ON THE USE OFEPISTEMIC ORDERING FUNCTIONS
AS
DECISION CRITERIA
FOR
AUTOMATED AND ASSISTEDBELIEF REVISION
IN SNEP S

Ari llan Fogel

A thesis submitted to the
Faculty of the Graduate School of
the University at Buffalo, State University of New York
in partial fulfilment of the requirements for the
degree of

Master of Science

Department of Computer Science and Engineering

June 1, 2011

Copyright by

Ari Fogel

2011

Acknowledgments

| would like to express my deepest thanks to my major professor, Dr. Stuart Shapiro, who has
been a wonderful mentor these past two years. It was he who introduced me to knowledge repre-
sentation, and he has been extremely influential in shaping the direction of my academic career.
Throughout our interactions | have always taken his comments to heart. His wisdom and scholar-
ship (and patience) have been an example to me, qualities | can only hope someday to attain to a

similar degree.

| would like to thank Prof. William Rapaport for serving on my thesis committee. His comments
have been invaluable in the course of my research. He also opened up the world of teaching to me
as a green TA. He has been a great boss, a veritable instructor in instruction. | have since had the

opportunity to teach my own courses, for which | owe him a debt of gratitude.

| offer sincerest thanks to Prof. Russ Miller, who provided excellent critique on my algorithmic
analysis days before a deadline. His comments have been integrated into this thesis, and are much

appreciated.

| also want to thank Prof. Alan Selman. He taught the first course | attended in graduate school,
which was incidentally the most difficult course | have ever taken in my life. And thus he prepared

me for everything to follow.

Mom and Dad, you have been a constant source of encouragement in my life. You have always
taught me to hold education in the highest regard, to give it the highest priority. My accomplish-
ments are a testament to your values. Ayelet, you were always there for me in hard times growing
up. Yoni, you are quite literally the reason | am a computer scientist. Daniel, I've always appre-
ciated your advice over the years, even (especially) when | haven't taken it. You've all made me

who | am today. | love you all.

Contents

Acknowledgments
Abstract
1 Introduction
1.1 BeliefRevision. e
1.1.1 Motivation e e
1.1.2 AGMParadigm
1.1.3 Theory ChangeonFiniteBases.
1.1.4 Epistemic Entrenchment.
1.1.5 Ensconcements.
1.1.6 SafeContraction. e
1.1.7 Assumption-based Truth Maintenance Systems.
1.1.8 KernelContraction
1.1.9 Perioritized Versus Non-Prioritized Belief Revision.
1.2 SNePS e

1.2.1 DescriptionoftheSystem, 13

1.2.2 BeliefChangeinSNePS. 13
1.23 SNeBR. e 14

2 New Belief Revision Algorithms 15
2.1 Problem Statement 15
2.1.1 Nonprioritized BeliefRevision 15
2.1.2 Prioritized BeliefRevision 16

2.2 Common Requirements for a Rational Belief Revision Algorithm. 16
2.2.1 PrimaryRequirements 16
2.2.2 Supplementary Requirement 17
2.3 Implementation. L e e 18
2.3.1 Usingawellpreorder. 18
2.3.2 Usingatotalpreorder. 19
2.3.3 Characterization. 21
24 TheRecoveryPostulate. 21

25 Conjunctiveness e e 22
3 Changes to SNePS Manual 22
3.1 New SNePSLOG Commands. it 22
3.1.1 br-mode 22
3.1.2 set-order. 23
3.1.3 brtie-mode. 26
3.2 NewSNePSULCommands. i ittt 27
3.21 br-mode 27
3.2.2 set-order. 28
3.23 brtie-mode. 28
3.3 Updates. e e 29
4 Annotated Demonstrations 30
4.1 OldBeliefRevisionBehavior. 30
4.1.1 ManualRevisionExample1l. 30
4.1.2 Manual RevisionExample2. 35

Vi

4.2 New Belief RevisionBehavior. 41

421 Algorithm2Examplel 41
422 Algorithm2Example2. 44
423 Algorithm1Example 47
4.2.4 Prioritized Belief Revision Example. 49
4.3 CapturingOldResults. e 51
431 SNePSwWD 52
4.3.2 SaysWho?. 56
4.3.3 WumpusWorld 61
5 Analysis of Algorithm 1 64
5.1 Proofs of Satisfaction of Requirements by Algorithm 2 64
5.1.1 EEgnepd (Sufficiency). 64
5.1.2 EEgnep2 (Minimal Entrenchment). 64
5.1.3 EEsneps (Information Preservation). 64
5.1.4 Decidability. 65

vii

5.1.5 Supplementary Requirement 65

5.2 Complexity of Algorithm 1. 66
5.2.1 SpaceComplexity. 66
5.2.2 TimeComplexity. e 66
6 Analysis of Algorithm 2 67
6.1 Proofs of Satisfaction of Requirements by Algorithm2 67
6.1.1 EEsnepd (Sufficiency). o 67
6.1.2 EEsnep? (Minimal Entrenchment). 68
6.1.3 EEgsnep8 (Information Preservation). 68
6.1.4 Decidability. 68
6.1.5 Supplementary Requirement 69
6.2 Complexity of Algorithm 2. 69
6.2.1 Space Complexity. 69
6.2.2 TimeComplexity. e 70
7 Conclusions 70

viii

References

71

Abstract

In this thesis | implement belief revision in SNePS based on a user-supplied epis-
temic ordering of propositions. | provide a decision procedure that performs revi-
sion completely automatically when given a well preorder. | also provide a decision
procedure that, when given a total preorder, performs revision with a minimal num-
ber of queries to the user when multiple propositions within a minimally-inconsistent
set are minimally epistemically entrenched. These procedures are implemented in
SNePS as options alongside the old belief revision subsystem, wherein revision must
be done entirely by hand. | implement both prioritized and nonprioritized belief revi-
sion by adjusting the epistemic ordering function passed to the new procedures. The
first procedure useS(|Z|) units of space, and completes With| = |2 - Sma) Units of
time, where is the set of distinct minimally-inconsistent sets, &gk is the number
of propositions in the largest minimally-inconsistent set. The second procedure uses
O(|=[? 2,45 SPace an®(|=|*- s2,5,) time. The examples provided herein demonstrate

that the new procedures generalize previous work on belief revision in SNePS.

1 Introduction

1.1 Belief Revision

At its most basic levelpelief revisionrefers to the general problem of changing belief states

()). Several varieties of belief revision have appeared in the literature over
the years. AGM revision typically refers to the addition of a belief to a belief set, at the expense of
its negation and any other beliefs supporting its negation(,). Alternatively,
revision can refer to the process of resolving inconsistencies in a contradictory knowledge base,
or oneknown to be inconsistei(i ;). This is accomplished by removing

one or more beliefs responsible for the inconsistencyguprits. This is the task with which |

am concerned. In particular, | have devised a means of automatically resolving inconsistencies

by discarding the least-preferred beliefs in a belief base, according to spistemic ordering

(; ; , ;)).

1.1.1 Motivation

Let us say that you are told to believe the following information (the logical formalization appears

on the right):

Blackbeard was a pirate Pirate(Blackbeard
All pirates are uneducfated Vx[Pirate(x) — —Educatedx)|

Using the rules of classical first-order logic, the following fact is derivable:

Blackbeard was uneducated —EducatedBlackbeard

But you know in your heart that Blackbeard was indeed an educated man:

Blackbeard was educated EducatedBlackbeard

If you choose to accept all of the above information as fact, then you hold a contradictory set of
beliefs. That is, you believe that Blackbeard both is and is not edu&atedatedBlackbeard A
—EducatedBlackbeard
We would say that your belief setilsconsistentIn order to restore consistency, you would need
to contractsome belief, or remove a belief from your belief set. The result wouldregisionof

your beliefs ()).

The problem of belief revision is that logical considerations alone do not tell you which
beliefs to give up, but this has to be decided by some other means. What makes things
more complicated is that beliefs in a database have logical consequences. So when
giving up a belief you have to decide as well which ofdtmsequences retain and

which to retract... €))

In later sections | will discuss in detail how to make a choice of belief(s) to retract when presented

with an inconsistent belief set.

1.1.2 AGM Paradigm

In (: ‘ ,), operators and rationality postulates tbeory
changeare discussed. L&n(A) refer to the closure under logical consequence of a set of propo-

sitionsA. A theoryis defined to be a set of propositions closed under logical consequence. Thus

2

for any set of propositiong, Cn(A) is a theory. We will use the terniselief and proposition
interchangeably (and likewideelief setandset of propositions It is worth noting that theories
are infinite sets.A ,) discusses operations that may be performed on theories.

The following operations are part of what is referred to asAG paradigm

1. Expansion Given a set of proposition& and a new propositior, theexpansiorof A by x is
equal taCn(Au {x}). Expansion ofA by x is therefore the closure under logical consequence

of the set-theoretic addition afto A.

2. Contraction: Given a set of propositions and a propositiort, thecontractionof A by x, de-
notedA -, is equal to a maximal subsetAthat fails to implyx (,
). So when contracting by x, in addition to removing from A, we remove additional
propositions as necessary to ensure khaay not be rederived under logical consequence.

(S) presents rationality postulates for contraction functions:

(—-1) A—=xis atheory whenevekis a theory (closure).

(—=2) A=x< A(inclusion).

(=3) If x¢ Cn(A), thenA—-x = A (vacuity).

(—4) If x¢ Cn(), thenx ¢ Cn(A—=Xx) (success).

(=5) If Cn(x) = Cn(y), thenA=x = A=Yy (preservation).

(—6) AcCn((A—X)u{x}) wheneveA s a theory (recovery).
The closure postulate-1) states that the contraction of a theory is still a theory. The inclu-
sion postulatd —2) states that contraction of a belief set cannot yield a belief set with any
new beliefs. The vacuity postulate 3) states that contraction of a belief set by a proposition
which the belief set neither contains, nor implies as a result of logical consequence, yields the

original belief set. The success postulatel) states that the belief set resulting from con-

traction by a non-tautological proposition will not imply that proposition as a result of logical

3

consequence. The preservation postulate) states that if we may conclude the same things
from two propositions by logical consequence, then the belief sets resulting from contraction

of a belief set by either one of those propositions will be the same.

Finally we come to the recovery postulate6). This postulate states that if we contract

a proposition from a belief set, then expand the resulting belief set by that same proposi-
tion to form a third belief set, there will be nothing in the original belief set that cannot be
concluded from the information in the third belief set. There is extensive argument in the
literature about the rationality of this particular postulate. | will discuss some particulars in

§1.1.3

. Revision: Given a set of propositiond and a propositior, therevisionof A by x, denoted

A+x, is equal to

Cn((A—- —x) u {x}). Revision ofA by x therefore accomplishes the additionxofo A in a
fashion that is guaranteed not to produce an inconsistent theory. The mathematical reduction
of revision to the form of contraction expressed above is called the Levi Ideniity, (L977).

(;) presents rationality postulates for revision functions:
(+1) A+ xis always a theory.
(+2) xe A+x.
(+3) If —=x¢Cn(A), thenA+x=Cn(Au {x}).
(+4) If —x¢Cn(), thenA+ xis consistent undeZn.
(+5) If Cn(x) =Cn(y), thenA+x=A+y.
(+6) (A+x)nA=A=—-x wheneveAis a theory.
Postulatg +1) is self-explanatory. Postulate-2) states that the revision of a belief set by a

proposition results in a belief set containing that proposition. Post(#a8gstates that when

the negation of a belief is not a consequence of a belief set, then revision of that belief set

by that belief will be the theory resulting from the closure under logical consequence of the
expansion of the belief set by that belief. Postulaitd) states that the revision of a belief

set by a non-contradictory proposition results in a consistent belief set. It should be noted
that this would hold even when the original belief set is contradictory, since the contradic-
tory information would be contracted. Otherwis& could be rederived, since every belief is
derivable from a contradictory set, and so the contraction seen in the Levi Identity would not
really have occurred. Postulaté5) states that if we may conclude the same things from two
propositions by logical consequence, then the belief set resulting from revision of a belief
set by either one those propositions will be the same. Postuldiestates that the common
elements oA and the revision oA by x are in fact the elements of the contractionfoby

—XxwhenA s a theory. This follows trivially from the Levi Identity.

The type of revision accomplished by the above operator may be thoughpobaszed; its
RHS argument is added to the LHS belief set at the possible expense of pre-existing beliefs.
That is, it prioritizes the RHS over other beliefs in the belief set. This follows from postulate

(4+2). I will discuss this notion in more detail in sectidnl.9

. Partial Meet Contraction and Revision: Let Al x be the set of all maximal subsdssof

A such thaB I~ x (,). We say that a maxichoice contraction function
~maxi IS 0ne such thafA —naxiX is an arbitrary member di L x when the latter is nonempty,
or else equal té\ itself ()). The full meet contractioA — ¢ X

is defined ag)(ALx) whenA is nonempty, or elsd itself. In (,

) it is shown that the result of full meet contraction is generally far too small to be of use.

Let y be a function such that for al x, y(ALX) is a nonempty subset &1 x when the
latter is nonempty, or else the former is equal#gd. y is called aselection function The
operation- defined byA -, x = (| y(ALx) is called thepartial meet contraction over A

determined by (,). Note that full meet contraction is equivalent to the

special case of partial meet contraction whgfalx) = ALx, and maxichoice contraction

is the special case whepgA LX) is a singleton set. Partial meet revision is simply revision
using partial meet contraction as the contraction function seen in the Levi Identity. The se-
lection functiony is used as a way to choose the most desirable membeksf Such a
selection function could possibly be used in determining how to proceed from the situation
presented in sectioh.1.1 However it is rather impractical to attempt to use any of the pure
AGM operations presented in this section, since they tend to involve infinite theories. The
next section brings us closer to something practical. | conclude by noting that partial meet
contraction and revision satisfy all of the above postulates for AGM contraction and revision

respectively { ,).

1.1.3 Theory Change on Finite Bases

It is widely accepted that agents, because of their limited resources, believe some but
by no means all of the logical consequences of their beliefs:«))

A major issue with the AGM paradigm is that it defines operations to be performed on infinite
sets (theories). A more practical model would include operations to be performed on finite belief
sets, oibelief bases Such operators would be useful in supporting computer-based implementa-

tions of revision systemg/(,).

([)) discusses finite-base analogues to the AGM operators. An important dif-
ference between these two paradigms is the fact that the finite base operators cannot satisfy the
closure and recovery postulates for AGM contraction<(n, 1 ,). Obviously,
satisfaction of the closure postulate is not desirable since that would result in infinite theories.

Some argue that satisfaction of the recovery postulate is not desirable because it is inextricably

tied to the consequence relationi(, !)). Defense of recovery, on the

other hand, is predicated upon the notion that contractions of a belief set should cause a minimal
removal of information — so minimal, in fact, that expansion by a contracted belief should be
sufficient to recapture the original beliefs. In this vein, Johnson makes a compelling point that re-
covery is desirable in the case of belief revision with reconsiderafionr(soy y 35—-42), i.e.

iterated belief revision whereby a belief removed at one step no longer has a reason to be absent

after the last step. My new procedures do not satisfy the recovery postulat@ (§ee

1.1.4 Epistemic Entrenchment

Consider again the four scenarios in sectioh.Q It is worthwhile to examine the mechanism

by which you decided exactly which belief(s) to retract in the scenarios presented. In fact there
is a similar mechanism at play in all of them. Let us assume that the decision on which beliefs
to retract from a belief set is made is based on the relative importance of each belief, which is
called its degree agpistemic entrenchme(it <). Then we need an orderirg with

which to compare the entrenchment of individual beliefs. This ordering may be used to determine
a selection functiory with which to define a partial meet revision function. It is because a different
epistemic ordering is used in scenarioend3 from the one used in scenaridsind5 that different
choices are made on which belief to retract. In fact prioritized revision is just the special case

where new beliefs are always more entrenched than all existing beliefs.

(:) presents rationality postulates for an epistemic ordeting
(K is a belief set, and\, B, andC are beliefs. | represents the contradictory belief set.) Such an

ordering is a noncircular total preorder ath propositions

(EE1) For anyAB, andC, if A< BandB < C, thenA < C. (Transitivity)

(EE2) For anyA andB, if A+ B, thenA < B. (Dominance)

7

(EE3) For allAandBin K, (A< A A B) or (B < A B). (Conjunctiveness)
(EE4) WherK # 1, A¢ K iff A< Bforall B. (Minimality)

(EE5) If B < Afor all B, theni- A.

(EE1) is self-explanatory.(EE2) states that we should prefer to remove a belief from which a
second belief may be derived, than to remove the second derived belief. The reason is that the
derived belief may be rederived otherwid&E3), when combined witfEE1) and (EE2), states

that we must remove eithét or B to removeA A B. (EE4) states that propositions that are less
entrenched than all other propositions are ndifunlessK is contradictory).(EE5) states that

propositions with maximal entrenchment are theorems.

Postulatg EE3) does not apply to SNeBR (s§2.5) due to the distinction between hypotheses
and derived beliefs. PostulaEE4) does not apply to SNeBR since only propositiomthin a

belief base are ever considered for removal when an inconsistency is detected.

1.1.5 Ensconcements

Ensconcements, introduced in/(,), consist of a set of forumlae together with a to-
tal preorder on that set. They can be used to construct epistemic entrenchment orderings, and

determine theory base change operators.

1.1.6 Safe Contraction

In ()), the operatiorsafe contractions introduced. Let< be a
non-circular relation over a belief s&t An elementa of A is safewith respect tox iff a is not

a minimal element of any minimal subs®tof A such thatx e Cn(B). Let A/x be the set of all

8

elements ofA that are safe with respect ¥0 Then the safe contraction 8fby x, denotedA ~gX,

is defined to be\ ~n Cn(A/X).

1.1.7 Assumption-based Truth Maintenance Systems

In an assumption-based truth maintenance system (ATMS), the system keeps track of the assump-
tions (base beliefs) underlying each belie€ ([). One of the roles of an conventional

TMS is to keep the database contradiction-free. In an assumption-based ATMS, contradictions are
removed as they are discovered. When a contradiction is detected in an ATMS, then there will be
one or more minimally-inconsistent sets of assumptions underlying the contradiction. Such sets
are calledno-goods (:) presented SNeBR, an early implementation of

an ATMS that uses the logic of SNePS. In that paper, sets of assumptions supporting a belief are
calledorigin sets They correspond tantecedentsf a justificationfrom ([). The

focus of this thesis is modifications to the modern version of SNeBR.

1.1.8 Kernel Contraction

In ([), the operatiorkernel contractions introduced. Akernel set A.a is defined
to be the set of all minimal subsets Afthat imply a. A kernel set is like a set abrigin sets
from (;). Let o be anincision functionfor A. Then for alla, o(ALa) <

u(ALa), and if & # X € ALa, thenX n o(ALa) # . Thekernel contractiorof A by o based

ono, denotedA ~; a, is equal toA\o(ALQ).

1.1.9 Prioritized Versus Non-Prioritized Belief Revision

In the AGM model of belief revision/ ,) ...the input sentence

is always accepted. This is clearly an unrealistic feature, and ...several models of
belief change have been proposed in which no absolute priority is assigned to the new
information due to its novelty. ... One way to construct non-prioritized belief revision

is to base it on the following two-step process: First we decide whether to accept or
reject the input. After that, if the input was accepted, it is incorporated into the belief
state ([).

Hansson goes on to describe several other models of nonprioritized belief revision, but they all
have one unifiying feature distinguishing them from prioritized belief revision: the input, i.e. the
RHS argument to the revision operator, is not always accepted. To reitBraigtized belief re-
visionis revision in which the proposition by which the set is revised is always present in the result
(as long as it is not a contradictionNon-prioritized belief revisioris revision in which the RHS

argument to the revision operator is not always present in the result (even if it is not a contradiction).

The closest approximation of revision in SNePS by Hansson is the operatsenofrevision
([). Semi-revision is a type of non-prioritized belief revision that may be applied to
belief bases. So it is a bridge between the AGM paradigm and SNePS revision, as we shall see in

§1.2

Let us revisit the example frogi.1.1
You believe that:

(Your belief set S consists:pf

e Blackbeard was a pirate.

Pirate(Blackbeard

¢ All pirates are uneducated

10

vx[Pirate(x) — —Educatedx)|

e Consequently, Blackbeard was not educated

—EducatedBlackbeard

Now consider these five scenarios:

1. You are told that Blackbeard was educated. ¥aigh this notion against your previous
beliefs end up deciding that it is not reasonable, and reject it. Your belie® seis not

changed.

2. You are told that Blackbeard was educated. ¥aigh this notion against your previous
beliefs end up deciding that it is reasonable, and accept it as fact. As a result, you abandon
your prejudice and discontinue holding the belief that all pirates are uneducated. That is,
you retract—EducatedBlackbeard from your belief sefS, using a selection functiop,

as ingl.1.2part4, that remove¥x|Pirate(x) — —Educatedx)| overPirate(Blackbeard.

3. You are told that Blackbeard was educated. ¥aigh this notion against your previous
beliefs end up deciding that it is reasonable, and accept it as fact. You are a persistent
bigot, so you discontinue holding the belief that Blackbeard was ever a real pirate (you
prefer to believe that no pirate is educated). That is, you retr&etucatedBlackbeard
from your belief se§ using a selection functiopas in sectiorl.1.2part4, that removes

Pirate(Blackbeard overvx[Pirate(x) — —Educatedx)].

4. You are told that Blackbeard was educated. You assume that thisletaese it is the last
thing you have been told\s a result, you abandon your prejudice and discontinue holding
the belief that all pirates are uneducated. That is, you retr&aducatedBlackbeard
from your belief se§ using a selection functiopas in sectiorl.1.2part4, that removes

vx[Pirate(x) — —Educatedx)] overPirate(Blackbeard.

11

5. You are told that Blackbeard was educated. You assume that this ibgoaeise it is
the last thing you have been toldrou are a persistent bigot, so you discontinue hold-
ing the belief that Blackbeard was ever a real pirate (you prefer to believe that no pirate
is educated). That is, you retracEducatedBlackbeard from your belief setS, using
a selection functiory as in sectionl.1.2 part 4, that removedirate(Blackbeard over

vx[Pirate(x) — —Educatedx)].

In scenariod, 2 and3 you considered whether the new information you were just told was true or
false. You did notautomaticallyprioritize the new information over your existing beliefs. In sce-
narios2 and3 in particular, the decision to keep the new belief was &t weighing it against

all the previously held beliefs, rather than on the basis of its novehy you were performing
non-prioritized belief revisiomn your belief set{ [). In scenariogl and5 you took

as fact the new information you were given without considering its veracity. You automatically
prioritized the new information over your existing beliefs. So you were performpmgyitized

belief revisionon your belief set.

1.2 SNePS

(Except where otherwise noted, all material in this section comes fegma(

2010.)

12

1.2.1 Description of the System

“SNePS is a logic-, frame-, and network- based knowledge representation, reasoning, and acting
system. Its logic is based on Relevance Logic{pirq), a paraconsistent logic (in which a
contradiction does not imply anything whatsoeveryh¢ C). SNePS is di-

vided into several packages, a few of which | discuss here:

SNePSLOG is an interface to SNePS in which information is entered in a predicate logic nota-

tion. Itis the interface through which my demonstrations are performed{ee

SNeRE, the SNePS Rational Engine, provides an acting system for SNePS-based agents, whose
beliefs must change to keep up with a changing world. Of particular interest isefleveac-
tion, which is used to introduce beliefs that take priority over all other beliefs at the time of their

introduction.

1.2.2 Belief Change in SNePS

Every belief in a SNePS belief base has one or nsogport setseach of which consists of an
origin tag and anorigin set The origin tag will identify a belief as either being introduced as a
hypothesis, or derived (note that it is possible for a belief to be both introduced as a hypothesis and
derived from other beliefs). The origin set contains thiogpothesethat were used to derive the
belief. In the case of the origin tag denoting a hypothesis, the corresponding origin set would be a
singleton set containing only the belief itself. The contents of the origin set of a derived belief are

computed by the implemented rules of inference at the time the inference is dvawiin(

) 1988) 1992).

The representation of beliefs in SNePS lends itself well to the creation of processes for con-

13

traction and revision. Specifically, in order to contract a belief, one must merely remove at least
one hypothesis from each of its origin sets. Similarly, prioritized revision by a be{iwhere—b

is already believed) is accomplished by removing at least one belief from each origin-set of
Non-prioritized belief revision under this paradigm is a bit more complicated. | discuss both types

of revision in more detail i§2.

1.2.3 SNeBR

SNeBR, The SNePS Belief Revision subsystem, is responsible for resolving inconsistencies in the
knowledge base as they are discovered. In the current release of SNePS (version 2.7.1), SNeBR is
able toautomaticallyresolve contradictions under a limited variety of circumstances. Otherwise
“assisted culprit choosing” is performed, where the user must manually select culprits for removal.
After belief revision is performed, the knowledge base might still be inconsistent, butlevamn

derivation of an inconsistency has been eliminated.

If the SNeRE believe act is performed on the proposition p, it is assumed that belief
in p is to take priority over any contradictory belief. Therefore, SNeBR behaves as
follows.

1. If andor(0,0)p, ..}! is believed as an hypothesis, it is chosen as the culprit. If it is

a derived belief, assisted culprit choosing is done.

2. If andor(i,1)p, q, ..}? (iis either 0 or 1) is believed and q is believed as an hypoth-
esis, then g is chosen as the culprit. If q is a derived belief, assisted culprit choosing is
done. € ;)

So automatic belief revision in this incarnation of SNeBR is heavily dependent on syntax. Ad-

ditionally, it is not extensible. My modified SNeBR addresses these limitations.

tandor(0,0§...} means that every proposition within the braces is falsep is represented in SNePS as an-
dor(0,0)p}.
2andor(i,1) ...} means that at least i and at most 1 of the propositions within the braces is true.

14

2 New Belief Revision Algorithms

2.1 Problem Statement

2.1.1 Nonprioritized Belief Revision

Suppose we have a knowledge base that is not known to be inconsistent, and suppose that at some
point we add a contradictory belief to that knowledge base. Either that new belief directly contra-
dicts an existing belief, or we derive a belief that directly contradicts an existing one as a result

of performing forward and/or backward inference on the new belief. Now the knowledge base is
known to be inconsistent. We will refer to the contradictory beliefp and —p. Contraction of

eitherp or —p from the knowledge base will resolve the contradiction.

Since SNePS tags each belief with one or more origin sets, or sets of supporting hypotheses,
we can identify the underlying beliefs that support each of the two contradictory beliefs. In the
case wherg and—p each have one origin sédS, andOS., respectively, we may resolve the
contradiction by removing at least one hypothesis flO&, thereby removing, or at least one
hypothesis fronDS.j,, thereby removing-p. Since we only need to remove one of these propo-
sitions, the contradiction may be resolved by removing at least one belief@&w OS., a
no-good If there arem origin sets forp, andn origin sets for—p, then there will be at mosh x n

distinct no-goods (some unions may be duplicates of others). To resolve a contradiction in this

case, we must retract at least one hypothesis from each no-good (Sufficiency).
| will present an algorithm that will select the hypotheses for removal from the set of no-goods. The

first priority will be that the hypotheses selected should be minimally-epistemically-entrenched

(Minimal Entrenchment) according to some total preorderThe second priority will be not to

15

remove any more hypotheses than are necessary in order to resolve the contradiction (Information

Preservation), while still satisfying priority one.

2.1.2 Prioritized Belief Revision

The process of Prioritized Belief Revision in SNePS occurs when a contradiction is discovered
after a belief is asserted explicitly using thelieveact of SNeRE. The major difference from non-
prioritized belief revision is that a subtle change is made to the entrenchment ordefingnonpri

is the ordering used for nonprioritized belief revision, then for prioritized belief revision we use an
ordering<pyi as follows:

Let P be the set of beliefs asserted bipelieveaction. Then

vep,efere Py ¢ P— — (e <pri &) A €2 <pri &1]

Ve, exfer ¢ Paey ¢ P— (€1 <pri € < €1 <nonpri €2)]

Ver,ezerePreyeP — (€1 <pri €2 <> €1 <nonpri €2)]

That is, a proposition asserted bypealieveaction takes priority over any other proposition. When
either both or neither propositions being compared have been asserteddgfi¢iveaction, then

we use the same ordering as we would for nonprioritized revision.

2.2 Common Requirements for a Rational Belief Revision Algorithm

2.2.1 Primary Requirements

The inputs to the algorithm are:

o A set of formulaed: the current belief set, which is known to be inconsistent

16

e A total preorder< on ®: an epistemic entrenchment ordering that can be used to compare

the relative desirability of each belief in the current belief set

e Minimally-inconsistent sets of formulae, . .., oy, each of which is a subset df: the no-

goods

e AsetX={01,...,0n}: the set of all the no-goods

The algorithm should producecalprit set T that satisfies the following conditions:

(EEsnepd) Vo[o e Z — 31[T € (T n 0)] (Sufficiency)
(EEsnep®) VT[TeT »3Jo[oeZATe 0o AYWWE 0 — T <W]|]] (Minimal Entrenchment)

(EEsnep8) VT'[T'c T — —Vo[o € Z — 31[T € (T' n 0)]]] (Information Preservation)

Condition (EEsnepd) states thal contains at least one formula from each seEinCondition
(EEsnep?) states that every formula ifi is a minimally-entrenched formula of some setiin
Condition (EEsnep8) states that if any formula is removed from T, then Conditi&Esnepd)
will no longer hold. In addition to the above conditions, the algorithm must terminate on all

possible inputs, i.e. it must be a decision procedure.

2.2.2 Supplementary Requirement

In any case where queries must be made of the user in order to determine the relative epistemic

ordering of propositions, the number of such queries must be kept to a minimum.

17

2.3 Implementation

| present algorithms to solve the problem as stated:
Where | refer to< below, | am using therioritized entrenchment ordering frog2.1 In the case

of nonprioritized revision we may assume tRat ¢

2.3.1 Using a well preorder

Let << be the output of a functioh whose input is a total preordet, such thak< =< The idea
is that f creates the well preorder. from < by removing some pairs from the total preorder
Note that in the case whereis already a well preordet< =<. Then we may use Algorithri

to solve the problem.

Algorithm 1 Algorithm to compute T given a well preorder
Input: 3, <<
Output: T
1. T

forall (o0€Z)do

Move minimally entrenched belief ia to first position ing, using<< as a comparator
end for
Sort elements ok into descending order of the values of the first element in eagking<<
as a comparator
AddLoop:
while (X #) do

currentCulprit<= oy,

T < T u {currentCulprit}
10. DeletelLoop
11: for all (Ocyrrent€ Z) do

12: if (currentCulprite geyrrent) then
13: 2 < Z\Ocurrent

14: end if

15: end for

16: end while

17: return T

18

2.3.2 Using a total preorder

Unfortunately it is easy to conceive of a situation in which the supplied entrenchment ordering
is a total preorder, but not a well preorder. For instance, let us say that, when reasoning about a
changing world, propositional fluents (propositions that are only true of a specific time or situation)
are abandoned over non-propositional fluents. It is not clear then how we should rank two distinct
propositional fluents, nor how to rank two distinct non-propositional fluents. If we can arbitrarily
specify a well preorder that is a subset of the total preorder we are given, then algorithm 1 will
be suitable. Otherwise, we can simulate a well preord#rrough an iterative construction by
guerying the user for the minimally-entrenched proposition of a particular set of propositions at

appropriate times in the belief-revision process. Algorithaccomplishes just this.

19

Algorithm 2 Algorithm to compute T given a total preorder
Input: 2, <
Output: T
1. Ty
2: MainLoop
3: loop
4. ListLoop
5. forall (gjeZ,1<i<|Z|)do
6: Make a listlg of all minimally-entrenched propositions, i.e. propositions that are not
strictly more entrenched than any other, among thosg, insing< as a comparator.

7. end for
8: RemovelLoap
9: forall (ieZ,1<i<|Z|)do
10: if (According tolg, 0 has exactly one minimally-entrenched propositmohND the other
propositions ino; are not minimally-entrenched in any other no-good vidafl < j <
|Z|,i #])) then
11 T<Tu{p}
12: for all (Ocurrente Z) do
13: if (p€ Ocurrent) then
14: 3 < 2\ Ocurrent
15: end if
16: end for
17: if (Z=¢J)then
18: return T
19: end if
20: end if
21: end for

22: ModifyLoop
23: forall (ceZ)do

24: if (o has multiple minimally-entrenched propositiotisgn

25: query which proposition of the minimally-entrenched propositions is least desired.
26: Modify < so thatl is strictly less entrenched than those other propositions.

27: break out of ModifyLoop

28: end if

29: end for

30: end loop

20

2.3.3 Characterization

These algorithms perform an operation similairtoision functiong [), since they

select one or more propositions to be removed from each minimally-inconsistent set. Their output
seems analogous (P 1 (p A —p)), whereo is the incision functionj is the kernel-set operator

from ([), and p is a proposition. But we are actually incisi2g the set ofknown
no-goods. The known no-goods are of course a subset of all no-goodg, &eP1(p A —p).

This happens because SNeBR resolves contradictions as soon as they are discovered, rather than

performing inference first to discover all possible sources of contradictions.

The type of contraction eventually performed is similar to safe contracticri

)), except that there are fewer restrictions on our epistemic ordering.

2.4 The Recovery Postulate

When a contradiction occurs between a propositioand another propositior-p, and —p is
retracted, we also retract one or more beliefs from whighis derived, as well as all beliefs that

are derived from-p. If we were to immediately reassertp (let us ignore for the moment that

this will trigger belief revision again), then while the beliefs derived froqp may be reasserted,

any beliefs from which—-p was derived that were removed previously will not automatically be
reasserted (recovered). There is simply no mechanism in place to do this. So the procedures above
do notin general satisfy the recovery postulate for belief revision. Recovery would only be possible
in the case where-p was originally asserted solely as a hypothesis. In this case the only beliefs
lost during the initial revision would be those derived fremp. Those beliefs would be recovered

as soon as-pis reasserted (as long as the rest of their origin sets are intact).

21

2.5 Conjunctiveness

Since only hypotheses are considered for removal by these procedures, the conjunctiveness postu-
late (EE3)is unnecessary. If we haweandb as hypotheses, and from these we deaiveb, then

it is meaningless to compaseanda A b, because we do not consider the entrenchment of derived
beliefs. This is similarly true if we believ@ b as a hypothesis, and use it to deravand to derive

b.

3 Changes to SNePS Manual

3.1 New SNePSLOG Commands

3.1.1 br-mode

Syntax:br-mode [autojmanual]

Thebr-modecommand is used to query or set the default behavior of belief revision.

e Default Setting:
In modes 1 and 2, the default setting lsrmodeis manual

In mode 3, the the default setting for-modeis auto.

e br-mode autowill cause SNeBR to always attempt automatic belief revision when a con-
tradiction is detected. While this mode is active, SNeBR will always resolve contradictions
using the currently-selected automated belief revision algorithm. Manual belief revision will

not be available.

¢ br-mode manualvill cause SNeBR to present the user with a list of options specifying how

22

to proceed when a contradiction is detected. The user will be able to select manual belief
revision, ignore the contradiction and proceed with an inconsistent knowledge base, or use

the currently-selected automated belief revision algorithm.

e br-modewithout any arguments will inform the user which of the above two modes is cur-

rently active.

3.1.2 set-order

Syntax:set-order <function-name>

The set-ordercommand is used to choose the epistemic ordering function used by SNeBR during
automated belief revision.

function-namemust be the name of a lisp function visible to grepslogackage.

The function referred to bjunction-namenust be a function of two argumentss andrhs, as
follows:

fundlhs,rhs) = trueiff Ihs<rhs, i.e.lhsis not strictly more entrenched thaims.

Ihs andrhs are wffs.

The user may define his/her own ordering functions for use sathorder or use one of the

several built-in functions, described below:

e Default Setting:
In modes 1 and 2, the default ordemnisll-order.

In mode 3, the the default orderflsent

e set-order null-ordemwill cause all propositions to be equally entrenched.

;; An order in which all propositions are equally entrenched

(defun null—order (lhs rhs)

23

(declare (ignore lhs rhs))

t)

o set-order expliciwill cause all propositions to be equally entrenched, except as follows:
If IsLessEntrenched(x,y3 asserted in the knowledge base, thewill be strictly less en-
trenched thary. Note that this ordering function uses statements in the object language of

SNePS to determine relative entrenchment of propositions.

24

;. Description: An ordering function relying on explicit statements of
I relative entrenchment of propositions, using the
B IsLessEntrenched predicate for checks
[IsLessEntrenched (x.y)] = [x] is strictly less entrenched than [y]
(defun explicit (lhs rhs)
(not (tell "ask_lsLessEntrenched (TA,"A)” rhs |hs)))

set-order sourcavill cause all propositions to be equally entrenched, except as follows:

If HasSource(x,s1HasSource(y,s2)andIsBetterSource(s2,sBre asserted in the knowl-
edge base, theawill be strictly less entrenched thgnNote that this ordering function uses
statements in the object language of SNePS to determine relative entrenchment of proposi-

tions.

;.. Description: An ordering function that causes propositions with more
I reliable sources to be more epistemically entrenched than
B propositions with less reliable sources. Also, unsourced
propositions are more entrenched than sourced ones.
73, [HasSource(x,y)] = The source of [x] is [y]
[IsBetterSource(x,y)] = [x] is a better source than [y]
(defun source (lhs rhs)
(or
(and
(let ((source-lhs (tell "askwh.HasSource ("A..?Xx)” lhs))
(source-rhs (tell "askwh.HasSource (TA.?x)” rhs)))
(cond ((and source-lhs source-rhs)
(let ((source-lhs—term
(cdr (assoc 'x (first source-lhs))))
(source-rhs—term
(cdr (assoc 'x (first source-rhs)))))
(not (tell "ask_lsBetterSource ("A,"A)”
source-lhs—term source-rhs—term))))

(source-rhs nil)

(t t))))))

25

e set-order fluenwill cause all propositions to be equally entrenched, except as follows:
If pred-symis contained in the fluents: list in lisp, then any proposition whose predicate
symbol ispred-symwill be strictly less entrenched than every proposition whose predicate
symbol is not contained in thefluents: list. Note that this ordering uses meta-information
outside of the object language of SNePS in order to determine relative entrenchment of
propositions.
;;; Description: An ordering function that causes propositional fluents to
. be less epistemically entrenched than nefluent

propositions is a fluent or the rhs argument is not.

(defun fluent (lhs rhs)

(or (is—fluent Ihs)

(not (is—fluent rhs))))

;;; Description: Returns t iff the function symbol for n is a fluent
;7 Arguments: n— a node
(defun is—fluent (n)
(let ((pred (relation-predicate n)))
(when (and pred (listp pred))
(setf pred (get-node-name (car pred))))

(member pred «fluentsx)))

3.1.3 br-tie-mode

Syntax:br-tie-mode [autojmanual]

Thebr-tie-modecommand is used to select the algorithm used for automated belief revision.

e Default Setting:
In modes 1 and 2, the default setting fortie-modeis manual

In mode 3, the the default setting for-tie-modeis auto.

26

e br-tie-mode autawill cause SNeBR to arbitrarily break entrenchment ties when multiple
propositions are minimally entrenched within a minimally-inconsistent set. This mode uses
a more time- and space- efficient algorithm to perform belief revisioniti@amualmode. As
such it is preferable whenever the user-supplied ordering is known to be a well preorder (no
arbitrary decisions will be made), or when the user simply does not care how entrenchment

ties are broken.

In the current implementation of SNePS, a proposition whose name (e.t}. wif2, etc.)

has minimal lexicographic rank will be considered tcshectly less entrenched than all other
propositions within a minimally inconsistent set, as long as no other propositions within the
set arestrictly less entrenched according to the user-supplied ordering. This has the effect
of making propositions that were conceived of later more entrenched than those that are
otherwise equally entrenched, but conceived of earlier. The order of conception should not

be confused with the order of assertion, which may differ.

¢ br-tie-mode manualvill cause SNeBR to query the user which propositiostrgctly mini-
mally entrenched when multiple propositions are minimally entrenched within a minimally-

inconsistent set.

e br-tie-modewithout any arguments will inform the user which algorithm is currently being

used for automated belief revision.

3.2 New SNePSUL Commands

3.2.1 br-mode

Syntax:(br-mode t|nil)

27

e Default Setting: The default setting fobr-modein SNePSUL isil
e (br-mode t)in SNePSUL will do the equivalent of enteribbg-mode autan SNePSLOG

e (br-mode nil)in SNePSUL will do the equivalent of enteribg-mode manuah SNePSLOG

3.2.2 set-order

Syntax:(set-order <function-name>)
function-namenust be the name of a lisp function visible to sreepgackage.
In order to use one of the built-in ordering functiofignction-namenust be prefixed witlsnep-

slog: (e.g.snepslog:fluent

e Default Setting: The default setting foset-orderin SNePSUL issnepslog:null-order

e (set-order function-nameyill do the equivalent of enteringet-order function-namea SNeP-

SLOG.

3.2.3 br-tie-mode

Syntax:(br-tie-mode t|nil)

e Default Setting: The default setting fobr-tie-modein SNePSUL il

e (br-tie-mode t)in SNePSUL will do the equivalent of enteritiy-tie-mode autdn SNeP-
SLOG

e (br-tie-mode nil)in SNePSUL will do the equivalent of enteririg-tie-mode manuain

SNePSLOG

28

3.3 Updates

If the SNeRE believe act is performed on the proposition p, it is assumed that belief
in p is to take priority over any contradictory belief. Therefore, SNeBR behaves as
follows.

1. If andor(0,0]p, ...} is believed as an hypothesis, it is chosen as the culprit. If itis a
derived belief, assisted culprit choosing is done.

2. If andor(i,1Xp, q, ..} (iis either 0 or 1) is believed and q is believed as an hypoth-
esis, then g is chosen as the culprit. If g is a derived belief, assisted culprit choosing is
done.

§8.5.1 of the SNePS 2.7.1 manuali(;) 76),
guoted above, is no longer an accurate description of how SNeBR works. This text will be re-

moved, and replaced with the text below:

If the SNeRE believe act is performed on the proposition p, it is assumed that belief in
p is to take priority over any contradictory belief. Thus if andor(0p0)..} is believed,

it is chosen as the culprit. Therefore, SNeBR behaves as follows:

1. If br-modeis set tomanual then the user will be given a choice to perform assisted
culprit choosing, to attempt automated belief revision, or to continue in an inconsistent
context.

2. If br-modeis set toautg, then automated belief revision will be attempted.

Automated belief revision can proceed in one of two ways:

1. If br-tie-modeis set tomanual then SNeBR will query the user which proposi-
tion is strictly minimally entrenched whenever multiple propositions are minimally
entrenched within a minimally-inconsistent set during the revision process.

2. If br-tie-modeis set toauto, then SNeBR will arbitrarily choose a proposition to
be strictly minimally entrenched whenever multiple propositions are minimally en-
trenched within a minimally-inconsistent set during the revision process.

For more information on how to set the epistemic ordering of propositions, see the
set-orderSNePSLOG command.

The portion 0f§8.5.2 (:) 76) that reads as

follows

29

2. The user may choose to continue in an inconsistent context. That situation is not
disastrous, since SNePS uses a paraconsistent logica contradiction does not imply ir-
relevant other propositions.

will be modified to read:

2. The user may choose to continue in an inconsistent context. That situation is not
disastrous, since SNePS uses a paraconsistent logica contradiction does not imply ir-
relevant other propositions. Once the user chooses to continue in an inconsistent con-
text, the SNePSLOG prompt will be prefixed with an asterisk (*) until consistency is
restored.

4 Annotated Demonstrations

4.1 Old Belief Revision Behavior

4.1.1 Manual Revision Example 1

Up until now, belief revision in SNePS was performed manually. A typical interaction might have

gone like this:

iy Show supports

. expert

;v Ask the user what to do when belief revision is triggered
: br-mode manual

Automatic belief revision must now be manually selected.

;;; All pirates are uneducated.

30

. all(x)(Pirate(x)=>"Educated(x)).

;. All criminals are uneducated.

. all(x)(Criminal(x)=>"Educated(x)).

;;; Blackbeard was a pirate and a criminal.

. and{Pirate(Blackbeard),Criminal(Blackbeard)}!

;;; The knowledge base thus far

. list-asserted-wffs
wff7!: "Educated(Blackbeard) {<der {wff2,wff5}> <der {wffl,wff5}>}
wiff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}
wff4l: Criminal(Blackbeard) {<der {wff5}>}
wff3!: Pirate(Blackbeard) {<der {wff5}>}
wff2l: all(x)(Criminal(x) => ("Educated(x))) {<hyp{wff2}>}
wifll: all(x)(Pirate(x) => ("Educated(x))) {<hyp{wffl}>}

;;; Blackbeard was educated (triggers belief revision)

Educated(Blackbeard).

A contradiction was detected within context default-defaultct.
The contradiction involves the proposition you want to assert:

wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

and the previously existing proposition:

wff7!: "Educated(Blackbeard) {<der {wff2,wff5}> <der,{wffl,wff5}>}

You have the following options:

1. [a] to attempt to resolve the contradiction automatically

2. [c] to continue anyway, knowing that a contradiction is derivable;
3. [r] to revise the inconsistent part of the context manually

4. [d] to discard this contradictory new assertion from the context

(please type a, c, r or d)

31

=<=r

In order to make the context consistent you must delete at least
one hypothesis from each of the following sets of hypotheses:
(wffé wffs wffl)
(wffé wifs wif2)

The hypotheses listed below are included in more than
one set. Removing one of these will make more than one
set consistent.

(wffe wiff5)

In order to make the context consistent you must delete

at least one hypothesis from the set listed below.

An inconsistent set of hypotheses:

1 : wif6él: Educated(Blackbeard) {<hyp{wff6}>}
(1 supported proposition: (wff6))

2 wif5l: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}
(4 supported propositions: (wff7 wff5 wff4 wff3))

3 wifll: all(x)(Pirate(x) => ("Educated(x))) {<hyp,{wff1}>}
(2 supported propositions: (wff7 wffl))

Enter the list number of a hypothesis to examine or
[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,
[F] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

32

(please type a number OR d, a, r, q or i)

=<= d

Enter the list number of a hypothesis to discard,

[c] to cancel this discard, or [g] to quit revising this set.

==><= 3

The consistent set of hypotheses:

1 : wif6él: Educated(Blackbeard) {<hyp{wff6}>}
(1 supported proposition: (wff6))

2 . wff5l: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}
(3 supported propositions: (wff5 wiff4 wff3))

Enter the list number of a hypothesis to examine or
[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,
[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i)

=>><= q

In order to make the context consistent you must delete

at least one hypothesis from the set listed below.

An inconsistent set of hypotheses:

1 : wiff6él: Educated(Blackbeard) {<hyp{wff6}>}
(2 supported propositions: (wff8 wff6))

33

2 wif5l: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}
(5 supported propositions: (wff8 wff7 wffs5 wiff4 wiff3))

3 wff2l: all(x)(Criminal(x) => ("Educated(x))) {<hyp,{wff2}>}
(2 supported propositions: (wff7 wff2))

Enter the list number of a hypothesis to examine or
[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,
[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i)

=<= d

Enter the list number of a hypothesis to discard,

[c] to cancel this discard, or [g] to quit revising this set.

==<= 2

The consistent set of hypotheses:

1 : wiff6él: Educated(Blackbeard) {<hyp{wff6}>}
(1 supported proposition: (wff6))

2 . wff2l: all(x)(Criminal(x) => ("Educated(x))) {<hyp,{wff2}>}
(1 supported proposition: (wff2))

Enter the list number of a hypothesis to examine or
[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,
[r] to see what you have already removed,

[q] to quit revising this set, or

34

[i] for instructions

(please type a number OR d, a, r, q or i)

=><= q

Do you want to add a new hypothesis? no

;51 The revised knowledge base

list-asserted-wffs
wff9!: nand{Criminal(Blackbeard),Pirate(Blackbeard)} {<ext{wff2,wff6}>}
wff6!: Educated(Blackbeard) {<hyp,{wff6}>}
wif2l: all(x)(Criminal(x) => ("Educated(x))) {<hyp,{wff2}>}

We see that the user is given total control of how to manipulate the knowledge base to restore
consistency. Notice that in the example above the user was given advice about which propositions
to remove to minimize information loss, but that the advice was ignored. Also notice that there

was no information whatsoever about the relative entrenchment of the culprit hypotheses.

4.1.2 Manual Revision Example 2

Now see the example below:

i Show supports

. expert

;;» Ask the user what to do when belief revision is triggered
. br-mode manual
Automatic belief revision must now be manually selected.

iy All pirates are uneducated.

35

. all(x)(Pirate(x)=>"Educated(x)).

;. All criminals are uneducated.

. all(x)(Criminal(x)=>"Educated(x)).

;;; Blackbeard was a pirate and a criminal.

. and{Pirate(Blackbeard),Criminal(Blackbeard)}!

;;; The knowledge base thus far

. list-asserted-wffs
wff7!: "Educated(Blackbeard) {<der {wff2,wff5}> <der {wffl,wff5}>}
wiff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}
wff4l: Criminal(Blackbeard) {<der {wff5}>}
wff3!: Pirate(Blackbeard) {<der {wff5}>}
wff2l: all(x)(Criminal(x) => ("Educated(x))) {<hyp{wff2}>}
wifll: all(x)(Pirate(x) => ("Educated(x))) {<hyp{wffl}>}

;;; Blackbeard was educated (triggers belief revision)

. Educated(Blackbeard).

A contradiction was detected within context default-defaultct.
The contradiction involves the proposition you want to assert:

wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

and the previously existing proposition:

wff7!: "Educated(Blackbeard) {<der {wff2,wff5}> <der,{wffl,wff5}>}

You have the following options:

1. [a] to attempt to resolve the contradiction automatically

2. [c] to continue anyway, knowing that a contradiction is derivable;
3. [r] to revise the inconsistent part of the context manually

4. [d] to discard this contradictory new assertion from the context

(please type a, c, r or d)

36

=<=r

In order to make the context consistent you must delete at least
one hypothesis from each of the following sets of hypotheses:
(wffé wffs wffl)
(wffé wifs wif2)

The hypotheses listed below are included in more than
one set. Removing one of these will make more than one
set consistent.

(wffe wiff5)

In order to make the context consistent you must delete

at least one hypothesis from the set listed below.

An inconsistent set of hypotheses:

1 : wif6él: Educated(Blackbeard) {<hyp{wff6}>}
(1 supported proposition: (wff6))

2 wif5l: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}
(4 supported propositions: (wff7 wff5 wff4 wff3))

3 wifll: all(x)(Pirate(x) => ("Educated(x))) {<hyp,{wff1}>}
(2 supported propositions: (wff7 wffl))

Enter the list number of a hypothesis to examine or
[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,
[F] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

37

(please type a number OR d, a, r, q or i)

=<= d

Enter the list number of a hypothesis to discard,

[c] to cancel this discard, or [g] to quit revising this set.

==><= 3

The consistent set of hypotheses:

1 : wif6él: Educated(Blackbeard) {<hyp{wff6}>}
(1 supported proposition: (wff6))

2 . wff5l: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}
(3 supported propositions: (wff5 wiff4 wff3))

Enter the list number of a hypothesis to examine or
[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,
[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i)

=>><= q

In order to make the context consistent you must delete

at least one hypothesis from the set listed below.

An inconsistent set of hypotheses:

1 : wiff6él: Educated(Blackbeard) {<hyp{wff6}>}
(2 supported propositions: (wff8 wff6))

38

2 wif5l: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}
(5 supported propositions: (wff8 wff7 wffs5 wiff4 wiff3))

3 wff2l: all(x)(Criminal(x) => ("Educated(x))) {<hyp,{wff2}>}
(2 supported propositions: (wff7 wff2))

Enter the list number of a hypothesis to examine or
[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,
[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i)

=<= d

Enter the list number of a hypothesis to discard,

[c] to cancel this discard, or [g] to quit revising this set.

==<= 1

The consistent set of hypotheses:

1 : wif5l: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}
(4 supported propositions: (wff7 wff5 wff4 wff3))

2 . wff2l: all(x)(Criminal(x) => ("Educated(x))) {<hyp,{wff2}>}
(2 supported propositions: (wff7 wff2))

Enter the list number of a hypothesis to examine or
[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,
[r] to see what you have already removed,

[q] to quit revising this set, or

39

[i] for instructions

(please type a number OR d, a, r, q or i)

=<= d

Enter the list number of a hypothesis to discard,

[c] to cancel this discard, or [g] to quit revising this set.

==<= 2

The consistent set of hypotheses:

1: wif5l: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}
(3 supported propositions: (wff5 wff4 wff3))

Enter the list number of a hypothesis to examine or
[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,
[f] to see what you have already removed,

[g] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i)

=><= q

Do you want to add a new hypothesis? no

;;; The revised knowledge base
list-asserted-wffs
wffl0!: nand{Educated(Blackbeard),

all(x)(Criminal(x) => ("Educated(x)))} {<ext{wff5}>}
wffs!: and{Pirate(Blackbeard),Criminal(Blackbeard)} {<hyp,{wff5}>}
wff4!l: Criminal(Blackbeard) {<der {wff5}>}
wff3!: Pirate(Blackbeard) {<der{wff5}>}

40

This example is even more problematic. The user removed far more than was necessary in order
to resolve the contradiction. Further on that note, the user chose to remove wff6 from the second
no-good after removing a proposition from the first no-good. Had the no-goods been presented in
the opposite order, and wffé was removed initially, then it would not have been necessary to even

look at the other no-good; both would have been made consistent by the removal of wif6.

4.2 New Belief Revision Behavior

We shall see that the problems with manual belief revision discussgtimare remedied by the

new procedures.

4.2.1 Algorithm 2 Example 1

The example below corresponds to thag4nl.1, but now automatic belief revision is performed,

using Algorithm2.

;1 Show supports

. expert

;1 Use algorithm 2
. br-tie-mode manual

The user will be consulted when an entrenchment tie occurs.

;5 Use an entrenchment ordering where every proposition is
;; minimally-entrenched

. set-order null-order

;;; All pirates are uneducated.

41

. all(x)(Pirate(x)=>"Educated(x)).

;. All criminals are uneducated.

. all(x)(Criminal(x)=>"Educated(x)).

;;; Blackbeard was a pirate and a criminal.

. and{Pirate(Blackbeard),Criminal(Blackbeard)}!

;;; The knowledge base thus far

. list-asserted-wffs
wff7!: "Educated(Blackbeard) {<der {wff2,wff5}> <der {wffl,wff5}>}
wiff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}
wff4l: Criminal(Blackbeard) {<der {wff5}>}
wff3!: Pirate(Blackbeard) {<der {wff5}>}
wff2l: all(x)(Criminal(x) => ("Educated(x))) {<hyp{wff2}>}
wifll: all(x)(Pirate(x) => ("Educated(x))) {<hyp{wffl}>}

;;; Blackbeard was educated (triggers belief revision)

Educated(Blackbeard).

A contradiction was detected within context default-defaultct.
The contradiction involves the proposition you want to assert:

wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

and the previously existing proposition:

wff7!: "Educated(Blackbeard) {<der {wff2,wff5}> <der,{wffl,wff5}>}

You have the following options:

1. [a] to attempt to resolve the contradiction automatically

2. [c] to continue anyway, knowing that a contradiction is derivable;
3. [r] to revise the inconsistent part of the context manually

4. [d] to discard this contradictory new assertion from the context

(please type a, c, r or d)

42

=><= 3

Please choose from the following hypotheses the one that you would

least like to keep:

1 wff2l: all(x)(Criminal(x) => ("Educated(x))) {<hyp,{wff2}>}
(2 supported propositions: (wff7 wff2))

2 . wff5l: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

(4 supported propositions: (wff7 wff5 wff4 wff3))

3: wifé!l: Educated(Blackbeard) {<hyp {wff6}>}
(1 supported proposition: (wff6))

==<= 1

Please choose from the following hypotheses the one that you would

least like to keep:

1 wffil: all(x)(Pirate(x) => ("Educated(x))) {<hyp,{wff1}>}

(2 supported propositions: (wff7 wffl))

2 . wff5l: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}
(4 supported propositions: (wff7 wff5 wff4 wff3))

3 : wffél: Educated(Blackbeard) {<hyp,{wff6}>}
(1 supported proposition: (wff6))

==><= 1

;»» The revised knowledge base
list-asserted-wffs

wffol: “(all(x)(Criminal(x) => ("Educated(x)))) {<ext{wff5wff6}>}

43

wif8l: “(all(x)(Pirate(x) => ("Educated(x)))) {<ext{wff5wff6}>}
wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

wiff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}
wff4l: Criminal(Blackbeard) {<der {wff5}>}

wff3!: Pirate(Blackbeard) {<der {wff5}>}

Notice that the user was merely asked which proposition was minimally-entrenched within each
no-good, not to actually remove propositions. As a result, SNeBR was able to correctly identify
wffl and wff2 as the culprits, remove them, and assert their negations. The user did not get an
opportunity to unnecessarily remove more propositions. Also note that wff6, the last proposition

to be asserted, was an option. Therefore this is an examplengfrioritizedbelief revision.

4.2.2 Algorithm 2 Example 2

The following example shows a vast improvement in behavior over the exampfelir®, using

Algorithm 2.

;11 Show supports

. expert

i Always attempt automatic belief revision
. br-mode auto

Automatic belief revision will now be automatically selected.

;;; Use algorithm 2
. br-tie-mode manual

The user will be consulted when an entrenchment tie occurs.

;51 Use an entrenchment ordering where every proposition is

44

;1; minimally-entrenched

. set-order null-order

;;; All pirates are uneducated.

: all(x)(Pirate(x)=>"Educated(x)).

;. All criminals are uneducated.

: all(x)(Criminal(x)=>"Educated(x)).

;;; Blackbeard was a pirate and a criminal.

: andor{Pirate(Blackbeard),Criminal(Blackbeard)}!

;;; The knowledge base thus far

. list-asserted-wffs
wff7!: "Educated(Blackbeard) {<der {wff2,wff5}> <der {wffl,wff5}>}
wffs!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp {wff5}>}
wff4l: Criminal(Blackbeard) {<der {wff5}>}
wff3!: Pirate(Blackbeard) {<der{wff5}>}
wif2l: all(x)(Criminal(x) => ("Educated(x))) {<hyp,{wff2}>}
wffll: all(x)(Pirate(x) => ("Educated(x))) {<hyp{wff1}>}

;;; Blackbeard was educated (triggers belief revision)

. Educated(Blackbeard).

Please choose from the following hypotheses the one that you would

least like to keep:

1: wff2l: all(x)(Criminal(x) => ("Educated(x))) {<hyp{wff2}>}
(2 supported propositions: (wff7 wff2))

2 . wff5l: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}
(4 supported propositions: (wff7 wff5 wff4 wff3))

45

3: wffél: Educated(Blackbeard) {<hyp {wff6}>}
(1 supported proposition: (wff6))

==><= 1

Please choose from the following hypotheses the one that you would

least like to keep:

1 wifll: all(x)(Pirate(xX) => (CEducated(x))) {<hyp{wff1}>}

(2 supported propositions: (wff7 wiffl))

2 wif5l: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}
(4 supported propositions: (wff7 wff5 wff4 wff3))

3 : wiff6él: Educated(Blackbeard) {<hyp{wff6}>}
(1 supported proposition: (wff6))

==><= 3

;;; The revised knowledge base

. list-asserted-wffs
wff7!: "Educated(Blackbeard) {<der {wff2,wff5}> <der {wffl,wff5}>}
wffs!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp {wff5}>}
wff4l: Criminal(Blackbeard) {<der {wff5}>}
wff3!l: Pirate(Blackbeard) {<der {wff5}>}
wff2l: all(x)(Criminal(x) => ("Educated(x))) {<hyp{wff2}>}
wffll: all(x)(Pirate(x) => ("Educated(x))) {<hyp{wff1}>}

Again the user was only asked to provide enough information necessary to resolve the contra-
diction, and was not given complete power to alter the knowledge base. More importantly, SNeBR
was able to recognize after tsecondjuery that it was not necessary to remove wff2, the proposi-

tion selected as minimal in the first query. This is because wff6, the proposition selected as minimal

46

in the second query, was present in both no-goods. Also note that wff6, the last proposition to be
asserted, was contracted. This is a therefore a prime examplnpfioritizedbelief revision in

action.

4.2.3 Algorithm 1 Example

When algorithm 1 is used, the user is not consulted when there is a question about which propo-
sition is uniquely minimally-entrenched in a no-good. Algorithm 1 attempts to figure this out
using the supplied ordering (none is provided here), and when a question remains it arbitrarily (but
deterministically) chooses a proposition to be minimally-entrenched. In the current implementa-
tion, SNePS will use the lexicographic rank of the name of the propositior,(wiff2, etc.) to

determine its relative epistemic ordering. Lexicographic comparison yields a well preorder.

iy Show supports

. expert

;1 Always use automatic belief revision
: br-mode auto

Automatic belief revision will now be automatically selected.

;;; Use algorithm 1
. br-tie-mode auto

Entrenchment ties will now be automatically broken

;; Use an entrenchment ordering where every proposition is
;51 minimally-entrenched

. set-order null-order

iy All pirates are uneducated.

. all(x)(Pirate(x)=>"Educated(x)).

47

;o All criminals are uneducated.

. all(x)(Criminal(x)=>"Educated(x)).

;;; Blackbeard was a pirate and a criminal.

: and{Pirate(Blackbeard),Criminal(Blackbeard)}!

;;; The knowledge base as thus far

. list-asserted-wffs
wff7!: “Educated(Blackbeard) {<der {wff2,wff5}> <der {wffl,wff5}>}
wffs!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp {wff5}>}
wff4l: Criminal(Blackbeard) {<der {wff5}>}
wff3!: Pirate(Blackbeard) {<der{wff5}>}
wff2l: all(x)(Criminal(x) => ("Educated(x))) {<hyp{wff2}>}
wffll: all(x)(Pirate(x) => ("Educated(x))) {<hyp{wff1}>}

;;; Blackbeard was educated (triggers belief revision)

. Educated(Blackbeard).

;;; The revised knowledge base

. list-asserted-wffs
wffal: “(all(x)(Criminal(x) => (CEducated(x)))) {<ext{wff5wff6}>}
wif8l: “(all(x)(Pirate(x) => ("Educated(x)))) {<ext{wff5wff6}>}
wff6!: Educated(Blackbeard) {<hyp,{wff6}>}
wffs!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp {wff5}>}
wff4l: Criminal(Blackbeard) {<der,{wff5}>}
wff3!: Pirate(Blackbeard) {<der{wff5}>}

We see that wif1l and wiff2, being of minimal lexicographic rank, were also least epistemically
entrenched. As a result, they were chosen as culprits to restore consistency to the no-goods in
which they appeared. Though it is not necessarily apparamtprioritized belief revision was

performed here as well.

48

4.2.4 Prioritized Belief Revision Example

In the following example, prioritized belief revision is demonstrated. Algorithm 2 is used.

;11 Show supports

. expert

;;» Use mode 3 of SNePSLOG (see manual)

. set-mode-3

iy Always attempt automatic belief revision
: br-mode auto

Automatic belief revision will now be automatically selected.

iy Use algorithm 2
. br-tie-mode manual

The user will be consulted when an entrenchment tie occurs.

;;; Initialize believe action (see manual)

. “(attach-primaction believe believe)

;;» Use an order in which every proposition is minimally-entrenched

. set-order null-order

i [Walk(prep, obj)] = It walks [prep] a [obj].
. define-frame Walk(verb prep obj)

iy [Talk(prep, obj]] = It talks [prep] a [obj].

. define-frame Talk(verb prep obj)

i We will use x to range over the above frames

. define-frame x(verb prep obj)

49

iy [Isa(obj)] = It is a [obj].

. define-frame Isa(verb obj)

o If it [X]s like a [y], it is a [y].
o all(x,y)(x(like,y)=>Isa(y)).

;o It walks like a duck.

: Walk(like, duck)!

;o It talks like a duck.
. Talk(like, duck)!

;;; The knowledge base thus far
. list-asserted-wffs
wif4l: Talk(like,duck) {<hyp{wff4}>}
wff3!: Isa(duck) {<der{wffl,wff2}> <der {wffl,wff4}>}
wif2l: Walk(like,duck) {<hyp,{wff2}>}
wffll: all(y,x)(x(like,y) => Isa(y)) {<hyp{wff1}>}

;i IU's not a duck (triggers belief revision).

. perform believe("Isa(duck))

Please choose from the following hypotheses the one that you would

least like to keep:

1 wiffll: all(y,x)(x(like,y) => lIsa(y)) {<hyp{wffl}>}
(2 supported propositions: (wff3 wiffl))

2 : wif2l: Walk(like,duck) {<hyp{wff2}>}
(2 supported propositions: (wff3 wff2))

==<= 2

50

Please choose from the following hypotheses the one that you would

least like to keep:

1 wifll: all(y,x)(x(like,y) => Isa(y)) {<hyp{wffl}>}
(2 supported propositions: (wff3 wiffl))

2 . wff4l: Talk(like,duck) {<hyp{wff4}>}
(2 supported propositions: (wff4 wff3))

==<= 2

;;; The revised knowledge base
. list-asserted-wffs
wff8!: "Walk(like,duck) {<ext{wffl,wff5}>}
wif7l: “Talk(like,duck) {<ext{wffl,wff5}>}
wiff5!: “lsa(duck) {<hyp {wff5}>}
wffll: all(y,x)(x(like,y) => lIsa(y)) {<hyp{wffl}>}

Note that the final assertion was made by performirgekeveact. This invoked prioritized
belief revision, causing the statement that was just believed to be strictly more entrenched than
every other proposition. This is why wff5, the assertion that it's not a duck, did not even appear
as an option during queries to the user; SNeBR knew it could not be minimally-entrenched in any

no-good. As a result, it was guaranteed to remain asserted at the conclusion of the revision process.

4.3 Capturing Old Results

A significant feature of my work is that it generalizes previous published work on belief revision in

SNePS(s1993 rbH999 pP00Q

51

)). The following demonstrations showcase the new features | have introduced
to SNeBR, and capture the essence of belief revision as seen in the papers mentioned above by
using well-specified epistemic ordering functions. The demos have been edited for formatting and
clarity. The commandbr-tie-mode autand br-tie-mode manuaindicate that Algorithml and
Algorithm 2 should be used respectively. Wif is a well-formed formula. A wff followed by
a period (.) indicates that the wff should be asserted, i.e. added to the knowledge base. A wiff
followed by an exclamation point (!) indicates that the wff should be asserted, and that forward

inference should be performed on it.

4.3.1 SNePSwD

| present a demonstration on how the automated belief revision behavior @i :
) can easily be duplicated by my new system.r ;) uses a predeter-

mined manual ordering of propositions to do belief revision. The ordering was constructed using a

separate command that recorded metainformation about existing propositions outside of the object

language of SNePS. That behavior is replicated by the ordering furetjicit

The following demo is an adaptation of the automated belief revision demo froavd
Y). The descriptions are by and large taken from that article. Formulae stating en-

trenchment orderings have been omitted from the output for clarity.

;1 Show supports

. expert
;1 Always use automatic belief revision

. br-mode auto

Automatic belief revision will now be automatically selected.

52

;; Use algorithm 2
. br-tie-mode manual

The user will be consulted when an entrenchment tie occurs.

;;» Use an entrenchment ordering where relative entrenchment is manually
., specified

. set-order explicit

;;; There are four kinds of meetings: official meetings, classes, work
;;; meetings, and social meetings. Any meeting will be of exactly one of
;;; these types.

. all(m)(meeting(m) => xor{official(m),class(m),work(m),social(m)}).

;»» Philip, Peter, and John will attend work meetings.

: all(m)(work(m) => and{attends(m,Philip),attends(m,Peter),attends(m,John)}).

;1 Any meeting will be either in the morning or the afternoon, but not both.

. all(m)(meeting(m) => xor{in-morning(m), in-afternoon(m)}).

;;; If the same person attends two different meetings, then one of the
;1 meetings has to be in the morning, and the other in the afternoon.
: alliml1,m2,p)({attends(m1,p),attends(m2,p)} &=>

(in-morning(m1) <=> in-afternoon(mz2))).

;;; Peter prefers meetings in the morning.

: all(m)(attends(m,Peter) => in-morning(m)).

;;; John prefers meetings in the afternoon.

. all(m)(attends(m,John) => in-afternoon(m)).

;;; Philip prefers meetings in the morning.

: all(m)(attends(m,Philip) => in-morning(m)).

53

;W is a meeting.

: meeting(w).

5, W is a work meeting.

. work(w).

;;; Philip’s preference is less important than John's.

. IsLessEntrenched(wff7,wff6).

;;; John’s preference is less important than Peter’s.

. IsLessEntrenched(wff6,wff5).

;;; The preferences of people are less important than the remaining
;;; information in the problem.

. IsLessEntrenched(wff5,wff1).

. IsLessEntrenched(wff5,wff2).

. IsLessEntrenched(wff5,wff3).

. IsLessEntrenched(wff5,wff4).

. IsLessEntrenched(wff5,wff8).

. IsLessEntrenched(wff5,wff9).

.., IsLessEntrenched is a transitive relation
. all(x,y,z)({IsLessEntrenched(x,y),IsLessEntrenched(y,z)} &=>

IsLessEntrenched(x,z)).

;;; The knowledge base thus far
list-asserted-wffs
wffl8!: all(z,y,x)({IsLessEntrenched(y,z),IsLessEntrenched(x,y)} &=>
{IsLessEntrenched(x,z)}) {<hyp,{wff18}>}
wffal: work(w) {<hyp,{wffo}>}
wff8l: meeting(w) {<hyp,{wff8}>}
wff7!: all(m)(attends(m,Philip) => in-morning(m)) {<hyp {wff7}>}
wff6!: all(m)(attends(m,John) => in-afternoon(m)) {<hyp,{wff6}>}

54

wif5!:
wif4!:

wif3!:

wif2!:

wifl!:

all(m)(attends(m,Peter) => in-morning(m)) {<hyp {wff5}>}
all(p,m2,m1)({attends(m2,p),attends(m1,p)} &=>

{in-afternoon(m2) <=> in-morning(m1)}) {<hyp{wff4}>}
all(m)(meeting(m) => (xor{in-afternoon(m),in-morning(m)}))
{<hyp {wff3}>}
all(m)(work(m) => (attends(m,John) and attends(m,Peter) and

attends(m,Philip))) {<hyp,{wff2}>}

all(m)(meeting(m) => xor{social(m),work(m),class(m),official(m)}))

{<hyp {wffl1}>}

;5 When will the meeting w take place?

?when(w)?

;;» The revised knowledge base

list-asserted-wffs

wifo3!:

wif38!:
wif37!:

wif36!:
wiff35!:
wif31!:
wiff29!:
wiff271:
wif25!:
wiff24!:
wif22!:
wiff20!:
wif18!:

wifol:
wif8!:

“(all(m)(attends(m,John) => in-afternoon(m)))
{<ext {wff2,wff3,wff5,wff8,wffo}>}
attends(w) {<der {wff2,wffo}>}
attends(w,John) and attends(w,Peter) and attends(w,Philip)}
{<der {wff2,wffo}>}
xor{social(w),class(w),official(w),work(w)} {<der {wffl,wff8}>}
xor{in-afternoon(w),in-morning(w)} {<der,{wff3,wff8}>}
in-morning(w) {<der {wff2,wff5,wffo}> <der {wff2,wff7,wffo}>}
attends(w,John) {<der{wff2,wffo}>}
attends(w,Peter) {<der {wff2,wff9}>}
attends(w,Philip) {<der,{wff2,wff9}>}
“social(w) {<der {wffl,wff8wffo}>}
“class(w) {<der,{wffl,wff8,wffo}>}
“official(w) {<der {wffl,wff8,wffo}>}
all(z,y,x)({IsLessEntrenched(y,z),IsLessEntrenched(x,y)} &=>
{IsLessEntrenched(x,2)}) {<hyp,{wff18}>}
work(w) {<hyp {wff9}>}
meeting(w) {<hyp,{wff8}>}

55

wifsl: all(m)(attends(m,Peter) => in-morning(m)) {<hyp,{wff5}>}
wff4!l: all(p,m2,m1)({attends(m2,p),attends(m1,p)} &=>
{in-afternoon(m2) <=> in-morning(m1)}) {<hyp{wff4}>}
wff3l: all(m)(meeting(m) =>
xor{in-afternoon(m),in-morning(m)})) {<hyp,{wff3}>}
wff2l: all(m)(work(m) => (attends(m,John) and attends(m,Peter) and
attends(m,Philip)}) {<hyp,{wff2}>}
wffll: all(m)(meeting(m) => (xor{social(m),work(m),class(m), official(m)}))

{<hyp {wffl1}>}

Asin (;), we see that the meeting takes place in the morning, according to
Peter’s preference. Here, unlike inr{ :), the information about entrenchment
orderings is contained in propositions in the object language of SNePS, namely propositions of the
form IsLessEntrenched(...,...Jhis was done to take advantage of SNePS'’s reasoning capabilities

when determining orderings.

4.3.2 Says Who?

| present a demonstration on how the source-credibility-based revision behaviotfromns(

)) is generalized by my changes to SNeBR. In the following example, the command
set-order sourcsets the epistemic ordering used by SNeBR to be a lisp function that compares two
propositions based on the relative credibility of their sources. Unsourced propositions are assumed
to have maximal credibility. The sources, as well as their relative credibility, are represented as
meta-knowledge in the SNePS knowledge base. This was also dorelins(|

) and (C). As with explicit, thesourcefunction makes SNePSLOG
gueries to determine sources of propositions and credibility of sources, usiagkivbandask
commands$:) seen in quotes. This allows it

to perform inference in making these determinations.

56

Here we see that the nerd and the sexist make the generalizations that all jocks are not smart and
all females are not smart respectively, while the holy book and the professor state that all old people
are smart, and all grad students are smart respectively. Since Fran is an old female jock graduate
student, there are two sources that would claim she is smart, and two that would claim she is not.
However, the sources claiming she is smart are more credible than those claiming otherwise. So
the generalizations about jocks and females are discarded. In fact, their negations are asserted,

sincebelief revision in SNePS provides a mechanism for negation introduction

;1 Show supports

. expert

. br-mode auto

Automatic belief revision will now be automatically selected.

. br-tie-mode manual

The user will be consulted when an entrenchment tie occurs.

;1 Use source credibilities as epistemic ordering criteria.

set-order source

;;; The holy book is a better source than the professor.

IsBetterSource(holybook, prof).

;1 The professor is a better source than the nerd.

IsBetterSource(prof, nerd).

;7 The nerd is a better source than the sexist.

IsBetterSource(nerd, sexist).

;v Fran is a better source than the nerd.

IsBetterSource(fran, nerd).

57

., Better-Source is a transitive relation
all(x,y,z)({IsBetterSource(x,y), IsBetterSource(y,z)} &=>

IsBetterSource(x,z))!

;;; All jocks are not smart.

all(x)(jock(x)=>"smart(x)). ;wff10

;;» The source of the statement 'All jocks are not smart’ is the
;s nerd.

HasSource(wff10, nerd).

;o All females are not smart.

all(x)(female(x)=>"smart(x)). ;wff12

.;;; The source of the statement 'All females are not smart’ is the
; sexist.

HasSource(wffl2, sexist).

;;; All graduate students are smart.

all(x)(grad(x)=>smart(x)). ;wffl4

;;; The source of the statement 'All graduate students are smart’
;;; is the professor.

HasSource(wff14, prof).

;;; All old people are smart.

all(x)(old(x)=>smart(x)). ;wff16

;1 The source of the statement ’All old people are smart’ is the

;57 holy book.
HasSource(wff16, holybook).

58

;;» The source of the statement 'Fran is an old female jock who is

;;; @ graduate student’ is fran.

HasSource(and{jock(fran),grad(fran),female(fran),old(fran)},fran).

;7 The KB thus far

list-asserted-wffs

wif23!:

wiff17!:
wiff16!:
wiff15!:
wiff14!:
wiff13!:

wiffl2!:
wiff11!:

wiff10!:

wiffol:
wif8l:
wiff7l:
wif6!:
wiff5l:

wiff4!:
wif3l:
wif2l:
wifll:

HasSource(old(fran) and female(fran) and grad(fran) and
jock(fran),fran) {<hyp{wff23}>}
HasSource(all(x)(old(x) => smart(x)),holybook) {<hyp,{wff17}>}
all(x)(old(x) => smart(x)) {<hyp,{wff16}>}
HasSource(all(x)(grad(x) => smart(x)),prof) {<hyp{wffl5}>}
all(xX)(grad(x) => smart(x)) {<hyp,{wff14}>}
HasSource(all(x)(female(x) => ("smart(x))),sexist)
{<hyp {wff13}>}
all(x)(female(x) => ("smart(x))) {<hyp{wff12}>}
HasSource(all(x)(jock(x) => ("smart(x))),nerd)
{<hyp{wff11}>}
all(x)(jock(x) => ("smart(x))) {<hyp,{wff10}>}
IsBetterSource(fran,sexist) {<der,{wff3,wff4,wff5}>}
IsBetterSource(prof,sexist) {<der,{wff2,wff3,wff5}>}
IsBetterSource(holybook,sexist) {<der {wff1,wff2,wff3,wff5}>}
IsBetterSource(holybook,nerd) {<der {wffl,wff2,wff5}>}
all(z,y,x)({IsBetterSource(y,z),IsBetterSource(x,y)} &=>
{IsBetterSource(x,2)}) {<hyp{wff5}>}
IsBetterSource(fran,nerd) {<hyp,{wff4}>}
IsBetterSource(nerd,sexist) {<hyp,{wff3}>}
IsBetterSource(prof,nerd) {<hyp {wff2}>}
IsBetterSource(holybook,prof) {<hyp,{wff1}>}

;;» Fran is an old female jock who is a graduate student (asserted

;» with forward inference).

and{jock(fran),grad(fran),female(fran),old(fran)}!

wiff50!:

“(@lx)(ock(x) => ("smart(x)))) {<ext{wff16,wff22}>,

59

wff24!:

<ext {wff14,wff22}>}
smart(fran) {<der {wff16,wff22}> <der {wff14,wff22}>}

;;» The resulting knowledge base

list-asserted-wffs

wiff50!:

wiff37!:
wff24!:
wiff23!:

wff22!:

wiff21!:
wiff20!:
wiff19!:
wiff18!:
wiff17!:
wiff16!:
wiff15!:
wiff14!:
wiff13!:

wiffl1!:
wiffol:
wif8l:
wiff7!:
wif6!:
wif5!:

wif4l!:
wif3!:
wiff2!:

“(all(x)(jock(x) => ("smart(x)))) {<ext,{wff16,wff22}>,

<ext{wff14,wff22}>}

“(all(x)(female(x) => ("smart(x)))) {<ext{wffl6,wff22}>}

smart(fran) {<der {wff16,wff22}> <der {wff14,wff22}>}

HasSource(old(fran) and female(fran) and grad(fran) and

jock(fran),fran) {<hyp{wff23}>}

old(fran) and female(fran) and grad(fran) and jock(fran)

{<hyp{wff22}>}

old(fran) {<der{wff22}>}

female(fran) {<der {wff22}>}

grad(fran) {<der{wff22}>}

jock(fran) {<der{wff22}>}

HasSource(all(x)(old(x) => smart(x)),holybook) {<hyp,{wff17}>}

all(x)(old(x) => smart(x)) {<hyp{wffl6}>}

HasSource(all(x)(grad(x) => smart(x)),prof) {<hyp{wffl5}>}

all(xX)(grad(x) => smart(x)) {<hyp,{wff14}>}

HasSource(all(x)(female(x) => ("smart(x))),sexist)

{<hyp {wff13}>}

HasSource(all(x)(jock(x) => ("smart(x))),nerd) {<hyp,{wff11}>}

IsBetterSource(fran,sexist) {<der,{wff3,wff4,wff5}>}

IsBetterSource(prof,sexist) {<der,{wff2,wff3,wff5}>}

IsBetterSource(holybook,sexist) {<der {wffl,wff2,wff3,wff5}>}

IsBetterSource(holybook,nerd) {<der {wffl,wff2,wff5}>}

all(z,y,xX)({IsBetterSource(y,z),IsBetterSource(x,y)} &=>
{IsBetterSource(x,2)}) {<hyp {wff5}>}

IsBetterSource(fran,nerd) {<hyp {wff4}>}

IsBetterSource(nerd,sexist) {<hyp {wff3}>}

IsBetterSource(prof,nerd) {<hyp {wff2}>}

60

wifll: IsBetterSource(holybook,prof) {<hyp,{wff1}>}

We see that the statements that all jocks are not smart and that all females are not smart are no
longer asserted at the end. These statements supported the statement tlsahéramart. The
statements that all old people are smart and that all grad students are smart supported the statement
that Franis smart. The contradiction was resolved by contracting “Rsamot smart,” since the

sources for its supports were less credible than the sources fori$sarart.”

4.3.3 Wumpus World

| present a demonstration on how the state-constraint-based revision behaviotfram
|) is generalized by my changes to SNeBR. The comnsetiebrder fluensays
that propositional fluents are strictly less entrenched than non-propositional fluentdludie
order was created specifically to replace the original belief revision behavior of the Shdigge
act. In the version of SNeBR used if{ ¢), propositions of the form
andor(< 0|1 >,1)(p1, p2,...) were assumed to be state contraints, while the inner propositions,
p1, P2, etc., were assumed to be fluents. The fluents were less entrenched than the state constraints.

We see that the ordering was heavily syntax-dependent.

In my new version, the determination of which propositions are fluents is made by checking for
membership of the predicate symbol of an atomic proposition in a list cafladnts *, which
is defined by the user to include the predicate symbols of all propositional fluents. So the entrench-
ment ordering defined here uses metaknowledge about the knowledge base that is not represented
in the SNePS knowledge base. The commbntie-mode manuaindicates that Algorithm 2
should be used. Note that tlker connective)) used below replaces instancesaof
dor(1,1)(...)from (:). The commangberform believe(wff) is

identical to the commanaff! , except that the former cause§ to be strictly more entrenched

61

than every other proposition during belief revision. Thatnf, is guaranteed to bgafe(unless

wff is itself a contradiction). So we would be usipgoritized belief revision.

;i Show supports

. expert

;;; Always use automatic belief revision
: br-mode auto

Automatic belief revision will now be automatically selected.

;.1 Use algorithm 2

. br-tie-mode manual

Entrenchment ties will now be automatically broken

The user will be consulted when an entrenchment tie occurs.
2;;; [Facing(x)] = The agent is facing direction [x].

define-frame Facing(nil onfloor)

;;» Use an entrenchment ordering that favors non-fluents over
iy fluents

set-order fluent

;;; Establish what kinds of propositions are fluents, specifically:
;;; - That the agent is facing some direction is a fact that may
" change over time.

“(setf *fluents =+ ’(Facing))

;;» The agent is Facing west

Facing(west).

;; At any given time, the agent is facing either north, south,
;;; east, or west (asserted with forward inference).

xor{Facing(north),Facing(south),Facing(east), Facing(west)}!

62

;;; The knowledge base as it stands

list-asserted-wffs

wff8!: “Facing(north) {<der{wffl,wff5}>}

wff7!: "Facing(south) {<der,{wffl,wff5}>}

wff6!: “Facing(east) {<der{wffl,wff5}>}

wffs!: xor{Facing(east),Facing(south),Facing(north), Facing(west)}
{<hyp {wif5}>}

wffll: Facing(west) {<hyp{wff1}>}

;;; Tell the agent to believe it is now facing east.

perform believe(Facing(east))

;;; The resulting knowledge base

list-asserted-wffs

wffl0!: “Facing(west) {<ext{wff4,wff5}>}

wff8!: “Facing(north) {<der {wffl,wff5}> <der {wff4,wff5}>}

wff7l: "Facing(south) {<der,{wff1,wff5}> <der {wff4 wff5}>}

wiff5!: xor{Facing(east),Facing(south),Facing(north),Facing(west)}
{<hyp,{wff5}>}

wff4l: Facing(east) {<hyp{wff4}>}

There are three propositions in the no-good when revision is perforfRading(west)
Facing,east , andxor(1,1) {Facing(... }. Facing(east) is not considered for re-
moval since it was prioritized by the believe action. The state-conskwii(it,1) {Facing... }
remains in the knowledge base at the end, because it is more entrenchéddhag{west) ,a

propositional fluent, which is ultimately removed.

63

5 Analysis of Algorithm 1

5.1 Proofs of Satisfaction of Requirements by Algorithm 1

| show that Algorithml satisfies the requirements established in se@on

5.1.1 EEsnepd (Sufficiency)

During each iteration oAddLoopan element is added tol from someo € Z. Then each set
o € 2 containingrt is removed fron. The process is repeated urEiis empty. Therefore each
removed set in Z contains some in T (Note that eaclo will be removed fron by the end of

the process). Séo[o e~ — 31[T1€ (T n0)]. Q.E.D.

5.1.2 EEsnep2 (Minimal Entrenchment)

From lines 8-9, we see that is comprised solely of first elements of setssin And from lines
2-4, we see that those first elements are all minimal updeelative to the other elements in each
set. Sincever, ey, < [e1<<e — € <], those first elements are minimal undems well. That

is,VT[teT —»3JoloeZAnTeoaVwWwe o — T <W||]. Q.E.D.

5.1.3 EEsnepS (Information Preservation)

From the previous proof we see that during each iteratioAdifLoop we are guaranteed that
at least one sefr containing the current culprit is removed fram And we know that the cur-

rent culprit for that iteration is minimally-entrencheddn We also know from EEsnep?) that

64

each subsequently chosen culprit will be minimally entrenched in some set. From lines 2-5 and
AddLoop we know that subsequently chosen culprits will be less entrenched than the current cul-
prit. From lines 2-5, we also see that all the other elementshave higher entrenchment than the
current culprit. Therefore subsequent culprits cannot be elemeatsSo, they cannot be used to
eliminateag. Obviously, previous culprits were also not membergofTherefore, if we exclude
the current culprit fronT, then there will be a set ib that does not contain any elemenflofThat
is,
VT/[T'c T - 30[ceIA—31[Te (T n0)]]]
VT'[T'cT —>30[—~—(ceZA—-31[Te (T n0))]]]
SVTT T - 30[—~(—(ceX)vat[te (T no))]]]
VT[T cT - 30[~(ceX—3t[te (T no))]
VT'[T'c T — —VoloeZ—3t[te (T'no)]]] Q.E.D.

5.1.4 Decidability

We see thaDeleteLoogs executed once for each elemenginwhich is a finite set. So it always
terminates. We see thaddLoopterminates wheix is empty. And from lines 8 and 13 we see
that at least one set is removed frarduring each iteration oAddLoop So AddLoopalways
terminates. Lines 2-4 involve finding a minimum element, which is a decision procedure. Line 5
performs sorting, which is also a decision procedure. Since every portion of Algotitidmays

terminates, it is a decision procedure. Q.E.D.

5.1.5 Supplementary Requirement

Algorithm 1 is a fully-automated procedure that makes no queries of the user. Q.E.D.

65

5.2 Complexity of Algorithm 1

5.2.1 Space Complexity

Algorithm 1 can be run completely in-place, i.e. it can use only the memory allocated to the input,
with the exception of the production of the set of culpfitsLet us assume that the space needed
to store a single proposition &(1) memory units. Since we only need to remove one proposition

from each no-good to restore consistency, algorithm 1 @$g9) memory units.

5.2.2 Time Complexity

The analysis for time complexity is based on a sequential-procesing system. Let us assume that
we implement lists as array structures. Let us assume that we may determine the size of an array
in O(1) time. Let us also assume that performing a comparison usingkesO(1) time. Then

in lines 2-4, for each arrag € Z we find the minimum elemerdr and perform a swap on two
elements at most once for each elemerd inf we let syhax be the cardinality of the largestin Z,

then lines 2-4 will takeD(|Z| - snax) time. In line 5, we sort the no-goods’ positionsiusing their

first elements as keys. This tak@$|Z|-log(|Z|)) time. Lines 7-16 iterate through the elements

of ¥ at most once for each elementan During each such iteration, a search is performed for an
element within a no-good. Also, during each iteration through all the no-goods, at leastisne
removed, though this does not help asymptotically. Since the no-goods are not sorted, the search
takes linear time irbmax. So lines 7-16 také)(]Z]z-smax) time. Therefore, the running time is

O(|Z[? - smax) time.

Note that the situation changes slightly if we sort the no-goods instead of just placing the
minimally-entrenched proposition at the front, as in lines 2-4. In this case, each search through

a no-good will takeD(log(smax)) time, yielding a new total time dD(|Z| - Smax- 109(Smax) + |Z]°-

66

l0g(Smax))-

6 Analysis of Algorithm 2

6.1 Proofs of Satisfaction of Requirements by Algorithm 2

| show that Algorithm?2 satisfies the requirements established in se@ion

6.1.1 EEsnepd (Sufficiency)

Since every set of propositions must contain at least one proposition that is minimally entrenched,
at least one proposition is added to the list in each iteratidnisdf.oop In the worst case, assume
that for each iteration oMainLoop only eitherRemoveLoor ModifyLoopdo any work. We
know that at least this much work is done for the following reasongtoidifyLoopcannot operate
on any no-good during an iteration dfainLoop then all no-goods have only one minimally-
entrenched proposition. So eitieemovelLodp condition at line 10 would hold, or:

1. A no-good has multiple minimally-entrenched propositions, causiadifyLoopto do work.
This contradicts our assumption tHdbdifyLoopcould not do any work during this iteration of
MainLoop so we set this possibility aside.

2. Some propositionp; is a non-minimally-entrenched proposition in some no-gogdand a
minimally-entrenched one in another no-goad. In this case, eithep; is removed during the
iteration of RemoveLoopvhere gy, is considered, or there is another proposit@nin oy, that

is not minimally-entrenched iwy, but is ing,y. This chaining must eventually terminate at a
no-goodom,,, since< is transitive andx is finite. And the final proposition in the chapyina

must be the sole minimally-entrenched propositiomi,a, since otherwiséodifyLoopwould

67

have been able to do work for this iterationM&inLoop which is a contradictionModifyLoop
can only do work once for each no-good, so eventually its work is finishedodfifyLoophas no
more work left to do, theRemoveLoomust do work at least once for each iteratiotMainLoop

And in doing so, it will create a list of culprits of which each no-good contains at least one. Q.E.D.

6.1.2 EEsnep2 (Minimal Entrenchment)

Since propositions are only addedTovhen the condition in line 10 is satisfied, it is guaranteed

that every proposition iff is a minimally-entrenched proposition in some no-gaood

6.1.3 EEsnep3 (Information Preservation)

From line 10, we see that when a propositmpis removed, none of the other propositions in its no-
good are minimally-entrenched in any other no-good. That means none of the other propositions
could be a candidate for removal. So, the only way to remove the no-good in wlappears is

by removingp. So if p were not removed, thefie Esnepd) would not be satisfied. Q.E.D.

6.1.4 Decidability

ListLoopcreates lists of minimal elements of lists. This is a decision procedure since the com-
parator is a total preorder. From the proof BfEsnepd) above, we see that eithRemoveLoopr
ModifyLoopmust do work for each iteration déflainLoop ModifyLoopcannot operate more than

once on the same no-good, because there are no longer multiple minimally-entrenched propositions
in the no-good after it does its work. Nor c&emovelLoopperate twice on the same no-good,
since the no-good is removed wh&todifyLoopdoes work. So, eventuallylodifyLoophas no

more work to do, and at that poiRemovelLoogpill remove at least one no-good for each iteration

68

of MainLoop By lines 17-18, when the last no-good is removed, the procedure terminates. So it

always terminates. Q.E.D.

6.1.5 Supplementary Requirement

RemovelLoopttempts to comput& each time it is run fronMainLoop If the procedure does not
terminate withinRemoveLogpthen we rurModifyLoopon at most oneno-good. Afterwards, we

run RemovelLoojgain. Since the user is only queried when the procedure cannot automatically
determine any propositions to remove, we argue that this means minimal queries are made of the

user. Q.E.D.

6.2 Complexity of Algorithm 2

6.2.1 Space Complexity

As before, lesnhax be the cardinality of the largest no-goodiinin the worst case all propositions

are minimally entrenched, ddstLoopwill recreateX. SoListLoopwill use O(|Z| - snax) Space.
RemoveLoop creates a culprit list, which we stated before t&8kgy) space. ModifyLoop may

be implemented in a variety of ways. We will assume that it creates a list of pairs, of which the
first and second elements range over propositions in the no-goods. In thiSledggLoopuses

O(|=|?- 2,5, Space. So the total space requireme@(&|? - s2,,,) Memory units.

69

6.2.2 Time Complexity

The analysis for time complexity is based on a sequential-procesing system. For each rmy-good
in the worst casd,istLoopwill have to compare each propositiondnagains every other. So, for
each iteration oMainLoop ListLooptakesO(|Z| - $3,5,) time. There are at mo€)(smax) elements

in each list created byistLoop So, checking the condition in line 10 tak€g|Z| - s3,,,) time.
Lines 12-16 can be executed®f|Z| - smax) time. ThereforeRemoveLoofakesO(|Z|-s3,,,) time.

We assume that all the work in lines 24-27 can be done in constant timéVd&lifyL ooptakes
O(|Z|) time. We noted earlier that during each iteratiomMzinLoop RemoveLoopr ModifyLoop

will do work. In the worst case, only one will do work each time. And they each may do work at

most|=| times. So the total running time for the procedur®is|? - 10

7 Conclusions

My modified version of SNeBR provides decision procedures for belief revision in SNePS. By pro-
viding a single resulting knowledge base, these procedures essentially perform maxichoice revision
for SNePS. These procedures work equally well for both prioritized and nonprioritized belief re-
vision, with subtle changes to the epistemic ordering required to perform the latter. Using a well
preorder, belief revision can be performed completely automatically. Given a total preorder, it may
be necessary to consult the user in order to simulate a well preorder. The simulated well preorder
need only be partially specified; it is only necessary to query the user when multiple beliefs are
minimally-epistemically-entrenched within a no-good, and even then only in the case where no
other belief in the no-good is already being removed. In any event, the epistemic ordering itself is
user-supplied My algorithm for revision given a well preorder uses asymptotically less time and

space than the other algorithm, which uses a total preorder.

70

References

Alchourron, C. E., Grdenfors, P., and Makinson, D. (1985). On the logic of theory change: Partial

meet contraction and revision functionlurnal of Symbolic Logi20:510-530.

Alchourron, C. E. and Makinson, D. (1982). On the logic of theory change: Contraction functions

and their associated revision functio$heoria 48:14-37.

Alchourron, C. E. and Makinson, D. (1985). On the logic of theory change: Safe contraction.
Studia Logica(44):405-422.

Cravo, M. R. and Matrtins, J. P. (1993). SNePSwD: A newcomer to the SNePS fdailsnal of
Experimental and Theoretical Artificial Intelligenc&(2—3):135-148.

de Kleer, J. (1986). An assumption-based TM&ificial Intelligence 28:127-162.

Dixon, S. (1993). A finite base belief revision systemPhoceedings of ACSC-16: 16th Australian
Computer Science Conferenamlume 15 ofAustralian Computer Science Communications

pages 445-451. Queensland University of Technology, Brisbane, Australia.

Gardenfors, P. (1982). Rules for rational changes of belief. In Pauli, T., eBitdgsophical Es-
says Dedicated to Lennakiqvist on His Fiftieth Birthdaynumber 34 in Philosophical Studies,
pages 88—-101, Uppsala, Sweden. The Philosophical Society and the Department of Philosophy,

University at Uppsala.

Gardenfors, P. (1988Knowledge in Flux: Modeling the Dynamics of Epistemic Statése MIT

Press, Cambridge, Massachusetts.

Gardenfors, P. and Rott, H. (1995). Belief revision. In Gabbay, Hogger, and Robinson, editors,
Epistemic and Temporal Reasonjinglume 4 ofHandbook of Logic in Artificial Intelligence

and Logic Programmingpages 35-131. Clarendon Press, Oxford.

Hansson, S. O. (1994). Kernel contractidine Journal of Symbolic Logi&9(3):845-859.

71

Hansson, S. O. (1997). Semi-revisialournal of Applied Non-Classical Logic#(2):151-175.
Hansson, S. O. (1999a). A survey of non-prioritized belief revisienkenntnis 50:413-427.

Hansson, S. O. (1999b) Textbook of Belief Dynamics: Theory Change and Database Updating

Kluwer Academic Publishers, Dordrecht; Boston.

Johnson, F. L. (2006)Dependency-directed reconsideration: an anytime algorithm for hindsight
knowledge-base optimizatiorPhD thesis, State University of New York at Buffalo, Buffalo,

NY, USA.

Johnson, F. L. and Shapiro, S. C. (1999). Says Who? - Incorporating Source Credibility Issues into
Belief Revision. Technical Report 99-08, Department of Computer Science and Engineering and
Center for Multisource Information Fusion and Center for Cognitive Science, State University

of New York at Buffalo, Buffalo, NY.

Lakemeyer (1991). On the relation between explicit and implicit beliefsPrbteedings of the
Second International Conference on Principles of Knowledge Representation and Reasoning

pages 368—-375. Morgan Kaufmann.
Levi, I. (1977). Subjunctives, dispositions and chandggsithese34:423-455.

Makinson, D. (1987). On the status of the postulate of recovery in the logic of theory change.

Journal of Philosophical Logicl6:383—-394.

Martins, J. P. and Shapiro, S. C. (1988). A model for belief revisiéutificial Intelligence
35(1):25-79.

Shapiro, S. C. (1992). Relevance logic in computer science. Section 83 of Alan Ross Anderson and
Nuel D. Belnap, Jr. and J. Michael Duehal. Entailment, Volume Ihages 553-563. Princeton

University Press, Princeton, NJ.

72

Shapiro, S. C. (2010). Set-oriented logical connectives: Syntax and semantics. In Lin, F., Sattler,
U., and Truszczynski, M., editor®roceedings of the Twelfth International Conference on the

Principles of Knowledge Representation and Reasoning (KR2paggs 593-595. AAAI Press.

Shapiro, S. C. and Johnson, F. L. (2000). Automatic belief revision in SNePS. In Baral, C. and
Truszczynski, M., editorsProceedings of the 8th International Workshop on Non-monotonic

Reasoning NMR200@npaginated, 5 pages.

Shapiro, S. C. and Kandefer, M. (2005). A SNePS Approach to the Wumpus World Agent or
Cassie Meets the Wumpus. In Morgenstern, L. and Pagnucco, M., edit0rs-05 Workshop
on Nonmonotonic Reasoning, Action, and Change (NRACO05): Working, datgss 96-103.

Shapiro, S. C. and The SNePS Implementation Group (2030)ePS 2.7.1 USER’'S MANUAL
Department of Computer Science and Engineering, University at Buffalo, The State University

of New York, 201 Bell Hall, Buffalo, NY 14260-2000.

Williams, M.-A. (1994). On the logic of theory base change. In MacNish, C., Pearce, D., and
Pereira, L., editord,ogics in Artificial Intelligencevolume 838 ofLecture Notes in Computer

Sciencepages 86—-105. Springer Berlin / Heidelberg.

73

	Acknowledgments
	Abstract
	Introduction
	Belief Revision
	Motivation
	AGM Paradigm
	Theory Change on Finite Bases
	Epistemic Entrenchment
	Ensconcements
	Safe Contraction
	Assumption-based Truth Maintenance Systems
	Kernel Contraction
	Prioritized Versus Non-Prioritized Belief Revision

	SNePS
	Description of the System
	Belief Change in SNePS
	SNeBR

	New Belief Revision Algorithms
	Problem Statement
	Nonprioritized Belief Revision
	Prioritized Belief Revision

	Common Requirements for a Rational Belief Revision Algorithm
	Primary Requirements
	Supplementary Requirement

	Implementation
	Using a well preorder
	Using a total preorder
	Characterization

	The Recovery Postulate
	Conjunctiveness

	Changes to SNePS Manual
	New SNePSLOG Commands
	br-mode
	set-order
	br-tie-mode

	New SNePSUL Commands
	br-mode
	set-order
	br-tie-mode

	Updates

	Annotated Demonstrations
	Old Belief Revision Behavior
	Manual Revision Example 1
	Manual Revision Example 2

	New Belief Revision Behavior
	Algorithm 2 Example 1
	Algorithm 2 Example 2
	Algorithm 1 Example
	Prioritized Belief Revision Example

	Capturing Old Results
	SNePSwD
	Says Who?
	Wumpus World

	Analysis of Algorithm 1
	Proofs of Satisfaction of Requirements by Algorithm 1
	EESNePS1 (Sufficiency)
	EESNePS2 (Minimal Entrenchment)
	EESNePS3 (Information Preservation)
	Decidability
	Supplementary Requirement

	Complexity of Algorithm 1
	Space Complexity
	Time Complexity

	Analysis of Algorithm 2
	Proofs of Satisfaction of Requirements by Algorithm 2
	EESNePS1 (Sufficiency)
	EESNePS2 (Minimal Entrenchment)
	EESNePS3 (Information Preservation)
	Decidability
	Supplementary Requirement

	Complexity of Algorithm 2
	Space Complexity
	Time Complexity

	Conclusions
	References

