SW)))
((cl:= 1 (val m i (cl:- j 1))) (append (list ’W) (clockwise-chain-code m 1

si sj i (cl:- j 1) ’W)))
((cl:= 1 (val m (cl:- i 1) (cl:- j 1))) (append (list ’NW) (clockwise-chain-code m 1

si sj (cl:- i 1) (cl:- j 1) ’NW)))
((cl:= 1 (val m (cl:- i 1) j)) (append (list ’N) (clockwise-chain-code m 1

si sj (cl:- i 1) j ’N)))))
((equal dir ’W)

(cond((cl:= 1 (val m (cl:+ i 1) (cl:+ j 1))) (append (list ’SE) (clockwise-chain-code m 1
si sj (cl:+ i 1) (cl:+ j 1) ’SE)))

((cl:= 1 (val m (cl:+ i 1) j)) (append (list ’S) (clockwise-chain-code m 1
si sj (cl:+ i 1) j ’S)))

((cl:= 1 (val m (cl:+ i 1) (cl:- j 1))) (append (list ’SW) (clockwise-chain-code m 1
si sj (cl:+ i 1) (cl:- j 1) ’SW)))

((cl:= 1 (val m i (cl:- j 1))) (append (list ’W) (clockwise-chain-code m 1
si sj i (cl:- j 1) ’W)))

((cl:= 1 (val m (cl:- i 1) (cl:- j 1))) (append (list ’NW) (clockwise-chain-code m 1
si sj (cl:- i 1) (cl:- j 1) ’NW)))

((cl:= 1 (val m (cl:- i 1) j)) (append (list ’N) (clockwise-chain-code m 1
si sj (cl:- i 1) j ’N)))

((cl:= 1 (val m (cl:- i 1) (cl:+ j 1))) (append (list ’NE) (clockwise-chain-code m 1
si sj (cl:- i 1) (cl:+ j 1) ’NE)))))

((equal dir ’NW)
(cond((cl:= 1 (val m (cl:+ i 1) j)) (append (list ’S) (clockwise-chain-code m 1

si sj (cl:+ i 1) j ’S)))
((cl:= 1 (val m (cl:+ i 1) (cl:- j 1))) (append (list ’SW) (clockwise-chain-code m 1

si sj (cl:+ i 1) (cl:- j 1) ’SW)))
((cl:= 1 (val m i (cl:- j 1))) (append (list ’W) (clockwise-chain-code m 1

si sj i (cl:- j 1) ’W)))
((cl:= 1 (val m (cl:- i 1) (cl:- j 1))) (append (list ’NW) (clockwise-chain-code m 1

si sj (cl:- i 1) (cl:- j 1) ’NW)))
((cl:= 1 (val m (cl:- i 1) j)) (append (list ’N) (clockwise-chain-code m 1

si sj (cl:- i 1) j ’N)))
((cl:= 1 (val m (cl:- i 1) (cl:+ j 1))) (append (list ’NE) (clockwise-chain-code m 1

si sj (cl:- i 1) (cl:+ j 1) ’NE)))

222



((cl:= 1 (val m i (cl:+ j 1))) (append (list ’E) (clockwise-chain-code m 1
si sj i (cl:+ j 1) ’E)))))

((equal dir ’N)
(cond((cl:= 1 (val m (cl:+ i 1) (cl:- j 1))) (append (list ’SW) (clockwise-chain-code m 1

si sj (cl:+ i 1) (cl:- j 1) ’SW)))
((cl:= 1 (val m i (cl:- j 1))) (append (list ’W) (clockwise-chain-code m 1

si sj i (cl:- j 1) ’W)))
((cl:= 1 (val m (cl:- i 1) (cl:- j 1))) (append (list ’NW) (clockwise-chain-code m 1

si sj (cl:- i 1) (cl:- j 1) ’NW)))
((cl:= 1 (val m (cl:- i 1) j)) (append (list ’N) (clockwise-chain-code m 1

si sj (cl:- i 1) j ’N)))
((cl:= 1 (val m (cl:- i 1) (cl:+ j 1))) (append (list ’NE) (clockwise-chain-code m 1

si sj (cl:- i 1) (cl:+ j 1) ’NE)))
((cl:= 1 (val m i (cl:+ j 1))) (append (list ’E) (clockwise-chain-code m 1

si sj i (cl:+ j 1) ’E)))
((cl:= 1 (val m (cl:+ i 1) (cl:+ j 1))) (append (list ’SE) (clockwise-chain-code m 1

si sj (cl:+ i 1) (cl:+ j 1) ’SE)))))
((equal dir ’NE)

(cond((cl:= 1 (val m i (cl:- j 1))) (append (list ’W) (clockwise-chain-code m 1
si sj i (cl:- j 1) ’W)))

((cl:= 1 (val m (cl:- i 1) (cl:- j 1))) (append (list ’NW) (clockwise-chain-code m 1
si sj (cl:- i 1) (cl:- j 1) ’NW)))

((cl:= 1 (val m (cl:- i 1) j)) (append (list ’N) (clockwise-chain-code m 1
si sj (cl:- i 1) j ’N)))

((cl:= 1 (val m (cl:- i 1) (cl:+ j 1))) (append (list ’NE) (clockwise-chain-code m 1
si sj (cl:- i 1) (cl:+ j 1) ’NE)))

((cl:= 1 (val m i (cl:+ j 1))) (append (list ’E) (clockwise-chain-code m 1
si sj i (cl:+ j 1) ’E)))

((cl:= 1 (val m (cl:+ i 1) (cl:+ j 1))) (append (list ’SE) (clockwise-chain-code m 1
si sj (cl:+ i 1) (cl:+ j 1) ’SE)))

((cl:= 1 (val m (cl:+ i 1) j)) (append (list ’S) (clockwise-chain-code m 1
si sj (cl:+ i 1) j ’S))))))))

(defun get-deltas (m cc)
(let ((tli (first (top-left-object-pixel m)))

(tlj (second (top-left-object-pixel m)))
(delta_i 0)
(delta_j 0)
(delta_negj 0)
(first-half (firstn (cl:/ (cl:- (length cc) (mod (length cc) 2)) 2) cc))
(second-half (firstn (cl:/ (cl:- (length cc) (mod (length cc) 2)) 2)

(nthcdr (cl:/ (cl:- (length cc) (mod (length cc) 2)) 2) cc))))

(dolist (dir first-half)
(when (equal dir ’E) (setf delta_j (cl:+ delta_j 1)))
(when (equal dir ’SE) (prog1 (setf delta_j (cl:+ delta_j 1))

(setf delta_i (cl:+ delta_i 1))))
(when (equal dir ’NE) (setf delta_j (cl:+ delta_j 1)))
(when (equal dir ’S) (setf delta_i (cl:+ delta_i 1)))
(when (equal dir ’SW) (prog1 (setf delta_negj (cl:+ delta_negj 1))

(setf delta_i (cl:+ delta_i 1)))))

(dolist (dir second-half)
(when (equal dir ’W) (setf delta_negj (cl:+ delta_negj 1)))
(when (equal dir ’NW) (setf delta_negj (cl:+ delta_negj 1)))
(when (equal dir ’SW) (prog1 (setf delta_negj (cl:+ delta_negj 1))

(setf delta_i (cl:+ delta_i 1)))))

(setf delta_negj (abs (cl:- delta_negj delta_j)))
(list delta_i delta_j delta_negj)))

;;;
;;; wipe-object visually "marks" the object as having been counted
;;;

223



(defun wipe-object (m cc)
"Removes top left object from matrix m, given the chain code for that object"
(let ((tli (first (top-left-object-pixel m)))

(tlj (second (top-left-object-pixel m)))
(delta_i (first (get-deltas m cc)))
(delta_j (second (get-deltas m cc)))
(delta_negj (third (get-deltas m cc))))

;;now wipe the object
(dotimes (i (cl:+ delta_i 1) m)

(dotimes (j (cl:+ delta_j delta_negj 1))
(setf m (assign m (cl:+ tli i) (cl:+ (cl:- tlj delta_negj) j) 0))))))

;;;
;;;object-gamma is a better circularity measure
;;;
(defun object-perimiter (cc)

"perimiter determined by adding 1 for N E S W and sqrt(2) for diagonals"
(let ((p 0))

(dotimes (i (length cc) p)
(if (or (equal (nth i cc) ’NE) (equal (nth i cc) ’NW)

(equal (nth i cc) ’SW) (equal (nth i cc) ’SE))
(setf p (cl:+ p (sqrt 2)))

(setf p (cl:+ p 1))))))

(defun object-area (m cc)
"area determined by counting object pixels"
(let ((tli (first (top-left-object-pixel m)))

(tlj (second (top-left-object-pixel m)))
(delta_i (first (get-deltas m cc)))
(delta_j (second (get-deltas m cc)))
(delta_negj (third (get-deltas m cc)))
(area 0))

(dotimes (i (cl:+ delta_i 1) area)
(dotimes (j (cl:+ delta_j delta_negj 1))

(when (cl:= (val m (cl:+ tli i) (cl:+ (cl:- tlj delta_negj) j)) 1)
(setf area (cl:+ area 1)))))))

(defun object-gamma (m cc)
"gamma_n cl:= 1 - (4*pi*Area)/(Perimiterˆ2) (from Sonka)"
(cl:- 1 (cl:/ (cl:* 4 pi (object-area m cc))

(cl:* (object-perimiter cc) (object-perimiter cc)))))

;;;;;;;;;;;;;;;;;;;;;;;;
;;ALIGNMENT TABLE;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;
(defconstant *ALIGNMENT-TABLE* (make-hash-table :test #’equal)

"Key is base node; Value is list of attribute-value pairs" )

;;;;;;;;;;;;;;;
;;; PMLA;;;;;;;
;;;;;;;;;;;;;;;

(define-primaction BuildEnumFrame ((sortal))
(let* ((sortalname (princ-to-string sortal))

(prototype (concatenate ’string "prot" sortalname)))
(tell (concatenate ’string

"InstanceOf(" prototype "," sortalname ")."))
(setf targcolor (princ-to-string (cdr (first (first (askwh (concatenate ’string

"Color(?c) and HasProperty(" prototype ",?c)")))))))
(setf targshape (princ-to-string (cdr (first (first (askwh (concatenate ’string

"Shape(?s) and HasProperty(" prototype ",?s)")))))))
(tell (concatenate ’string "TargetColor(" targcolor ")."))
(tell (concatenate ’string "TargetShape(" targshape ")."))))

224



(define-primaction Perceive ((image))
(let ((imagename (princ-to-string image)))

(format t "Acquiring image ˜A˜%" imagename)
(cond ((string= imagename "img1") (setf curimg img1)))
(format t "RED PIXELS:˜%˜A˜%" (print-matrix (list-to-array

(img-red-pixels curimg) 16 16)))
(format t "GREEN PIXELS:˜%˜A˜%" (print-matrix (list-to-array

(img-green-pixels curimg) 16 16)))
(format t "BLUE PIXELS:˜%˜A˜%" (print-matrix (list-to-array

(img-blue-pixels curimg) 16 16)))))

(define-primaction DistinguishByColor ((color) (thresh))
(let* ((colorname (princ-to-string color))

(threshval (sneps:node-to-lisp-object thresh)))
(format t "Distinguishing by color ˜A with threshold ˜A˜%" colorname

threshval)
(cond ((string= colorname "Red") (setf curcolor ’Red)))
(format t "Prototype for color is: ˜A˜%" (gethash curcolor *COLOR-PALLETE*))
(setf binimg

(list-to-array
(img-pixels

(threshold-classify
(component-color-error curimg curcolor)
threshval))

16 16))
(format t "Binary Image:˜%˜A˜%" (print-matrix binimg))))

(define-primaction DistinguishByShape ((shape) (thresh))
(let* ((shapename (princ-to-string shape))

(threshval (sneps:node-to-lisp-object thresh))
(tlopx (first (top-left-object-pixel binimg)))
(tlopy (second (top-left-object-pixel binimg))))

(format t "Distinguishing by shape ˜A with threshold ˜A˜%"
shapename threshval)

(cond ((string= shapename "Round") (setf curshape ’Round)))
(format t "Prototype for shape is compactness = 1.0 ˜%")
(setf cc (clockwise-chain-code binimg 0 tlopx tlopy tlopx tlopy ’E))
(setf circularity (object-gamma binimg cc))
(format t "Chain code for top-left object is ˜A˜%

Circularity for top-left object is ˜A˜%" cc circularity)))

(define-primaction AddToCollection ((sortal) (collection))
(let* ((sortalname (princ-to-string sortal))

(colname (princ-to-string collection))
(tlopx (first (top-left-object-pixel binimg)))
(tlopy (second (top-left-object-pixel binimg))))

(setf newbasenode (princ-to-string (gensym sortalname)))
(format t "Adding KL constituent to collection.˜%")
(tell (concatenate ’string

"ConstituentOf(" newbasenode "," colname ")."))
(tell (concatenate ’string

"InstanceOf(" newbasenode ",u"
sortalname ")."))

(format t "Updating alignment table.˜%")
(setf (gethash newbasenode *ALIGNMENT-TABLE*) (list ’location (list tlopx tlopy)))
(format t "KLSym: ˜A PMLSym: ˜A Modality Vision˜%" newbasenode

(gethash newbasenode *ALIGNMENT-TABLE*))))

(define-primaction AttendToNewObject ((image))
(setf binimg (wipe-object binimg cc))
(format t "Clearing top-left object˜%")
(format t "New Binary Image:˜%˜A˜%" (print-matrix binimg)))

(define-primaction CheckIfClear ((image))
(if (check-if-clear binimg 16)

225



(tell (concatenate ’string
"perform disbelieve(ObjectsLeft(" (princ-to-string image) "))"))

(format t "I detect more objects to enumerate˜%")))

(attach-primaction BuildEnumFrame BuildEnumFrame Perceive Perceive DistinguishByColor
DistinguishByColor DistinguishByShape
DistinguishByShape AttendToNewObject
AttendToNewObject AddToCollection AddToCollection
CheckIfClear CheckIfClear)

ˆˆ
Name(uRed,Red).
Name(uRound,Round).
Name(uApple,Apple).

Color(uRed).
Shape(uRound).
all(x)(InstanceOf(x,uApple) => {HasProperty(x,uRed),HasProperty(x,uRound)}).

ActPlan(UpdateCollection(q),
withsome({?n,?m},

(Collection(q,NumSort(?n,uApple)) and Successor(?m,?n)),
snsequence(disbelieve(Collection(q,NumSort(?n,uApple))),

believe(Collection(q,NumSort(?m,uApple)))),
Say("Something is wrong."))).

all(i)(Image(i)=>
ActPlan(EnumerateApples(i),

snsequence(BuildEnumFrame(uApple),
snsequence(believe(Collection(q,NumSort(n0,uApple))),
snsequence(Perceive(i),
snsequence(withsome({?c,?cn},

(TargetColor(?c) and Name(?c,?cn)),
DistinguishByColor(?cn,100),
SayLine("I don’t know what color apples are")),

sniterate({if(ObjectsLeft(i),
withsome({?s,?sn},

(TargetShape(?s) and Name(?s,?sn)),
snsequence(DistinguishByShape(?sn,0.4),
snsequence(AddToCollection(Apple,q),
snsequence(UpdateCollection(q),
snsequence(AttendToNewObject(i),CheckIfClear(i))))),
SayLine("I don’t know what shape apples are"))),

else(SayLine("Enumeration Complete"))}))))))).

Image(img1).
ObjectsLeft(img1).

226



K. Deliberative do-one

(defun m-to-wff (mstr)
"Converts string mN to string wffN"
(concatenate ’string "wff" (subseq mstr 1)))

(define-primaction do-one (object1)
"A more deliberative do-one"
(let ((act-list (sneps:ns-to-lisp-list object1))

(preferred-acts nil))
(when (cl:> (length object1) 1)

(progn (when *show-deliberation* (format t "DELIBERATING BETWEEN ˜A ACTS:˜%" (length object1)))
(when *show-deliberation* (snepslog:snepslog-print object1))
(when *show-deliberation* (format t "DETERMINING PREFERRED ACTS˜%"))
(setf preferred-acts

(loop for a in act-list
do (tell "clear-infer") ; context of question
if (snepslog:ask (concatenate ’string

"Prefer("
(snepslog::m-to-wff (princ-to-string a))
")"))

collect (snepslog::m-to-wff (princ-to-string a))))
(when *show-deliberation* (format t "PREFERRED ACTS ARE: ˜A˜%" preferred-acts))))

(if preferred-acts
(tell (concatenate ’string "perform " (princ-to-string (first preferred-acts))))

(snip:schedule-act
(sneps:lisp-object-to-node (nth (random (sneps:cardinality.ns object1))

(sneps:ns-to-lisp-list object1)))))))

227



K. Accumulator timed-do
define-frame Duration (nil act duration)
define-frame timed-do (action timedact)
ˆˆ
(define-primaction timed-do ((timedact))

"performs a and times the duration of the performance"
(let ((starttime (cl:get-internal-run-time))

(actstring (princ-to-string (sneps:node-to-lisp-object timedact))))
;(format t "˜A ˜A˜%" (type-of timedact) timedact)
(snepslog:tell (concatenate ’string "perform " (snepslog::m-to-wff

actstring)))
(let ((cpu-time (/ (float (cl:- (cl:get-internal-run-time) starttime))

cl:internal-time-units-per-second)))
(snepslog:tell (concatenate ’string "Duration("

(snepslog::m-to-wff actstring)
","
(princ-to-string cpu-time)
").")))))

(attach-primaction timed-do timed-do)
ˆˆ

228



References

Anderson, John R. 2007.How Can the Human Mind Occur in the Physical Universe?New York:
Oxford University Press.

Aristotle. 1963.Categories. J. L. Ackrill (trans.). Oxford: Clarendon.

Artemov, Sergei and Elena Nogina. 2005. Introducing Justification into Epistemic Logic.Journal
of Logic and Computation, 15(6):1059–1073.

Ashcraft, Mark H. 1992. Cognitive Arithmetic: A Review of Data and Theory.Cognition, 44:75–
106.

Baier, Annette. 1971. The Search for Basic Actions.American Philosophical Quarterly,
8(2):161–170.

Barsalou, Lawrence W. 1999. Perceptual Symbol Systems.Behavioral and Brain Sciences,
22:577–660.

Belnap, Nuel D. and Thomas B. Steel. 1976.The Logic of Questions and Answers. New Haven:
Yale University Press.

Bermúdez, Jośe Luis. 2003.Thinking Without Words. Oxford: Oxford University Press.

Beth, Evert W. and Jean Piaget. 1966.Mathematical Epistemology and Psychology. Dordreeht:
Reidel.

Biever, Celeste. 2004. Language May Shape Human Thought.Science Express, 19:1.

Bisanz, Jeffrey and Jo-Anne LeFevre. 1992. Understanding Elementary Mathematics. In Jamie
I. D. Campbell (ed),The Nature and Origins of Mathematical Skills. Elsevier, Amsterdam,
pages 113–136.

Blackburn, Patrick and Johan Bos. 2005.Representation and Inference for Natural Language.
Stanford, CA: CSLI.

Bobrow, Daniel. 1968. Natural Language Input for a Computer Problem Solving System. In
Marvin Minsky (ed),Semantic Information Processing. MIT Press, Cambridge, MA, pages
133–216.

Bringsjord, Selmer, Clarke Caporale, and Ron Noel. 2000. Animals, Zombanimals, and the
Total Turing Test: The Essence of Artificial Intelligence.Journal of Logic, Language and
Information, 9(4):397–418.

Bromberger, Sylvain. 1992. Why Questions. In S. Bromberger (ed),On What We Know We Don’t
Know. University of Chicago Press, Chicago, pages 75–100.

229



Brown, John Seely and Kurt VanLehn. 1982. Towards a Generative Theory of Bugs. In Thomas P.
Carpenter, James M. Moser, and Thomas A. Romberg (eds),Addition and Subtraction: A
Cognitive Perspective. Lawrence Erlbaum Associates, Hillsdale, NJ, pages 117–135.

Butterworth, Brian. 1995. Editorial. In Brian Butterworth (ed),Mathematical Cognition: Volume
1. Psychology Press, New York, pages 1–2.

Butterworth, Brian. 1999.What Counts: How Every Brain Is Hardwired for Math. New York:
Free Press.

Butterworth, Brian, Marco Zorzi, Luisa Girelli, and A.R. Jonckheere. 2001. Storage and Retrieval
of Addition Facts: The Role of Number Comparison.Quarterly Journal of Experimental
Psychology, 54A(4):1005–1029.

Campbell, Alistair E. and Stuart C. Shapiro. 1998. Algorithms for Ontological Mediation. In
S. Harabagiu (ed),Usages of Wordnet in Natural Language Processing Systems: Proceedings
of the Workshop. COLING-ACL, New Brunswick, NJ, pages 102–107.

Campbell, Jamie I. D. and Qilin Xue. 2001. Cognitive Arithmetic Across Cultures.Journal of
Experimental Psychology: General, 130(2):299–315.

Campbell, Jamie I.D. 2004.Handbook of Mathematical Cognition. New York: Psychology Press.

Carey, Susan. 2002. Evidence for Numerical Abilities in Young Infants: A Fatal Flaw?Develop-
mental Science, 5(2):202–205.

Carnap, Rudolf. 1958.Introduction to Symbolic Logic and Its Applications. New York: Dover.

Carr, Martha and Hillary Hettinger. 2003. Perspectives on Mathematics Strategy Development. In
James M. Royer (ed),Mathematical Cognition. Information Age Publishing, Greenwich, CT,
pages 33–68.

Chalupsky, Hans and Stuart C. Shapiro. 1994. SL: A Subjective, Intensional Logic of Belief.
Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society, pages 165–
170.

Cho, Sung-Hye. 1992. Representations of collections in a propositional semantic network.Work-
ing Notes of the AAAI 1992 Spring Symposium on Propositional Knowledge Representation,
pages 43–50.

Clark, Andy and David Chalmers. 1998. The Extended Mind.Analysis, 58:10–23.

Clements, Douglas H. 1999. Subitizing: What is it? Why Teach it?Teaching Children Mathe-
matics, 5(7):400–405.

Clements, Douglas H. and Julie Sarama. 2007. Early Childhood Mathematics Learning. In
F. K. Lester Jr. (ed),Second Handbook of Research on Mathematics Teaching and Learning.
Information Age Publishing, New York, pages 461–555.

230



Corcoran, John. in press. An Essay on Knowledge and Belief.International Journal of Decision
Ethics.

Cowan, Richard and Margaret Renton. 1996. Do They Know What They Are Doing? Children’s
Use of Economical Addition Strategies and Knowledge of Commutativity.Educational Psy-
chology, 16(4):407–420.

Crump, Thomas. 1990.The Anthropology of Numbers. Cambridge, UK: Cambridge University
Press.

Davis, Randall and Doug Lenat. 1982. AM: Discovery in Mathematics as Heuristic Search. In
Knowledge-Based Systems in Artificial Intelligence. McGraw-Hill, New York, pages 3–225.

Dehaene, Stanislas. 1992. Varieties of Numerical Abilities.Cognition, 44:1–42.

Dehaene, Stanislas. 1997.The Number Sense: How the Mind Creates Mathematics. Oxford:
Oxford University Press.

Dellarosa, Denise. 1985. SOLUTION: A Computer Simulation of Children’s Recall of Arithmetic
Word Problem Solving.University of Colorado Technical Report, 85-148.

Dijkstra, Edsger W. 1974. Programming as a Discipline of Mathematical Nature.American
Mathematical Monthly, 81(6):608–612.

Dretske, Fred. 1985. Machines and the Mental.Proceedings and Addresses of the American
Philosophical Association, 59(1):23–33.

Duda, Richard O., Peter E. Hart, and David G. Stork. 2001.Pattern Classification, Second Edition.
New York: Wiley Interscience.

Euclid. 2002.Elements. Santa Fe, NM: Green Lion Press.

Feigenson, Lisa, Stanislas Dehaene, and Elizabeth Spelke. 2004. Core Systems of Number.
Trends in Cognitive Science, 8:307–314.

Fetzer, James H. 1990.Artificial Intelligence: Its Scope and Limits. New York: Springer.

Fisher, Ronald A. 1936. The Use of Multiple Measurements in Taxonomic Problems.Annals of
Eugenics, 7(2):179–188.

Fletcher, Charles R. 1985. Understanding and Solving Arithmetic Word Problems: A Computer
Simulation.Behavioral Research Methods, Instruments, and Computers, 17:365–371.

Fodor, Jerry A. 1983.Modularity of Mind. Cambridge, MA: MIT Press.

Frege, Gottlob. 1884/1974.The Foundations of Arithmetic: A Logico-Mathematical Enquiry into
the Concept of Number. J. L. Austin (trans.). Evanston: Northwestern University Press.

231



Fuson, Karen C. 1982. An Analysis of the Counting-On Solution Procedure in Addition. In
Thomas P. Carpenter, James M. Moser, and Thomas A. Romberg (eds),Addition and Subtrac-
tion: A Cognitive Perspective. Lawrence Erlbaum Associates, Hillsdale, NJ, pages 67–81.

Fuson, Karen C. 1998. Pedagogical, Mathematical, and Real-World Conceptual-Support Nets:
A Model for Building Children’s Multidigit Domain Knowledge.Mathematical Cognition,
4(2):147–186.

Gallistel, Charles R. 2005. Mathematical Cognition. In K. Holyoak and R. Morrison (eds),The
Cambridge Handbook of Thinking and Reasoning. Cambridge University Press, Cambridge,
UK, pages 559–588.

Gelman, Rochel and Charles R. Gallistel. 1978.The Child’s Understanding of Number. Cam-
bridge: Harvard University Press.

Gettier, Edmund. 1963. Is Justified True Belief Knowledge?Analysis, 23:121–123.

Glasersfeld, Ernst von. 2006. A Constructivist Approach to Experiential Foundations of Mathe-
matical Concepts Revisited.Constructivist Foundations, 1(2):61–72.

Goldfain, Albert. 2006. A Computational Theory of Inference for Arithmetic Explanation.Pro-
ceedings of ICoS-5, pages 145–150.

Grandy, Richard E. 2006. Sortals. In Edward N. Zalta (ed),Stanford Encyclopedia of Philosophy,
http://plato.stanford.edu/entries/sortals/.

Gray, Eddie M. and David O. Tall. 1994. Duality, Ambiguity, and Flexibility: A ‘Proceptual’
View of Simple Arithmetic.Journal for Research in Mathematics Education, 25(2):116–140.

Greeno, James G. 1987. Instructional Representations Based on Research about Understanding.
In Alan H. Schoenfeld (ed),Cognitive Science and Mathematics Education. Lawrence Erlbaum
Associates, Hillsdale, NJ, pages 61–88.

Greeno, James G. 1991. Number Sense as Situated Knowing in a Conceptual Domain.Journal
for Research in Mathematics Education, 22(3):170–218.

Groen, Guy and Lauren B. Resnick. 1977. Can Preschool Children Invent Addition Algorithms?
Journal of Educatoinal Psychology, 69(6).

Haller, Susan. 1996. Planning Text about Plans Interactively.International Journal of Expert
Systems, 9(1):85–112.

Hamm, Cornel M. 1989.Philosophical Issues in Education: An Introduction. New York: Falmer
Press.

Harnad, Stevan. 1990. The Symbol Grounding Problem.Physica D, 42:335–346.

232



Hauser, Larry. 1993. Why Isn’t My Pocket Calculator a Thinking Thing.Minds and Machines,
3(1):3–10.

Hexmoor, Henry, Johan Lammens, Guido Caicedo, and Stuart C. Shapiro. 1993. Behaviour Based
AI, Cognitive Processes, and Emergent Behaviors in Autonomous Agents. In G. Rzevski,
J. Pastor, and R. Adey (eds),Applications of Artificial Intelligence in Engineering VIII, Vol. 2
Applications and Techniques. Computational Mechanics-Elsevier, New York, pages 447–461.

Hexmoor, Henry and Stuart C. Shapiro. 1997. Integrating Skill and Knowledge in Expert Agents.
In P. J. Feltovich, K. M. Ford, and R. R. Hoffman (eds),Expertise in Context. AAAI Press,
Menlo Park, CA, pages 383–404.

Hilbert, David. 1980.The Foundations of Geometry, Second Edition. Chicago: Open Court.

Hintikka, Jaakko and Ilpo Halonen. 1995. Semantics and Pragmatics for Why-Questions.Journal
of Philosophy, 92(12):636–657.

Hoffman, Joshua and Gary S. Rosenkrantz. 1994.Substance among other Categories. Cambridge,
UK: Cambridge University Press.

Hofstadter, Douglas. 1995.Fluid Concepts and Creative Analogies: Computer Models of the
Fundamental Mechanisms of Thought. New York: Basic Books.

Holden, Constance. 2004. Life Without Numbers in the Amazon.Science, 305:1093.

Husserl, Edmund. 1913/2000.Logical Investigations. London: Routledge.

Hutchins, Edwin. 1995.Cognition in the Wild. Cambridge, MA: MIT Press.

Isaacson, Daniel. 1994. Mathematical Intuition and Objectivity. In Alexander George (ed),Math-
ematics and Mind. Oxford University Press, Oxford, pages 118–140.

Ismail, Haythem O. and Stuart C. Shapiro. 2000. Two Problems with Reasoning and Acting in
Time. In A.G. Cohn and F. Giunchinglia and B. Selman (ed),Proceedings of KR2000. Morgan
Kaufmann, San Fransisco, CA, pages 355–365.

Ismail, Haythem O. and Stuart C. Shapiro. 2001. The Cognitive Clock: A Formal Investigation of
the Epistemology of Time. Technical Report Technical Report 2001-08, University at Buffalo.
Department of Computer Science and Engineering.

Jackendoff, Ray. 1987. On Beyond Zebra: The Relation of Linguistic and Visual Information.
Cognition, 26(2):89–114.

Johnson-Laird, Philip. 1981. Mental Models in Cognitive Science. In Donald A. Norman (ed),
Perspectives in Cognitive Science. Ablex, Norwood, NJ, pages 147–191.

Johnson-Laird, Philip. 2006.How We Reason. Oxford: Oxford University Press.

233



Jones, Randolph M. and Kurt VanLehn. 1994. Acquisition of Children’s Addition Strategies: A
Model of Impasse-Free, Knowledge Level Learning.Machine Learning, 16:11–36.

Kant, Immanuel. 1787/1958.Critique of Pure Reason. Paul Guyer and Allen W. Wood (trans.).
London: Macmillan.

Katz, Victor J. 1998.A History of Mathematics: An Introduction. Boston: Addison Wesley.

Kintsch, Walter and James G. Greeno. 1985. Understanding and Solving Word Arithmetic Prob-
lems.Psychological Review, 92(1):109–129.

Kitcher, Philip. 1981. Explanatory Unification.Philosophy of Science, 48(4):507–531.

Kitcher, Philip. 1984.The Nature of Mathematical Knowledge. Oxford: Oxford University Press.

Klahr, David. 1973. A Production System for Counting, Subitizing and Adding. In W. G. Chase
(ed),Visual Information Processing. Academic Press, New York, pages 527–546.

Lakoff, George and Rafael Ńuñez. 2000.Where Mathematics Comes From. New York: Basic
Books.

LeBlanc, Mark D. 1993. From Natural Language to Mathematical Representations: A Model of
‘Mathematical Reading’. In Hyacinth Sama Nwana (ed),Mathematical Intelligent Learning
Environments. Intellect Books, Oxford, pages 126–144.

Lenat, Doug. 1979. On Automated Scientific Theory Formation: A case study using the AM
program. In J. Hayes, D. Michie, and L. I. Mikulich (eds),Machine Intelligence 9. Halstead
Press, New York, pages 251–283.

Lenat, Doug and John Seely Brown. 1984. Why AM and EURISKO appear to work.Artificial
Intelligence, 23(3):269–294.

Mac Lane, Saunders. 1981. Mathematical Models.American Mathematical Monthly, 88:462–
472.

Mancosu, Paolo. 2001. Mathematical Explanations: Problems and Prospects.Topoi, 20:97–117.

Meck, Warren H. and Russell M. Church. 1983. A Mode Control Model of Counting and Timing
Processes.Journal of Experimental Psychology: Animal Behavior Processes, 9:320–334.

Mill, John Stuart. 1843/2002.A System of Logic: Ratiocinative and Inductive. Honolulu: Univer-
sity Press of the Pacific.

Moles, Jerry A. 1977. Standardization and Measurement in Cultural Anthropology: A Neglected
Area. Current Anthropology, 18(2):235–258.

Moser, Paul K. 1999. Epistemology. In Robert Audi (ed),The Cambridge Dictionary of Philoso-
phy: Second Edition. Cambridge University Press, Cambridge, UK, pages 273–278.

234



Neches, Robert. 1987. Learning Through Incremental Refinement of Procedures. In David Klahr,
Pat Langley, and Robert Neches (eds),Production System Models of Learning and Develop-
ment. MIT Press, Cambridge, MA, pages 163–219.

Nwana, Hyacinth Sama. 1993.Mathematical Intelligent Learning Environments. Oxford: Intel-
lect Books.

Ohlsson, Stellan and Ernest Rees. 1991. The Function of Conceptual Understanding in the Learn-
ing of Arithmetic Procedures.Cognition and Instruction, 8(2):103–179.

Piaget, Jean. 1955.The Child’s Construction of Reality. London: Routledge.

Piaget, Jean. 1965.The Child’s Conception of Number. New York: Norton Library.

Polk, Thad A., Catherine L. Reed, Janice M. Keenan, Penelope Hogarth, and C. Alan Anderson.
2001. A Dissociation between Symbolic Number Knowledge and Analogue Magnitude Infor-
mation.Brain and Cognition, 47:545–563.

Polya, George. 1945.How to Solve It: A New Aspect of Mathematical Method. Princeton, NJ:
Princeton University Press.

Quillian, M. R. 1968. Semantic Memory. InSemantic Information Processing. MIT Press, Cam-
bridge, MA, pages 216–270.

Quine, W. V. 1969.Ontological Relativity and Other Essays. New York: Columbia University
Press.

Rapaport, William J. 1988. Syntactic Semantics: Foundations of Computational Natural-
Language Understanding. In James H. Fetzer (ed),Aspects of Artificial Intelligence. Kluwer
Academic Publishers, Dordrecht, The Netherlands, pages 81–131.

Rapaport, William J. 1993. Cognitive Science. In Anthony Ralston and Edwin D. Reilly (ed),
Encyclopedia of Computer Science, Third Edition. Van Nostrand Reinhold, New York, pages
185–189.

Rapaport, William J. 1995. Understanding Understanding. In J. Tomberlin (ed),AI, Connection-
ism, and Philosophical Psychology. Ridgeview, Atascadero, CA, pages 49–88.

Rapaport, William J. 1999. Implementation Is Semantic Interpretation.The Monist, 82:109–130.

Rapaport, William J. 2002. Holism, Conceptual-Role Semantics, and Syntactic Semantics.Minds
and Machines, 12(1):3–59.

Rapaport, William J. 2003. What Did You Mean by That?: Misunderstanding, Negotiation, and
Syntactic Semantics.Minds and Machines, 13(3):397–427.

Rapaport, William J. 2005. Implementation Is Semantic Interpretation: Further Thoughts.Journal
of Experimental and Theoretical Artificial Intelligence, 17(4):385–417.

235



Rapaport, William J. 2006. How Helen Keller Used Syntactic Semantics to Escape from a Chinese
Room.Minds and Machines, 16(4):381–436.

Rapaport, William J. and Karen Ehrlich. 2000. A Computational Theory of Vocabulary Acqui-
sition. In Lucja M. Iwanska and Stuart C. Shapiro (ed),Natural Language Processing and
Knowledge Representation: Language for Knowledge and Knowledge for Language. AAAI
Press-MIT Press, Menlo Park, CA-Cambridge, MA, pages 347–375.

Rapaport, William J., Stuart C. Shapiro, and Janyce M. Wiebe. 1997. Quasi-Indexicals and
Knowledge Reports.Cognitive Science, 21(1):63–107.

Resnik, Michael D. 1997.Mathematics as a Science of Patterns. Oxford: Clarendon Press.

Rips, Lance J. 1983. Cognitive Processes in Propositional Reasoning.Psychological Review,
90(1):38–71.

Ritchie, Graeme D. and F. K. Hanna. 1984. AM: A Case Study in AI Methodology.Artificial
Intelligence, 23(3):249–268.

Rosch, Eleanor. 1978. Principles of Categorization. In Eleanor Rosch and Barbara B. Lloyd (eds),
Cognition and Categorization. Lawrence Erlbaum Associates, Hillsdale, NJ, pages 27–48.

Roy, Deb. 2005. Semiotic Schemas.Artificial Intelligence, 167(1-2):170–205.

Russell, Bertrand. 1907/1973. The Regressive Method of Discovering the Premises of Mathe-
matics. In Douglas Lackey (ed),Essays in Analysis. George Allen and Unwin, London, pages
272–283.

Russell, Bertrand. 1918/1983. The Philosophy of Logical Atomism. In J. G. Slater (ed),The
Philosophy of Logical Atomism and Other Essays. George Allen and Unwin, London, pages
157–244.

Santore, John F. and Stuart C. Shapiro. 2004. A Cognitive Robotics Approach to Identifying
Perceptually Indistinguishable Objects. In Alan Schultz (ed),The Intersection of Cognitive
Science and Robotics: From Interfaces to Intelligence, Papers from the 2004 AAAI Fall Sym-
posium. AAAI Press, Menlo Park, CA, pages 47–54.

Sapir, Edward. 1921.Language: An Introduction to the Study of Speech. New York: Harcourt
Brace.

Schoenfeld, Alan H. 1987. Cognitive Science and Mathematics Education: An Overview. In
Alan H. Schoenfeld (ed),Cognitive Science and Mathematics Education. Lawrence Erlbaum
Associates, Hillsdale, NJ, pages 1–31.

Schwitzgebel, Eric. 2006. Belief. In Edward N. Zalta (ed),Stanford Encyclopedia of Philosophy,
http://plato.stanford.edu/entries/belief/.

236



Searle, John R. 1980. Minds, Brains, and Programs.Behavioral and Brain Sciences, 3(3):417–
457.

Secada, Walter G., Karen C. Fuson, and James W. Hall. 1983. The Transition from Counting-All
to Counting-On in Addition.Journal for Research in Mathematics Education, 14(1):47–57.

Sfard, Anna. 1991. On the Dual Nature of Mathematical Conceptions.Educational Studies in
Mathematics, 22:1–36.

Shanahan, Murray P. 1999. The Event Calculus Explained. In Michael J. Wooldridge and
Manuela Veloso (eds),Artificial Intelligence Today. Springer, New York, pages 409–430.

Shapiro, Stewart. 1997.Philosophy of Mathematics: Structure and Ontology. Oxford: Oxford
University Press.

Shapiro, Stuart C. 1977. Representing Numbers in Semantic Networks. InProceedings of the 5th
IJCAI, page 284, Los Altos. Morgan Kaufmann.

Shapiro, Stuart C. 1978. Path-based and node-based inference in semantic networks. In D. Waltz
(ed),TINLAP-2: Theoretical Issues in Natural Language Processing. ACM, New York, pages
219–225.

Shapiro, Stuart C. 1979. The SNePS Semantic Network Processing System. In Nicholas V.
Findler (ed),Associative Networks: The Representation and Use of Knowledge by Computers.
Academic Press, New York, pages 179–203.

Shapiro, Stuart C. 1986. Symmetric Relations, Intensional Individuals, and Variable Binding.
Proceedings of the IEEE, 74(10):1354–1363.

Shapiro, Stuart C. 1989. The CASSIE Projects: An Approach to Natural Language Competence.
In Proceedings ofthe Fourth Portugese Conference on Artificial Intelligence. Springer Verlag,
Lisbon, Portugal, pages 362–380.

Shapiro, Stuart C. 1991. Cables, Paths and “Subconscious” Reasoning in Propositional Semantic
Networks. In John F. Sowa (ed),Principles of Semantic Networks. Morgan Kaufmann, San
Mateo, CA, pages 137–156.

Shapiro, Stuart C. 1992. Artificial Intelligence. In Stuart C. Shapiro (ed),Encyclopedia of Artifi-
cial Intelligence, Second Edition. John Wiley and Sons, New York, pages 54–57.

Shapiro, Stuart C. 2000. SNePS: A Logic for Natural Language Understanding and Commonsense
Reasoning. In Lucja M. Iwanska and Stuart C. Shapiro (eds),Natural Language Process-
ing and Knowledge Representation: Language for Knowledge and Knowledge for Language.
AAAI Press, Menlo Park, CA, pages 379–395.

Shapiro, Stuart C. and Haythem O. Ismail. 2001. Symbol-Anchoring in Cassie. In Silvia Corade-
schi and Alessandro Saffioti (eds),Anchoring Symbols to Sensor Data in Single and Multiple
Robot Systems. AAAI Press, Menlo Park, CA, pages 2–8.

237



Shapiro, Stuart C. and Haythem O. Ismail. 2003. Anchoring in a Grounded Layered Architecture
with Integrated Reasoning.Robotics and Autonomous Systems, 43:97–108.

Shapiro, Stuart C. and William J. Rapaport. 1987. SNePS Considered as a Fully Intensional
Propositional Semantic Network. In Nick Cercone and Gordon McCalla (eds),The Knowledge
Frontier. Springer Verlag, New York, pages 262–315.

Shapiro, Stuart C. and William J. Rapaport. 1995. An Introduction to a Computational Reader of
Narrative. In Judith F. Duchan, Gail A. Bruder, and Lynne E. Hewitt (eds),Deixis in Narrative.
Lawrence Erlbaum Associates, Hillsdale, NJ, pages 79–105.

Shapiro, Stuart C., William J. Rapaport, Michael Kandefer, Frances L. Johnson, and Albert Gold-
fain. 2007. Metacognition in SNePS.AI Magazine, 28(1):17–31.

Shapiro, Stuart C. and SNePS Implementation Group. 2008. SNePS 2.7 User’s Manual.

Sharon, Tanya and Karen Wynn. 1998. Individuation of Actions from Continuous Motion.Psy-
chological Science, 9(5):357–362.

Sierpinska, Anna. 1994.Understanding in Mathematics. London: Falmer Press.

Sloman, Aaron. 1985. What Enables a Machine to Understand? InProceedings of the Ninth
International Joint Conference on AI. pages 995–1001.

Smith, Brian Cantwell. 1996.On the Origin of Objects. Cambridge, MA: MIT Press.

Sonka, Milan, Vaclav Hlavac, and Roger Boyle. 1999.Image Processing, Analysis, and Machine
Vision, Second Edition. New York: PWS.

Steffe, Leslie P., Erns von Glasersfeld, John Richards, and Paul Cobb. 1983.Children’s Counting
Types: Philosophy, Theory, and Application. New York: Praeger.

Steup, Matthias. 2006. The Analysis of Knowledge. In Edward N. Zalta (ed),Stanford Encyclo-
pedia of Philosophy http://plato.stanford.edu/entries/knowledge-analysis/.

Talmy, Leonard. 2000.Towards a Cognitive Semantics. Cambridge, MA: MIT Press.

Tarski, Alfred. 1944. The Semantic Conception of Truth and the Foundations of Semantics.
Philosophy and Phenomenological Research, 4:341–376.

Thomasson, Amie. 2004. Categories. In Edward N. Zalta (ed),Stanford Encyclopedia of Philos-
ophy, http://plato.stanford.edu/entries/categories/.

Turing, Alan M. 1950. Computing Machinery and Intelligence.Mind, 59(236):433–460.

Veblen, Oswald. 1904. A System of Axioms for Geometry.Transactions of the American Mathe-
matical Society, 5:343–384.

238



Vera, Alonso H. and Herbert A. Simon. 1993. Situated Action: A Symbolic Interpretation.Cog-
nitve Science, 17:7–48.

Vitay, Julien. 2005. Towards Teaching a Robot to Count Objects.Fifth International Workshop
on Epigenetic Robotics, pages 125–128.

Westerstahl, Dag. 2005. Generalized Quantifiers. In Edward N. Zalta (ed),Stanford Encyclopedia
of Philosophy, http://plato.stanford.edu/entries/generalized-quantifiers/.

Whorf, Benjamin. 1956.Language, Thought, and Reality: Selected Writings of Benjamin Lee
Whorf. Cambridge, MA: MIT Press.

Wiese, Heike. 2003.Numbers, Language, and the Human Mind. Cambridge, UK: Cambridge
University Press.

Wittgenstein, Ludwig. 1922/2003.Tractatus Logico-Philosophicus. C. K. Ogden (trans.). New
York: Barnes and Noble.

Wittgenstein, Ludwig. 1939/1976.Wittgenstein’s Lectures on the Foundations of Mathematics,
Cambridge 1939. Chicago: University of Chicago Press.

Wynn, Karen. 1992. Evidence against Empiricist Accounts of the Origins of Numerical Knowl-
edge.Mind and Language, 7(4):315–332.

Wynn, Karen. 1995. Origins of Numerical Knowledge.Mathematical Cognition, 1(1):35–60.

Wynn, Karen. 1996. Infants’ Individuation and Enumeration of Actions.Psychological Science,
7(3):164–169.

Xu, Fei. 2007. Sortal Concepts, Object Individuation, and Language.TRENDS in Cognitive
Sciences, 11(9):400–406.

Zorzi, Marco, Ivilin Stoianov, and Carlo Umilta. 2005. Computational Modeling of Numerical
Cognition. In Jamie I. D. Campbell (ed),Handbook of Mathematical Cognition. Psychology
Press, New York, pages 67–84.

239


