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Abstract

A computational cognitive agent capable of mathematical
reasoning should be able to: (1) perform mental operations
over abstract internal representations (e.g., counting num-
bers) and (2) perform physical operations over concrete ex-
ternal objects (e.g., counting apples). In a context of jus-
tification, both of these types of activity can contribute to
mathematical explanations. In this paper, we focus on an
agent’s ability to enumerate external objects, the knowledge-
level representational requirements (and side-effects) for such
an ability, and the applicability of the enumeration result dur-
ing an explanation. The SNePS knowledge-representation,
reasoning, and acting system is used for a preliminary im-
plementation of Cassie, our enumeration agent. The GLAIR
architecture, which is used to model Cassie’s embodiment, is
also discussed.

Introduction: Computational Math Cognition
This paper reports on some results from a larger research
project whose ultimate goal is a computational charac-
terization of (developmentally) early mathematical cogni-
tion. Mathematical cognition is an interdisciplinary in-
vestigation into the cognitive foundations of mathemati-
cal reasoning. For the most part, this investigation has
been concerned withhumanmathematical cognition (But-
terworth 1999; Dehaene 1997; Gelman & Gallistel 1978;
Lakoff & Núñez 2000; Piaget 1965; Wiese 2003), with fewer
(but nevertheless important) contributions involving compu-
tational models of human mathematical reasoning (Bobrow
1968; Davis & Lenat 1982; Dellarosa 1985; Fletcher 1985;
Ohlsson & Rees 1991). Besides telling us something about
the human mind, the development of AI agents with mathe-
matical cognition can benefit the agents themselves. Even an
early human ability such as ordinal numeracy gives an agent
a tool which is applicable to a variety of reasoning tasks.

Our specific interest in the field of mathematical cogni-
tion concerns the nature of mathematical understanding (as
opposed to learning or the acquisition of concepts) and the
extent to which a computational agent can demonstrate such
understanding. It will therefore be useful to state some of
our general views on mathematical understanding and how
these views impact the agent requirements:
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• Mathematical understanding can be demonstrated by a
question-and-answer dialogue: An agent must be capa-
ble of explaining its procedural choices and justifying its
conceptual beliefs. This demands a system in which the a
“questioner” can trigger agent inference after (and per-
haps during) a mathematical activity. The Turing Test
(Turing 1950), usually taken to be a measure of natural-
language understanding, can also measure mathematical
understanding.

• Mathematical understanding is activity-driven: An agent
must be capable of acting and expanding its knowledge
during action. An episodic memory of the activity should
be accessible to the agent so that it can recall its experi-
ence. Simply put, mathematics involvesdoingsomething,
not justthinkingabout things.

• Mathematical understanding is impacted by agent em-
bodiment: An agent must be capable of interacting with
entities external to its “mind” and aligning such entities
with mental symbols.

• Mathematical understanding requires semantics: Mathe-
matical concepts and procedures must be understoodin
terms ofother concepts and procedures. The basis for this
recursive understanding is an internalized symbolic rep-
resentation of concrete external entities (Rapaport 1995).

In the hopes of meeting the challenge of these additional
requirements, we take a synthetic, bottom-up approach to
agent design in which the (developmentally) early abilities
of counting and arithmetic are the first provided for the
agent.

In this paper, we identify a situation where, in the course
of an explanation, an agent may appeal to the mathemati-
cal activity of enumeration for the justification of a result.
We briefly discuss the nature of abstract counting routines
and the multi-modal aspect of enumeration. SNePS, the im-
plementation platform for our enumeration agent Cassie, is
described along with the GLAIR architecture for embodied
SNePS agents. Taking the act of visually enumerating ap-
ples as a motivating example, we spend the rest of the paper
detailing a preliminary implementation of the enumeration
ability in Cassie. Throughout, we will consider the impact of
the implementation on Cassie’s knowledge-level representa-
tions (since this is the level with which Cassie will produce
mathematical explanations).



Mathematical Explanations
In the following dialogue, a questioner tries to probe the
addressee’s understanding of the fact the greatest common
divisor (GCD) of 8 and 6 is 2:

Q1: Why is 2 the greatest common divisor of 8 and 6?
A1: 2 is the greatest of the common divisors of 8 and 6.
Q2: What makes 2 the greatest of the common divisors?
A2: 2 is said later in the counting sequence than any of the other
common divisors.
Q3: Why is 2 a common divisor of 8 and 6?
A3: 2 is a divisor of 8 and 2 is a divisor of 6.
Q4: Why is 2 a divisor of 6?
A4: There is a number that, when multiplied by 2, gives 6, and that
number is 3.
Q5: Why is 2 times 3 = 6?
A5: Multiplication is repeated addition; 2 plus 2 is 4 and 4 plus 2
is 6
Q6: Why is 2 plus 2 = 4?
A6: When I count from 2 for two numbers I end up at 4
Q7: How do you know that you will end up at 4?
A7: I counted two groups of apples, both of which had 2 apples in
them, and ended up with 4 total apples.
Q8: What is 2?
A8: It is a number and the greatest common divisor of 8 and 6.
Q9: What is a number?
A9: Some examples are 2,4,6 and 8 . . . It is something that can be
counted, added, multiplied . . . and something that can be the result
of finding a greatest common divisor

Although such a dialogue is rather long-winded (i.e., a
human might answer a question likeQ6 with “It just is”)
it does show several characteristics of mathematical under-
standing. After such an explanation, it would seem quite
unfair to claim that the addressee does notunderstandthat
the GCD of 8 and 6 is 2. We are interested in developing
a computational cognitive agent that can produce such
explanatory answers.

The addressee shows the ability to explain a complex pro-
cedure in terms of a simpler procedure (A4,A5,A6), the abil-
ity to manipulate the phrasing of a question to form a logical
answer (Q1-A1,Q3-A3), and the ability to “define” a concept
in terms of other known concepts (A8,A9). We wish to fo-
cus on the question and answer pairQ7-A7. All of the pairs
except this one involve the performance of strictly “mental”
operations by the addressee.1 Thus, the entire dialogue ex-
ceptQ7-A7could, in theory, be carried out by a disembodied
AI agent with no access to external input.

The answerA7 is an appeal to an enumeration of concrete
entities (apples). This is an empirical result that justifies the
result of an abstract counting routine stated inA6. An agent
that takes for granted that2 + 2 = 4 may “fake” the answer
A7 without actually performing the enumeration of apples.
Yet it seems reasonable that there will be some situations
where an agent will want to point to an experience (that
could turn out one way or another) whose result has some

1Assuming the addressee does not need an extended medium
such as scrap paper.

mathematical significance. Furthermore, we shall see that
having gone through with the activity will have positive ex-
periential side effects which will make future performances
of the activity easier.

Counting and Enumeration
We take counting to be the ability to generate a correct se-
quence of number names (or number symbols) starting from
the number 1. We take enumeration to be the ability to count
a set of (internal or external) entities (i.e., to make a cardi-
nal assignment to this set which will stand for the “size” or
“cardinality” of the set).

For standard counting of the natural numbers, a count-
ing routine must include: (1) a representation of the single
digit numbers and their standard ordering, and (2) syntactic
rules for forming the successor of a multidigit number. By
performing the activity of counting, an agent establishes the
predecessor-successor relationship between each newly en-
countered number and its predecessor. This ordering of the
natural numbers can then be used for enumeration. Once an
agent has the ordering, each number in the ordering can be
assigned to a member of the set being enumerated. For our
agent, counting is a prerequisite for enumerating external
objects (rather than one of its subroutines); counting gener-
ates the natural numbers for our agent and places them in a
usable ordering.

As a base case, counting can be considered as an enumer-
ation with the target entity being the number symbols (or
names). Each number reached is assigned to itself. This
is an internal enumeration because it does not require a
model of embodiment. Other internal entities can be enu-
merated. An agent should be able to count its own actions
(e.g., how many dinners have I made in the last hour) or its
own thoughts (e.g., how many times have I thought about
dinner in the last hour). An agent may also have to rely on
its memory to generate mental images for enumeration when
sensory information is not available. A common example
in the mental imagery literature (e.g., (Kosslyn 1978) ) is
asking “How many windows are in your home?” when the
addressee is away from their home. Intuitively, this proce-
dure seems to require a mental image of the house to which
enumeration can be applied.

Enumeration of external entities can be performed across
multiple sensory modalities. A single abstract counting pro-
cedure underlies the visual enumeration of apples, the au-
ditory enumeration of telephone rings, and the tactile enu-
meration of one’s own teeth (using the tongue alone). What
varies in each of these enumeration actions is the set of
properties that distinguish an entity for a particular modal-
ity. These distinguishing properties will separate the entity
from other entities in that sensory modality. Knowledge of
shape and color will help in visual enumeration. Knowl-
edge of duration and pitch will help in auditory enumera-
tion. Knowledge of shape and hardness will help in tactile
enumeration. A combination of these distinguishing proper-
ties can be used when an agent has access to more than one
sensory modality. Also, this allows for a single enumeration
of entities with varying modalities (i.e., counting the num-



ber of apples AND rings of a telephone during a given time
frame).

To support enumeration across modalities, an agent must:
(1) be conscious of the modality/ies in use during enumera-
tion, (2) be able to generate a set of distinguishing properties
for the given modality/ies, (3) be able to retrieve the distin-
guishing properties from its knowledge base, and (4) be able
to apply each distinguishing property within a sensory field
(serially or in parallel) to determine if each candidate fits the
criteria for being one of the enumeration targets.

Interestingly, modality information is usually dropped
during a dialogue. The question “How many apples did
you count?” is more naturally answered by “I counted three
apples” than “I counted three apples visually (or with my
vision)”. The speaker abstracts away from how the apples
were counted. Obtaining this information may require the
further question “How did you count them?”

Reasoning with Quantities
It is important to realize that the task of enumeration in-
volves quantities, numbers attached to units, and not just
numbers alone. The unit a number attaches to is charac-
terized in the philosophical literature as a sortal predicate,
i.e., a predicate that “gives the criterion for counting items
of that kind” (Grandy 2006). The sortal predicate specifies
the distinguishing properties of the enumeration target.

So what counts as a sortal predicate? Consider the differ-
ent units at play in the following example requests:

• Count the apples on the table.

• Count the pieces of fruit on the table.

• Count the interesting items on the table.

The units “apples on the table” and “pieces of fruit on the
table” yield very different criteria for counting and “interest-
ing items on the table” only yields a criterion for counting
for some particular agent (in some sense, a “subjective” sor-
tal predicate). Thus, for pragmatic reasons, we would like
units whose distinguishing features can be algorithmically
generated from an agent’s knowledge base. Note, however,
that for some particular agent, this may not exclude “inter-
esting items on the table”.

The attachment of a number to a unit is manifested lin-
guistically as either a cardinal assignment (e.g., the three ap-
ples) or an ordinal assignment (e.g., the third apple) (Wiese
2003). Our implementation does not currently make the car-
dinal/ordinal assignment distinction for quantities because
the enumeration task is one which determines the unknown
cardinality (i.e., makes the cardinal assignment).

Models of Enumeration
The responsibilities assigned to low-level (subconscious)
and high-level (conscious) processing give rise to two dif-
ferent models of enumeration. An early production-system
implementation of both models was given by Klahr (1973).
Both models are illustrated using the case of a single die in
Figure 1. Under the model shown in (1a), low-level process-
ing uses pattern recognition to automatically make a cardinal
assignment to the number of dots on the face of the die. This

Figure 1: Two models of enumeration

ability is known as subitization in the literature (Clements
1999) and, in human beings, is considered an innate ability
for small numerosities. A low-level pattern recognition rou-
tine must be coupled with a high-level addition routine that
accumulates the subitized results.

Under the model shown in (1b), low-level processing uses
object recognition to isolate each individual dot on the die.
The agent uses a high-level routine which assigns a number
to each dot as it is detected and marked in the visual field.
The cardinal assignment for the set of dots is complete once
the final dot has been assigned a number; this number is the
cardinality for the entire set. This is the model we will use
for our enumeration agent. An implementation of this model
requires the following from the agent:

1. A system that coordinates the low-level object-
recognition routine and the high-level cardinal assignment
routine.

2. The ability to mark the counted entities in the sensory
(e.g., visual) field.

3. The ability to detect when all target entities in the sensory
field have been assigned a cardinal number.

4. The ability to direct attention to a new entity.

5. The ability to tag each counted entity with an ordinal
number. This will enable a question like “Which did you
count fourth?” to be answered during a dialogue.

6. The ability to tag the entire set with a cardinal num-
ber. This will enable a question like “How many did you
count?” to be answered during a dialogue.

We now turn to a description of SNePS, our platform for
implementing our enumeration agent.

SNePS and GLAIR
The SNePS knowledge-representation, reasoning, and act-
ing system (Shapiro & Rapaport 1987; 1995) is used to im-
plement Cassie (the SNePS cognitive agent). The underly-
ing data structure of SNePS is a propositional semantic net-
work representing Cassie’s beliefs. SNePS is implemented
as a package of Lisp and provides two user interface lan-
guages: SNePSUL (The SNePS User Language: a Lisp-like
language) and SNePSLOG (The SNePS Logical Language:
a Prolog-like language). SNePS creates a molecular node
(i.e., a node that points to other nodes) for each proposition
in Cassie’s belief space. The arcs of the semantic network
are labeled with user-defined relations. A node with no arcs
emanating from it is called a base node. Base nodes repre-
sent the concepts Cassie can reason with. Both numeric and



linguistic concepts reside in the same semantic network in
the form of base nodes. The SNePS representation of the
proposition “3 is the successor of 2” is shown in Figure 2
(the ‘!’ next to the molecular node name means that the
proposition is believed by Cassie).

Figure 2: SNePS representation of the propositionm1: 3 is
the successor of 2

SNeRE, the SNePS Rational Engine (Kumar 1993), is
Cassie’s model of acting. Part of Cassie’s semantic net-
work will represent actions that she can perform. These in-
clude primitive actions, the atomic actions from which all
complex behaviors are built, and complex acts, which are
sequences, iterations, and conditionals structuring a set of
primitive and complex actions. Cassie performs a complex
act a by attempting to find a planp for its performance.
This is represented in SNePSLOG asActPlan(a,p) , the
semantics being “p is a plan for performinga”. Cassie then
attempts to performp. Usually p is structured by control
acts and is composed of simpler actions. Every plan can
eventually be decomposed into a sequence of primitive ac-
tions. Cassie’s semantic network growswhile she is acting,
forming an episodic memory of the activity, which can be
accessed for question answering after the activity (Goldfain
2006). For the larger task of explanation, it is also significant
that procedural information (acts and plans) resides in the
same semantic network as conceptual information (words
and numbers).

SNIP, the SNePS Inference Package, provides for both
node-based inference, which allow Cassie to infer new
propositions using rules, and path-based inference, which
allow Cassie to infer new relations from paths in her net-
work (Shapiro 1978). Currently, we do not have a natural
language interface for our enumeration agent implementa-
tion, so SNIP is our mechanism for asking Cassie questions.

GLAIR, the Grounded Layered Architecture with Inte-
grated Reasoning (Hexmoor & Shapiro 1997; Shapiro & Is-
mail 2003), is used to simulate2 Cassie’s embodiment. A
three-part distinction is made between an agent’s knowl-
edge layer (KL), perceptuo-motor layer (PML), and sensori-
actuator layer (SAL). Shapiroet al. (forthcoming) defines
the responsibilities of each layer. The following is a brief
summary of these responsibilities:

1. The Knowledge Layer (KL) is the layer at which “con-
scious” reasoning takes place. The KL is implemented in
SNePS and its acting subsystem SNeRE. In the KL, terms
of the SNePS logical language represent the mental enti-
ties conceived of and reasoned about by the agent.

2GLAIR has been also been used as a physical embodiment for
a robotic version of Cassie called FEHVAR (Shapiro 1998)

2. The Perceptuo-Motor Layer, Sublayer a (PMLa)con-
tains the Common Lisp implementation of the actions that
are primitive at the KL,i.e., the routine behaviors that can
be carried out without thinking about each step. PMLa is
implemented in a way that is independent of the imple-
mentation of the lower layers.

3. The Perceptuo-Motor Layer, Sublayer b (PMLb) im-
plements the functions of PMLa taking into account the
particular implementation of the agent’s body. PMLb is
implemented in Common Lisp using, when necessary, its
facilities for interfacing with programs written in other
languages.

4. The Perceptuo-Motor Layer, Sublayer c (PMLc) con-
tains the implementations of the PMLb functions for the
particular hardware or software body being used.

5. The Sensori-Actuator Layer (SAL) contains the sensor
and effector controllers of the agent body. For robotic
embodiments, the SAL acts as a low-level interface to the
hardware.

Implementation
In this section, we describe a preliminary SNePS implemen-
tation of the enumeration agent Cassie. Cassie is given the
task of enumerating the apples in a 2D image which con-
tains several types of fruit. Our implementation uses PML
object-recognition with a KL counting routine (rather than
a PML subitization with a KL accumulation routine). Since
we are most interested in the KL level impact of the sim-
ulated embodiment, we can make several simplifying as-
sumptions about the agent embodiment.3 We limit Cassie
to the modality of vision and the distinguishing properties
color and shape. Each of the test images contains fruit dis-
played in a characteristic pose (e.g., a banana is presented
lengthwise) with no occlusion (no overlapping fruit). The
SAL layer of GLAIR is not required since the embodiment
is only simulated. We also do not introduce a model of at-
tention for our agent.

Symbolic representations at each level of GLAIR must
be associated across layers to be useful during enumeration,
this is known as symbol anchoring:

Anchoring is achieved by associating (we use the term
“aligning”) a KL term with a PML structure, thereby
allowing Cassie to recognize entities and perform ac-
tions, but not to discuss or reason about the low-level
recognition or performance (Shapiro & Ismail 2001)

Such an alignment will have the effect of linking the type,
subtype, and token representations of the entity being enu-
merated. Consider the various representations of apple:

• KL apple: The type apple. A lexical entry representing a
class of objects whose extension includes real-world ap-
ples.

• KL apples-in-my-sensory-field: A symbol representing
the external objects which Cassie is consciously aware of
and can talk about.
3A more robust agent embodiment for enumeration is given by

Vitay (2005).



• PMLb apple: The subtype apple. Any entity satisfying
the criteria for being an apple as determined by the distin-
guishing properties retrieved from the KL.

• PMLc apple: The token apple. A symbolic presentation
(set of pixels on a 2D image) of a specific instance of the
type apple.

As we shall see, the same multi-layer association must be
made for the distinguishing properties. We present a top-
to-bottom description of our implementation in the KL and
PML.

KL
Cassie’s knowledge of apples will be represented in the KL
as a set of molecular nodes expressing universal rules. These
rules serve to link apples with modality-specific distinguish-
ing properties. A subset of these might be:

• m1: Apples are round.

• m2: Round is a shape.

• m3: Apples are red.

• m4: Red is a color.

• m5: Apples are edible.

The semantic network representation of these propositions is
given in Figure 3. Realistically, we should expect Cassie to

Figure 3: A part of Cassie’s KL

also have knowledge involving apples that is completely ir-
relevant to enumeration. For example, she may believe that,
in the context of the story ofGenesis, Eve gave Adam an
apple. This will not interfere in any way because the “ap-
ple” node at the KL represents the generic class of apples.
This “apple” will remain static throughout the act of enu-
meration. We only use it to assert that this type of thing is
the enumeration target.

Once Cassie is told to perform an enumeration, she must
create a KL representation of the apples in her sensory field
(call it apples in my sensory field). Unlike the type “apple”,

the base node representing this concept will be involved in a
changing set of propositions during the act of enumeration.
Before the enumeration, the concept is underspecified: “the
arbitrary number of apples I am about to count”. During the
enumeration, this concept becomes “Apples I have counted
so far”. After the enumeration, this concept becomes a fully-
specified quantity “The three apples I counted”. The PML
must “update” propositions involvingapples-in-my-sensory-
field during the enumeration. One PML interface to the KL
is the tell function, which adds a SNePS proposition to
Cassie’s belief space from Lisp. This PML update has not
yet been implemented, but s PML update mechanism for
apples-in-my-sensory-fieldwould involve a series of appro-
priately timed invocations oftell (see below).

The distinguishing properties for enumerating apples are
represented as subtypes of more general concepts. The
propositions represented bym2andm4will be used by the
PMLa to extract the distinguishing properties of shape and
color for the vision modality. As we shall see, the property
of “being red” and the property of “being round” will be
represented quite differently in the PML.

PML
The PML simulates Cassie’s embodiment by providing low-
level routines for perception and motor control. This is her
“window” on the world; an interface between the simulated
external objects and the KL. We consider each sublayer of
the PML in turn:

PMLa The PMLa is the layer in which we implement
Cassie’s primitive actions. The PMLa is written in Lisp
and utilizes the SNePSdefine-primaction function
to create primitive actions and theattach-primaction
function to associate each primitive action with a KL base
node that names the action. All information flowing from
the Cassie’s “body” to her “mind” passes through the PMLa.
The PMLa is responsible for coordinating the low-level
routine of object recognition and the high-level routine of
counting.

The crux of the PMLa is the
BuildEnumFrame(entity,modality) primi-
tive action. Given the name of the enumeration target (i.e.,
KL symbolic representation as a base node in SNePS) and
the target modality for the enumeration (e.g., vision), this
action isolates the relevant distinguishing properties for the
entity. It puts these results in a frame (this is described as a
feature vector in (Shapiro & Ismail 2001)).

From the PML, a call is made to the KL to determine
how the slots of the enumeration frame will be filled for the
modality of vision. This is done in via the path-based infer-
encefind command provided by SNIP. Once the modality
of vision is passed in, the PML finds the relevant Shape and
Color with:

(setf vis-mod-color
#!((find (member- class) Color

(property- ! object) ˜entity)))

(setf vis-mod-shape
#!((find (member- class) Shape

(property- ! object) ˜entity)))



Thevis-mod-color slot is a node which has a path con-
sisting of an inversemember arc followed by a class arc
ending at the base nodeColor and has a path consisting of
an inverseproperty arc going through an asserted molec-
ular node to an object arc pointing to the entity (in our case,
the base nodeApple ). Thevis-mod-shape slot is filled
in a similar way. Once constructed, the enumeration frame
is passed down to the PMLb.

A second primitive action in our implementation is
Perceive(update-entity) . In the case of enumer-
ating apples, it will take a KL node to be updatedduring
enumeration representing apples in the sensory field. This
primitive action does the following:

1. Makes a request of the PMLb to obtain an image from the
PMLc.

2. Initiates an object recognition task in the PMLb.

3. Awaits a result of the object recognition task. If a new ob-
ject is recognized, it increments the count by finding the
successor of the current total and updates the number as-
signed toupdate-entityin the KL, then it initiates another
object recognition task. If no further objects are found it
asserts the belief that the enumeration is complete.

The argumentupdate-entityfunctions as an ordinal marker
in the sequence of counted items. As discussed above, the
unit must yield the distinguishing features of “entities of this
kind” algorithmically (i.e., by usingBuildEnumFrame ).

PMLb The current PMLb is an Lisp implementation of
Cassie’s visual system. Each distinguishing property in the
enumeration frame passed from the PMLa determines a test
for detecting the property in a perceived object. These tests
are applied serially. Each passed test is a vote of “yes” for
the recognized object being the enumeration target (in terms
of the property corresponding to that test).

The tests are performed in conjunction with a feature vec-
tor of prototypical values for the enumeration target. These
represent Cassie’s previous experience (if any) with the enu-
meration target. As a side-effect of enumeration, these val-
ues will be updated to reflect the agent’s experience with
recognizing the target.

The 2D image obtained from PMLc is stored as 3 two-
dimensional array of pixel brightness values: a red array, a
green array, and a blue array. The color value at pixel(i, j)
is given by the triple(red(i, j), green(i, j), blue(i, j)).

The prototypical feature for “an apple’s redness” is also
a red-green-blue (RGB) triple, which we shall write as
(redapple, greenapple, blueapple). The first test is to find the
absolute difference between each pixel component-color and
the corresponding prototypical component value. A sum-
mation of these values gives the component error for pixel
(i, j):

Err(i, j) = (redapple − red(i, j))+
(greenapple − green(i, j))+
(blueapple − blue(i, j))

A binary 2D arrayBinary(i, j) is then created based on a

predefined error threshold for colorThreshcolor,apple.

Binary(i, j) =
{

1, if Threshcolor,apple ≤ Err(i, j)
0, otherwise

The binary array represents the candidate object pixels af-
ter the first test. An idealized example of such an image is
given in Figure 4(b). Realistically, the binary array will be
far more noisy, with stray candidate pixels needing to be re-
jected by future tests.

Figure 4: (a) Original 2D image (b) Ideal extracted object
pixels

Shape is represented using an 8-direction chain-code rep-
resentation (Sonka, Hlavac, & Boyle 1999). The chain code
for a contiguous set of object pixels is a list of cardinal di-
rections (i.e., N,NE,E,SE,S,SW,W,NW) on a path around the
border of the object. We begin our chain code from the top
left object pixel. A chain-code representation is illustrated in
Figure 5 The utility of the chain code representation is that it

Figure 5: Chain-code representation of shape

provides a syntactic representation of shape that can be used



in further operations. Given a chain code(d1, d2, . . . dn) for
an objectx, we have the perimeterP (x) is:

P (x) =
n∑

i=1

li

whereli is given by:

li =
{ √

2, whendi = NE, SE, NW,SW
1, whendi = N,E, S,W

It is also straightforward to compute the area of an object
given a chain-code representation. We determine a bound-
ing box around the object and sum up the number of object
pixels inside this region.

Given the perimeterP (x) and the areaA(x) , the circu-
larity of objectx is given by its compactnessγ(x) (Sonka,
Hlavac, & Boyle 1999):

γ(x) = 1− 4πA(x)
P (x)2

The value ofγ(x) tends towards 0 as the shape ofx tends
towards a perfect circle. We classify the object as “circu-
lar enough to be an apple” based on whether the distance of
the target object from perfect circularity falls under a pre-
defined threshold. Circularity in the PML corresponds with
the relevant KL concept “round”. However, we do not want
to check forperfectcircularity in the target object, but an
“apple’s circularity”. This would be achieved by retrieving
the prototypical compactness for an applecompactapple and
using it instead of 1 in the measure of “apple” circularity:

γapple(x) = compactapple −
4πA(x)
P (x)2

Like the “redness of apples”, this value is learned through
experience with apples (including the act of enumeration).
Also like color, the candidate object can be classified based
on some thresholdThreshcompact,apple.

When an object is determined to be an apple (i.e., its color
and shape fall under the threshold values), the object must
be “marked” as counted in the visual field. This involves
several operations:
1. Return a value oft to the PMLb, indicating that an object

has been found.

2. If no object was found on this iteration, return a value of
nil to the PMLb.

3. (Optionally) Storing the current cardinal number for the
enumeration target set along with the current top-left ob-
ject pixel for the recognized apple. This will enable the
agent to point to the “apple that was countednth if it is
asked to explain what happened during the counting pro-
cedure.

4. Update the prototypical feature vector for the enumera-
tion target. Average the object pixel original image color
values with the existing(redapple, greenapple, blueapple)
values. Average the compactness of the recognized object
with compactapple.

5. Compute a bounding box around the recognized object
and set all of the pixels ofBinary(i, j) to 0. This has the
effect of “erasing” the object so that it will not be counted
again.

PMLc The PMLc is Cassie’s image acquisition mecha-
nism. Images in JPEG format are exported to a C Source
format using the GIMP (GNU Image Manipulation Project).
A small C program writes out the pixel values in the RGB
array form expected by Lisp. These arrays are then pasted
by hand into the Lisp PMLc. In future implementations,
we plan on automating image acquisition using the foreign-
function call interface provided in Lisp.

Conclusion
An agent should be capable of appealing to an external ac-
tivity during a mathematical explanation. External activi-
ties require an agent embodiment and the ability to perceive
the external world. We have provided a detailed example
and preliminary implementation of such an activity, the enu-
meration of apples, which can justify an arithmetic result of
addition. Enumeration can be done across modalities and
requires a manner of extracting the knowledge-level distin-
guishing properties for a given modality. We have seen that,
in the GLAIR architecture, there is a hierarchy of representa-
tions for both the enumeration target and the distinguishing
properties. Each representation is based on the processing
task at that layer of embodiment. Thus, the color red may be
useful as a base node in a semantic network, as a slot filler
in an enumeration frame, and as a permissible range of RGB
values on an 2D image pixel.

One of the interesting side effects of performing the act of
enumeration is that the agent acquires experience in recog-
nizing the object in the sensory field. We model such ex-
perience as a prototype feature vector in the PML. It would
be interesting to examine how a significant change in PML
prototypical values might effect the KL (e.g., how an agent
who has only seen red apples might learn that apples can be
either red or green from experience).

After performing an enumeration task, Cassie should be
able to use the empirical result as part of a mathematical ex-
planation. Although we have not yet implemented the expla-
nation mechanism, we know that it must rely the knowledge
available in Cassie’s KL after the enumeration task. Enu-
meration leaves a “residue of knowledge” that is available
for inference during question answering.

The requirements for mathematical understanding sug-
gest a more thorough and complete agent design that ac-
counts for the ability to perform embodied tasks. We be-
lieve that the design and implementation of such agents is
an important research goal.
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