
SNePS 2.7.1 USER’S MANUAL1

Stuart C. Shapiro
and

The SNePS Implementation Group

Department of Computer Science and Engineering
University at Buffalo, The State University of New York

201 Bell Hall
Buffalo, NY 14260-2000

December 8, 2010

1The development of SNePS was supported in part by: the National Science Foundation under Grants IRI-8610517
and REC-0106338; the Defense Advanced Research Projects Agency under Contract F30602-87-C-0136 (monitored by
the Rome Air Development Center) to the Calspan-UB Research Center; the Air Force Systems Command, Rome Air
Development Center, Griffiss Air Force Base, New York 13441-5700, and the Air Force Office of Scientific Research,
Bolling AFB DC 20332 under Contract No. F30602-85-C-0008, which supported the Northeast Artificial Intelligence
Consortium (NAIC); NASA under contract NAS 9-19335 to Amherst Systems, Inc.; ONR under contract N00014-98-
C-0062 to Apple Aid, Inc.; the U.S. Army CECOM Intelligence and Information Warfare Directorate (I2WD) through
a contract with CACI Technologies and through Contract #DAAB-07-01-D-G001 with Booze·Allen & Hamilton; and
CUBRC under prime contract FA8750-06-C-0184 between CUBRC and U.S. Air Force Research Laboratory, Rome,
NY.

ii

Over the years, many people have contributed to the design and implementation of SNePS, and to the
writing of successive versions of the SNePS User’s Manual. They constitute “The SNePS Implementation
Group” cited on the title page, and I am grateful to them. They are listed here. If I have inadvertently omitted
anyone’s name, or have mispelled anyone’s name, please let me know, and I will correct it for the next printing
of this Manual.

Syed S. Ali
Michael J. Almeida
Charles W. Arnold
Robert J. Bechtel
Sudhaka Bharadwaj
Jong S. Byoun
Alistair E. Campbell
Scott S. Campbell
Hans Chalupsky
Chung M. Chan
Joongmin Choi
Chi C. Choy
Soon Ae Chun
Maria R. Cravo
Dmitriy Dligach
Zuzana Dobes
Gerard F. Donlon
Nicholas E. Eastridge
Elissa Feit
David Forster
Richard B. Fritzson
James Geller

Susan M. Haller
Richard G. Hull
Haythem Ismail
Frances L Johnson
Steven D. Johnson
Darrel L. Joy
Sudha Kailar
Michael W. Kandefer
Deepak Kumar
Stanley C. Kwasny
John S. Lewocz
Naicong Li
John D. Lowrance
Christopher Lusardi
Anthony S. Maida
Mark D. Malamut
Nuno Mamede
João P. Martins
Pedro A. Matos
Donald P. McKay
James P. McKew
Ernesto J. Morgado

William A. Neagle
Jeannette G. Neal
Jane Terry Nutter
Rafail Ostrovsky
Sandra L. Peters
Carlos Pinto-Ferreira
William J. Rapaport
Victor H. Saks
Harold L. Shubin
Reid G. Simmons
Benjamin R. Spigle, Jr.
Rohini K. Srihari
William M. Stanton
Jennifer M. Suchin
Lynn M. Tranchell
Jason C. Van Blargan
Nicholas F. Vitulli
Diana K. Webster
Janyce M. Wiebe
Albert Hanyong Yuhan
Martin J. Zaidel

Stuart C. Shapiro

Contents

List of Figures vii

1 Introduction 1
1.1 General . 1
1.2 What’s New . 2
1.3 System Portability . 4
1.4 Commands and Environments . 5
1.5 Types of Nodes . 6
1.6 Contexts . 7
1.7 SNePSUL Variables . 7

2 SNePSUL Commands 9
2.1 Context Specifiers . 9
2.2 Loading SNePS . 9
2.3 Entering and Leaving SNePS . 9
2.4 Using Auxiliary Files . 10

2.4.1 Reading/Writing Files . 10
2.4.2 Writing/Altering Source Files For Use With SNePS 2.6 and ACL 6 11

2.5 Relations . 12
2.5.1 Reduction Inference . 12
2.5.2 Path-Based Inference . 13

2.6 Operating on Contexts . 15
2.7 Building Networks . 15
2.8 Deleting Information . 16
2.9 Functions Returning Sets of Nodes or of Unitpaths . 17
2.10 Displaying the Network . 18
2.11 Retrieving Information . 19

3 SNIP: The SNePS Inference Package 21
3.1 Representing and Using Rules . 21

3.1.1 Connectives . 21
3.1.2 Quantifiers . 23
3.1.3 Recursion . 24

3.2 Tracing Inference . 25

4 SNeRE: The SNePS Rational Engine 27
4.1 Acting . 27
4.2 Primitive Acts . 28
4.3 Associating Primitive Action Nodes with Their Functions 35
4.4 Defined Acts . 36

iii

iv CONTENTS

4.5 Goals . 39
4.6 The Execution Cycle: Preconditions and Effects . 40

5 Program Interface 47
5.1 Transformers . 47
5.2 With-SNePSUL Reader Macro . 47

5.2.1 Controlling the Evaluation of SNePSUL Forms Generated by #! 48
5.2.2 Example Use of #! . 49

5.3 Defining New Commands . 51

6 SNePSLOG 55
6.1 SNePSLOG Basics . 55
6.2 SNePSLOG Syntax . 55
6.3 SNePSLOG Semantics . 58

6.3.1 Semantics of SNePSLOG Commands . 58
6.3.2 Semantics of wffNameCommands . 61
6.3.3 Semantics of wffCommands . 62
6.3.4 Semantics of SNePSLOG Wffs . 63

6.4 SNIP in SNePSLOG . 64
6.4.1 Rules of Inference . 64
6.4.2 Recursion . 66

6.5 SNeRE in SNePSLOG . 67
6.5.1 SNePSLOG Versions of SNeRE Constructs . 67
6.5.2 Restrictions . 68

6.6 The Tell-Ask Interface . 69
6.7 The Java-SNePS API . 70

7 Procedural Attachment 73

8 SNeBR: The SNePS Belief Revision System 75
8.1 Hypotheses, Contexts, and Belief Spaces . 75
8.2 Responsibilities of SNeBR . 75
8.3 Recognizing a Contradiction . 75
8.4 Identifying Possible Culprits . 76
8.5 Choosing a Culprit . 76

8.5.1 Automatic Culprit Choosing . 76
8.5.2 Assisted Culprit Choosing . 76

8.6 Disbelief Propagation . 77
8.7 Warning About a Belief Space Known to be Contradictory. 77

9 SNaLPS: The SNePS Natural Language Processing System 79
9.1 Top-Level SNaLPS Functions . 79
9.2 The Top-Level SNaLPS Loop . 80

9.2.1 Input to the SNaLPS Loop . 80
9.2.2 SNaLPS Variables . 80

9.3 Syntax and Semantics of GATN Grammars . 81
9.3.1 Arcs . 82
9.3.2 Actions . 83
9.3.3 Preactions . 84
9.3.4 Terminal Actions . 84
9.3.5 Forms . 84
9.3.6 Tests . 85

CONTENTS v

9.3.7 Terminal Symbols . 85
9.4 Morphological Analysis and Synthesis . 86

9.4.1 Syntax of Lexicon Files . 86
9.4.2 Functions for Morphological Analysis . 87
9.4.3 Functions for Morphological Synthesis . 88

9.5 Examples . 89
9.5.1 Producing Parse Trees . 89
9.5.2 Interacting with SNePS . 95

10 SNePS as a Database Management System 101
10.1 SNePS as a Relational Database . 101

10.1.1 Project . 101
10.1.2 Select . 104
10.1.3 Join . 104

10.2 SNePS as a Network Database . 105
10.3 Database Functions . 106

University at Buffalo Public License (“UBPL”) Version 1.0 107
1. Definitions. 107
2. Source Code License. 108

2.1. The Initial Developer Grant. 108
2.2. Contributor Grant. 109

3. Distribution Obligations. 109
3.1. Application of License. 109
3.2. Availability of Source Code. 109
3.3. Description of Modifications. 109
3.4. Intellectual Property Matters . 110
3.5. Required Notices. 110
3.6. Distribution of Executable Versions. 110
3.7. Larger Works. 111

4. Inability to Comply Due to Statute or Regulation. 111
5. Application of this License. 111
6. Versions of the License. 111

6.1. New Versions . 111
6.2. Effect of New Versions . 111
6.3. Derivative Works . 111
6.4. Origin of License . 112

7. DISCLAIMER OF WARRANTY . 112
8. Termination . 112
9. LIMITATION OF LIABILITY . 113
10. U.S. government end users . 113
11. Miscellaneous . 113
12. Responsibility for claims . 114
13. Multiple-licensed code . 114
Exhibit A - University at Buffalo Public License. 115

Index 116

vi CONTENTS

List of Figures

4.1 Three ways of associating action nodes with action functions. M3, M4, and M5 are act nodes,
with action nodes SAY, M1, and B1 respectively. 37

9.1 Graphical version of the example GATN. 90
9.2 SNePS network after running the example. 100

10.1 Fragment of SNePS network for the Supplier-Part-Project Database 102

vii

viii LIST OF FIGURES

Chapter 1

Introduction

1.1 General
SNePS is a logic-, frame- and network-based knowledge representation, reasoning and acting system. The
name “SNePS” originally was an acronym of “The Semantic Network Processing System,”.

A semantic network, roughly speaking, is a labeled directed graph in which nodes represent entities, arc
labels represent binary relations, and an arc labeled R going from node n to node m represents the fact that
the entity represented by n bears the relation represented by R to the entity represented by m. The set of
nodes in the network-based view of SNePS is coextensive with the set of terms in the logic-based view of
SNePS.

SNePS is called a propositional semantic network because every proposition represented in the network is
represented by a node, not by an arc. Relations represented by arcs may be thought of as part of the syntactic
structure of the node they emanate from. In the frame-based view of SNePS, every non-atomic term is a
frame whose slots are the arcs of the network-based view, and the fillers of the slots are the nodes those arcs
point to. Whenever information is added to the network, it is added in the form of a frame—a node with arcs
(slots) emanating from it to other nodes (the slot fillers).

Each entity represented in the network is represented by a unique node/term. This is enforced by SNePS 2
in that whenever the user specifies a node to be added to the network that would look exactly like one already
there, in the sense of having the same set of arcs (slots) going from it to the same set of other nodes (fillers),
SNePS 2 retrieves the old one instead of building the new one.

SNePSUL, the SNePS User Language, is the lowest-level command language for using SNePS. It is a
Lispish language, usually entered by the user at the top-level SNePSUL read-eval-print loop, but it can also
be called from Lisp code or from GATN arcs. The SNePSUL chapters of this manual follow the style of Guy
Steele’s COMMON LISP book, and assume that the reader is familiar with that book and with COMMON LISP.
The organization of this manual has been retained from the time when SNePSUL was the standard way to
interact with SNePS. However, the use of SNePSLOG is now recommended.

SNIP (Chapter 3), the SNePS Inference Package, interprets certain nodes as representing reasoning rules,
called deduction rules. SNIP supports a variety of specially designed propositional connectives and quanti-
fiers, and performs a kind of combined forward/backward inference called bi-directional inference.

SNePSLOG (Chapter 6) is a logic programming interface to SNePS, and provides direct access in a
predicate logic notation to almost all the facilities provided by SNePSUL. It is now the recommended way to
interact with SNePS.

SNeBR (Chapter 8), the SNePS Belief Revision system, recognizes when a contradiction exists in the
network, identifies possible culprits, and performs disbelief propagation. It eliminates contradictions auto-
matically in some cases, and helps the user to do so in the general case.

SNaLPS (Chapter 9), the SNePS Natural Language Processing System, consists of a morphological an-
alyzer, a morphological synthesizer, and a Generalized Augmented Transition Network (GATN) Grammar

1

2 CHAPTER 1. INTRODUCTION

interpreter/compiler. Using these facilities, one can write natural language (and other) interfaces for SNePS.

1.2 What’s New
SNePS 2 differs in several respects from its predecessor, now called SNePS-79, mostly because of theoretical

decisions that were made since SNePS-79 was implemented.

SNePS 2.1 differs from SNePS 2.0 by including belief revision as a standard feature.

SNePS 2.3 includes some techniques for making node-based inference faster, and includes SNeRE (Chap-
ter 4).

SNePS 2.4 includes: a change in how contexts and sets of contexts are implemented that should improve
the speed of the system; deducetrue, deducefalse, deducewh, and deducewhnot (Sec-
tion 2.11); the Tell-Ask interface (Section 6.6); and SNePSLOG Mode 3, which allows SNePSLOG
syntax to be used to build SNePS networks using as flexible a choice of relations as may be done using
SNePSUL syntax (Section 6.3.1).

SNePS 2.5 includes: a change in how nodes are implemented and how sets of nodes are ordered that should
improve the speed of the system; activate (Section 2.7); the SNePSLOG perform command (Sec-
tion 6.3.1); a revised semantics for when-do, with the old when-do now renamed whenever-do
(Section 4.1).

SNePS 2.6 code has been modified so that it can be loaded into ALLEGRO CL version 6.X and used with its
default case mode of “case-sensitive-lower” (all predefined COMMON LISP symbols have lower-case
names, and the case of characters typed into the LISP listener is left as originally typed) or loaded into
earlier versions of ALLEGRO CL, or other versions of COMMON LISP that use “case-insensitive-upper”
mode (all predefined COMMON LISP symbols have upper-case names, and the case of characters typed
into the LISP listener is changed to upper case). Some SNePS symbols may look different in the two
different modes, such as M1 vs. m1. The output for the examples in this manual was generated from
earlier versions of SNePS, so it is typically in uppercase (except where special formatting was used to
generate the output).

SNePS 2.6.1 Previously, the functions + and & took only two arguments. Now they can take zero or
more. The function show has been added. The SNeRE mental action believe now checks for
and disbelieves more contradictory beliefs than before. The SNePSLOG commands activate,
activate!, ask, askifnot, askwh, and askwhnot have been added. There have been sev-
eral other bug fixes. Documentation of the SNePSLOG command list-wffs has been added to
the manual; it was previously available. Section 6.5, “SNeRE in SNePSLOG,” has been added to this
manual, some material describing features that were never implemented in SNePS 2 has been deleted
from the manual, and there have been other editorial changes. A complete description of what’s new in
SNePS 2.6.1 is at http://www.cse.buffalo.edu/sneps/Downloads/releaseNotes261.
html.

SNePS 2.7 The SNePSLOG parser has been completely rewritten, improved, and made more robust. The
chapter on SNePSLOG has been completely rewritten. SNePSLOG is now the preferred interface
to SNePS. Normal output from SNePSLOG now shows the wffName. The SNePSLOG command
define-terms has been added, and define-frame given an optional string argument, which,
when used together, provide a facility for giving a natural language gloss of SNePS terms. The tell-
ask interface has been improved, and its documentation has been moved to §6.6. Previously askwh
and askwhnot would return a simple list of terms, even if the query had more than one free vari-
able. Now, they return a list of substitutions even if the query has only one free variable. (Similarly
for the SNePSUL commands deducewh and deducewhnot). A Java-SNePS API has been added

1.2. WHAT’S NEW 3

to give Java programs access to SNePS via the tell-ask interface, see §6.7. The final cases in which
the inference system could get into infinite recursion have been eliminated—see §3.1.3 and §6.4.2.
The SNePSUL intext command and the new SNePSLOG load command silently load files. Pre-
viously, one could not have a node named with a string the Lisp reader could not handle, such as
"#", and node-to-lisp-object did not handle nodes with names like "5 pounds". Both
these problems are now fixed. A node’s name can now be any Lisp number, string, or symbol, and
node-to-lisp-object is able to handle it. Previously, inference and acting tracing was on by
default, now they are off by default. Previously, in add-to-context, only the wffs in termSet that
had already been introduced to the KB as hypotheses were added as hypotheses of the context. Now, all
the wffs listed as to be added are asserted into the context. An procedural attachment facility has been
added. It is described in Chapter 7. The guarded acts in snif and sniterate can now take sets of
conditions and sets of acts. snif and each loop of sniterate still performs one act one of whose
guards holds. The mental acts adopt and unadopt are now available for adopting and unadopting
policies, and should be used for those purposes instead of believe and disbelieve. A chapter
on SNeBR (Chapter 8) has been added. XGinseng has been eliminated because it was implemented
in Garnet, which has not been maintained, and was difficult to use. SNePS networks may now be dis-
played by show, either via: dot; or JUNG and JIMI, depending on the installers choice (both require
separate downloading). If both versions are installed, the user may choose which one to use by setting
the value of the global variable cl-user:*use-gui-show*.

There have been other bug fixes, improvements to speed, and improvements to user messages. A com-
plete description of what’s new in SNePS 2.7 is at http://www.cse.buffalo.edu/sneps/
Downloads/releaseNotes262.html.

SNePS 2.7.1

SNePS
The command (beliefs-about {nodeset}* context-specifier) has been added. It returns
a set of all the nodes, asserted in the given context, that dominate the nodes described by the
nodesets.

SNePSLOG
1. In SNePS 2.7.0, an attempt to use the &=>-Introduction rule caused a Lisp error. That has

been fixed, and &=>-Introduction works in SNePS 2.7.1.
2. In SNePS 2.7.0, the v=>-Introduction rule did not work. Moreover, the v=>-Introduction

rule, as documented in the SNePS 2.7 User’s Manual is incorrect. In SnePS 2.7.1, the v=>-
Introduction rule works as long as there is only a single antecedent. The v=>-Introduction
rule for multiple antecedents is not yet implemented.

3. In certain circumstances, activate and activate! caused an error. That has been fixed.
4. The snepslogCommand beliefs-about pTermSet [.] has been added. It returns a

set of all the asserted wffs that dominate the terms described by pTermSet.
5. The function (nl-tell string) has been added. It may be called from the top-level Lisp

listener in the snepslog package. Assuming that a lexicon and GATN grammar have been
loaded, nl-tell passes string to the parser, and returns a string containing whatever the
parser returns.

6. Linebreaks may occur in input to the SNePSLOG reader, but if the input looks like it might
end prematurely, the character “\” (without the quotation marks) may be placed before the
end-of-line to indicate that the input continues on the next line. For example, the wff p()
=> q(). may end just before the => if and only if the line with p() ends with a “\”. This
is also very useful in a define-frame command if you want to put the documentation
string on the next line. Previously, this was an undocumented feature, but “-” was used
instead of “\”, which caused problems if a linebreak occurred in a path just after a converse
relation, like subclass-.

4 CHAPTER 1. INTRODUCTION

7. SNePSLOG now allows the use of and, or, nand, nor, xor, and iff, each followed by a
termSet. For example, all(x)(Entity(x) => xor{Animal(x), Vegetable(x),
Mineral(x)}).

SNIP
1. In certain circumstances, activate caused an error. That has been fixed.
2. See the note about &=>-Introduction under SNePSLOG, above.
3. See the note about v=>-Introduction under SNePSLOG, above.

SNeBR
Restriction sets in node supports and in contexts have been eliminated in favor of a global set of
minimal nogoods. A minimal nogood is a set of hypotheses that is known to be inconsistent, such
that no subset of it is known to be inconsistent.

SNeRE
1. Consider the following knowledge base:

: andor(1,1){aheadIs(wall), aheadIs(corridor)}.
wff3!: andor(1,1){aheadIs(corridor),aheadIs(wall)}

: andor(1,1){holding(person), holding(noOne)}.
wff6!: andor(1,1){holding(noOne),holding(person)}

: holding(noOne).
wff5!: holding(noOne)

: aheadIs(corridor).
wff2!: aheadIs(corridor)

Now, ask a question whose answer looks like a state constraint.
: (holding(noOne) and aheadIs(wall))?

wff9!: andor(0,1){holding(noOne),aheadIs(wall)}
{<der,{wff2,wff3},{}>}

If we now do
: perform believe(aheadIs(wall))

In SNePS 2.7.0, holding(noOne) will no longer be asserted, even though wff9 will no
longer be asserted once wff2 is disbelieved. This is fixed in SNePS 2.7.1.

SNePS 2.7.1 also includes some additional improvements.

1.3 System Portability
SNePS 2 is written in ANSI COMMON LISP (two exceptions are noted in the following paragraph). Hence,
every proper implementation of ANSI COMMON LISP should be sufficient to run SNePS 2. In particular,
SNePS 2 should run successfully using the following:

• UNIX operating system

• LINUX operating system

• Apple/Macintosh operating system

• Microsoft Windows operating system

• Allegro Common Lisp (Franz Inc.)

1.4. COMMANDS AND ENVIRONMENTS 5

• Lucid (or Sun) Common Lisp

• GNU CLISP

• CMU Common Lisp

• Macintosh Common Lisp

• Harlequin LispWorks

The JUNG/JIMI version of show, and the Java-SNePS API require some facilities peculiar to Franz’s
ACL. For installations that do not have that compiler, an executable file is available for downloading from
http://www.cse.buffalo.edu/sneps/Downloads/. That executable provides all the features of
SNePS 2.7. Every other feature of SNePS 2.7 is written in ANSI Common Lisp.

1.4 Commands and Environments
A SNePSUL command is classified according to its role either as a procedure or as a function. A procedure
is a command that performs some action but returns nothing, using the COMMON LISP (values) function.
A function is a command that always returns some value, possibly after having performed some action as a
side effect. A function is implemented directly as a Lisp function.

A command is also classified according to the environment(s) in which it may legally appear. A proce-
dure can be entered only at the top level of SNePSUL. A function, however, may appear in many different
environments. The five environments are:

1. The top level of SNePS 2

2. A relation-set position embedded in a command

3. A node-set position in build

4. A node-set position in find or findassert

5. A node-set position in any of the other commands

Finally, a command can be classified according to the relation between its position and the position of its
arguments in the input line.

Most commands have an arbitrary number of arguments. They are called prefix commands, because they
can only be entered using Cambridge prefix notation:

(prefix-command argument . . . argument).

Some two-argument commands can be entered in infix position, and so are called infix commands. When
an infix command is used in infix position, SNePS rearranges the input line to transform the form into a prefix
form. Precedence is always from left to right. An infix command can be used as

(infix-command argument argument)

or as

argument infix-command argument

with no parentheses.
Since SNePS always remembers the result of the last top-level function, an infix command can also be

used as

infix-command argument

6 CHAPTER 1. INTRODUCTION

in which case SNePS recalls the result of the last function and makes it the first argument for the infix
command before rearranging the form to the prefix notation.

Similarly, some one-argument commands can be entered in postfix position and therefore are called postfix
commands. A postfix command can be used as

(postfix-command argument)

or as

argument postfix-command

with no parentheses, or just as

postfix-command

in which case the result of the last function is used as argument.
Another kind of one-argument command, called macro commands, have one-character names and are

used as

macro-command argument

with no parentheses, and preferably with no space between the command and the argument. Before passing
it to the evaluator, the SNePS reader expands this form to a standard Cambridge prefix form.

1.5 Types of Nodes
There are four types of nodes in the SNePS network: base, variable, molecular, and pattern.

Base nodes are distinguished by having no arcs emanating from them. A base node may be created by
the user’s referring to it by name in the proper context. In such a case, the name of a base node can be
any Lisp symbol. If a number is used, the node’s name is a symbol whose symbol-name is a string of the
characters that makes up the number. If a string is used, the node’s name is the symbol whose symbol-name
is that string. A base node may also be created using the # macro command, in which case the node’s name
is Bx, where x is some integer. A base node is assumed to represent some entity—individual, object, class,
property, etc. It is assumed that no two base nodes represent the same, identical entity. One may, of course,
introduce an equality or equivalence relation and the rules for using them. In that case the introduced equality
or equivalence relation is weaker than the identity relation just referred to. This is the most basic way that
SNePS assumes an intensional representation—no two nodes are intensionally identical even though they
might be extensionally equivalent.

Variable nodes also have no arcs emanating from them, but represent arbitrary individuals or propositions,
in much the same way that logical variables do. Variable nodes are created using the $ macro command. The
name of a variable node is Vx, where x is some number.

Molecular nodes and pattern nodes have arcs emanating from them. Molecular nodes may represent
propositions, including rules, or “structured individuals.” A molecular node that represents a proposition may
be asserted or unasserted. Pattern nodes represent arbitrary propositions or arbitrary structured individuals,
and are similar to open sentences in predicate logic. Pattern nodes and unasserted molecular nodes are created
by the build function. Asserted molecular nodes are created by the assert function. An unasserted
molecular node may be asserted by using the ! postfix command. The name of a pattern node is Px, where x
is a number. The name of a molecular node is Mx, where x is a number. The name of an asserted molecular
node is printed with a suffix of !.

Once any node is created, it may be referred to by its name. It is not necessary to include the ! suffix to
refer to an asserted molecular node. In fact, its use is always interpreted as a call to the ! command, which
will assert the node even if it wasn’t previously asserted.

1.6. CONTEXTS 7

1.6 Contexts
A context is a structure with three components: 1) a set of hypotheses; 2) a set of names; 3) a kinconsistent
flag. The set of hypotheses is a set of nodes which are the assumptions of the context. The set of hypotheses
is the determining component of the context in the sense that no two contexts will have the same set of
hypotheses. The set of names is a set of symbols each of which functions as a name of this context. The
kinconsistent flag is True if this set of hypotheses is known to be inconsistent.

A context name intensionally defines a context, which is extensionally defined by its set of hypotheses.
The SNePSUL user always refers to contexts by name, and may add assertions to, or remove assertions from
a context. Actually, such changes do not change contexts (extensionally defined), but change the context that
the name refers to. The system takes care of such details, and the SNePSUL user may normally think of a
context name as always referring to the same context.

The user is always working in a particular context, called the current context. The current context for
a particular SNePSUL command may be specified by an optional argument to the command. Otherwise,
all commands are carried out with the default context as current context. By default, this context is named
default-defaultct.

In SNePS 2.3 and later versions, a proposition node is not simply asserted or unasserted—it is either
asserted or unasserted in each context. The ! suffix will be printed with a node’s name when that node
is asserted in the current context. An hypothesis is a node that was asserted by the user using assert
or !, rather than being asserted only because it was derived during inference. An hypothesis is always an
hypothesis of one or more context; it may also be asserted in other contexts, and might be unasserted in still
other contexts.

Every node is said to be in zero or more contexts. A node n is in a context c in any of the following cases:

• n is one of the hypotheses that define c.

• n has been derived from a set of assumptions that is a subset of the set of hypotheses of c.

• n is dominated by a node in c.

1.7 SNePSUL Variables
SNePSUL, the SNePS User Language, has variables which are entirely distinct from SNePS variable nodes.
The value of a SNePSUL variable is always a set of objects, nil if nothing else. A SNePSUL variable may
be given a value with the ?, #, or $ macro commands, or with the = infix command. The value of a SNePSUL
variable is obtained by using the * macro command. SNePSUL variables created and maintained by SNePS
are:

nodes The set of all nodes in the network.
assertions The set of all nodes in the network that were asserted by the user.
patterns The set of all pattern nodes in the network.
varnodes The set of variable nodes in the network.
relations The set of defined arc labels.
variables The set of SNePSUL variables.
defaultct The name of the default context.

commands The set of SNePSUL commands.
topcommands The set of commands valid at SNePS top-level.
bnscommands The set of commands valid at node-set positions in build-type commands.
fnscommands The set of commands valid at node-set positions in find-type commands.
rscommands The set of commands valid at relation-set positions in commands.
nscommands The set of commands valid at at node-set positions in other commands.

8 CHAPTER 1. INTRODUCTION

Chapter 2

SNePSUL Commands

2.1 Context Specifiers
In a number of commands described in this chapter, part of the syntax is context-specifier, and the seman-
tics mentions the context specified by context-specifier. In every such case, the possible syntax of context-
specifier, and what context is specified by each possibility is:

omit If the context-specifier is omitted, the specified context is the default context (the value of *defaultct).

:context The context specified is the default context (the value of *defaultct).

:context context-name The context specified is that named context-name, which must be a symbol.

:context nodeset context-name The context specified is that named context-name, which is initialized to
be the context whose set of hypotheses is the value of nodeset, which must be a SNePSUL expression
that evaluates to a set of proposition nodes.

:context all-hyps The context specified is the one whose set of hypotheses is the set of all hypotheses—
all assertions entered by the user.

2.2 Loading SNePS
Ask whoever maintains SNePS at your site how to load SNePS. Typically, this involves running COMMON
LISP, and then loading SNePS.

2.3 Entering and Leaving SNePS
The commands in this section move the user between the SNePSUL evaluator and the COMMON LISP eval-
uator. Although every SNePSUL function is a COMMON LISP function, the SNePSUL loop provides certain
special facilities, so it is best to be in the proper top-level loop for extended work.

(sneps)
Lisp function that brings the user into the SNePS read-eval-print loop.

(lisp)
SNePSUL function that returns the user to the Lisp evaluator.

9

10 CHAPTER 2. SNEPSUL COMMANDS

ˆ
SNePSUL command that causes the next form to be evaluated by Lisp.

ˆˆ
SNePSUL command that puts the user into an embedded Lisp read-eval-print loop until the next occurrence
of the form ˆˆ, whereupon the user is returned to the SNePSUL loop.

2.4 Using Auxiliary Files

2.4.1 Reading/Writing Files

The commands in this section provide for the use of auxiliary files for the storage of networks or of sequences
of commands.

(outnet file)
Stores the current network on the file in a special SNePS format. The syntax for the file specification is
machine dependent.

(innet file)
If file was created by a call to outnet, the current network will be initialized to the one stored on file. Note:
innet rewrites the entire network and several SNePSUL variables, so it cannot be used to combine several
networks. An error message is issued if file is not in the appropriate format.

(intext file)
Reads a sequence of SNePSUL commands from the file and executes them, without doing any printing. All
assertions specified by the file are done as one batch at the end of the loading process, and they are all asserted
into the current context.

(demo &optional file pause)
Reads from the file, echoes it, and behaves as if that stream had been typed directly into SNePS. (You can
even call demo recursively.) If file is a string of length 1 that does not name a file or is a symbol whose
name is a string of length 1, then a menu of possible demonstrations is printed, and the user may pick one
of them. If file is an integer, and the menu lists at least that many demonstrations, the one with that number
will be run. If pause is given, its value may be any of t, b, bv, a, av, or n. If pause is t, b, or bv, SNePS
will pause before each input command is read. If pause is a, or av, SNePS will pause just after each input
is read, but before it is executed. If pause is omitted or is n, SNePS will not pause at all. If pause is av or
bv, a pause message will be printed when the pause occurs; otherwise the message will not be printed. If
both arguments are omitted, the menu will be shown, and pause defaults to av. When SNePS pauses, the
following commands are available:

h,? Print this help message
l,ˆ Enter Lisp read/eval/print loop
s,% Enter SNePS toplevel loop,
o,: Enter SNePSLOG
c Continue without pausing
p Set pause control
q Quit this demo
a Quit all demos
any other key Continue the demo

2.4. USING AUXILIARY FILES 11

All these commands are also available inside demo files. This enables you, for example, to turn on pausing
at some interesting point in your demo and to run quickly through all the setup stuff, or turn pausing off, or
enter a Lisp top-level somewhere or whatever. Here are the commands that allow you to do that. (These are
not SNePSUL commands, but they are specially interpreted demo control commands. The DC stands for
demo control):

dc-pause-help
dc-lisp
dc-sneps
dc-snepslog
dc-no-pause
dc-set-pause ...takes an argument, e.g., (dc-set-pause av)
dc-read-pause
dc-quit
dc-quit-all

All commands except dc-set-pause are atomic. They can be given in upper or lower case, and they
are available in SNePSLOG and the parser as well. However, the way the parser reads input they have
to be followed by a “.” if sentences are terminated that way, and dc-set-pause has to be given as
DC-SET-PAUSE bv. because the function parser::atn-read-sentence collects tokens into a list
automatically.

2.4.2 Writing/Altering Source Files For Use With SNePS 2.6 and ACL 6
ACL 6 vs. Other Versions of Lisp

In any LISP other than ACL 6, SNePS 2.6 should run like SNePS 2.5, with no noticable differences. As
described in Section 1.2, ACL 6 differs in the case of its pre-defined symbols and input. This means that
some source files that ran successfully in SNePS 2.5 might not run successfully in SNePS 2.6 using ACL 6.

To insure portability across LISP systems, any new source files should be written per the advice in the
SNeRG Technical Note 30, “Notes on Converting to ACL 6”, by Stuart C. Shapiro, which can be found as
Reference Number 2001-5 at:
http://www.cse.buffalo.edu/sneps/Bibliography/
This will be referred to from now on as SNeRG TN 30.

If a programmer wishes to load a pre-existing SNePS input file using SNePS 2.6 running in ACL 6, they
have two options1:

1. Make sure the file (and any other files involved) are ACL 6 compatible — refer to the SNeRG TN 30
described above

2. Wrap the main file (i.e. the single file which contains SNePS input and/or loads any other input files)
in the code shown below.

Code Wrap For ACL 6 and SNePS 2.6 Compatibility

If a pre-existing source file does not run successfully using ACL 6 and SNePS 2.6 and altering all the files
involved is not desirable, the following code can be wrapped around the main input file — this should result
in a successful run. Some minor code changes might be necessary (per SNeRG TN 30), but any inconsistency
of case (e.g. NIL vs. nil) in SNePS code or in the input lines will be adjusted by the wrap. The code wrap
is intended to be read at the top LISP level.

Insert the following code at the beginning of the main source file:

1NOTE: These suggestions work if the pre-existing file runs successfully using SNePS 2.5. They are especially important if the run
includes loading altered SNePS code. Older files might need further adjusting.

12 CHAPTER 2. SNEPSUL COMMANDS

;;; adjustment for ACL6
#+(and allegro-version>= (version>= 6 0))
(sneps:adjust-for-acl6 :before)

Insert the following code at the end of the main source file:

;;; adjustment for ACL6
#+(and allegro-version>= (version>= 6 0))
(sneps:adjust-for-acl6 :after)

2.5 Relations
By relation in this manual, we mean any relation used to label network arcs. Therefore “relation” and “arc
label” are used interchangeably. Whenever an arc labelledR goes from node x to node y, SNePS considers an
arc labelled R− to go from y to x. Relation names ending in the character #\- are reserved for this “reverse
arc” or “converse relation” labelling. Therefore no relation name may end with a #\-. The term relation
always refers to a normal, “forward” arc label. We will use the term unitpath to mean either a relation name
or the name of its converse relation.

(define {relation}∗)
Defines each relation to be an arc label. The name of a relation must not end in the character #\-. Each
relation is added to the SNePSUL variable relations. An informative message is given if a relation has
previously been defined. Initially, SNePS has a set of relations defined as if the following had been executed:

(define forall exists pevb
min max thresh threshmax emin emax etot
ant &ant cq dcq arg default
if when vars suchthat do
condition then else
action act plan goal precondition effect
object1 object2)

For uses of the predefined relations, see Sections 3.1.1, “Connectives,” 3.1.2, “Quantifiers,” and Chapter 4,
“SNeRE.”

(undefine {relation}∗)
Undefines each relation. If any relation is being used in the current network, the arcs are not removed from
the network structure, but they do become undefined. undefine is most useful in correcting typographical
errors in calls to define.

2.5.1 Reduction Inference
An asserted node with a certain set of arcs emanating from it implies another node with a subset of those arcs.
Using this implication to derive new nodes is called “reduction inference,” and is implemented and used by
deduce. For example,

* (describe (assert member (snoopy rover) class (dog animal)))
(M1! (CLASS ANIMAL DOG) (MEMBER ROVER SNOOPY))
(M1!)
CPU time : 0.08

* (describe (deduce member snoopy class dog))

2.5. RELATIONS 13

(M2! (CLASS DOG) (MEMBER SNOOPY))
(M2!)
CPU time : 0.05

* (describe (assert agent john act gives object book-1 recipient mary))
(M3! (ACT GIVES) (AGENT JOHN) (OBJECT BOOK-1) (RECIPIENT MARY))
(M3!)
CPU time : 0.08

* (describe (deduce agent john act gives object book-1))
(M4! (ACT GIVES) (AGENT JOHN) (OBJECT BOOK-1))
(M4!)
CPU time : 0.05

Warning: According to Shapiro, 1991,2 if you build a node that is implied via reduction inference by
an already asserted node, the new node will automatically be asserted. This is not implemented in the current
version of SNePS 2.

2.5.2 Path-Based Inference
Path-based inference allows an arc between two nodes to be inferred from the presence of a path of arcs
between them. The various versions of find as well as deduce will use any path-based inference rules that
have been declared.

(define-path {relation path}∗)
Declares the path-based inference rule,

∀(n1, n2)path(n1, n2)⇒ relation(n1, n2).

I.e., if a path of arcs specified by path is in the network going from node n1 to node n2, then the single
arc labelled by relation is inferred as going from node n1 to node n2. See the following subsection for the
syntax of path. No relation may have more than one path-based inference rule for it at any time. This is
not a restriction, since a disjunction of paths is also a path. Warning: A path-based inference rule will not
be expanded recursively. I.e., no relation (or converse relation) in the path will be expanded even if a path-
based inference rule has been declared for it. A subtle implication of this is that it is almost always proper
to do (define-path relation (or relation new-path)), so that explicit occurrences of relation will be
recognized.

(undefine-path {relation path}∗)
Deletes the given path-based inference rules.

Syntax and Semantics of Paths

A unitpath is simply a single arc followed in the forward or the reverse direction. A path can be a sequence
of unitpaths, or a more complicated way of getting from one node to another. Keep in mind the distinctions
between relation, unitpath, and path, since there are places where it matters.

unitpath ::= relation
Any single arc relation is also a unitpath.

2S. C. Shapiro, Cables, paths and “subconscious” reasoning in propositional semantic networks. In J. Sowa, Ed. Principles of
Semantic Networks: Explorations in the Representation of Knowledge. Morgan Kaufmann, San Mateo, CA, 1991, 137–156.

14 CHAPTER 2. SNEPSUL COMMANDS

unitpath ::= relation-
If R is a relation from node x to node y, then R- is a unitpath from y to x.

path ::= unitpath
Any single arc, either forward or backward, is a path.

path ::= (converse path)
If P is a path from node x to node y, then (converse P) is a path from y to x.

path ::= (compose {path | !}∗)
If x1, . . . , xn are nodes and Pi is a path from xi to xi+1, then (compose P1 . . . Pn−1) is a path from
x1 to xn. Note: If the symbol ! appears between Pi−1 and Pi, then xi must be asserted in the current context.
Examples: 1) After doing (build member socrates class man), the path (compose member- class)
goes from socrates to man, but the path (compose member- ! class) doesn’t. However, af-
ter doing (assert member socrates class man), both paths exist. 2) (find (compose !)

*nodes) is a way to find all nodes that are asserted in the current context.

path ::= (kstar path)
If path P composed with itself zero or more times is a path from node x to node y, then

(kstar P) is a path from x to y.

path ::= (kplus path)
If path P composed with itself one or more times is a path from node x to node y, then (kplus P) is a

path from x to y.

path ::= (or {path}∗)
If P1 is a path from node x to node y or P2 is a path from x to y or . . . or Pn is a path from x to y, then (or
P1 P2 ...Pn) is a path from x to y.

path ::= (and {path}∗)
If P1 is a path from node x to node y and P2 is a path from x to y and . . . and Pn is a path from x to y, then
(and P1 P2 ...Pn) is a path from x to y.

path ::= (not path)
If there is no path P from node x to node y, then (not P) is a path from x to y. Warning: Belief revision
will not work for nodes that were inferred via path-based inference that used not arcs.

path ::= (relative-complement path path)
If P is a path from node x to node y and there is no path Q from x to y, then

(relative-complement P Q) is a path from x to y. Warning: Belief revision will not work for
nodes that were inferred via path-based inference that used relative-complement arcs.

path ::= (irreflexive-restrict path)
If P is a path from node x to node y, and x 6= y, then (irreflexive-restrict P) is a path from x

to y.

path ::= (exception path path)
If P is a path from node x to node y and there is no path Q from x to y with length less than or equal to the

length of P , then (exception P Q) is a path from x to y.

2.6. OPERATING ON CONTEXTS 15

path ::= (domain-restrict (path node) path)
If P is a path from node x to node y and Q is a path from x to node z, then

(domain-restrict (Q z) P) is a path from x to y.

path ::= (range-restrict path (path node))
If P is a path from node x to node y and Q is a path from y to node z, then

(range-restrict P (Q z)) is a path from x to y.

path ::= (path∗)
If P1 is not one of the symbols and, converse, compose, exception, kstar, kplus, not,
or, relative-complement, irreflexive-restrict, domain-restrict, or range-restrict,
then
(P1 . . . Pn−1) is equivalent to (compose P1 . . . Pn−1).

2.6 Operating on Contexts

(set-context nodeset [symbol])
Creates a context whose hypothesis set is nodeset (which cannot contain pattern nodes). If symbol is given,
that is made the name of the context; otherwise *defaultct becomes the name of the context.

(set-default-context context-name)
Changes the default context (the value of *defaultct) to be context-name.

(add-to-context nodeset [context-name])
Adds the nodes of nodeset into the hypothesis set of the context, context-name. If context-name is omitted,
adds the hypotheses to *defaultct.

(remove-from-context nodeset [context-name])
Removes the nodes of nodeset from the hypothesis set of the context, context-name. If context-name is
omitted, removes the hypotheses from *defaultct.

(list-context-names)
Prints a list of all valid context names.

(describe-context [context-name])
Prints the hypothesis set, all names, and the value of the kinconsistent flag of the context named context-name.
If context-name is omitted, prints the information on *defaultct.

(list-hypotheses [context-name])
Returns the hypothesis set of the context named context-name. If context-name is omitted, returns the hy-
pothesis set of *defaultct.

2.7 Building Networks
The commands of this section add information to the network, either in the form of a node, a node and some
arcs, or an assertion tag. It is not possible to add just an arc to the network. Isolated nodes cannot be added
to the network, so the commands # and $ can only be used within the lexical context of a build, assert,
or add.

16 CHAPTER 2. SNEPSUL COMMANDS

We will use the term wire to mean a labelled arc and the node it points to. So a molecular node has a set
of wires coming out of it.

(adopt {relation nodeset}∗)
Builds and adopts the specified policy. (See Chapter 4.) As of SNePS 2.7.1 the SNePSUL command adopt
is just a synonym of assert (see below).

(build {relation nodeset}∗)
(assert {relation nodeset}∗ context-specifier)
(add {relation nodeset}∗ context-specifier)
Puts a node in the network with an arc labelled relation to each node in the following nodeset, and returns a

singleton set containing the built node. The new node is added to the value of the SNePSUL variable nodes.
If this new node would look exactly like an already existing node, i.e., would have exactly the same set of
wires emanating from it, then no node is built, but a singleton set containing the extant node is returned.
build creates an unasserted node. assert is just like build, but creates the node as an asserted node (an
hypothesis), and adds it to the hypothesis set of the context specified by context-specifier. add is just like
assert, but, in addition, triggers forward inference. Note: where relation is specified in the syntax, neither
a converse relation nor a non-unit path is allowed. build is not a top-level SNePSUL command in SNePS 2.

(activate {nodeset}∗ context-specifier)
Finds all the nodes that dominate the nodes in nodeset (including the nodes in nodeset themselves), and that
are asserted in the context specified by context-specifier, and triggers forward inference on them.

(!node context-specifier)
A postfix command that asserts node in the context specified by context-specifier, and returns a singleton set
containing node.
(assert ... context-specifier) is equivalent to (! (build ...) context-specifier).
(build ...)! is equivalent to (assert ...).

#symbol
A macro command that creates a new base node, assigns a singleton set containing the new node as the value
of the SNePSUL variable symbol, and returns that set. This may not be used at the top-level SNePSUL loop,
since that would create an isolated node. (Note: The # macro is smart enough to guess whether you want to
create a base node or whether the standard COMMON LISP dispatching macro is intended. This means that
the #! “with-snepsul” syntax is available at the SNePS top level, as well as in GATN grammars, etc., and
that other common uses, such as #’ for functions, are available too.)

$symbol
A macro command that creates a new variable node, assigns a singleton set containing the new node as the
value of the SNePSUL variable symbol, and returns that set. This may not be used at the top-level SNePSUL
loop, since that would create an isolated node.

2.8 Deleting Information

The commands of this section delete information from the network, and are mainly intended for use after
mistakes or when debugging.

(erase {nodeset}∗)
(silent-erase{nodeset}∗)

2.9. FUNCTIONS RETURNING SETS OF NODES OR OF UNITPATHS 17

Removes all nodes in all nodesets from the network along with any nodes that become isolated in the process
(that is, all nodes which no longer have any arcs connected to them), and all nodes that were dominated by
nodes it erases that are not also dominated by other nodes. Refuses to delete nodes that have arcs coming into
them. silent-erase is like erase, but does no printing.

(resetnet [reset-relations?])
Reinitializes the network to the state in which no nodes have been built. If reset-relations? is t, the set of
SNePS relations is reset to the pre-defined ones; If reset-relations? is nil (default), the defines relations and
declared path-based inference rules remain as is.

(clear-infer-all)
Deletes any information placed in the “active connection graph” version of the network by SNIP. I.e., all
deduction rules are returned to their unactivated state as if no inference had yet been performed. It is recom-
mended that clear-infer be used instead. See below.

(clear-infer)
Like clear-infer-all, but retains some pointers from rules to their instances that makes node-based in-
ference faster. clear-infer is recommended over clear-infer-all unless there is a specific reason
to use the latter.

2.9 Functions Returning Sets of Nodes or of Unitpaths
The functions described in this section neither add to nor delete from the network. Rather, they compute and
return sets either of nodes or of unitpaths.

({node}∗)
A list of nodes at the top level of the SNePSUL loop, or in a context where a node set is required, is treated
as an expression whose value is a set of the nodes in the list.

(* symbol)
A macro command function which returns the set of nodes in the value of the SNePSUL variable symbol.

(list-nodes [context-name])
Returns the set of all nodes that are in the context named context-name. If context-name is omitted, returns
the set of all nodes that are in *defaultct.

(ˆ S-expression)
The set of nodes obtained by evaluating the Lisp S-expression.

(& nodeset∗)
Infix function that returns the intersection of the nodesets.

(+ nodeset∗)
Infix function that returns the union of the nodesets.

(- nodeset nodeset)
Infix function that returns the set of nodes in the first nodeset but not in the second nodeset.

(= nodeset symbol)

18 CHAPTER 2. SNEPSUL COMMANDS

Infix function that assigns the nodeset to be the value of the SNePSUL variable symbol.

(nodeset unitpathset)
Infix function that returns the set of those nodes in the nodeset which do not have any of the unitpaths in the
unitpathset emanating from them.

(> unitpathset symbol)
Infix function that assigns the unitpathset to be the value of the SNePSUL variable symbol.

({unitpath}∗)
A list of unitpaths in a context where a unitpathset is required, is treated as an expression whose value is a set
of the unitpaths in the list.

2.10 Displaying the Network

The commands in this section are various ways of printing, or otherwise displaying, the information in the
network.

(dump {nodeset}∗ context-specifier)
Prints the name of each node in the nodeset that is in the context specified by context-specifier, along with
all arcs going from it or into it, and the nodes that each arc points to or from. For a complete dump of the
network, execute (dump *nodes :context all-hyps).

(describe {nodeset}∗ context-specifier)
Similar to dump, but: describes only the molecular and pattern nodes in the nodesets; describes all molecular
and pattern nodes dominated by nodes it describes; describes any node at most once—the second and later
times, only the node’s name is printed.

(full-describe {nodeset}∗ context-specifier)
Similar to describe, but also shows the context(s) each node is asserted in. Unlike dump and describe,
full-describe can describe nodes that are not in any context.

(show nodeset∗)
(show nodeset∗ &key :file :format)
Displays the network connected to the nodes in the nodesets in a graphical form. The first version uses
JUNG and JIMI, and produces a graph that can be manipulated by hand. The second version saves a spec-
ification of the network in the DOT language to a file, from which an output file is produced via the dot
compiler. The file keyword argument specifies the base name of the .dot and output files (by default a
temporary file). The format keyword specifies the format of the output file, which must be either :gif
(default) or :ps. The output file is displayed via either xv or gv. dot produces a static figure. Only one
of these versions of show is available; which one, depends on the SNePS installer. Neither dot, JUNG, nor
JIMI are part of the SNePS distribution. dot is part of the Graphviz package which can be downloaded
from http://graphviz.org/). JUNG and it’s associated packages, Xerxes, Colt, and Jakarta
Common Collections, can be downloaded from http://jung.sourceforge.net/. JIMI can
be downloaded from http://java.sun.com/products/jimi/. The JUNG/JIMI version of show
requires either that SNePS is being run under Franz’s ACL, or that one of the executable packages of SNePS
is being used. The SNePS installer may install either the dot version or the JUNG/JIMI version, both, or
neither. If both are installed, the user can dynamically pick the version to be used by setting the global
variable cl-user:*use-gui-show*/indexuse-gui-show@cl-user:*use-gui-show* to t for the

2.11. RETRIEVING INFORMATION 19

JUNG/JIMI version, or to nil for the dot version.

(surface {nodeset}∗)
Generates a description of each node in each nodeset using the currently loaded GATN grammar starting in
state g.

2.11 Retrieving Information
The functions in this section find nodes in the network, and return them.

(find {path nodeset}∗ context-specifier)
(findassert {path nodeset}∗ context-specifier)
(findconstant {path nodeset}∗ context-specifier)
(findbase {path nodeset}∗ context-specifier)
(findvariable {path nodeset}∗ context-specifier)
(findpattern {path nodeset}∗ context-specifier)
Returns the set of nodes in the specified context such that each node in the set has every specified path
going from it to at least one node in the accompanying nodeset. (find class (man greek)) will find
nodes with a class arc to either man or greek, whereas (find class man class greek) will
find nodes with class arcs to both man and greek. find returns all appropriate nodes in the specified
context; findassert returns only asserted nodes; findconstant returns only base or molecular nodes;
findbase returns only base nodes; findvariable returns only variable nodes; findpattern returns
only pattern nodes.

(beliefs-about nodeset∗ context-specifier)
Returns a set of all the nodes, asserted in the given context, that dominate the nodes described by the nodesets.

?symbol
May be used in any find function in place of a nodeset, to stand for “any node.” The scope of these symbols
is the outermost find function and all embedded find functions. After return of the outermost find
function, symbol will be a SNePSUL variable whose value will be the set of nodes it matched.

(deduce [numb] {relation nodeset}∗ context-specifier)
(deducetrue [numb] {relation nodeset}∗ context-specifier)
(deducefalse [numb] {relation nodeset}∗ context-specifier)
(deducewh [numb] {relation nodeset}∗ context-specifier)
(deducewhnot [numb] {relation nodeset}∗ context-specifier)
Like findassert, but uses SNIP to back-chain on any deduction rules in the specified context. deducetrue
returns all inferred nodes that satisfy the specification. deducefalse returns all inferred nodes that sat-
isfy the negation of the specification. deduce returns all inferred nodes that satisfy the specification, and
inferred nodes that satisfy the negation of the specification. deducewh returns a list of substitutions for
the free variables in the specification indicating the set of nodes that would be returned by deducetrue.
deducewhnot returns a list of substitutions for the free variables in the specification indicating the set of
nodes that would be returned by deducefalse. Note that only relations may appear in the specification,
not any other unitpaths or paths. Neither may ?symbol variables appear in the specification. The numb ar-
gument is optional. If numb is omitted, then deduce continues until no more answers can be derived. If
numb is a single integer, it specifies the total number of answers requested. If numb is zero, no inference is
done—only answers already in the network are returned. Otherwise, numb must be a list of two numbers,
(npos nneg), and deduction terminates after at least npos positive and nneg negative instances are derived.

20 CHAPTER 2. SNEPSUL COMMANDS

Chapter 3

SNIP: The SNePS Inference Package

Automatic inference may be triggered using the function deduce (see Section 2.11), a generalization of
find, or the function add (see Section 2.7), a generalization of assert. In order for these to accomplish
anything, deduction rules must exist in the network. A deduction rule is a network structure dominated by a
rule node. A rule node represents a logical formula of molecular nodes, using connectives and quantifiers.

3.1 Representing and Using Rules
Rules are placed in the network with the assert and add commands (see Section 2.7). The arcs needed to
build rules are predefined by SNePS.

3.1.1 Connectives
Connectives are the means by which simple propositions are compounded to make more complicated ones.
In classical logic, this compounding is accomplished by use of standard connectives such as & (AND) and
∨ (OR). A number of disadvantages exist in using standard connectives in SNePS, primarily because of their
binary nature and the size of the network needed to store representations with standard connectives. To avoid
these problems, SNePS uses non-standard connectives. These non-standard connectives are as adequate as
standard connectives, but they take arbitrarily large sets of arguments and express common modes of hu-
man reason simply. The non-standard connectives are: and-entailment, or-entailment, numerical entailment,
andor, and thresh. An explanation of each connective follows.

And-Entailment

{A1, . . . , An} &⇒ {C1, . . . , Cm} means that the conjunction of the antecedents implies the conjunction of
the consequents. An and-entailment rule is built with the SNePSUL command:

(assert &ant (A1, . . . , An)
cq (C1, . . . , Cm))

Use An asserted and-entailment may be used in forward or backward inference to conclude that one or
more of its consequents is to be asserted.

Or-Entailment

{A1, . . . , An} ∨⇒ {C1, . . . , Cm} means that the disjunction of the antecedents implies the conjunction of
the consequents. An or-entailment rule is built with the SNePSUL command:

21

22 CHAPTER 3. SNIP: THE SNEPS INFERENCE PACKAGE

(assert ant (A1, . . . , An)
cq (C1, . . . , Cm))

Note: or-entailment is more efficient than and-entailment, so if there is only one antecedent, use ant
rather than &ant.

Use An asserted or-entailment may be used in forward or backward inference to conclude that one or more
of its consequents is to be asserted.

Numerical Entailment

{A1, . . . , An} i⇒ {C1, . . . , Cm} means that the conjunction of any i of the antecedents implies the conjunc-
tion of the consequents. In other words, if i or more of the antecedents are true, then all of the consequents
are true. A numerical-entailment rule is built with the SNePSUL command:

(assert thresh i
&ant (A1, . . . , An)
cq (C1, . . . , Cm))

Use An asserted numerical-entailment may be used in forward or backward inference to conclude that one
or more of its consequents is to be asserted.

AndOr∨∧j
i{P1, . . . , Pn} means that at least i and at most j of the n propositions are true. An andor rule is built with

the SNePSUL command:

(assert min i max j
arg (P1, . . . , Pn))

The following special cases of andor are representations of standard connectives: i = j = n is AND;
i = j = 0 is a generalization of NOR; and i = j = 1 is a generalization of EXCLUSIVE OR.

Use An asserted and-or may be used in forward or backward inference to conclude that one or more of
its arguments is to be asserted, or that the negation of one or more of its arguments is to be asserted. An
unasserted and-or for which i = j =number of arguments will be asserted during backward inference if all
its arguments are asserted.

Thresh

Θj
i{P1, . . . , Pn} means that either fewer than i or more than j of the n propositions are true. j may be

omitted, in which case it defaults to n− 1. A thresh rule is built with the SNePSUL command:

(assert thresh i threshmax j
arg (P1, . . . , Pn))

If i = 1 and j is omitted, the thresh is a generalization of equivalence.

Use An asserted thresh may be used in forward or backward inference to conclude that one or more of its
arguments is to be asserted, or that the negation of one or more of its arguments is to be asserted.

3.1. REPRESENTING AND USING RULES 23

3.1.2 Quantifiers
Quantifiers permit the use of variables in deduction rules. The relations forall and exists, are predefined
quantifier relations. They are used to point to variable nodes, indicating for which values of the variable node
the rule holds. forall and exists represent universal and existential quantifiers, respectively. SNePS 2
uses restricted quantification, which means that every quantified expression must have a restriction as well as
a scope.

The Universal Quantifier

∀(x1, . . . , xn){R1(x1), . . . , Rn(xn)} : {P1(x1, . . . , xn), . . . , Pm(x1, . . . , xn)} means that for every substi-
tution, σ = {t1/x1, . . . , tn/xn} for which the following conditions hold

• ti satisfies the restriction Ri, 1 ≤ i ≤ n

• ti 6= tj whenever i 6= j

• ti does not already occur in the rule, 1 ≤ i ≤ n

Pi(x1, . . . , xn)σ, 1 ≤ i ≤ m is true. There may be fewer restrictions than variables if some restriction
contains more than one variable free, as long as every variable occurs in at least one restriction. A universally
quantified rule is built with the SNePSUL command:

(assert forall (x1, . . . , xn)
&ant (R1(x1), . . . , Rn(xn))
cq (P1(x1, . . . , xn), . . . , Pm(x1, . . . , xn)))

The first occurrence of a variable must be preceded by the $ macro, and subsequent occurrences must be
preceded by the * macro.

If there is only one restriction, ant should be used instead of &ant.

Use Universal instantiation has been implemented, but not universal generalization.

The Existential Quantifier

The existential quantifier has not yet been implemented in SNePS 2. However, it is not needed, because
Skolem functions can be used instead.

Whenever an existentially quantified variable y is bound within the scope of universally quantified vari-
ables x1, . . . , xn, y can be replaced by the Skolem function f(x1, . . . , xn), as long as f is used nowhere else.
The existential quantifier that binds y can then be eliminated.

So, to represent an existentially quantified variable in SNePS 2, define a set of arcs, say Skf, a1, a2,
..., and replace the variable node by a molecular node with the ai arcs going to the universally quantified
variables whose scopes contain the existentially quantified variable, and with the Skf arc going to a new base
node that serves as the Skolem function. The Skolem function node may be named mnemonically.

For example to represent the formula

∀x(Man(x)⇒ ∃y(Woman(y) ∧ Loves(x, y)))

you might do

(assert forall $man
ant (build member *man class man)
cq ((build member (build Skf loved-by a1 *man) = thiswoman

class woman)
(build agent *man act loves object *thiswoman)))

24 CHAPTER 3. SNIP: THE SNEPS INFERENCE PACKAGE

The Numerical Quantifier

k∃ji (x1, . . . , xn){R1(x1), . . . , Rn(xn)}P (x1, . . . , xn) means that of the k substitutions,
σ = {t1/x1, . . . , tn/xn} for which the following conditions hold

• ti satisfies the restriction Ri, 1 ≤ i ≤ n

• ti 6= tj whenever i 6= j

• ti does not already occur in the rule, 1 ≤ i ≤ n

between i and j of them also make P (x1, . . . , xn)σ true. There may be fewer restrictions than variables
if some restriction contains more than one variable free, as long as every variable occurs in at least one
restriction.

A numerically quantified rule is built with the SNePSUL command:

(assert emin i emax j etot k pevb (x1, . . . , xn)
&ant (R1(x1), . . . , Rn(xn))
cq P (x1, . . . , xn))

The first occurrence of a variable must be preceded by the $ macro, and subsequent occurrences must be
preceded by the * macro.

The Uniqueness Principle for Variables

Currently, the Uniqueness Principle, that every entity represented in the network is represented by a unique
node, is not enforced by SNePS for variables. Therefore, it is advised that the Uniqueness Principle for
variables be followed by the SNePSUL user as a matter of style. This should be done as follows. Every
restriction R used in a restricted quantifier should have a series of variables, xR1 , x

R
2 , . . . Every rule that uses

R once should use xR1 as its variable. A rule that uses the restriction R more than once should use xR1 in the
first use of R, xR2 in the second use of R, etc. This can be done by using the $ macro to create each variable
node the first time the restriction occurs, and the * macro on all subsequent occasions, including subsequent
rules. For example, the two rules “Every dog is a pet” and “Every dog hates every cat” might be entered as
follows, assuming that the restrictions Dog(x) and Cat(y) have not previously been used in the network:

(assert forall $dog1
ant (build member *dog1 class dog)
cq (build member *dog1 class pet))

(assert forall (*dog1 $cat1)
&ant ((build member *dog1 class dog)

(build member *cat1 class cat))
cq (build agent *dog1 act hates object *cat1))

3.1.3 Recursion
Recursive rules such as

(assert forall($x $y $z)
&ant ((build rel ancestor arg1 *x arg2 *y)

(build rel ancestor arg1 *y arg2 *z))
cq (build rel ancestor arg1 *x arg2 *z))

may be used without causing an infinite loop.
Infinite loops caused by backward chaining on rules such as

3.2. TRACING INFERENCE 25

(assert forall $x
ant (build member (build fn motherOf fnarg *x)

class duck)
cq (build member *x class duck))

or by forward chaining on rules such as

(assert forall $x
ant (build member *x class number))
cq (build member (build fn successor fnarg *x)

class number)

are terminated under the control of the global parameters *depthCutoffBack* and
depthCutoffForward, respectively. If a subgoal is generated during backward chaining whose depth,
in terms of arc paths, exceeds *depthCutoffBack*, it is not pursued. Also, if a result is generated during
forward chaining whose depth, in terms of arc paths, exceeds *depthCutoffForward*, it is not pur-
sued. *depthCutoffBack* and *depthCutoffForward* are each set by default to 10, and can be
changed independently via setf.

3.2 Tracing Inference
The variable and functions described in this section let you turn on and off various ways of tracing SNIP’s
activities. Following these traces requires various degrees of knowledge of how SNIP is implemented. Im-
plementation details, however, are beyond the scope of this manual.

infertrace
This variable controls an inference trace that is readily understandable by the SNePSUL user. When this
inference tracing is enabled, a message is printed whenever: a deduce is done; a sub-goal is generated
during backward inference; a sub-goal matches a stored assertion; a rule fires. The message indicates which
of these is happening, and prints one or more proposition nodes or instantiated pattern nodes. The possible
values of *infertrace* are:

nil This inference tracing is disabled.

t Default. Nodes are printed using describe.

surface Nodes are printed using surface. (See Section 2.10.)

(ev-trace process-name∗)
A SNePSUL top-level command for tracing MULTI processes. If called with one or more arguments (un-
quoted), it turns on event tracing of those named processes. If called with no arguments, and some processes
are being traced, it returns a list of processes being traced. If called with no arguments, and no processes are
being traced, it turns on event tracing of all processes. Following these traces requires a knowledge of how
SNIP is implemented. They are intended for implementing and debugging new features of SNIP.

(unev-trace process-name∗)
A SNePSUL top-level command for turning off event tracing of MULTI processes. If called with one or
more arguments (unquoted), it turns off event tracing of those named processes. If called with no arguments,
it turns off all event tracing.

(in-trace process-name∗)
A SNePSUL top-level command for tracing MULTI processes. If called with one or more arguments (un-
quoted), it turns on initiation tracing of those named processes. If called with no arguments, and some

26 CHAPTER 3. SNIP: THE SNEPS INFERENCE PACKAGE

processes are being traced, it returns a list of processes being traced. If called with no arguments, and no
processes are being traced, it turns on initiation tracing of all processes. Following these traces requires a
knowledge of how SNIP is implemented. They are intended for implementing and debugging new features
of SNIP.

(unin-trace process-name∗)
A SNePSUL top-level command for turning off initiation tracing of MULTI processes. If called with one
or more arguments (unquoted), it turns off initiation tracing of those named processes. If called with no
arguments, it turns off all initiation tracing.

(multi::print-regs process)
Function that prints the registers of the individual process and their current values. Assumes a knowledge of
how SNIP is implemented. Intended for implementing and debugging new features of SNIP.
snip::send-request
snip::send-reports
These two functions may profitably be traced by someone familiar with how SNIP is implemented. Tracing
snip::send-request will show the requests being sent, the nodes they are sent to, and the queue of
pending processes. Tracing snip::send-reports will show the reports being sent, the channels they
are being sent through, and the reports coming out of the channels.

Chapter 4

SNeRE: The SNePS Rational Engine

4.1 Acting

SNeRE, The SNePS Rational Engine, is a package that allows for the smooth incorporation of acting into
SNePS-based agents. SNeRE recognizes a node with an action arc to be a special kind of node called an
act node. Since an act usually consists of an action and one or more objects of the action, an act node usually
has additional arcs pointing to the nodes that represent the objects of the action. These additional arcs are
generally labelled object1 . . .objectn, where n is the number of objects the action is performed on. The
relations object1 and object2 are pre-defined. If more objecti are needed, the user must define
them.

There are three ways to initiate acting. The first is by use of the SNePSUL command perform.

(perform actnode context-specifier)
Causes the actnode to be performed. Deductions and assertions triggered during the performance will be
made in the specified context.

* (perform (build action say object1 "Hello" object2 "there"))
Hello there
CPU time : 0.15

(How the say action is defined will be explained below.)

The other two ways to initiate action are during inference:

1. If a node of the form M:{〈whenever, p〉, 〈do, a〉} or of the form M:{〈when, p〉, 〈do, a〉},
where p is a proposition node and a is an act node, is in the network, and forward inference causes M
to be adopted and p to be asserted, then a is performed.

* (describe
(adopt whenever (build agent Stu state is location here)

do (build action say object1 "Hello" object2 "Stu.")))
(M3! (DO (M2 (ACTION SAY) (OBJECT1 Hello) (OBJECT2 Stu)))
(WHENEVER (M1 (AGENT STU) (LOCATION HERE) (STATE IS))))
(M3!)
CPU time : 0.04

27

28 CHAPTER 4. SNERE: THE SNEPS RATIONAL ENGINE

* (describe
(adopt when (build agent Stu state is location here)

do (build action say object1 "I see" object2 "you’re here.")))
(M5! (DO (M3 (ACTION SAY) (OBJECT1 Hello) (OBJECT2 Stu)))
(WHEN (M2 (AGENT STU) (LOCATION HERE) (STATE IS))))
(M5!)
CPU time : 0.03

* (add agent Stu state is location here)
Hello Stu
I see you’re here
CPU time : 0.06

The difference between when and whenever is that if the proposition p is disbelieved (see
below) and readded, the act controlled by whenever will be performed again, but the act controlled
by when won’t.

* (perform (build action disbelieve
object1 (build agent Stu state is location here)))

CPU time : 0.18

* (add agent Stu state is location here)
Hello Stu
CPU time : 0.02

2. If an adopted node of the form M!:{〈if, p〉, 〈do, a〉}, where p is a proposition node and a is an
act node, is in the network, and SNIP back-chains into p, then a will be performed.

* (describe (adopt if (build agent who state is location here)
do (build action say object1 "Who’s" object2 "here?")))

(M7! (DO (M6 (ACTION SAY) (OBJECT1 Who’s) (OBJECT2 here?)))
(IF (M5 (AGENT WHO) (LOCATION HERE) (STATE IS))))
(M7!)
CPU time : 0.19

* (deduce agent who state is location here)
Who’s here?
CPU time : 0.12

4.2 Primitive Acts

The only acts that can actually be performed are primitive acts—those whose actions are primitive actions,
which, themselves, are associated with primitive action functions. Several primitive action functions are
predefined. The user may define additional ones by using the function define-primaction:

(define-primaction action (relation1 ...relationn) {form}∗)
This defines action to be a LISP function of arity n, whose list of lambda variables is (relation1 . . . relationn),
and whose body is {form}∗. When the function is called, each lambda variable will be bound to a node set.
For example the action function for say, used in the examples above, was defined by:

4.2. PRIMITIVE ACTS 29

(define-primaction say (object1 object2)
"Print the the argument nodes in order."
(format t "˜&˜A ˜A˜%"

(sneps:choose.ns object1)
(sneps:choose.ns object2)))

The predefined primitive action functions, and what they do are:

Functions for Mental acts

(believe object1), where object1 must be a proposition node. The following special cases
of belief revision are first performed:

• If (Mn! (MIN 0) (MAX 0) (ARG ... object1 ...)) is currently asserted, it
is disbelieved.

• If (Mn! (MIN i) (MAX 1) (ARG object1 otherprop ...)) (for any i) and
otherprop are currently asserted, otherprop is disbelieved.

Then object1 is asserted, and forward inference is done with it.

* (assert min 0 max 0
arg (build agent Stu state is location here))

(M2!)
CPU time : 0.09

* (describe (deduce agent $who state is location here))
(M2! (MIN 0) (MAX 0) (ARG (M1 (AGENT STU) (LOCATION HERE) (STATE IS))))
(M2!)
CPU time : 0.18

* (perform (build action believe
object1 (build agent Stu state is location here)))

CPU time : 0.06

* (describe (deduce agent $who state is location here))
(M1! (AGENT STU) (LOCATION HERE) (STATE IS))
(M1!)
CPU time : 0.06

(disbelieve object1), where object1 must be a proposition node.
object1 is removed-from-context.

* (describe (deduce agent $who state is location here))
(M1! (AGENT STU) (LOCATION HERE) (STATE IS))
(M1!)
CPU time : 0.07

* (perform (build action disbelieve
object1 (build agent Stu state is location here)))

CPU time : 0.03

* (describe (deduce agent $who state is location here))
CPU time : 0.07

(adopt object1), where object1must be a policy node (when-do, whenever-do, or if-do).
The policy is adopted, and an attempt is made to use it.

30 CHAPTER 4. SNERE: THE SNEPS RATIONAL ENGINE

(unadopt object1), where object1 must be a policy node (when-do, whenever-do, or
if-do). The policy is no longer adopted.

Functions for Control acts

(do-all object1), where object1 is a set of one or more act nodes, causes all of the act nodes
to be performed in some arbitrary order.

* (perform
(build action do-all

object1 ((build action say object1 "Hello" object2 "Bill")
(build action say object1 "Hello" object2 "Stu"))))

Hello Stu
Hello Bill
CPU time : 0.32

(do-one object1), where object1 is a set of one or more act nodes, causes an arbitrary one
of the act nodes to be performed. If the variable snip::*choose-randomly* is T (default),
do-one will choose its act randomly; if it is NIL, it will choose deterministicly, which might be
desirable during debugging. (See page 45 for clarification.)

* (perform
(build action do-one

object1 ((build action say object1 "Hello" object2 "Bill")
(build action say object1 "Hello" object2 "Stu"))))

Hello Bill
CPU time : 0.15

(snsequence object1 ...objectn), where object1 ...objectn are act nodes, causes
object1 ...objectn to be performed in that order.

* (perform
(build action snsequence

object1 (build action say object1 "Hello" object2 "Bill")
object2 (build action say object1 "Hello" object2 "Stu")
object3 (build action say object1 "Hello" object2 "Oscar")))

Hello Bill
Hello Stu
Hello Oscar
CPU time : 0.31

Warning: In the current version of SNePS, if two objects of snsequence are the same act,
it will only be done once, so instead of

(build action snsequence
object1 a1 ...
objecti ai objecti+1 ai+1 ...
objectj ai ... objectn an)

one should use

(build action snsequence
object1 a1 ...
objecti ai
objecti+1 (build action snsequence object1 ai+1 ...

objectj-i ai ... objectn-i an)

4.2. PRIMITIVE ACTS 31

(snif object1), where object1 is a set of guarded acts, and a guarded act is either of the
form {〈condition, p〉, 〈then, a〉}, or of the form {〈else, elseact〉}, where p is
a proposition node and a and elseaact are act nodes. snif chooses at random one of the
guarded acts whose condition is asserted, and performs its act. If none of the conditions
is asserted and the else clause is present, the elseact is performed.

* (describe (assert agent "Stu" state is location here))
(M6! (AGENT Stu) (LOCATION HERE) (STATE IS))
(M6!)
CPU time : 0.02

* (describe (deduce agent $who state is location here))
(M6! (AGENT Stu) (LOCATION HERE) (STATE IS))
(M6!)
CPU time : 0.17

* (perform
(build action snif

object1
((build condition

(build agent "Bill" state is location here)
then
(build action say object1 "Hello" object2 "Bill"))

(build condition
(build agent "Stu" state is location here)
then
(build action say object1 "Hello" object2 "Stu"))

(build else
(build action say

object1 "No one’s" object2 "here!")))))
Hello Stu
CPU time : 0.50

* (perform (build action disbelieve object1 M6))
CPU time : 0.02

* (perform
(build action snif

object1
((build condition

(build agent "Bill" state is location here)
then
(build action say object1 "Hello" object2 "Bill"))

(build condition
(build agent "Stu" state is location here)
then
(build action say object1 "Hello" object2 "Stu"))

(build else
(build action say

object1 "No one’s" object2 "here!")))))
No one’s here!
CPU time : 0.27

32 CHAPTER 4. SNERE: THE SNEPS RATIONAL ENGINE

(sniterate object1), where object1 is a set of guarded acts. If at least one of the guard’s
conditions is asserted, sniterate performs the act of a random one of the guards whose
condition is asserted, and then performs the entire sniterate again. When none of the
guards has an asserted condition, if there is an elseact it is performed, and the sniterate
terminates.

* (describe (deduce agent $who state is location here))
(M1! (AGENT Bill) (LOCATION HERE) (STATE IS))
(M2! (AGENT Stu) (LOCATION HERE) (STATE IS))
(M1! M2!)
CPU time : 0.10

* (perform
(build

action sniterate
object1 ((build

condition (build agent "Bill" state is location here)
then
(build action snsequence

object1
(build action say object1 "Hello" object2 "Bill")
object2
(build
action disbelieve
object1
(build agent "Bill" state is location here))))

(build
condition (build agent "Stu" state is location here)
then
(build action snsequence

object1
(build action say object1 "Hello" object2 "Stu")
object2
(build
action disbelieve
object1
(build agent "Stu" state is location here))))

(build
else (build action say

object1 "That’s" object2 "all")))))
Hello Stu
Hello Bill
That’s all
CPU time : 0.83

(withall vars suchthat do [else]), where vars is a set of variable nodes, suchthat
is a proposition with vars free, do is an act node with vars free, and else is an act node with
no free variables. withall finds all substitutions for vars for which suchthat is asserted,
and performs all those instances of do. If there are no such substitutions and else is present, it
is done.

4.2. PRIMITIVE ACTS 33

(describe (deduce agent $who state is location here))
CPU time : 0.08

* (perform
(build action withall

vars $x
suchthat (build agent *x state is location here)
do (build action say object1 "Hello" object2 *x)
else (build action say object1 "No one’s" object2 "here")))

No one’s here.
CPU time : 0.34

* (describe (assert agent "Stu" state is location here))
(M3! (AGENT Stu) (LOCATION HERE) (STATE IS))
(M3!)
CPU time : 0.08

* (describe (assert agent "Bill" state is location here))
(M4! (AGENT Bill) (LOCATION HERE) (STATE IS))
(M4!)
CPU time : 0.07

* (perform
(build action withall

vars $x
suchthat (build agent *x state is location here)
do (build action say object1 "Hello" object2 *x)
else (build action say object1 "No one’s" object2 "here")))

Hello Bill.
Hello Stu.
CPU time : 0.54

(withsome vars suchthat do [else]), where vars is a set of variable nodes, suchthat
is a proposition with vars free, do is an act node with vars free, and else is an act node with
no free variables. withsome finds some substitution for vars for which suchthat is as-
serted, and performs that instance of do. If there is no such substitution, and else is present, it
is performed.

* (describe (deduce agent $who state is location here))
(M3! (AGENT Stu) (LOCATION HERE) (STATE IS))
(M4! (AGENT Bill) (LOCATION HERE) (STATE IS))
(M3! M4!)
CPU time : 0.19

* (perform
(build action withsome

vars $x
suchthat (build agent *x state is location here)
do (build action say object1 "Hello" object2 *x)
else (build action say object1 "No one’s" object2 "here")))

Hello Stu.
CPU time : 0.43

34 CHAPTER 4. SNERE: THE SNEPS RATIONAL ENGINE

* (perform
(build action disbelieve

object1 (build agent "Stu" state is location here)))
CPU time : 0.03

* (perform
(build action disbelieve

object1 (build agent "Bill" state is location here)))
CPU time : 0.03

* (perform
(build action withsome

vars $x
suchthat (build agent *x state is location here)
do (build action say object1 "Hello" object2 *x)
else (build action say object1 "No one’s" object2 "here")))

No one’s here.
CPU time : 0.42

Notice that withall and withsome only operate on entities already believed to satisfy the suchthat
criterion. If you want to operate on entities discovered in the future to satisfy the suchthat criterion,
use when-do or whenever-do, and note that they only perform on new beliefs:

* (describe (assert member ("Stu" "Bill") class person))
(M1! (CLASS PERSON) (MEMBER Bill Stu))
(M1!)
CPU time : 0.07

* (describe (assert agent "Stu" state is location here))
(M2! (AGENT Stu) (LOCATION HERE) (STATE IS))
(M2!)
CPU time : 0.06

* (describe
(assert forall $p

ant (build member *p class person)
cq (build when (build agent *p state is location here)

do (build action say
object1 "Hello new"
object2 *p))))

(M3! (FORALL V1) (ANT (P1 (CLASS PERSON) (MEMBER V1)))
(CQ
(P4 (DO (P3 (ACTION SAY) (OBJECT1 Hello new) (OBJECT2 V1)))
(WHEN (P2 (AGENT V1) (LOCATION HERE) (STATE IS))))))

(M3!)
CPU time : 0.19

4.3. ASSOCIATING PRIMITIVE ACTION NODES WITH THEIR FUNCTIONS 35

* (perform
(build action withall

vars $x
suchthat (build min 2 max 2

arg ((build member *x class person)
(build agent *x state is location here)))

do (build action say object1 "Hello old" object2 *x)))
Hello old Stu
CPU time : 0.60

* (clear-infer)
(Node activation cleared. Some register information retained.)
CPU time : 0.01

* (add agent "Bill" state is location here)
Hello new Bill
CPU time : 0.31

(The (clear-infer) was needed to mark the change in time and discourse context.)

4.3 Associating Primitive Action Nodes with Their Functions
SNeRE will recognize an act node by its action arc to another node. However, if that latter node repre-
sents a primitive action, it must be associated with a primitive action function. To provide flexibility in the
representation of primitive actions, the user is obliged to explicitly associate primitive action nodes with their
functions.

(attach-primaction {action-node-form action-function-name}∗)
action-node-form must be a SNePSUL form that evaluates to a node n or a singleton nodeset (n),
and action-function-name must be a symbol that was defined to name a primitive action function f.
These are associated with each other so that when an act node whose action node is n is performed, f is
applied to the nodesets at the end of the arcs whose relations are the lambda variables of f.

As an example, we will establish three primitive actions using a variety of representation schemes.

* ˆˆ
--> (define-primaction sayfun (object1 object2)

"Print the the argument nodes in order followed by a period."
(format t "˜&˜A ˜A.˜%"

(first (ns-to-lisp-list object1))
(first (ns-to-lisp-list object2))))

SAYFUN
--> (define-primaction exclaimfun (object1 object2)

"Print the the argument nodes in order followed by an exclamation mark."
(format t "˜&˜A ˜A!˜%"

(first (ns-to-lisp-list object1))
(first (ns-to-lisp-list object2))))

EXCLAIMFUN
--> (define-primaction questionfun (np vp)

"Print the the argument nodes in order followed by a question mark."
(format t "˜&˜A ˜A?˜%"

(first (ns-to-lisp-list np))

36 CHAPTER 4. SNERE: THE SNEPS RATIONAL ENGINE

(first (ns-to-lisp-list vp))))
QUESTIONFUN
--> (attach-primaction

say sayfun
(= (build lex "exclaim") exclaim) exclaimfun
(find entity- (assert entity (\# ’question) expression "question"))
questionfun)

T
--> ˆˆ
CPU time : 0.17

* (perform (build action say object1 "Hello" object2 "Stu"))
Hello Stu.
CPU time : 0.18

* (perform (build action *exclaim object1 "Hello" object2 "Bill"))
Hello Bill!
CPU time : 0.14

* (perform
(build action *question np "Who’s" vp "there"))

Who’s there?
CPU time : 0.16

Figure 4.1 shows the three act nodes that were performed. The attach-primaction call shown above
associated action node SAY with the primitive action function sayfun, action node M1 with the primitive
action function exclaimfun, and action node B1 with the primitive action function questionfun.

The user must remember to use attach-primaction to associate action nodes even with the built-
in primitive action functions she intends to use. As a reminder, the built in action functions are listed in
Table 4.1. The achieve primitive action function will be described below.

Table 4.1: Built-in Primitive Action Functions

believe disbelieve adopt unadopt
achieve do-one do-all snsequence
snif sniterate withsome withall

4.4 Defined Acts

An act that is not a primitive act is called a defined act. If SNeRE is asked to perform a defined act, it will
try to infer a plan to carry out the act. A plan in the SNeRE formalism is represented by any act node, but
especially one whose action is a control action. A node of the form M:{〈plan, p〉, 〈act, a〉}, where a
is a defined act node, and p is a plan node, represents the proposition that the plan represented by p is the
way to perform the defined act represented by a. Having inferred some plans for carrying out a defined act,
SNeRE will perform do-one on them.

4.4. DEFINED ACTS 37

Figure 4.1: Three ways of associating action nodes with action functions. M3, M4, and M5 are act nodes, with
action nodes SAY, M1, and B1 respectively.

38 CHAPTER 4. SNERE: THE SNEPS RATIONAL ENGINE

To illustrate the use of defined acts, we will first define say as a one object action function, and associate
action nodes with the functions say, and snsequence.

ˆˆ
--> (define-primaction say (object1)

"Print the object."
(format t "˜&˜A" (sneps:choose.ns object1)))

SAY
--> (attach-primaction

say say
snsequence snsequence)

T
--> ˆˆ
CPU time : 0.05

Then, we will give a rule that says the way to greet a person is to sayHi, then say the person’s name (and
assert that Stu and Bill are people).

* (describe (assert forall $person
ant (build member *person class person)
cq (build act (build action greet object1 *person)

plan (build action snsequence
object1 sayHi
object2 (build action say

object1 *person)))))

(M1! (FORALL V1) (ANT (P1 (CLASS PERSON) (MEMBER V1)))
(CQ
(P5 (ACT (P2 (ACTION GREET) (OBJECT1 V1)))
(PLAN
(P4 (ACTION SNSEQUENCE) (OBJECT1 SAYHI)
(OBJECT2 (P3 (ACTION SAY) (OBJECT1 V1))))))))

(M1!)
CPU time : 0.18

* (describe (assert member (Stu Bill) class person))
(M2! (CLASS PERSON) (MEMBER BILL STU))
(M2!)
CPU time : 0.06

We will give three plans for sayHi.

* (describe (assert act sayHi
plan (build action say object1 "Hello")))

(M4! (ACT SAYHI) (PLAN (M3 (ACTION SAY) (OBJECT1 Hello))))
(M4!)
CPU time : 0.09

* (describe (assert act sayHi
plan (build action say object1 "Hi")))

(M6! (ACT SAYHI) (PLAN (M5 (ACTION SAY) (OBJECT1 Hi))))
(M6!)
CPU time : 0.06

4.5. GOALS 39

* (describe (assert act sayHi
plan (build action say object1 "Hiya")))

(M8! (ACT SAYHI) (PLAN (M7 (ACTION SAY) (OBJECT1 Hiya))))
(M8!)
CPU time : 0.09

and finally, greet Stu and Bill.

* (perform (build action greet object1 Stu))
Hiya
STU
CPU time : 1.34

* (perform (build action greet object1 Bill))
Hello
BILL
CPU time : 1.37

A defined act node may be represented by a node with no action arc emanating from it, as long as a plan
can be derived for it.

* (describe (assert act ask
plan (build action say object1 "Who’s there?")))

(M7! (ACT ASK) (PLAN (M6 (ACTION SAY) (OBJECT1 Who’s there?))))
(M7!)
CPU time : 0.05

* (perform ask)
Who’s there?
CPU time : 0.33

4.5 Goals
In the SNeRE formalism, a goal is a proposition that the SNeRE agent is trying to bring about. The action of
trying to bring about a goal is called “achieve”:

(achieve object1), where object1 must be a proposition node, is performed by finding plans for
achieving object1, and performing a do-one on them.

The plans for achieving goals are given by assertions of the form M!:{〈goal, g〉, 〈plan, p〉}, which
says that p is a plan for achieving the goal g.

* (describe
(assert forall $person

ant (build member *person class person)
cq (build goal (build agent *person state is location here)

plan (build action call object1 *person))))
(M22! (FORALL V5) (ANT (P23 (CLASS PERSON) (MEMBER V5)))
(CQ
(P26 (GOAL (P24 (AGENT V5) (LOCATION HERE) (STATE IS)))
(PLAN (P25 (ACTION CALL) (OBJECT1 V5))))))

(M22!)
CPU time : 0.18

40 CHAPTER 4. SNERE: THE SNEPS RATIONAL ENGINE

* (describe (assert forall $person
ant (build member *person class person)
cq (build act (build action call object1 *person)

plan (build action snsequence
object1 (build action say

object1 "Come here")
object2 (build action say

object1 *person)))))
(M24! (FORALL V6) (ANT (P27 (CLASS PERSON) (MEMBER V6)))
(CQ
(P31 (ACT (P28 (ACTION CALL) (OBJECT1 V6)))
(PLAN
(P30 (ACTION SNSEQUENCE) (OBJECT1 (M23 (ACTION SAY) (OBJECT1 Come here)))
(OBJECT2 (P29 (ACTION SAY) (OBJECT1 V6))))))))

(M24!)
CPU time : 0.19

* (perform (build action achieve
object1 (build agent Bill state is location here)))

Come here
BILL
CPU time : 1.76

4.6 The Execution Cycle: Preconditions and Effects
SNeRE acting may be understood by the following pseudo-definition of perform, although the actual im-
plemention is different.

perform(act):
preconds := set of preconditions of act;
unachieved-preconditions := preconds - {p | p ∈ precond & p is deduceable};
if unachieved-preconditions 6= nil

then perform(snsequence(doall({a | p ∈ unachieved-preconditions & a = achieve(p)}),
act))

else {effects := effects of act;
if act is primitive

then {apply(primitive-function(act), objects(act));
doall({a | p ∈ effects & a = believe(p)})}

else {plans := plans for carrying out act;
perform(snsequence(do-one(plans),

doall({a | p ∈ effects & a = believe(p)})))}}.

Notes and comments:

• A trace of the acting system is printed when the global variable *plantrace* is set to T. If *plantrace*
is set to ’surface, then nodes are sent to the GATN generator starting at state G for printing. If
plantrace is NIL, no trace is printed. This was the setting for the previous examples in this
chapter, but the default is T.

• The preconditions of an act, a are all p for which propositions of the form M!:{〈act, a〉, 〈precondition,
p〉} are deduceable.

4.6. THE EXECUTION CYCLE: PRECONDITIONS AND EFFECTS 41

* (describe
(assert forall *person

ant (build member *person class person)
cq (build act (build action greet object1 *person)

precondition (build agent *person
state is
location here))))

(M34! (FORALL V6) (ANT (P27 (CLASS PERSON) (MEMBER V6)))
(CQ
(P40 (ACT (P39 (ACTION GREET) (OBJECT1 V6)))
(PRECONDITION (P38 (AGENT V6) (LOCATION HERE) (STATE IS))))))

(M34!)
CPU time : 0.13

* (perform (build action greet object1 Stu))
About to do
((M9 (ACTION (GREET)) (OBJECT1 (STU))))

I wonder if the act
((M9 (ACTION (GREET)) (OBJECT1 (STU))))
has any preconditions...

The act
((M9 (ACTION (GREET)) (OBJECT1 (STU))))
has a precondition:
((M35! (ACT (M9 (ACTION (GREET)) (OBJECT1 (STU))))

(PRECONDITION (M33! (AGENT (STU)) (LOCATION (HERE)) (STATE (IS))))))
It is satisfied.

The act
((M9 (ACTION (GREET)) (OBJECT1 (STU))))
has a plan:
((M12! (ACT (M9 (ACTION (GREET)) (OBJECT1 (STU))))

(PLAN
(M11 (ACTION (SNSEQUENCE)) (OBJECT1 (SAYHI))
(OBJECT2 (M10 (ACTION (SAY)) (OBJECT1 (STU))))))))

Intending to do
((M14 (ACTION (DO-ONE))

(OBJECT1
(M11 (ACTION (SNSEQUENCE)) (OBJECT1 (SAYHI))
(OBJECT2 (M10 (ACTION (SAY)) (OBJECT1 (STU))))))))

Now doing: DO-ONE
((M11 (ACTION (SNSEQUENCE)) (OBJECT1 (SAYHI))

(OBJECT2 (M10 (ACTION (SAY)) (OBJECT1 (STU))))))

Chose to do the act
((M11 (ACTION (SNSEQUENCE)) (OBJECT1 (SAYHI))

(OBJECT2 (M10 (ACTION (SAY)) (OBJECT1 (STU))))))

42 CHAPTER 4. SNERE: THE SNEPS RATIONAL ENGINE

About to do
((SAYHI))

I wonder if the act
((SAYHI))
has any preconditions...

The act
((SAYHI))
has no preconditions:

The act
((SAYHI))
has the following plans:
((M4! (ACT (SAYHI)) (PLAN (M3 (ACTION (SAY)) (OBJECT1 (Hello)))))
(M6! (ACT (SAYHI)) (PLAN (M5 (ACTION (SAY)) (OBJECT1 (Hi)))))
(M8! (ACT (SAYHI)) (PLAN (M7 (ACTION (SAY)) (OBJECT1 (Hiya))))))

Intending to do
((M15 (ACTION (DO-ONE))

(OBJECT1 (M3 (ACTION (SAY)) (OBJECT1 (Hello)))
(M5 (ACTION (SAY)) (OBJECT1 (Hi))) (M7 (ACTION (SAY)) (OBJECT1 (Hiya))))))

Now doing: DO-ONE
((M3 (ACTION (SAY)) (OBJECT1 (Hello)))
(M5 (ACTION (SAY)) (OBJECT1 (Hi)))
(M7 (ACTION (SAY)) (OBJECT1 (Hiya))))

Chose to do the act
((M3 (ACTION (SAY)) (OBJECT1 (Hello))))

About to do
((M3 (ACTION (SAY)) (OBJECT1 (Hello))))

I wonder if the act
((M3 (ACTION (SAY)) (OBJECT1 (Hello))))
has any preconditions...

The act
((M3 (ACTION (SAY)) (OBJECT1 (Hello))))
has no preconditions:

Hello

About to do
((M10 (ACTION (SAY)) (OBJECT1 (STU))))

I wonder if the act
((M10 (ACTION (SAY)) (OBJECT1 (STU))))
has any preconditions...

4.6. THE EXECUTION CYCLE: PRECONDITIONS AND EFFECTS 43

The act
((M10 (ACTION (SAY)) (OBJECT1 (STU))))
has no preconditions:

STU
CPU time : 3.10

• The current version of SNeRE will never give up trying to achieve the preconditions of an act it is
trying to perform, even if some precondition is impossible to achieve.

• The effects of an act, a are all e for which propositions of the form M!:{〈act, a〉, 〈effect,
e〉} are deduceable.

* (describe
(assert forall *person

ant (build member *person class person)
cq (build act (build action call object1 *person)

effect (build agent *person
state is
location here))))

(M36! (FORALL V6) (ANT (P27 (CLASS PERSON) (MEMBER V6)))
(CQ
(P41 (ACT (P28 (ACTION CALL) (OBJECT1 V6)))
(EFFECT (P38 (AGENT V6) (LOCATION HERE) (STATE IS))))))

(M36!)
CPU time : 0.11

* (perform (build action call object1 Bill))
About to do
((M27 (ACTION (CALL)) (OBJECT1 (BILL))))

I wonder if the act
((M27 (ACTION (CALL)) (OBJECT1 (BILL))))
has any preconditions...

The act
((M27 (ACTION (CALL)) (OBJECT1 (BILL))))
has no preconditions:

The act
((M27 (ACTION (CALL)) (OBJECT1 (BILL))))
has a plan:
((M31! (ACT (M27 (ACTION (CALL)) (OBJECT1 (BILL))))

(PLAN
(M30 (ACTION (SNSEQUENCE))
(OBJECT1 (M23 (ACTION (SAY)) (OBJECT1 (Come here))))
(OBJECT2 (M17 (ACTION (SAY)) (OBJECT1 (BILL))))))))

44 CHAPTER 4. SNERE: THE SNEPS RATIONAL ENGINE

Intending to do
((M40 (ACTION (DO-ONE))

(OBJECT1
(M30 (ACTION (SNSEQUENCE))
(OBJECT1 (M23 (ACTION (SAY)) (OBJECT1 (Come here))))
(OBJECT2 (M17 (ACTION (SAY)) (OBJECT1 (BILL))))))))

Now doing: DO-ONE
((M30 (ACTION (SNSEQUENCE))

(OBJECT1 (M23 (ACTION (SAY)) (OBJECT1 (Come here))))
(OBJECT2 (M17 (ACTION (SAY)) (OBJECT1 (BILL))))))

Chose to do the act
((M30 (ACTION (SNSEQUENCE))

(OBJECT1 (M23 (ACTION (SAY)) (OBJECT1 (Come here))))
(OBJECT2 (M17 (ACTION (SAY)) (OBJECT1 (BILL))))))

About to do
((M23 (ACTION (SAY)) (OBJECT1 (Come here))))

I wonder if the act
((M23 (ACTION (SAY)) (OBJECT1 (Come here))))
has any preconditions...

The act
((M23 (ACTION (SAY)) (OBJECT1 (Come here))))
has no preconditions:

Come here

About to do
((M17 (ACTION (SAY)) (OBJECT1 (BILL))))

I wonder if the act
((M17 (ACTION (SAY)) (OBJECT1 (BILL))))

has any preconditions...
The act
((M17 (ACTION (SAY)) (OBJECT1 (BILL))))

has no preconditions:

BILL

Now doing: DO-ALL
((M38 (ACTION (BELIEVE))

(OBJECT1 (M25 (AGENT (BILL)) (LOCATION (HERE)) (STATE (IS))))))

Believe
(M25! (AGENT BILL) (LOCATION HERE) (STATE IS))
CPU time : 2.07

4.6. THE EXECUTION CYCLE: PRECONDITIONS AND EFFECTS 45

• The current version of SNeRE will believe that all effects of an act are achieved, even though this may
be a naive assumption.

• The current version of the primitive action function do-all is

(define-primaction do-all (object1)
(do.ns (act object1)

(schedule-act act)))

but the user could redefine it if she wanted to make a more intelligent decision about the order in which
the acts should be performed.

• The current version of the primitive action function do-one is

(define-primaction do-one (object1)
(schedule-act
(lisp-list-to-ns (if snip::*choose-randomly*

(nth (random (cardinality.ns object1))
(ns-to-lisp-list object1))

(first (ns-to-lisp-list object1))))))

but the user could redefine it if she wanted to make a more intelligent decision about which act should
be performed.

46 CHAPTER 4. SNERE: THE SNEPS RATIONAL ENGINE

Chapter 5

Program Interface

5.1 Transformers

These functions convert Lisp objects to SNePS nodes, and vice versa.

(apply-function-to-ns fn ns)
Converts the node set ns to a list of lisp objects, applies the function fn to that list, then converts the result to
a node set, and returns that.

(lisp-list-to-ns list)
Returns a set of nodes whose identifiers look like the printed representations of the objects in the list list.

(ns-to-lisp-list ns)
Returns a list of Lisp objects corresponding to the SNePS nodes in the node set ns.

(node-to-lisp-object nde)
Returns a Lisp object corresponding to the SNePS node nde. The Lisp object will be either a number or a
symbol.

(lisp-object-to-node obj)
Returns a SNePS node whose identifier looks like obj.

5.2 With-SNePSUL Reader Macro

The with-snepsul reader macro is provided so that users can easily incorporate calls to SNePSUL commands
within Lisp code.

(#[i]! (snepsul-form1 . . . snepsul-formn)) The form following #[i]! is taken to be a list of SNePSUL
forms, each of which will be executed just as if it had been typed that way at the SNePS prompt, regardless of
the package in which the #[i]! form is read. References to Lisp variables can be made via a ˜ reader macro
mechanism (similar to the comma within backquote syntax). Results of ˜ expansions will be automatically
interned into the SNePSUL package (i.e., any symbols that might be part of such a result), unless explicitly
specified otherwise. All the special reader syntax available at the SNePS top-level is available, too.

47

48 CHAPTER 5. PROGRAM INTERFACE

The semantics of the ˜ syntax is:

˜ s-expression:
S-expression will be read with ordinary reader syntax and at execution time it will be evaluated and its value
inserted into the SNePSUL expression. If the value is a symbol or a list containing symbols then these sym-
bols will be interned into the SNePSUL package first.
Ex: #!((describe ˜’(m1 m2))) will act like (describe (m1 m2)).

˜@ s-expression:
Just like ˜ but the value of the s-expression has to be a list which will be spliced into the SNePSUL ex-
pression. Any symbols occuring as leaves in the list will be interned into the SNePSUL package first. Ex:
#!((describe ˜@’(m1 m2))) will act like (describe m1 m2).

˜˜ s-expression:
Just like ˜ but symbols in the value will not be interned into the SNePSUL package.

˜˜@ s-expression:
Just like ˜@ but symbols in the value will not be interned into the SNePSUL package.

CAUTION: The ˜ syntax can only be used within SNePSUL forms, but not to denote multiple forms,
e.g., while #!(˜com1 ˜com2 ˜com3) is legal (as long as the runtime values of comi represent proper
SNePSUL commands), #!(˜@commands) is not!!

Supplying an optional digit argument can be used to select a specific evaluation function, or to suppress
output:

arg eval function silent syntax
no arg topsneval no #!(....)

1 topsneval no #1!(....)
2 eval no #2!(....)
3 topsneval yes #3!(....)
4 eval yes #4!(....)

For example, #4!((build relation node)) will use the function eval to evaluate the form (hence
build can be used!!), and will suppress any output generated by the snepsul command.

5.2.1 Controlling the Evaluation of SNePSUL Forms Generated by #!
(defvar *with-snepsul-eval-function* #’with-snepsul-standard-eval
“The value of this variable has to be a function of two arguments, an eval-function and a form to which
the function should be applied. Binding this variable to different functions can implement various different
evaluation behaviors, such as normal evaluation, tracing, top-level-like echoing, evaluating and printing the
result, etc., when the form gets evaluated inside with-snepsul-eval.”)

The following evaluation functions are available:

(with-snepsul-standard-eval function form)
Standard function used by with-snepsul-eval to evaluate form with evaluation function.

(with-snepsul-trace-eval function form)
Does not actually evaluate form, only prints it for debugging purposes.

(with-snepsul-toplevel-style-eval function form)
Evaluates the SNePSUL form using function and returns the result. Additionally, prints the prompt, form,
result and timing information just like the top-level SNePS loop does—good for monitoring the execution of
the actual SNePSUL commands.

5.2. WITH-SNEPSUL READER MACRO 49

5.2.2 Example Use of #!

> (in-package ’user)
#<Package "USER" 79D15E>

> (defun myassert (relation nodes)
(let ((base-node-var ’mybase))

#!((define ˜relation ˜˜relation myrel snip::test)
(assert ˜relation (˜@nodes) snip::test #˜base-node-var)
(describe ˜@(setq nodes (cdr nodes)))
(assert ˜˜relation (˜˜@nodes) myrel *˜base-node-var)
(assert arg (build myrel hans ˜relation franz)

myrel *mybase)
(describe *nodes))))

MYASSERT

;; If the variable *with-snepsul-eval-function* is bound to the
;; function #’with-snepsul-trace-eval then the generated SNePSUL
;; expression will only be printed, but not actually executed:

> (let ((sneps:*with-snepsul-eval-function*
#’sneps:with-snepsul-trace-eval))

(myassert ’relrel ’(hans franz otto)))
(SNEPS:DEFINE SNEPSUL::RELREL ;; Note "snepsulization" with single ˜

USER::RELREL ;; Package preservation with double ˜
SNEPSUL::MYREL ;; Unqualified symbols go into SNePSUL
SNIP::TEST) ;; Qualified symbols keep their package

(SNEPS:ASSERT SNEPSUL::RELREL
(SNEPSUL::HANS SNEPSUL::FRANZ

SNEPSUL::OTTO)
SNIP::TEST
;; had to replace the |’s with !’s here (comment problem)
(SNEPS:!#! ’SNEPSUL::MYBASE)) ;; Combination of # and ˜

(SNEPS::DESCRIBE SNEPSUL::FRANZ SNEPSUL::OTTO)
(SNEPS:ASSERT USER::RELREL (USER::FRANZ USER::OTTO)

SNEPSUL::MYREL (SNEPS:* ’SNEPSUL::MYBASE))
(SNEPS:ASSERT SNEPS:ARG (SNEPS:BUILD SNEPSUL::MYREL SNEPSUL::HANS

SNEPSUL::RELREL SNEPSUL::FRANZ)
SNEPSUL::MYREL (SNEPS:* ’SNEPSUL::MYBASE))

(SNEPS::DESCRIBE (SNEPS:* ’SNEPS:NODES))

;; Now actually run it:
> (myassert ’relrel ’(hans franz otto))
(FRANZ)
(OTTO)

(B1)
(FRANZ) ;; user::franz
(FRANZ) ;; snepsul::franz
(HANS)
(M1! (RELREL FRANZ HANS OTTO))

50 CHAPTER 5. PROGRAM INTERFACE

(M2! (RELREL FRANZ OTTO))
(M3 (MYREL HANS) (RELREL FRANZ))
(M4! (ARG (M3)))
(M5! (RELREL FRANZ HANS OTTO)

(TEST B1))
(M6! (MYREL B1)

(RELREL FRANZ OTTO))
(M7! (ARG (M3)) (MYREL B1))
(B1 FRANZ FRANZ HANS M1! M2! M3 M4! M5! M6! M7! OTTO OTTO)
SNEPS:DEFAULT-DEFAULTCT

;; Here’s what the definition of myassert looks like:
> (ppdef ’myassert)
(LAMBDA (RELATION NODES)

(BLOCK MYASSERT
(LET ((BASE-NODE-VAR ’MYBASE))

(PROGN ;; progn generated by #!
(SNEPS::WITH-SNEPSUL-EVAL

‘(SNEPS:DEFINE ,(SNEPS::SNEPSULIZE RELATION) ,RELATION
SNEPSUL::MYREL SNIP::TEST)

#’SNEPS:TOPSNEVAL NIL)
(SNEPS::WITH-SNEPSUL-EVAL

‘(SNEPS:ASSERT ,(SNEPS::SNEPSULIZE RELATION)
(,@(SNEPS::SNEPSULIZE NODES)) SNIP::TEST
(SNEPS:!#! ’,(SNEPS::SNEPSULIZE BASE-NODE-VAR)))

#’SNEPS:TOPSNEVAL NIL)
(SNEPS::WITH-SNEPSUL-EVAL

‘(SNEPS::DESCRIBE
,@(SNEPS::SNEPSULIZE (SETQ NODES (CDR NODES))))

#’SNEPS:TOPSNEVAL NIL)
(SNEPS::WITH-SNEPSUL-EVAL

‘(SNEPS:ASSERT ,RELATION (,@NODES) SNEPSUL::MYREL
(SNEPS:* ’,(SNEPS::SNEPSULIZE BASE-NODE-VAR)))

#’SNEPS:TOPSNEVAL NIL)
(SNEPS::WITH-SNEPSUL-EVAL

‘(SNEPS:ASSERT SNEPS:ARG
(SNEPS:BUILD SNEPSUL::MYREL SNEPSUL::HANS
,(SNEPS::SNEPSULIZE RELATION) SNEPSUL::FRANZ)

SNEPSUL::MYREL (SNEPS:* ’SNEPSUL::MYBASE))
#’SNEPS:TOPSNEVAL NIL)

(SNEPS::WITH-SNEPSUL-EVAL
’(SNEPS::DESCRIBE (SNEPS:* ’SNEPS:NODES))

#’SNEPS:TOPSNEVAL NIL)))))

5.3. DEFINING NEW COMMANDS 51

5.3 Defining New Commands

(defsnepscom command ([({arg}∗)] [environments] [eval-args]) {body-form}∗)

defsnepscom is a Lisp macro that defines SNePSUL commands. All standard SNePSUL commands
such as find, assert, deduce, etc., are defined via defsnepscom. More importantly, defsnepscom
is the only way to define commands which will be recognized as legal SNePSUL commands at the SNePS
top level. The syntax of defsnepscom is very similar to that of a standard defun or defmacro.

command is a Lisp symbol which serves as the command name, e.g., find, deduce, my-find, isa,
etc. command will get exported automatically from its home package and imported into the SNePSUL
package, hence, even if the command was defined in a different package, it can be used at the SNePS top
level without package qualifiers. The only catch is that if command is the name of a standard COMMON LISP
function as in the case of find or assert, then that symbol has to be shadowed in its home package with
the COMMON LISP function shadow before the command gets defined.

({arg}∗) is an optional argument list in the standard COMMON LISP syntax. An actual call to the
command has to be legal according to that argument list, otherwise an error will occur. The only difference
to the standard defun style of specifying argument lists is an extra level of nesting as shown in the examples
below.

The optional second argument environments defines the places in which the command can legally appear.
An environment is basically a specification of a location in which a command can be used. For example,
some commands can only be used at the top level, some commands can never be used at the top level but only
inside some other command, some commands can only be used within find commands, etc. See Section 1.4
for more information on environments. environments can either be :all to define command as legal in all
possible environments, or it can be a subset of (top rs bns fns ons rearrange) specified as a
list, which will make it legal in the specified environments. These abbreviations indicate environments as
specified in the following table.

top The top level of SNePS 2
rs A relation-set position embedded in a command
bns A node-set position in build
fns A node-set position in find or findassert
ons A node-set position in any of the other commands
rearrange The command is an infix or postfix command.

A third possibility, which is probably the one most commonly used, is to supply the name of an already
existing command, in which case command will be legal in all environments in which the supplied com-
mand is legal. environments defaults to (top). According to the specified environments, defsnepscom
automatically updates the SNePSUL variables commands, topcommands, etc. (See Section 1.7.)

By default, commands defined with defsnepscom do not evaluate their arguments. If one wants com-
mand arguments to be evaluated before they get passed (similar to the behavior of standard functions defined
with defun), one has to specify the optional third argument, eval-args as t.

body-forms are a sequence of body forms, possibly including a documentation string and declarations just
as in a normal defun. The value/s of the last form will be returned.

Here are some examples:

Example 1:

* ˆˆ ;; escape to the Lisp level, since ‘defnepscom’ is not a SNePSUL command

--> (defsnepscom mylist ((first &optional second &rest others))
(list first second others))

52 CHAPTER 5. PROGRAM INTERFACE

T
--> ˆˆ ;; back to the SNePS top level

CPU time : 0.03

* (mylist apples oranges hans franz) ;; let’s try it out:

(APPLES ORANGES (HANS FRANZ))

CPU time : 0.01

Note, that we did not have to quote apples and oranges in the example above, because eval-args was not
specified as t.

Example 2:

* ˆˆ

--> (defsnepscom isa ((who what) assert)
"Asserts that WHO is a WHAT."
#!((assert member ˜who class ˜what)))

T
--> ˆˆ

CPU time : 0.08

* (describe (isa hans student))

(M1! (CLASS STUDENT) (MEMBER HANS))

(M1!)

CPU time : 0.02

The isa command defined above takes two arguments who and what, and it is legal in all places where the
assert command is legal, because we specified assert as the value of environments. The body of the
command has a documentation string just as a normal defun, and it uses the #! with-snepsul reader macro
(see Section 5.2) to easily call the SNePSUL command assert in the body of the command definition.

Example 3:

* ˆˆ

--> (defsnepscom lex-build ((word) (top bns) t)
"Builds a node with a ‘lex’ arc to a WORD node."
#2!((build lex ˜word)))

T
--> ˆˆ

CPU time : 0.25

5.3. DEFINING NEW COMMANDS 53

* (lex-build (progn (format t "Word: ") (read)))
Word: Lucy

(M1)

CPU time : 0.03

This last example command uses all the features: It has an argument list, it explicitly specifies two environ-
ments in which the command will be legal, and it evaluates its arguments which is the reason why we could
call it with the little interactive input specification. Note, that this command builds (not asserts) a node,
and that it will be available as a top-level command because we specified top as one of the environments.
For good reasons, the standard build command is not a top-level command, hence, in this example we
forced SNePS to do something which is normally not allowed.

By convention, every command that returns a node set should return a context as a second value which
will be used to display the node set. Commands which use an application of the #! reader macro as their last
body form will achieve this automatically. Otherwise, a form such as (values nodes crntct) has to
be used as the last body form.

defsnepscom is available in all standard SNePS packages. Hence, it can normally always be used with-
out a package qualifier. If it is used in a non-standard package it should be written as sneps:defsnepscom.

(undefsnepscoms {commands}∗)
Undefines all commands. The function definitions of the individual commands will not be removed, but the
listed commands will not be available as SNePSUL commands anymore. For example, the following will
undo the inappropriate definition of Example 3 above:

* (ˆ (undefsnepscoms lex-build))

(T)

CPU time : 0.00

* (lex-build Lucy)

SNePS ERROR: Invalid top SNePSUL form: (LEX-BUILD LUCY)
Occurred in module TOP-EVALUATOR in function TOPSNEVAL

Do you want to debug it? n

*

54 CHAPTER 5. PROGRAM INTERFACE

Chapter 6

SNePSLOG

6.1 SNePSLOG Basics
SNePSLOG is a logic programming interface to SNePS. That is, almost everything that can be done interac-
tively using SNePSUL can be done interactively using SNePSLOG, just with a syntax that looks more like
traditional symbolic logic than SNePSUL does. Use of SNePSLOG rather than SNePSUL is recommended
for the SNePS novice.

To enter SNePSLOG, load SNePS and evaluate

(snepslog)

To leave SNePSLOG, execute the SNePSLOG command

lisp

The default Common Lisp package for symbols read by the SNePSLOG reader is snepslog.
The full details of the SNePSLOG syntax is in §6.2. The semantics are given in §6.3.

6.2 SNePSLOG Syntax
The SNePSLOG syntax is described in Tables 6.1 and 6.2 using the Extended BNF notation. Object language
terminal symbols are in this font. Grouping parentheses are (and). Alternatives are separated by the
| character. Square brackets [and] surround optional material. The Kleene star, *, indicates zero or more
repetitions. The Kleene plus, +, indicates one or more repetitions. Object language parentheses are (and
). The object language comma is ,. The object language underscore character is . The symbols i, j, and k
are non-terminal symbols representing integers. Material starting with a semicolon is a comment indicating
a restriction on the syntax.

A SNePSLOG command may continue on subsequent lines as long as the SNePSLOG command couldn’t,
according to the grammar, terminate on the initial line. If it could, and you want to continue the command on
a subsequent line, end the line with the character “\” (without the quotation marks).

Note that a SNePSLOGsymbol may be any Lisp symbol, string, or number. If a SNePSLOGsymbol is
a symbol, it is interned in the snepslog package. If a SNePSLOGsymbol is a string, it is coerced into a
symbol whose symbol-name is the original string, and is interned in the snepslog package. If a SNeP-
SLOGsymbol is a number, it is coerced into a symbol whose symbol-name is the Lisp printer representation
of the original number, and is interned in the snepslog package. Two SNePSLOGsymbols are consid-
ered the same by SNePSLOG if and only if the Lisp being used considers the symbols constructed by this
algorithm to be the same. When SNePSLOG prints a SNePSLOGsymbol, it does not print string-quotes nor
escape characters.

55

56 CHAPTER 6. SNEPSLOG

Table 6.1: The Syntax of SNePSLOG Commands
command ::= wffNameCommand | snepslogCommand | wffCommand
wffNameCommand ::= wffName terminalPunctuation
wffCommand ::= wff terminalPunctuation ; wff must not be an atomic symbol
snepslogCommand ::= % SNePSULcommand | ˆ LispForm | ˆˆ

| activate wff [.]
| activate! wff [terminalPunctuation]
| add-to-context SNePSLOGsymbol termSet [.]
| ask wff [terminalPunctuation]
| askifnot wff [terminalPunctuation]
| askwh wff [terminalPunctuation]
| askwhnot wff [terminalPunctuation]
| beliefs-about pTermSet [.]
| clear-infer [.]
| clearkb [.]
| copyright [.]
| define-frame SNePSLOGsymbol LispList [LispString] [.]
| define-path SNePSRelation SNePSPath [.]
| demo [filePath | ? | i] [t | b | bv | a | av | n] [.]
| describe-context [SNePSLOGsymbol] [.]
| describe-terms [pTermSet] [.]
| expert [.]
| lisp [.]
| list-asserted-wffs [SNePSLOGsymbol] [.]
| list-contexts [.]
| list-terms [pTermSet] [.]
| list-wffs [.]
| load filePath [.]
| normal [.]
| perform atomicTerm [.]
| remove-from-context SNePSLOGsymbol pTermSet
| set-context SNePSLOGsymbol [pTermSet]
| set-default-context SNePSLOGsymbol
| set-mode-1 [.]
| set-mode-2 [.]
| set-mode-3 [t | nil] [.]
| show [pTermSet] [.]
| trace [SNePSLOGfunction]* [.]
| undefine-path SNePSRelation [.]
| unlabeled [.]
| untrace [SNePSLOGfunction]* [.]

SNePSLOGfunction ::= inference | acting | translation | parsing
| LispSymbol

6.2. SNEPSLOG SYNTAX 57

Table 6.2: The Syntax of SNePSLOG Wffs
wff ::= infixedTerm | entailment | prefixedTerm
infixedTerm ::= prefixedTerm [(and | or | <=>) prefixedTerm]+
entailment ::= termSet (=> | v=> | &=> | i=>) termSet
pTermSet ::= termSet ; but taken to denote all terms that match
termSet ::= prefixedTerm | { termSequence }
termSequence ::= prefixedTerm [, prefixedTerm]*
prefixedTerm ::= negatedTerm | andorTerm | setTerm | threshTerm

| allTerm | nexistsTerm | atomicTerm
negatedTerm ::= ˜ atomicTerm
andorTerm ::= andor (i, j)termSet ; 0 <= i <= j
setTerm ::= (and | or | nand | nor | xor | iff) termSet
threshTerm ::= thresh (i [, j])termSet ; 0 <= i <= j
allTerm ::= all (symbolSequence) (wff) ; wff must not be an atomic symbol
nexistsTerm ::= nexists nexistsParameters (symbolSequence) (termSet : termSet)
nexistsParameters ::= (i , j , k)| (, j ,)| (i , , k)
atomicTerm ::= wffName | qvar | SNePSLOGsymbol

|withsome/allTerm ; in Mode 3 only
| (qvar | SNePSLOGsymbol) (termSetSequence)
|(wff)

withsome/allTerm ::= (withsome | withall) (symbolSequence, termSet, termSet [, termSet])
termSetSequence ::= termSet [, termSet]*
symbolSequence ::= SNePSLOGsymbol [, SNePSLOGsymbol]*
wffName ::= wffi ; wffi must already name a wff.
qvar ::= ? SNePSLOGsymbol
SNePSLOGsymbol ::= wffi | Lispsymbol | Lispstring | Lispnumber
terminalPunctuation ::= . | ! | ?? | ? [(i [j])]

58 CHAPTER 6. SNEPSLOG

6.3 SNePSLOG Semantics

6.3.1 Semantics of SNePSLOG Commands
Here we present a list of the SNePSLOG commands, with a description of what they do. See Table 6.1 for a
concise list of the SNePSLOG commands and their syntax.

• % SNePSULcommand
Executes the SNePSULcommand, and prints the result. The default Common Lisp package for symbols
in the SNePSULcommand is snepsul.

• ˆ LispForm
Evaluates the LispForm, and prints the result.

• ˆˆ
Enters a Lisp read-eval-print loop. To leave the loop, type end or ˆˆ.

• activate wff
Performs forward inference on all asserted propositions that dominate the wff.

• activate! wff
Asserts wff, and performs forward inference on it, and on all asserted propositions that dominate it.

• add-to-context SNePSLOGsymbol termSet
Adds the wffs in termSet as hypotheses in the context named SNePSLOGsymbol.

• ask wff
Performs backward inference on wff and prints the inferred positive instances of it.

• askifnot wff
Performs backward inference on wff, and prints the inferred negative instances of it.

• askwh wff
Performs backward inference on wff, and prints a list of substitutions, which, when applied to wff yield
asserted wffs.

• askwhnot wff
Performs backward inference on wff, and prints a list of substitutions, which, when applied to the
negation of wff yield asserted wffs.

• beliefs-about pTermSet
Returns a set of all the asserted wffs that dominate the terms described by pTermSet.

• clear-infer
Deletes any information placed in the “active connection graph” version of the network.

• clearkb
Empties the knowledge base.

• copyright
Prints copyright information.

• define-frame SNePSLOGsymbol (rel0 rel1 ...reln) [LispString]
If SNePSLOG is in Mode 3, this declares that every SNePSLOG term of the form P(x1, ..., xn)
is to be represented by a node of the form {〈rel0,{P}〉, 〈rel1,x1〉, ..., 〈reln,xn〉}. If
rel0 is nil, then the node will have no arc pointing to P. One function symbol may be associated
with at most one frame, and it must be possible to uniquely determine the form of the SNePSLOG

6.3. SNEPSLOG SEMANTICS 59

term from each frame. The LispString, if present, must contain the subststring "[reli]" for each
non-null reli, and will be used by describe-terms to construct a gloss of the term.

• define-path SNePSRelation SNePSPath
Defines a path-based inference rule. See §2.5.2.

• demo [filePath | ? | i] [t | b | bv | a | av | n]
The input is taken from the file specified by filePath, until the end of file is reached. The input is then
reset to the previous input stream. Notice that embebbed demos are allowed. If filePath ? or omitted, a
menu of possible demonstrations will be printed, and you will be able to choose one of them. If filePath
is an integer, and the menu lists at least that many demonstrations, the one with that number will be
run. For the meaning of the various pause controls (t, b, bv, a, av, and n), see page 10.

• describe-context [SNePSLOGsymbol]
Lists the details of the context named SNePSLOGsymbol. If SNePSLOGsymbol is omitted, describes
the default context.

• describe-terms [pTermSet]
This is only useful in Mode 3. If pTermSet is omitted, all the closed functional terms in the knowledge
base are described. If pTermSet is included, all, but only, those closed functional terms that match the
term patterns in pTermSet are described. The description of an individual constant is itself, The de-
scription of a functional term is formed from the LispString included when the frame is defined for the
term’s function symbol. The description is the LispString with every instance of "[reli]" replaced
by the description of the filler(s) of the "[reli]" slot. For example, after the frame definitions:

define-frame mother (nil motherof) "the mother of [motherof]"
define-frame female (property object) "[object] is [property]"

the description of female(mother(Betty)) will be

The mother of Betty is female.

• expert
Turns on the expert mode, in which the wffName of listed terms is shown, as in normal mode (cf), and,
in addition, when a SNePSLOG proposition is printed, its support set is shown.

• lisp
Leaves the SNePSLOG loop, and returns to the Lisp listener.

• list-asserted-wffs [SNePSLOGsymbol]
Lists all propositions that are asserted in the context named SNePSLOGsymbol. If no argument is
given, the default context is used.

• list-contexts
Lists the names of all the contexts that have been defined since the last time the knowledge base was
cleared.

• list-terms [pTermSet]
If pTermSet is omitted, all the closed functional terms in the knowledge base are printed. If pTermSet
is included, all, but only, those closed functional terms that match the term patterns in pTermSet are
printed.

• list-wffs
Lists all propositions that are asserted in any context. That is, all propositions that have been asserted
as hypotheses or have been derived, regardless of which context they are in.

60 CHAPTER 6. SNEPSLOG

• load filePath
Executes the contents of the specified file as a series of SNePSLOG commands, without doing any
printing. All assertions specified by the file are done as one batch at the end of the loading process, and
they are all asserted into the current context.

• normal
Returns to the (default) normal mode. In the normal mode, each term is printed using its SNePSLOG
representation, and preceded by its wff name, which is wffn, for some integer n. Note that wffn is
the same node referred to in SNePSUL as mn. The wff name is followed by an exclamation mark (!)
if and only if the term is a proposition asserted in the current context.

• perform atomicTerm
If SNePSLOG is in Mode 3, the act denoted by atomicTerm (either an individual constant or ground
functional term) is performed. (See §6.5.)

• remove-from-context SNePSLOGsymbol pTermSet
Removes the terms that match the patterns in pTermSet from the context named SNePSLOGsymbol.

• set-context SNePSLOGsymbol [pTermSet]
Defines a context named SNePSLOGsymbol, and sets its initial set of hypotheses to be the terms that
match the patterns in pTermSet. Note that pTermSet could be empty or omitted, in which case, the new
context is initialized with an empty set of hypotheses.

• set-default-context SNePSLOGsymbol
Makes the context named SNePSLOGsymbol the current, default, context.

• set-mode-1
The knowledge base is cleared, and SNePSLOG is put into Mode 1 (the default mode). In this mode,
every term of the form P(x1, . . . , xn) is represented by a node of the form

{〈r, {P}〉, 〈a1, {x1}〉, . . . , 〈an, {xn}〉}

Mode 1 is the mode to use when there is no specific reason to use Mode 2 or Mode 3. It requires less
set-up effort for the user than Mode 3, because no frames need to be defined. Inference in Mode 1 is
less efficient than in the other modes because more terms match any given pattern.

• set-mode-2
The knowledge base is cleared, and SNePSLOG is put into Mode 2. In this mode, every proposition of
the form P(x1, . . . , xn) is represented by a node of the form

{<| rel P|, {P}>, <|rel-arg#P1|, {x1}>, ..., <|rel-arg#Pn|, {xn}>}

Mode 2 is a compromise between Modes 1 and 3. It requires no more user set-up effort than Mode
1 does; inference is more efficient than in Mode 1, because fewer terms match any given pattern; but,
unlike in Mode 1, variables may not be used as function symbols in queries.

• set-mode-3
The knowledge base is cleared, and SNePSLOG is put into Mode 3. In this mode, the user must specify
how terms are represented by using define-frame. Inference can be more efficient if the user uses
a wide variety of frames. This mode facilitates path-based reasoning, and is required if the SNePSLOG
version of SNeRE (§6.5) is to be used. In this mode, SNePSLOG syntax may be used to build almost
any SNePS network that can be built using SNePSUL.

6.3. SNEPSLOG SEMANTICS 61

• show [pTermSet]
Displays the knowledge base in graphical form as a network, If pTermSet is omitted, all the closed
functional terms in the knowledge base are printed. If pTermSet is included, all, but only, those terms
that match the term patterns in pTermSet are printed. Depending on the SNePS installer’s choice, show
either uses dot or JUNG and JIMI. dot produces a static figure. JUNG/JIMI produces a graph that
can be manipulated by hand. Neither dot, JUNG, nor JIMI are part of the SNePS distribution. dot
is part of the Graphviz package which can be downloaded from http://graphviz.org/). JUNG
and it’s associated packages, Xerxes, Colt, and Jakarta Common Collections, can be
downloaded from http://jung.sourceforge.net/. JIMI can be downloaded from http:
//java.sun.com/products/jimi/. The SNePS installer may install either the dot version or
the JUNG/JIMI version, both, or neither. If both are installed, the user can dynamically pick the ver-
sion to be used by setting the global variable cl-user:*use-gui-show* to t for the JUNG/JIMI
version, or to nil for the dot version.

• trace [SNePSLOGfunction]*
If SNePSLOGfunction is
inference: Inference tracing is turned on.
acting: Tracing of acting is turned on.
translation: The translation of each SNePSLOG command into SNePSUL is shown.
parsing: The parsing of each SNePSLOG command is traced.
The name of any Lisp function: That function is traced.

• undefine-path SNePSRelation
Deletes the path-based inference rule from the SNePSRelation.

• unlabeled
Turns on unlabeled mode, in which, when a term is printed, neither its wffName (see normal mode),
nor its support set (see expert mode) is printed.

• untrace [SNePSLOGfunction]*
If SNePSLOGfunction is
inference: Inference tracing is turned off.
acting: Tracing of acting is turned off.
translation: The translation of each SNePSLOG command into SNePSUL is not shown.
parsing: The parsing of each SNePSLOG command is not traced.
The name of any Lisp function: That function is not traced.

6.3.2 Semantics of wffNameCommands
A wffNameCommand is a wffName followed by one of the terminalPunctuation marks: “.”, “!”, “??”, or
“?”. A wffName is a symbol made up of “wff” followed by an integer. WffNames are assigned to terms by
SNePSLOG. If the wffName wffi, for some i, has already been assigned to a term, then using wffi in a
wffNameCommand or in any SNePSLOG expression is equivalent to using the term that it names. Actually,
it is even better. Whenever SNePSLOG parses a new variable (not just a new occurrence of a variable), it
creates a new variable node (see S1.5), even if the variable has the same name as a previous one. So a
variable-containing term in one wffCommand will never be the same, identical, term as one included in a
previous wffCommand. However, the wffName assigned to a term will always refer to that term. Note the
difference between the two techniques here:

: all(x)(Robin(x) => Bird(x)).
wff1!: all(x)(Robin(x) => Bird(x))

: Source(all(x)(Robin(x) => Bird(x)), "World Book").
wff3!: Source(all(x)(Robin(x) => Bird(x)),World Book)

62 CHAPTER 6. SNEPSLOG

: list-terms
wff1!: all(x)(Robin(x) => Bird(x))
wff2: all(x)(Robin(x) => Bird(x))
wff3!: Source(all(x)(Robin(x) => Bird(x)),World Book)

: clearkb
Knowledge Base Cleared

: all(x)(Robin(x) => Bird(x)).
wff1!: all(x)(Robin(x) => Bird(x))

: Source(wff1, "World Book").
wff2!: Source(all(x)(Robin(x) => Bird(x)),World Book)

: list-terms
wff1!: all(x)(Robin(x) => Bird(x))
wff2!: Source(all(x)(Robin(x) => Bird(x)),World Book)

If a wffName wffi is used before having been assigned to a term, it will be interpreted as being an
individual constant. It will continue to be that individual constant until SNePSLOG assigns it to a term.
After that, it will always refer to its assigned term, and no longer be recognized as the individual constant.

An assigned wffName in a wffNameCommand refers to its assigned term, and the meaning of the wff-
NameCommand depends on the terminalPunctuation in exactly the same way as for wffCommands (see
§6.3.3).

6.3.3 Semantics of wffCommands
A wffCommand is a wff followed by one of the terminalPunctuation marks: “.”, “!”, “??”, or “?”. The effect
of the wffCommand depends on the terminalPunctuation as follows:

. The wff is asserted into the knowledge base as an hypothesis of the current context, and it is printed.
However, if in Mode 3 and the wff is a policy, it is adopted instead of asserted.

! The wff is asserted into the knowledge base as an hypothesis of the current context, and forward inference
is done on it. It and all wffs newly asserted as a result of this wffCommand are printed.

?? If the wff is asserted in the knowledge base, it is printed; otherwise nothing is printed. If qvars (see
Table 6.2) occur in the wff, they are taken as free variables, and all ground instances that are asserted
are printed.

? [(i [j])] Backward inference is done on the wff. If qvars (see Table 6.2) occur in the wff, they are
taken as free variables. If either instances of the wff or of its negation are inferred (or already asserted),
those wffs are printed. If no instances of it or its negation are asserted or inferred nothing is printed.
If (i) is included after the question mark, backward inference stops as soon as at least i instances of
the wff or its negation are inferred. If (i j) is included after the question mark, backward inference
stops as soon as at least i positive instances and j negative instances of the wff are inferred.

Forward and backward inference create and use an active connection graph (acg). The acg prevents
infinite recursion when recursive rules are used, and answers some queries without further inference. It also
focusses the interaction on the current reasoning problem. However, occasionally it causes inferences not to
be made even though the knowledge base contains enough information to make them. In that latter case, it
may help to perform the clear-infer SNePSLOG Command, and then try again.

6.3. SNEPSLOG SEMANTICS 63

6.3.4 Semantics of SNePSLOG Wffs

In this section, we will mainly present the intended semantics of SNePSLOG wffs. We realize, however,
that any particular user might have different semantics in mind. If SNePS is useful for that user under those
semantics that’s fine with us!

We intend a SNePS knowledge base to represent the mental entities conceived of by some individual
agent. Some of those entities will be propositions, and some propositions will be asserted, that is, believed
by the agent.

A SNePS knowledge base has one or more contexts. A context has a set of hypotheses, which are propo-
sitions that were introduced to the system (agent) without justification—typically by the user using a wff-
Command terminated by “.” or “!”. At any time, one context is the current context. The agent believes all
the propositions that are hypotheses in the current context, as well as all propositions that have been derived
from those hypotheses. The set of hypotheses and derived propositions that are currently believed is called
the current belief space. Every currently believed proposition is also called “asserted”, and when its wffName
is printed, it is terminated by an “!”.

Every well-formed expression of SNePSLOG is a term of the language. Expressions that look to the
logically-trained user like formulas or sentences are actually proposition-valued terms (even though SNeP-
SLOG uses wffi for its “wffName”). The significance of this is that, because terms may be arguments of
terms, and may have variables ranging over them, without leaving first-order logic, metapropositions (propo-
sitions about propositions) are allowed in SNePSLOG.

Given that background, we will now discuss the intended semantics of SNePSLOG expressions.
An individual constant, expressed in SNePSLOG as a Lisp symbol, string, or number, denotes a mental

entity. The unique names assumption holds, meaning that no two mental entities may be considered to be
entirely equal.

A function symbol, also expressed in SNePSLOG as a Lisp symbol, string, or number, denotes a con-
ceptualized function or relation in the domain. (Recall that what is considered a truth-functional relation in
standard logic is a proposition-valued function in SNePS.) Function symbols do not have fixed arity in SNeP-
SLOG. In fact p(a,b,c) implies p(a,b) by reduction inference. The user must be careful to always give
a function symbol the same number of arguments if this behavior is not wanted.

A functional term, consisting of a function symbol and its arguments, denotes a mental entity, possibly
a proposition, in the domain, namely that mental entity that results from applying the denotation of the
functional term to the denotations of the arguments. No two functional terms that are syntactically different
denote the same mental entity. This is called the Uniqueness Principle.

Functional terms with sets as arguments takes the elements of the sets conjunctively. For example,
motherOf({John, Jane, Tom, Betty}) is the mother of John, Jane, Tom, and Betty. Also
Isa({Rover, Fido}, {dog, pet}) is the proposition that Rover and Fido are both dogs and pets.

andor(i,j){P1, ..., Pn} denotes the proposition that at least i and at most j of P1, ...,
Pn are true.

P1 and ...and Pn is an abbreviation of andor(n,n){P1, ..., Pn}.
P1 or ...or Pn is an abbreviation of andor(1,n){P1, ..., Pn}.
and{P1, ..., Pn} is an abbreviation of andor(n,n){P1, ..., Pn}.
or{P1, ..., Pn} is an abbreviation of andor(1,n){P1, ..., Pn}.
nand{P1, ..., Pn} is an abbreviation of andor(0,n-1){P1, ..., Pn}.
nor{P1, ..., Pn} is an abbreviation of andor(0,0){P1, ..., Pn}.
xor{P1, ..., Pn} is an abbreviation of andor(1,1){P1, ..., Pn}.
thresh(i, j){P1, ..., Pn} denotes the proposition that either fewer than i or more than j of

P1, ..., Pn are true.
thresh(i){P1, ..., Pn} is an abbreviation of thresh(i, n-1){P1, ..., Pn}.
P1 <=> ...<=> Pn is an abbreviation of thresh(1,n-1){P1, ..., Pn}.
iff{P1, ..., Pn} is an abbreviation of thresh(1,n-1){P1, ..., Pn}.

64 CHAPTER 6. SNEPSLOG

{P1, ..., Pn} i=> {Q1, ..., Qm} denotes the proposition that if any i of P1, . . . , Pn are true,
than so are Q1, . . . , and Qm.
{P1, ..., Pn} => {Q1, ..., Qm} is an abbreviation of {P1, ..., Pn} 1=> {Q1, ...,

Qm}.
{P1, ..., Pn} v=> {Q1, ..., Qm} is an abbreviation of {P1, ..., Pn} 1=> {Q1, ...,

Qm}.
{P1, ..., Pn} &=> {Q1, ..., Qm} is an abbreviation of {P1, ..., Pn} n=> {Q1, ...,

Qm}.
all(x1, ...xn)(P(x1,...,xn)) denotes the proposition that every ground instance of P(x1,

..., xn) that obeys the Unique Variable Binding Rule (UVBR) is true. A ground instance of P(x1,...,xn)
obeys UVBR if no term already in P(x1,...,xn) substitutes for any of the variables x1,..., xn, and
if no one term substitutes for more than one variable.

nexists(i,j,k)(x1, ..., xn)({P1, ..., Pnn} : {Q1, ...Qmm} denotes the propo-
sition that there are k substitution instances (obeying UVBR) of x1, ..., xn that satisfy P1, ...,
Pnn, and of them, at least i and at most j also satisfy Q1, ...Qmm.

nexists(i, ,k)(x1, ..., xn)({P1, ..., Pnn} : {Q1, ...Qmm} abbreviates
nexists(i, k, k)(x1, ..., xn)({P1, ..., Pnn} : {Q1, ...Qmm} nexists(,j,)(x1,
..., xn)({P1, ..., Pnn} : {Q1, ...Qmm} denotes the proposition that there are at most k
substitution instances (obeying UVBR) of x1, ..., xn that satisfy P1, ..., Pnn and also Q1,
...Qmm.

In all cases “. . . are true” does not mean the same as “. . . are believed”. Truth is from the point of view
of the agent. For example, if the agent believes p() => q() (that is, the wff p() => q() is asserted in
the current belief space), and also believes p(), it still might not believe q() if the “rule” p() => q()
hasn’t “fired”, but when the rule p() => q() does fire, the agent will believe q(). (That is, when the
agent “reasons” using p() => q(), it will conclude q().)

6.4 SNIP in SNePSLOG

6.4.1 Rules of Inference
The implemented rules of inference of SNePSLOG are listed in this section. Not all logically possible op-
erations have been implemented. Each connective and quantifier could have introduction rules and elim-
ination rules. Each of those could operate while forward chaining, while backward chaining, and during
bi-directional inference. There are two aspects to bi-directional inference:

1. If a proposition forward chains into one antecedent of a rule, backward chaining is performed on the
other antecedents, and first, if necessary, on the rule itself. This backward inference triggered by
forward inference operates whenever forward inference operates.

2. If backward inference creates a subgoal that is not satisfied, the subgoal remains as an active pro-
cess until the next time clear-infer is issued. If the subgoal is later matched during forward
inference, the backward inference that created it is resumed. Forward inference that causes one of
these backward-inference processes to be resumed is called “forward-in-backward chaining” below.
Forward-in-backward chaining operates for whatever rules of inference normal forward chaining oper-
ates, but sometimes it is operational even though normal forward chaining isn’t.

Reduction inference and path-based inference are used when open terms are matched during forward and
backward chaining. The Unique Variable Binding Rule is also enforced during matching. According to this
rule, two different variables in one wff cannot be instantiated by different terms, and no variable in a wff can
be instantiated by another term in its wff.

Whenever a set of wffs is indicated in this section, the wffs are listed in a convenient order. For example,
in the andor(n,n)-Elimination rule, any wff can be inferred, not just the first one listed.

6.4. SNIP IN SNEPSLOG 65

Reduction Inference: If t, t1, ..., tn are terms, α and β are sets of terms, β ⊂ α, and t ∈ α, then

1. P(t1, ..., α, ..., tn) ` P(t1, ..., β, ..., tn)

2. P(t1, ..., α, ..., tn) ` P(t1, ..., t, ..., tn)

Path-Based Inference: If

1. define-frame P(r r1 ...ri ...rn) has been done,

2. define-path ri ρ has been done,

3. P(a1, ..., ai, ..., an) is asserted,

4. and the path ρ exists in the network from ai to b,

then P(a1, ..., {ai,b}, ..., an) can be derived.

andor(n,n)-Elimination: andor(n,n){P1, ..., Pn} ` P1 operates during both forward and back-
ward chaining.

andor(n,n)-Introduction: P1, ..., Pn ` andor(n,n){P1, ..., Pn} operates during back-
ward chaining and forward-in-backward chaining.

andor(0,0)-Elimination: andor(0,0){P1, ..., Pn} ` ˜P1 operates during both forward and
backward chaining.

andor(0,0)-Introduction:

1. ˜P1, . . . , ˜Pn ` andor(0,0){P1, ..., Pn} operates during backward chaining and forward-
in-backward chaining.

2. If P is asserted with the origin set α, and ˜P is asserted with the origin set β, and H is in α ∪ β
and is chosen as the culprit of the contradiction, then ˜H is derived in the origin set (α∪ β)\{H}.

andor(i,j) (i< n, j> 0) -Elimination:

1. andor(i,j){P1, ..., Pn}, P1, . . . , Pj ` ˜Pn, for 0 ≤i≤j< n, 0 <j<n, operates
during both forward and backward chaining.

2. andor(i,j){P1, ..., Pn}, ˜P1, . . . , ˜Pn−i ` Pn, for 0 <i< n, i≤j≤n, operates during
both forward and backward chaining.

thresh-Elimination:

1. thresh(i,j){P1, ..., Pn}, P1, . . . , Pi, ˜Pi+1, . . . , ˜Pi+n−j−1 ` Pn, operates during
both forward and backward chaining.

2. thresh(i,j){P1, ..., Pn}, P1, . . . , Pi−1, ˜Pi, . . . , ˜Pi+n−j−1 ` ˜Pn, operates during
both forward and backward chaining.

i=>-Elimination: {P1, ..., Pn} i=> {Q1, ..., Qm}, P1, ..., Pi ` Q1 operates during
both forward and backward chaining.

v=>-Introduction: If P1 ` {Q1, ..., Qm}, then ` P1 v=> {Q1, ..., Qm}, operates during back-
ward chaining.

&=>-Introduction: If P1, ..., Pn ` Q1, and . . . , and P1, ..., Pn ` Qm such that Q1, and, . . . ,
and Qm have an origin set in common, then ` {P1, ..., Pn} &=> {Q1, ..., Qm}, operates
during backward chaining.

66 CHAPTER 6. SNEPSLOG

nexists-Elimination:

1.
nexists(i,j,k)(~x)({P1(~x), ..., Pn(~x)}:Q(~x)),
P1(~a1), . . . , Pn(~a1), Q(~a1),
. . . ,
P1(~aj), . . . , Pn(~aj), Q(~aj),
P1(~aj+1), . . . , Pn(~aj+1) ` ˜Q(~aj+1)

operates during both forward and backward chaining.

2.
nexists(i,j,k)(~x)({P1(~x), ..., Pn(~x)}:Q(~x)),
P1(~a1), . . . , Pn(~a1), ˜Q(~a1),
. . . ,
P1(~ak−i), . . . , Pn(~ak−i), ˜Q(~ak−i),
P1(~ak−i+1), . . . , Pn(~ak−i+1) ` Q(~ak−i+1)

operates during both forward and backward chaining.

all-Elimination:

1. all(~x)(andor(i,j){P1(~x), ..., Pn(~x)}), P1(~a), . . . , Pj(~a) ` ˜Pn(~a), for 0 ≤i≤j<
n, 0 <j<n

2. all(~x)(andor(i,j){P1(~x), ..., Pn(~x)}), ˜P1(~a), . . . , ˜Pn−i(~a) ` Pn(~a), for 0 <i<
n, i≤j≤n

3. all(~x)(thresh(i,j){P1(~x), ..., Pn(~x)}), P1(~a), . . . , Pi(~a), ˜Pi+1(~a), . . . , ˜Pi+n−j−1(~a)
` Pn(~a)

4. all(~x)(thresh(i,j){P1(~x), ..., Pn(~x)}), P1(~a), . . . , Pi−1(~a), ˜Pi(~a), . . . , ˜Pi+n−j−1(~a)
` ˜Pn(~a)

5. all(~x)({P1(~x), ..., Pn(~x)} i=> {Q1(~x), ..., Qm(~x)}), P1(~a), ..., Pi(~a)
` Q1(~a)

operate during both forward and backward chaining.

6.4.2 Recursion
Recursive rules such as

all(x,y,z)(ancestor(x,y), ancestor(y,z) &=> ancestor(x,z))

may be used without causing an infinite loop.
Infinite loops caused by backward chaining on rules such as

all(x)(duck(motherOf(x)) => duck(x))

or by forward chaining on rules such as

all(x)(number(x) => number(successorOf(x)))

are terminated under the control of the global parameters *depthCutoffBack* and
depthCutoffForward, respectively. If a subgoal is generated during backward chaining whose depth,
in terms of parenthesis nesting, exceeds *depthCutoffBack*, it is not pursued. Also, if a result is gener-
ated during forward chaining whose depth, in terms of parenthesis nesting, exceeds
depthCutoffForward, it is not pursued. *depthCutoffBack* and *depthCutoffForward*
are each set by default to 10, and can be changed independently via setf.

6.5. SNERE IN SNEPSLOG 67

6.5 SNeRE in SNePSLOG

6.5.1 SNePSLOG Versions of SNeRE Constructs
With the introduction of Mode 3 in SNePSLOG (see p. 60), almost every structure that can be built via
SNePSUL can be build via SNePSLOG. (For some restrictions, see §6.5.2.) Therefore, SNeRE agents can be
defined and operated via SNePSLOG. In fact, the examples of Chapter 4 are available as a SNePSLOG demo
in the distributed version of SNePS.

Each SNeRE caseframe documented in Chapter 4 has a SNeRE version predefined in Mode 3. These are
listed below.

Policies: Policies connect propositions to acts, and must be adopted in order to operate as described.

ifdo(p, a): If SNIP backchains into p, perform a.

whendo(p, a): If SNIP forward chains into p, perform a, and then unadopt the whendo.

wheneverdo(p, a): If SNIP forward chains into p, perform a.

Mental Acts:

adopt(p): The policy p is adopted, and forward chaining is performed on it. That is, if the system
is ready to act in accord with p, it does so.

believe(p): First, the following special cases of belief revision are performed:

• If andor(0,0){p, ...} is believed, it is disbelieved.
• If andor(i,1){p, q, ...} is believed and q is believed, then q is disbelieved.

Then p is asserted and forward inference is performed on it.

disbelieve(p): The proposition p, which must be a hypothesis, is unasserted.

unadopt(p): The policy p is unadopted.

Control Acts:

achieve(p): If the proposition p is asserted, do nothing. Otherwise, use deduce to infer plans for
bringing about the proposition p, and then do-one of them.

do-all({a1, ..., an}): Perform all the acts a1, ..., an in a nondeterministic order.

do-one({a1, ..., an}): Nondeterministically choose one of the acts a1, ..., an, and
perform it.

snif({if(p1,a1), ..., if(pn,an)[, else(da)]}): Using deduce determine which
of the pi hold. If any do, nondeterministically choose one of them, say pj, and perform aj.
If none of the pi can be inferred, and if else(da) is included, perform da. Otherwise, do
nothing.

sniterate({if(p1,a1), ..., if(pn,an)[, else(da)]}): Using deduce determine
which of the pi hold. If any do, nondeterministically choose one of them, say pj, perform
aj, and then perform the entire sniterate again. If none of the pi can be inferred, and if
else(da) is included, perform da. Otherwise, do nothing.

snsequence(a1, a2): Perform a1, and then perform a2.

withall(?x, p(?x), a(?x), da): Using deduce, determine which, if any, entities satisfy
the open proposition p(?x). If any do, say e1, ..., en, perform a(ei) on each of them
in a nondeterministic order. If no entity satisfies p(?x), perform da. Note: the question mark
must appear to identify the open variable, and the default act da must be included.

68 CHAPTER 6. SNEPSLOG

withsome(?x, p(?x), a(?x), da): Using deduce, determine which, if any, entities satisfy
the open proposition p(?x). If any do, nondeterministically choose one, say e, and perform
a(e). If no entity satisfies p(?x), perform da. Note: the question mark must appear to identify
the open variable, and the default act da must be included.

Propositions about Acts:

ActPlan(a1, a2): The way to perform the act a1 is to perform the act a2. Typically, a1 will
be a simple, but non-primitive act, and a2 will be an act structured using the control acts listed
above.

Effect(a, p): The effect of performing the act a is that the proposition p will hold. The SNeRE
executive described in §4.6 will automatically cause p to be asserted after a is performed.

GoalPlan(p, a): The act a is a plan for bringing about the proposition p. GoalPlan assertions
are inferred by achieve(p) to find plans for achieving p.

Precondition(a, p): In order to be able to perform the act a, the proposition p must hold. It is
assumed that the SNeRE agent is able to achieve(p). Before the SNeRE executive described
in §4.6 performs any act which has inferrable preconditions, it will attempt to achieve all the
preconditions.

6.5.2 Restrictions
Snsequence

The primitive control action snsequence (p. 30) can take an arbitrary number of acts, but SNePSLOG
cannot accept a function of an arbitrary number of arguments, so in SNePSLOG Mode 3, snsequence is
limited to two argument acts. The way around this is to define versions of snsequence for more than two
arguments. This is illustrated for a sequence of four acts below:

: set-mode-3

Net reset
In SNePSLOG Mode 3.
...

: ;;; Define the case frame for a 4-act sequence
define-frame snsequence4 (action object1 object2 object3 object4)
snsequence4(x1, x2, x3, x4) will be represented by

{<action, snsequence4>, <object1, x1>, <object2, x2>,
<object3, x3>, <object4, x4>}

: ;;; but attach it to the original snsequence primitive action
ˆ(attach-primaction snsequence4 snsequence)
t

: ;;; Define a specific primitive action to do four times
define-frame say (action object)
say(x1) will be represented by {<action, say>, <object, x1>}

: ˆ(define-primaction sayAction (object)
(print (sneps:choose.ns object)))

sayAction

6.6. THE TELL-ASK INTERFACE 69

: ;;; Attach it
ˆ(attach-primaction say sayAction)
t

: ;;; Test it
perform snsequence4(say(one), say(two), say(three), say(four))

one
two
three
four

Zero-Argument Predicates and Functions

SNePSLOG syntax does not accept atomic propositions, but it does accept zero-argument predicates and
zero-argument functions as long as the parentheses are included. A way to perform zero-argument actions In
SNePSLOG is shown here:

: set-mode-3
Net reset
In SNePSLOG Mode 3.
...

: ˆˆ
--> ;;; Define a zero-argument action
(define-primaction reportAction ()

(princ "I’m here."))
reportAction
--> ;;; Attach it
(attach-primaction report reportAction)
t
--> ˆˆ

: ;;; Define the frame so that the action arc goes to the action.
define-frame report(action)
report(x1) will be represented by {<action, report>, <nil, x1>}

: ;;; Test it
perform report()
I’m here.

6.6 The Tell-Ask Interface

The Tell-Ask interface, is an easy way to interface with SNePS from Common Lisp programs, and should be
used for this purpose whenever parts of the knowledge base are built via SNePSLOG.

(snepslog:tell string)
string must be a valid SNePSLOG input. Tell gives string to the SNePSLOG interpreter, does no

printing, and returns whatever the SNePSLOG command would return.

70 CHAPTER 6. SNEPSLOG

(parser:nl-tell string)
Assuming that a lexicon and GATN grammar have been loaded, passes string to the parser, and returns a

string containing whatever the parser returns. May be called without a package qualifier from the snepslog
package.

(snepslog:ask string &key verbose)
(snepslog:askifnot string &key verbose)
(snepslog:askwh string &key verbose)
(snepslog:askwhnot string &key verbose)
string must be a valid argument to the SNePSLOG command ask, askifnot, askwh, or askwhnot,
respectively. These functions all give string to the appropriate SNePSLOG command, and return what the
SNePSUL command would print. If :verbose is t, the functions print the results as well as returning them.

6.7 The Java-SNePS API
Users who are either running SNePS under Franz’s ACL, or as the distributed executable have a Java-SNePS
API available.

To use SNePS from a Java program:

• include in the Java program the import statements

import java.util.HashSet;
import edu.buffalo.sneps.JavaSnepsAPI;
import edu.buffalo.sneps.Substitution;

• include the locations of the files jlinker.jar and JavaSnepsAPI.jar in the Java classpath.

The Java program must create an object of the JavaSnepsAPI class. There are two constructors for
JavaSnepsAPI:

1. public JavaSnepsAPI(java.lang.String config file, int interface port)
Creates an instance of JavaSnepsAPI using the specified config file and interface port,
and starts SNePS using information specified in the config file. The config file is normally
in the JavaSnepsAPI subdirectory of the SNePS home directory, and is named
java sneps config.config, but ask the individual who installed SNePS for specifics.

2. public JavaSnepsAPI(int interface port)
Creates an instance of JavaSnepsAPI using the specified interface port. It is presumed that
the user will then manually start SNePS and invoke the connection from Common Lisp using the
function, snepslog:init-java-sneps-connection:

(snepslog:init-java-sneps-connection port classpath)
Initialize a connection between SNePS and Java on the specified port using the given java classpath
string. Call this function after creating the JavaSnepsAPI object in the Java process.

The JavaSnepsAPI class provides the methods:

• void tell(java.lang.String command)

• java.util.HashSet<java.lang.String> ask(java.lang.String command)

• java.util.HashSet<java.lang.String> askifnot(java.lang.String command)

• java.util.HashSet<Substitution> askwh(java.lang.String command)

6.7. THE JAVA-SNEPS API 71

• java.util.HashSet<Substitution> askwhnot(java.lang.String command)

• boolean isConnected()

• void endLispConnection()

The Substitution class provides the method

• java.lang.String getValFromVar(java.lang.String var).

See the Java Documentation for details on using the API and its classes and methods. The JavaSnepsAPI
subdirectory of the SNePS home directory contains the documentation and a file that provides an exam-
ple of using the Java-SNePS API, named TestAPI.java. The documentation is also located at http:
//www.cse.buffalo.edu/sneps/Docs/javadocs/.

72 CHAPTER 6. SNEPSLOG

Chapter 7

Procedural Attachment

Normally, if the system backchains into a proposition-valued function node, it will use inference to deter-
mine what instances of the (negation of the) node may be asserted. If, however, the node has an arc labelled
attachedfunction to a node that has been attached to a function, the system will determine what in-
stances of the (negation of the) node may be asserted by evaluating the attached function. For instance,
backchaining into the node

(p1 (attachedfunction Sum) (add1 3) (add2 4) (sum v1))

could result in a computation to determine that the node

(m1 (attachedfunction Sum) (add1 3) (add2 4) (sum 7))

should be asserted.
To use the procedural attachment facility, the user must do three things:

1. if using SNePSLOG, define the frames for the predicates to which functions will be attached,
if using SNePSUL, define the relations to be used as function arguments;

2. define the attached function;

3. attach the function to a SNePS predicate node.

These steps are more fully explained below.

1. For an example of (1) using the above example, the SNePSLOG user would do:

define-frame Sum(attachedfunction add1 add2 sum)

and the SNePSUL user would do:

(define add1 add2 sum)

The relation, attachedfunction is defined by the SNePS system.

2. Attached functions must be defined by

(define-attachedfunction fun (lambda variables) &body)

where:

(a) fun will be the name of the attached function.

73

74 CHAPTER 7. PROCEDURAL ATTACHMENT

(b) each lambda variable must either be a relation used for the arguments of the predicate node, or
such a relation enclosed in a pair of parentheses. If the lambda variable is an atomic relation
name, it will be bound to the (modified) set of nodes that that relation points to. If it is a relation
enclosed in parentheses, the relation symbol will be bound to one element of the (modified) set
of nodes that that relation points to (presumably, there will only be one). The way that the nodes
will be modified is

i. if the node is a variable, it will be left alone;
ii. if the node’s name looks like a Lisp number, the number will be provided;

iii. otherwise, a Lisp symbol whose name is the same string as the node’s name will be provided.
In the body of the attached function, the three Lisp predicates numberp, symbolp, and
sneps:isvar.n may be used to distinguish the three types of argument.

(c) the attached function must return a list, each of whose members is a list of two members:
i. Either: snip:pos to indicate that the instance of the proposition is to be asserted;

or snip:neg to indicate that the negation of the instance of the proposition is to be asserted;
ii. A substitution of the form (... (var term) ...) to indicate the appropriate in-

stance of the proposition, where each var is a variable-node argument, and term is a Lisp
object to be converted into a node giving the instance.

If the attached function returns nil, that indicates that neither any instance of the proposition nor
any instance of its negation is to be asserted.

A simple attached-function definition for the above example is:

(define-attachedfunction sumfn ((add1) (add2) (sum))
(cond
;; If all three are numbers, check that it is correct.
((and (numberp add1) (numberp add2) (numberp sum))
(if (cl:= (cl:+ add1 add2) sum)

‘((snip:pos nil))
‘((snip:neg nil))))

;; If add1 and add2 are numbers, and sum is a variable,
;; compute the sum.
((and (numberp add1) (numberp add2) (sneps:isvar.n sum))
‘((snip:pos ((,sum . ,(cl:+ add1 add2))))))

;; Else, don’t give an answer
(t nil)))

3. The user must attach functions to SNePS predicates using

(attach-function node fun node fun ...)

For example

(attach-function Sum sumfn)

After which, the SNePSLOG user can ask questions such as

Sum(3,4,7)?
and Sum(4,6,?x)?

and the SNePSUL user can ask questions such as

(deduce attachedfunction Sum add1 3 add2 4 sum 7)
and (deduce attachedfunction Sum add1 3 add2 4 sum $x)

Chapter 8

SNeBR: The SNePS Belief Revision
System

8.1 Hypotheses, Contexts, and Belief Spaces
A proposition may be asserted as an hypothesis or as a derived belief. An hypothesis is a proposition asserted
into the SNePS knowledge base (KB) by the user or by the believe mental act. A derived belief is one
whose assertion status depended on derivation, via the implemented rules of inference, from other beliefs.

A context (see also §1.6) is a named structure that contains a set of hypotheses. There is always a current
context within which all reasoning is performed. (In SNePSUL, many commands take an optional context
argument to change this default behavior.)

A belief space (BS) defined by a context is the union of the set of hypotheses of the context and the set of
derived beliefs that were derived from the hypotheses of the context. The current BS is the BS defined by the
current context. Whenever it is said that a proposition is asserted, it should be understood as being asserted
in the current BS.

8.2 Responsibilities of SNeBR
SNeBR, the SNePS Belief Revision System has five responsibilities:

1. Recognize when the current BS is contradictory.

2. Identify the possible culprits of a contradiction.

3. Help the user choose the culprit to be blamed for a contradiction.

4. Disbelieve any proposition derived from an hypothesis that is disbelieved (disbelief propagation).

5. Warn the user that is about to make the current BS be one that is already known to be contradictory.

These responsibilities are discussed in the following sections, using the SNePSLOG (Chapter 6) syntax.

8.3 Recognizing a Contradiction
SNeBR recognizes that the current BS is contradictory when both some proposition p and andor(i,0){p,
...} are asserted (They could be asserted in either order.), or when the SNeRE mental act believe is about
to assert a proposition that contradicts an already asserted proposition. Thus SNeBR doesn’t recognize that

75

76 CHAPTER 8. SNEBR: THE SNEPS BELIEF REVISION SYSTEM

the BS is contradictory in the sense that a contradiction could be derived; it only recognizes that contradiction
has been (or is about to be) explicitly believed. We therefore speak of a BS being “known to be contradictory.”
Similarly, we speak of a context being known to be contradictory when a contradiction has been derived from
a subset of its hypotheses.

8.4 Identifying Possible Culprits
Every proposition that was ever asserted in any BS will have a support set, a set of supports, each of which
consists of an origin tag and an origin set. If the proposition p has been introduced as an hypothesis, one
of its supports will be 〈hyp, {p}〉, where hyp is the origin tag indicating that p is an hypothesis and {p}
is the origin set containing p as its only element. If a proposition p has been derived, it will have a support
containing an origin tag of either der or ext, and an origin set which will be a set of hypotheses from which
p was derived. The SNePS inference engine, SNIP, is an implementation of a version of the logic of relevant
entailment, and guarantees that every hypothesis in the origin set was relevantly used to derive p, at least in
that way—a proposition may be derived in multiple ways, and so have multiple supports.

Whenever a contradictory pair of propositions, p and andor(i,0){p, ...} is asserted, the two
propositions will have support sets {〈τ1, σ1〉, ..., 〈τn, σn,} and {〈τ ′1, σ′1〉, ..., 〈τ ′n, σ′n}. Ev-
ery set of hypotheses σi ∪ σ′j is now known to be contradictory, and comprises a set of possible culprits for
the contradiction. At least one member of each of those sets must be chosen as a culprit, and removed from
the current context if the current BS is to be restored to a state of not being known to be contradictory.

8.5 Choosing a Culprit

8.5.1 Automatic Culprit Choosing
If the SNeRE act believe is performed on the proposition p, it is assumed that belief in p is to take priority
over any contradictory belief. Therefore, SNeBR behaves as follows.

1. If andor(0,0){p, ...} is believed as an hypothesis, it is chosen as the culprit. If it is a derived
belief, assisted culprit choosing is done.

2. If andor(i,1){p, q, ...} is believed and q is believed as an hypothesis, then q is chosen as
the culprit. If q is a derived belief, assisted culprit choosing is done1.

8.5.2 Assisted Culprit Choosing
If automatic culprit choosing is not done, the user must decide what to do about the contradictory BS with
the assistance of SNeBR.

First, SNeBR informs the user that “a contradiction was detected,” and specifies the contradictory context
and the two contradictory propositions, showing the support set of each.

Then, SNeBR gives the user a choice (not necessarily in the order shown):

1. The user may choose to not do the input that led to the contradiction. The context and BS are left as
they were.

2. The user may choose to continue in an inconsistent context. That situation is not disastrous, since
SNePS uses a paraconsistent logic—a contradiction does not imply irrelevant other propositions.

3. The user may choose to repair the context now known to be inconsistent.

1In the propositional case, when all proposition-valued functions have arity zero, the contradictory BS is is left as is.

8.6. DISBELIEF PROPAGATION 77

In case the user chooses to repair the context, SNeBR then presents the user with each set of possible
culprits, as follows.

1. If any of the possible culprits is in the origin set of both contradictory propositions, the user is warned
that choosing that as the culprit “might be too extreme a revision.”

2. Then SNeBR lists each of the possible culprits, listing all the propositions it supports, and showing
how many propositions are in the list. Choosing this as the culprit and disbelieving it will result in all
these supported propositions also being removed from the BS (unless they have alternate derivations).

3. The user may then

• “discard” some of the possible culprits from the context, choosing them as actual culprits;

• examine all the hypotheses in the context, even those that are not possible culprits;

• see the culprits already chosen;

• get instructions;

• or “quit revising this set” of possible culprits.

This choice repeats until the user chooses to “quit revising this set”.

This entire process is repeated for each set of possible culprits until at least one actual culprit has been chosen
for each one.

After identifying at least one actual culprit in each set of possible culprits, the user is shown the remaining
list of consistent (really, not known to be inconsistent) hypotheses in the context, and given the same choices
as though it were a list of possible culprits. Thereby, the user may disbelieve additional hypotheses, even
though they were not responsible for the contradiction.

Finally, the user is given a chance to add new hypotheses to the context. This is especially useful if a
rewording of one of the culprits is wanted.

8.6 Disbelief Propagation
Every culprit chosen either automatically or by the user is removed from the set of hypotheses of the current
context.

The assertion status of a proposition is computed dynamically whenever it is needed. A proposition is
asserted in a given BS if the origin set of at least one of its supports is a subset of the hypothess set of the
context of the BS. Thus, if an hypothesis is removed from a context, any derived belief of the BS defined by
that context that needed the hypothesis for its derivation is automatically no longer asserted in the BS.

8.7 Warning About a Belief Space Known to be Contradictory.
Every set of possible culprits, α, is a set of hypotheses known to be contradictory, called a nogood. A minimal
nogood is a nogood such that no subset of it is known to be contradictory. A global set of minimal nogoods is
maintained. Any attempt to create a context that is a superset of any minimal nogood is an attempt to create
a context already known to be contradictory, and the user is warned about it.

78 CHAPTER 8. SNEBR: THE SNEPS BELIEF REVISION SYSTEM

Chapter 9

SNaLPS: The SNePS Natural Language
Processing System

The SNePS Natural Language Processing System consists of a Generalized Augmented Transition Network
(GATN) grammar interpreter/compiler and a morphological analyzer/synthesizer.

9.1 Top-Level SNaLPS Functions
The top-level SNaLPS functions are not SNePSUL commands, so to use them from the top-level SNePSUL
loop, use the ˆ command.

(atnin file &key :check-syntax)
Loads the GATN grammar in file. See Section 9.3 for the syntax of the grammar file. If
:check-syntax is t, syntax checks and some simple semantic checks are performed on the grammar as
it is input. It reports errors such as undefined target states, pre-actions after actions (on push arcs), and
syntactically ill-formed arcs. If :check-syntax is nil (default), this checking is not done.

(lexin file)
Loads a lexicon from file. See Section 9.4.1 for the syntax of a lexicon file.

(parse [state] [trace-level])
Enter the SNaLPS read-parse-print loop. The optional parameters state and trace-level may appear in either
order. If present, state must be a symbol, and becomes the initial state of the GATN grammar (the default
is ’S). If present, trace-level must be an integer (default, 0), and becomes the trace level. See below for the
effects of the possible trace-levels.

(break-arc state arc-no [break-message])
Causes a Lisp break to occur on the arc numbered arc-no (in the order as input by atnin) out of state state
just before the test is performed; if a break-message is present it is passed to the Lisp format function
and printed. In the break package, the contents of registers (and SNaLPS variables) may be examined and
modified (by using the GATN actions and forms). Additionally, the current configuration of the parser may be
viewed by using current-configuration. Resuming, by entering ˆˆ, :continue, or continue
to the break listener, continues the parse at the point where it was broken. This function, unbreak-arc,
and current-configuration are intended to help debug grammars.

79

80 CHAPTER 9. SNALPS: THE SNEPS NATURAL LANGUAGE PROCESSING SYSTEM

(unbreak-arc state arc-no)
Removes a break from an arc previously set by break-arc.

(current-configuration [trace-level])
Prints out the current configuration of the GATN parser. Depending on the value of trace-level (defaults to
trace-level, see below) the configuration is printed in lesser or greater detail.

9.2 The Top-Level SNaLPS Loop

9.2.1 Input to the SNaLPS Loop
Having executed the parse command, the user will enter the SNaLPS top-level read-parse-print loop, the
prompt of which is “:”. At each prompt, the user may enter any of the following:

ˆend: Terminate the SNaLPS read-parse-print loop. If *terminating-punctuation-flag* (see
below for a description of SNaLPS variables) is non-nil then this must be terminated by a terminating
punctuation character.

ˆ or ˆˆ: Enter an embedded Lisp read-eval-print loop. This is especially useful to set SNaLPS vari-
ables (see below). This Lisp loop is left by entering continue, or :continue, or ˆˆ. (If
terminating-punctuation-flag (see below for a description of SNaLPS variables) is non-
nil then the command for entering an embedded Lisp loop must be terminated by a terminating punc-
tuation character.)

A sentence: A sentence to be parsed is written in the normal fashion—as a sequence of words, not enclosed
in parentheses, with punctuation immediately following a word rather than separated by blanks. The
initial word may be capitalized. The sentence may extend over several lines either by ending every line
except the last with one or more blanks, or by setting the variable *terminating-punctuation-flag*
to a list of sentence-terminating punctuation marks (See below for a description of SNaLPS variables).
Each punctuation mark must be parsed by the grammar as a separate word.

Besides the grammar, the behavior of SNaLPS is affected by a set of variables and by the trace-level.
These are described below.

9.2.2 SNaLPS Variables
These variables affect the behavior of SNaLPS, and may be set within an embedded Lisp loop within the
SNaLPS loop.

all-parses If nil (default), only the first parse is produced; if t, all parses are produced, with the
user queried as to whether or not to produce more parses after each one is printed.

parse-trees If nil (default), the contents of all GATN registers are assumed to be sequences (flat-
tened lists), any list structure stored into a register is automatically flattened, and an atom and a list of
one atom are considered to be the same; if t this flattening is not done, and list structure is preserved.

terminating-punctuation-flag A list of punctuation marks that will be used to signal the end
of a sentence. Each punctuation mark should be enclosed in quote marks to make it a string. E.g.
the list might be ("." "?" "!"). If this variable is nil (default), the only way to let a sentence
extend over more than one line is to end each line before the last with a blank. If this variable is non-
nil, the SNaLPS top-level reader will continue to read words from successive lines until a terminating
punctuation mark is encountered.

9.3. SYNTAX AND SEMANTICS OF GATN GRAMMARS 81

trace-level An integer indicating what printing is to be done by SNaLPS. The possibilities are listed
below. Each trace level also does what every lower level does.

-2: SNaLPS does no printing.

-1: Prints the time taken by each parse.

0: Default. Prints the trace level, the starting state, and the results of each parse. If the result is a
SNePS node it is printed using SNEPS::DESCRIBE. Various error messages may also be printed
at this trace level.

1: A warning is printed if a word is looked up in the lexicon, but not found there.

2: Reserved for future trace information.

3: Reserved for future trace information.

4: Prints the string representation of the original sentence, and prints a trace of the execution of each
arc traversed and its associated configuration.

5: Prints the current configuration of the GATN parser prior to taking any transitions. Any HOLDs,
SENDRs, or LIFTRs associated with a configuration being output are printed.

6: Prints the arc currently being attempted, regardless of success. Also prints all blocked arcs.

7: Reserved for future trace information.

8: Parent configurations of a configuration being output are also printed. This is voluminous, but
useful for debugging deeply embedded (via PUSH, CALL, or RCALL) configurations.

9: All the acts associated with a configuration that was PUSHed, CALLed, or RCALLed to are
printed. This is not normally useful.

10: Reserved for future trace information.

Higher trace levels result in more voluminous trace output. For straight-forward trace output, trace level
4 is suggested. For the purposes of printing configurations, if a particular field of the configuration is
empty it is not printed regardless of the trace level. For example, if in the configuration being printed,
there are no registers, this field is not printed. Note that this does NOT apply to the LEVEL, STATE,
and STRING fields, which are always printed regardless of the trace level.

Trace levels up to level 8 can be utilized with little effort and beneficial effects. It is suggested that a
novice user closely examine a level 8 trace to become familiar with the operation of the parser.

9.3 Syntax and Semantics of GATN Grammars

In this section, syntactic variables are in italic font, optional constituents are enclosed in “[” and “]” brack-
ets, “∗” means zero or more occurrences, “+” means one or more occurrences, parentheses and items in
typewriter font are object language symbols.

gatn-grammar ::= arc-set+

The contents of a grammar-file is a sequence of arc-sets.

arc-set ::= (state arc+) | (ˆˆ . Lisp-form)
An arc-set is either a list whose car is a state and whose cdr is a list of GATN arcs, or it is a list whose car
is the symbol ˆˆ and whose cdr is a Lisp form which will be evaluated at grammar load time.

82 CHAPTER 9. SNALPS: THE SNEPS NATURAL LANGUAGE PROCESSING SYSTEM

9.3.1 Arcs

arc ::=
The syntax and semantics of GATN arcs follows. Except as noted, all forms and actions on an arc are
evaluated in left-to-right order, in the environment of the arc that they are on.

(cat category test action∗ terminal-action)
If the input buffer is empty, the arc blocks. The lex register is set to the current word. If any sense(s) of the
word have the given lexical category in the lexicon, the arc is taken non-deterministically for each sense. For
each sense, * is set to the root of the word sense, and test is performed. If test fails, the arc blocks for the
given word sense; otherwise, actions are done, and the terminal-action is taken.

(call state form test preaction-or-action∗ register action∗ terminal-action)
If the input buffer is empty, the arc blocks. The * register is set to the current word, and test is performed. If
test fails, the arc blocks. Otherwise: the preaction-or-actions are done; the value of form replaces the current
word in the input buffer (if the value of form is a list, it is spliced in); and parsing continues recursively at
state. If the recursively called network blocks, this arc blocks also. When that level pops back to this one: the
value popped to this level is put into register; the value of the * register is pushed onto the front of the input
buffer; the actions are done, and the terminal-action is taken.

(group arc+)
Presumably, at most one arc has a test that succeeds. That arc is taken. group is provided for efficiency
only. If a group arc is backed into, alternate sub-arcs are not tried, but the entire group fails.

(jump state test action∗)
The * register is set to the current word, and test is performed. If test fails, the arc blocks. Otherwise the
actions are done, and parsing continues at state.

(pop form test action∗)
If test is non-nil and the hold register doesn’t contain anything put into it on this level, the actions are
done, and the value of form is popped to the level that recursively called this one. If this is the top level (level
1), then not only must test be non-nil and the hold register not contain anything put into it on this level,
but also the input buffer must be empty. If this is level 1 and the input buffer is not empty, or this is any level
and test is nil or the hold register contains something put into it at this level, this arc blocks.

(push state test preaction∗ action∗ terminal-action)
If the input buffer is empty, the arc blocks. Otherwise, the * register is set to the current word, and test is
performed. If the test is non-nil, the preactions are done, and parsing continues recursively at state. When
that level pops back to this one the value popped to this level is put into the * register, that value is pushed
onto the front of the the input buffer, the actions are done, and the terminal-action is taken. If the test is nil,
or the recursively called network blocks, this arc blocks.

(to (state [form]) test action∗)
If the input buffer is empty, the arc blocks. Otherwise, the * register is set to the current word, and test is
performed. If the test is non-nil; the actions are done; the front symbol in the input buffer is removed from
it; if form is present, its value is pushed onto the front of the input buffer; and parsing continues at state. If
the test is nil, the arc blocks.

(rcall state form test preaction-or-action∗ register action∗ terminal-action)
If the input buffer is empty, the arc blocks. Otherwise, the * register is set to the current word, and test
is performed. If the test is non-nil the preaction-or-actions are done, the current input buffer is saved and
replaced by the value of form, and parsing continues recursively at state. When that level pops back to this
one, the input buffer is restored as it was saved, the value popped to this level is put into register, if register

9.3. SYNTAX AND SEMANTICS OF GATN GRAMMARS 83

is * that value replaces the front of the input buffer, the actions are done, and the terminal-action is taken. If
the test is nil, or the recursively called network blocks, this arc blocks.

(tst label test action∗ terminal-action)
If the input buffer is empty, the arc blocks. Otherwise, the * register is set to the current word, and test is
performed. If the test is non-nil, the actions are done, and the terminal-action is taken. If the test is nil,
the arc blocks. label is only there so that different tst arcs may be distinguished during tracing.

(vir category test action∗ terminal-action)
If the test is non-nil and the hold register contains an entry of the given category put into it at this or a
higher level, then the arc is taken non-deterministically for each such entry. The entry taken is removed from
the hold register, put into the * register, and pushed onto the front of the input buffer. Then the actions
are done and the terminal-action is taken. If the test is nil, or hold contains no appropriate entry, this arc
blocks.

(wrd word-list test action∗ terminal-action)
If the input buffer is empty, the arc blocks. Otherwise, the current word is compared to word-list. If it is
among the words in word-list, the * register is set to the current word, and test is performed. If the test is
non-nil, the actions are done, and the terminal-action is taken. If either the test is nil or the current word
is not on the word-list, the arc blocks.

9.3.2 Actions

action ::=
The syntax and semantics of GATN actions follows:

(addl register form+)
The value of form is appended to the front (left end) of register. If more than one form appears, a list of their
values, in the order given, is appended to the front of register. If *parse-trees* is nil, the value of
register is then flattened and a list of one object is changed to just the single object.

(addr register form+)
The value of form is appended to the end (right end) of register. If more than one form appears, a list of
their values, in the order given, is appended to the end of register. If *parse-trees* is nil, the value of
register is then flattened and a list of one object is changed to just the single object.

(hold category form)
The value of form is put into the hold register as an entry whose category is the value of category.

(liftr register [form])
register is set to the value of form on the next higher level. If form is omitted, register at that level is set to
the value of register at this level. If *parse-trees* is nil, the value of register at the higher level is
flattened and a list of one object is changed to just the single object.

(setr register form+)
register is set to the value of form. If more than one form appears, register is set to a list of their values, in
the order given. If *parse-trees* is nil, the value of register is then flattened and a list of one object is
changed to just the single object.

S-expression
Any Lisp S-expression not otherwise listed as a GATN action or form evaluates normally.

84 CHAPTER 9. SNALPS: THE SNEPS NATURAL LANGUAGE PROCESSING SYSTEM

9.3.3 Preactions

preaction-or-action ::= preaction | action
A preaction-or-action is either a preaction or an action.

preaction ::= (sendr register form∗)
The only preaction is sendr. sendr sets the value of register on the level about to be called to the value
of form. If more than one form appears, register is set to a list of their values, in the order given. If form is
omitted, register at the lower level is set to the value of register at this level. If *parse-trees* is nil,
the value of register at the lower level is flattened and a list of one object is changed to just the single object.

9.3.4 Terminal Actions

terminal-action ::=
The syntax and semantics of the two terminal actions are:

(to state [form])
The front symbol in the input buffer is removed from it; if form is present, its value is pushed onto the front
of the input buffer; and parsing continues at state.

(jump state)
Parsing continues at state.

9.3.5 Forms

form ::=
The syntax and semantics of GATN forms follows:

*
A form consisting of only the symbol * evaluates to the value of the * register on the current level.

(buildq fragment form∗)
Evaluates to the given fragment list structure, with each special symbol replaced as indicated below:

+: Replaced by the value of the corresponding form.

*: Replaced by the value of the * register.

(@ fragment+): Each fragment is handled as described here, and the resulting sublists are spliced together.

(geta unitpath form)
Returns the set of SNePS nodes at the end of unitpath arcs from all the nodes in the value of form. form must
evaluate to a set of SNePS nodes.

(getf feature [word])
Looks up word in the lexicon, and returns the value of the given feature. If word is omitted, it defaults to the
current word—this is only allowed on cat arcs.

(getr register [level-number])
Evaluates to the value of the given register. If level-number is present, the value of register on the given level
is returned. The top level of the network is level number 1, and each push increments the level number by 1.
If level-number is present, it must be a higher level (smaller integer) than the current level.

9.3. SYNTAX AND SEMANTICS OF GATN GRAMMARS 85

lex
Evaluates to the current word (first symbol on the input buffer) as it appears before any morphological analysis
has been done.

(nullr form)
Evaluates to non-nil if the form evaluates to nil, and to nil otherwise.

(overlap form form)
Evaluates to the set-intersection of the values of the two forms. For this purpose, an atom is treated as a
singleton set containing itself.

register
A form consisting of only the name of a register evaluates to the value of that register on the current level. If
the register has never been given a value on the current level, its value is nil.

S-expression
Any Lisp S-expression not otherwise listed as a GATN form evaluates to its Lisp value. Within a form to be
evaluated by Lisp, buildq, geta, getf, getr, nullr, and overlap are all Lisp functions that
operate as described in this Subsection.

9.3.6 Tests

A test fails if it evaluates to nil, and succeeds otherwise.

test ::=
The syntax and semantics of GATN tests are:

(disjoint form form)
Evaluates to (not (overlap form form)).

(endofsentence)
Returns t iff the current input buffer is empty (nil), or contains only a terminating punctuation character
(as specified by *terminating-punctuation-flag*); nil otherwise.

(packageless-equal form form)
Equality checker for use in grammars, it should be used rather than Lisp’s equal. It avoids possible pack-
aging problems associated with the use of Lisp’s equal.

form
Any GATN form may be used as a test—any non-nil value corresponds to True, and nil corresponds to
False.

t
The always True test.

9.3.7 Terminal Symbols

The following is a description of Terminal Symbols of the above grammar (right hand sides are informal
English):

category ::= Any Lisp symbol used in the lexicon as a lexical category.

feature ::= Any Lisp symbol used in the lexicon as a lexical feature.

86 CHAPTER 9. SNALPS: THE SNEPS NATURAL LANGUAGE PROCESSING SYSTEM

label ::= Any Lisp symbol.

register ::= Any Lisp symbol used as the name of a GATN register.

S-expression ::= Any Lisp S-expression not otherwise recognizable as a GATN form or test.

state ::= Any Lisp symbol used to name a GATN state.

word-list ::= word | (word+)

word ::= Any Lisp string potentially used as a lexicon entry or a word appearing in a sentence.

9.4 Morphological Analysis and Synthesis

9.4.1 Syntax of Lexicon Files
The syntax of the contents of a lexicon file is:

lexicon ::= lexical-entry∗

lexical-entry ::= (lexeme feature-list+)
A multi-sense lexeme is given one feature-list for each sense. Lexemes on which morphological synthesis is
to be done for generation must have only one feature-list.

feature-list ::= (feature-pair+)

feature-pair ::= (feature . value)

lexeme ::= Any Lisp string

feature ::= Any Lisp atom, but see below for standard features.

value ::= Any readable Lisp object, but see below for standard values.

Standard Lexical Features and Values

The following lexical features will be recognized by GATN arcs and/or the morphological analyzer/synthe-
sizer. With each feature it is shown whether it is used for morphological analysis or synthesis or both. A
feature whose value is the default for that feature may be omitted from the feature-list.

ctgy The lexical category of the entry. Used for analysis. The following values of this feature are recog-
nized by the morphological analyzer/synthesizer:

adj An adjective.

n A common noun.

v A verb.

multi-start This lexeme is the first word of a multi-word lexeme.
See the feature multi-rest described below.

multi-rest A list of the rest of the words (after this one) that form a multi-word lexeme. Each word in
the list must be a string. There must also be a lexical entry for the multi-word lexeme as a whole.

num The number of a noun or verb. Used for analysis. Its recognized values are sing for singular (default),
and plur for plural.

9.4. MORPHOLOGICAL ANALYSIS AND SYNTHESIS 87

past The past tense form of a verb that is irregular in this form. Used for synthesis. The value must be a
string.

pastp The past participle form of a verb that is irregular in this form. Used for synthesis. The value must
be a string.

plur The plural form of a noun that is irregular in this form. Used for synthesis. The value must be a
string.

pprt A flag indicating whether the lexeme is a past participle. Used for analysis. Possible values are t
indicating that it is a past participle, and nil (default) indicating that it is not.

pres The third person singular form of a verb that is irregular in this form. Used for synthesis. The value
must be a string.

presp The present participle form of a verb that is irregular in this form. Used for synthesis. The value
must be a string.

presprt A flag indicating whether the lexeme is a present participle. Used for analysis. Possible values
are t indicating that it is a present participle, and nil (default) indicating that it is not.

tense The tense of a verb. Used for analysis. Its recognized values are pres, indicating present tense
(default), and past, indicating past tense.

root The root, stem, infinitive, or uninflected form of the lexeme. Used for analysis and synthesis. The
value must be a string. If omitted, will default to the lexeme itself.

stative Whether or not the verb is stative. Used for synthesis. Its recognized values are nil, indicating
not stative (default), and t, indicating stative.

Any additional features and values may be used in a lexicon if a grammar is written to make use of them.
If a lexeme is a root form and has only one feature-list, the lexical entry may be used for both analysis

and synthesis. If the principle inflected parts of the noun (plural) or verb (third person singular, past, past
participle, present participle) are irregular, those parts must have their own lexical entries, which will only
be used for morphological analysis. If a lexeme has multiple lexical entries (because it has multiple lexical
categories), they can only be used for analysis. You should give each feature-list its own root form, even if it
is a made-up word, and then give each of these root forms a lexical entry with a single feature-list to be used
for morphological synthesis. Those feature-lists should have root forms that are correctly spelled forms. The
example lexicon in Section 9.5 has a regular and an irregular noun, a regular and an irregular verb, a word
("saw") that is both a noun and a verb, and a multi-word lexeme ("Computer Science").

9.4.2 Functions for Morphological Analysis

(englex:lookup word)
Looks up the word, which must be a string, in the lexicon, and returns its lexical-entry, possibly expanded
with default values. If word is not in the lexicon, tries to remove prefixes and suffixes until it finds a root form
that is in the lexicon, whereupon it returns an appropriately modified lexical-entry. Uses the standard features
and values listed above as used for morphological analysis. englex:lookup has been imported into the
parser package for use in grammars, but it is seldom necessary for a grammar-writer to call this function
directly, because it is called automatically on appropriate GATN arcs. Nevertheless, when writing a lexicon
and grammar, it is useful to use this function to test the lexicon and see which forms englex:lookup
considers to be regular.

88 CHAPTER 9. SNALPS: THE SNEPS NATURAL LANGUAGE PROCESSING SYSTEM

9.4.3 Functions for Morphological Synthesis
The two functions in this section should be used in appropriate places on arcs of GATN generation grammars
in order to produce correct surface forms of nouns and verb groups. They both require a loaded lexicon for
irregular words, but will assume a word is inflected regularly if it doesn’t have a lexical entry. It’s a good idea
to try them out from a top-level Lisp listener, as they are surprisingly powerful.

(verbize [tense] [number] [person] [mode] [progressive-aspect] [perfective-aspect] [voice] [quality]
modal∗ lexeme)

Returns a list of strings which forms a verb group. lexeme should be a string (but a symbol or node will
be coerced into a string), and is presumed to be the root (infinitive) form of a verb. All the other parameters
are optional. If modals appear, they must immediately precede lexeme. The other parameters may appear in
any order. The possible values and the default values of the optional parameters are:

tense The tense of the verb group. Possible values are:

pres Present tense. Default.

past Past tense. Alternative: p.

future Future tense. Alternatives: futr, ftr, fut.

number The number of the verb group. Possible values are:

sing Singular. Default. Alternative: singular

plur Plural. Alternatives: pl, plural.

person The person of the verb group. Possible values are:

p1 First person. Alternatives: firstperson, person1

p2 Second person. Alternatives: secondperson, person2.

p3 Third person. Default.

mode Whether the verb group is in a declarative, interrogative, etc. sentence. Possible values are:

decl Declarative. Default.

int Interrogative. Alternatives: ynq, interrogative, interrog, ques, question, intrg,
Q.

imp Imperative. Alternatives: imper, imperative, impr, command, request, req

inf Infinitive. Alternatives: infinitive, infin, root

gnd Gerundive. Alternatives: gerund, ing, grnd

progressive-aspect Whether the verb group is progressive. Possible values are:

non-prog Non-progressive. Default.

prog Progressive. Alternatives: progr, prgr, prg, progress, progressive. A lexeme with
(stative . t) in its lexical feature-list will not be put into progressive form.

perfective-aspect Whether the verb group is perfective. Possible values are:

non-perf Non-perfective. Default.

perf Perfective. Alternatives: pft, prft, prfct, perfect, perfective.

9.5. EXAMPLES 89

voice The voice of the verb group. Possible values are:

active Active voice. Default.

pass Passive voice. Alternative: passive.

quality Whether the verb group is negated. Possible values are:

affirmative Affirmative. Default.

neg Negative. Alternatives: nega, negative, not, negated.

modal A modal to be included in the verb group. Possible values are: "will", "shall", "can",
"must", and "may".

(wordize number lexeme)

Returns the singular or plural form of lexeme, according to number. lexeme should be a string(but a symbol
or node will be coerced into a string), and is presumed to be a noun. If number is nil or ’sing the singular
form will be returned, otherwise the plural form will be returned. The singular form will be the value of the
root feature of lexeme if it has one, otherwise it will be lexeme itself. The plural will be formed regularly
unless there is a lexical entry for lexeme that contains a plur feature. Regular plural formation is sensitive
to an extensive set of spelling rules.

9.5 Examples
In this section, we present an example lexicon and two example GATNs, both of which use the one lexicon.
The GATN in Section 9.5.1 produces parse trees of acceptable sentences. The one in Section 9.5.2 builds
SNePS representations of the information in statements, and answers questions. Both GATNs accept the
same fragment of English.

9.5.1 Producing Parse Trees
Here is an example of the use of SNaLPS to parse simple sentences and return parse trees. The GATN is
shown below. It is presented graphically in Figure 9.1.

(s (jump s1 t (setf *parse-trees* t))) ; This initial arc is used to
; set global variables and other parameters.

(s1 (cat wh t ; The only acceptable questions start with a wh word.
(setr subj ’(np \?)) (setr mood ’question) (to vp))

(push np t ; The only acceptable statements are NP V [NP].
(setr subj *) (setr mood ’decl) (to vp)))

(vp (cat v t (setr verb *) (to vp/v)))

(vp/v (push np t (setr obj *) (to s/final))
(jump s/final t)) ; The predicate NP is optional.

(s/final (jump s/end (overlap embedded t)) ; The S might end with an embedded S.
(wrd "." (overlap mood ’decl) (to s/end))
(wrd "?" (overlap mood ’question) (to s/end)))

90 CHAPTER 9. SNALPS: THE SNEPS NATURAL LANGUAGE PROCESSING SYSTEM

Figure 9.1: Graphical version of the example GATN.

9.5. EXAMPLES 91

(s/end (pop (buildq (s (mood +) + (vp (v +))) mood subj verb) (nullr obj))
(pop (buildq (s (mood +) + (vp (v +) +)) mood subj verb obj) obj))

(np (wrd "that" t (to nomprop)) ; An embedded S has "that" in front of it.
(cat npr t (setr np (buildq (npr *))) (setr def t) (to np/end))
(cat art t (setr def (getf definite)) (to np/art)))

(np/art (cat n t (setr np (buildq (n *))) (to np/end)))

(nomprop (push s1 t (sendr embedded t) (setr def t) (setr np *) (to np/end)))

(np/end (pop (buildq (np (definite +) +) def np) t))

Here is the accompanying lexicon:

("a" ((ctgy . art)(definite . nil)))
("the" ((ctgy . art)(definite . t)))

("Computer Science" ((ctgy . npr)))
("John" ((ctgy . npr)))
("Mary" ((ctgy . npr)))

("computer" ((ctgy . n)))
("Computer" ((ctgy . multi-start) (multi-rest . ("Science")))

((ctgy . n)(root . "computer")))
("dog" ((ctgy . n)))
("man" ((ctgy . n)(plur . "men")))
("men" ((ctgy . n)(root . "man")(num . plur)))
("woman" ((ctgy . n)(plur . "women")))
("women" ((ctgy . n)(root . "woman")(num . plur)))

("saw" ((ctgy . n))
((ctgy . v)(root . "see")(tense . past)))

("believe" ((ctgy . v)(stative . t)))
("bit" ((ctgy . v)(root . "bite")(tense . past)))
("bite" ((ctgy . v)(num . plur)(past . "bit")))
("like" ((ctgy . v)(num . plur)))
("see" ((ctgy . v)(past . "saw")))
("sleep" ((ctgy . v)(past . "slept")))
("slept" ((ctgy . v)(root . "sleep")(tense . past)))
("study" ((ctgy . v)))
("use" ((ctgy . v)))

("who" ((ctgy . wh)))
("what" ((ctgy . wh)))

and here is a test run. The output has been edited by changing some line breaks and some indentation in order
to show the parse trees more clearly.

USER(29): (sneps)
Welcome to SNePS-2.5 [PL:1 1999/08/19 16:38:25]

92 CHAPTER 9. SNALPS: THE SNEPS NATURAL LANGUAGE PROCESSING SYSTEM

Copyright (C) 1984--1999 by Research Foundation of
State University of New York. SNePS comes with ABSOLUTELY NO WARRANTY!
Type ‘(copyright)’ for detailed copyright information.
Type ‘(demo)’ for a list of example applications.

6/21/2002 9:51:59

* ˆˆ
--> (atnin "grammar.lisp")
State S processed.
State S1 processed.
State VP processed.
State VP/V processed.
State S/OBJ processed.
State NP processed.
State NP/ART processed.
State NP/END1 processed.
State NP/END2 processed.
State S/END1 processed.
State S/END2 processed.
Atnin read in states: (S/END2 S/END1 NP/END2 NP/END1 NP/ART NP S/OBJ VP/V VP

S1 S)

--> (lexin "lexicon.lisp")
undefined- (NIL)
("a" "the" "some" "dog" "man" "men" "bite" "bites" "like" "likes")
--> (parse)
ATN parser initialization...
Trace level = 0.
Beginning at state ’S’.

Input sentences in normal English orthographic convention.
Sentences may go beyond a line by having a space followed by a <CR>
To exit the parser, write ˆend.

: A dog bit John.
Resulting parse:
(S (MOOD DECL)

(NP (DEFINITE NIL) (N "dog"))
(VP (V "bite")

(NP (DEFINITE T) (NPR "John"))))
Time (sec.): 0.05

: The dog slept.
Resulting parse:
(S (MOOD DECL)

(NP (DEFINITE T) (N "dog"))
(VP (V "sleep")))

Time (sec.): 0.05

: Mary believes that John likes the dog.
Resulting parse:

9.5. EXAMPLES 93

(S (MOOD DECL)
(NP (DEFINITE T) (NPR "Mary"))
(VP (V "believe")

(NP (DEFINITE T)
(S (MOOD DECL)

(NP (DEFINITE T) (NPR "John"))
(VP (V "like")

(NP (DEFINITE T) (N "dog")))))))
Time (sec.): 0.117

: Mary studies Computer Science.
Resulting parse:
(S (MOOD DECL)

(NP (DEFINITE T) (NPR "Mary"))
(VP (V "study")

(NP (DEFINITE T) (NPR "Computer Science"))))
Time (sec.): 0.05

: Mary used a computer.
Resulting parse:
(S (MOOD DECL)

(NP (DEFINITE T) (NPR "Mary"))
(VP (V "use")

(NP (DEFINITE NIL) (N "computer"))))
Time (sec.): 0.05

94 CHAPTER 9. SNALPS: THE SNEPS NATURAL LANGUAGE PROCESSING SYSTEM

: John saw a saw.
Resulting parse:
(S (MOOD DECL)

(NP (DEFINITE T) (NPR "John"))
(VP (V "see")

(NP (DEFINITE NIL) (N "saw"))))
Time (sec.): 0.067

: What bit John?
Resulting parse:
(S (MOOD QUESTION)

(NP ?)
(VP (V "bite")

(NP (DEFINITE T) (NPR "John"))))
Time (sec.): 0.05

: Who sleeps?
Resulting parse:
(S (MOOD QUESTION)

(NP ?)
(VP (V "sleep")))

Time (sec.): 0.034

: Who studied?
Resulting parse:
(S (MOOD QUESTION)

(NP ?)
(VP (V "study")))

Time (sec.): 0.05

: Who uses the computer?
Resulting parse:
(S (MOOD QUESTION)

(NP ?)
(VP (V "use")

(NP (DEFINITE T) (N "computer"))))
Time (sec.): 0.067

: Who likes a dog?
Resulting parse:
(S (MOOD QUESTION)

(NP ?)
(VP (V "like")

(NP (DEFINITE NIL) (N "dog"))))
Time (sec.): 0.067

9.5. EXAMPLES 95

: Who sees a saw?
Resulting parse:
(S (MOOD QUESTION)

(NP ?)
(VP (V "see")

(NP (DEFINITE NIL) (N "saw"))))
Time (sec.): 0.067

9.5.2 Interacting with SNePS

The GATN in this section accepts the same fragment of English as the one in the previous section, but,
instead of building and returning parse trees, it builds a SNePS network representing the information in the
statements and answers the questions. The statements are echoed and the questions are answered in English
generated by the generation part of this GATN.

;;; First, the SNePS relations used in the GATN are defined.
(ˆˆ define agent act object propername member class lex)

;;; Next, a global variable, a global constant, and two functions are defined.
(ˆˆ defvar *SaynBeforeVowels* nil

"If true and the next word starts with a vowel,
print ’n ’ before that next word.")

(ˆˆ defconstant *vowels* ’(#\a #\e #\i #\o #\u)
"A list of the vowels.")

;;; The following two functions implement a "phonological" component
;;; that can be used to output words and phrases from arcs of the GATN.
;;; In this way, the beginning of the sentence can be uttered before
;;; the rest of the sentence has been composed.

(ˆˆ defun SayOneWord (word)
"Prints the single WORD, which must be a string or a node.
If the word is ’a’, sets *SaynBeforeVowels*.
If *SaynBeforeVowels* is set, then prints ’n ’ before word/s
if the first letter of word/s is a vowel."

(check-type word (or string sneps:node))
(when (sneps:node-p word) (setf word (format nil "˜A" word)))
(when *SaynBeforeVowels*

(when (member (char word 0) *vowels* :test #’char=) (format t "n"))
(setf *SaynBeforeVowels* nil))

(when (string\= word "a") (setf *SaynBeforeVowels* t))
(format t " ˜A" word))

(ˆˆ defun say (word/s)
"Prints the single word or the list of words.
If the word is ’a’, sets *SaynBeforeVowels*.
If *SaynBeforeVowels* is set, then prints ’n ’ before word/s
if the first letter of word/s is a vowel."

(if (listp word/s) (mapc #’SayOneWord word/s)
(SayOneWord word/s)))

96 CHAPTER 9. SNALPS: THE SNEPS NATURAL LANGUAGE PROCESSING SYSTEM

;;; The initial arc is used to make two SNePSUL variables, each of
;;; which holds a SNePS variable node. This results in a major
;;; efficiency gain over creating new SNePS variable nodes each time a
;;; question or an indefinite NP is parsed.
(s (jump s1 t

(or (* ’wh) ($ ’wh)) ; a SNePS variable to use for Wh questions
(or (* ’x) ($ ’x)) ; a variable for indef NP’s in questions
))

(s1 (push ps t ; Parse a sentence, and send results to RESPOND
(jump respond)))

(ps (cat wh t ; A Wh question starts with "who" or "what".
(setr agent (* ’wh)) ; set AGENT to a variable node.
(setr mood ’question) (liftr mood) (to vp))

(push np t (sendr mood ’decl) ; The only acceptable statements are NP V [NP].
; MOOD must be sent down, because an indefinite
; NP introduces a new individual in a statement,
; but must be treated as a variable to be found
; in a question.

(setr agent *) ; set AGENT to parse of subject.
(setr mood ’decl) (liftr mood) ; The state RESPOND must know whether

; it is echoing a statement or answering
; a question.

(to vp)))
(vp (cat v t ; Accept just a simple verb for this example,

(setr act *) (to vp/v))) ; and ignore tense.
(vp/v (push np t (sendr mood)

(setr object *) ; Set OBJECT to parse of object.
(to s/final))

(jump s/final t)) ; If no object.

(s/final (jump s/end (overlap embedded t)) ; an embedded proposition
(wrd "." (overlap mood ’decl) (to s/end))
(wrd "?" (overlap mood ’question) (to s/end)))

(s/end (pop #!((assert agent ˜(getr agent) ; Assert a top-level statement.
act (build lex ˜(getr act))
object ˜(getr object)))

(and (overlap mood ’decl) (nullr embedded)))
(pop #2!((build agent ˜(getr agent) ; Build an embedded statement.

act (build lex ˜(getr act))
object ˜(getr object)))

(and (getr embedded) (overlap mood ’decl)))
(pop #!((deduce agent ˜(getr agent) ; Use deduce to answer a question.

act (build lex ˜(getr act))
object ˜(getr object)))

(overlap mood ’question)))
;;; Notice in all three above arcs that if there is no object,
;;; (getr object) will evaluate to NIL,
;;; and the node will be built without an OBJECT arc.

9.5. EXAMPLES 97

(np (wrd "that" t (to nomprop)) ; an embedded proposition
(cat npr t

(setr head (or
;; First try to find someone with the given name.
#!((find (compose object- ! propername) ˜(getr *)))
;; Otherwise, create one.
#!((find object-

(assert object #head propername ˜(getr *))))))
(to np/end))

(cat art t (setr def (getf definite)) (to np/art)))

(np/art (cat n (overlap def t) ; a definite np
(setr head ; Find the referent. (Assume there is exactly one.)

#!((find member-
(deduce member *x

class (build lex ˜(getr *))))))
(to np/end))

(cat n (and (disjoint def t) (overlap mood ’decl))
(setr head ; Create a new referent.

#!((find member-
(assert member #hd

class (build lex ˜(getr *))))))
(to np/end))

(cat n (and (disjoint def t) (overlap mood ’question))
(setr head (* ’x)) ; a variable node.
(to np/end)))

(nomprop (push ps t ; Return the parse of embedded sentence.
(sendr embedded t) (setr head *) (to np/end)))

(np/end (pop head t))

;;;;;;;;;;;;;;;;;;;;;;
;;; Generation Section
;;;;;;;;;;;;;;;;;;;;;;

(respond (jump g (and (getr *) (overlap mood ’decl))
(say "I understand that")) ; Canned beginning of echo of statement.

(jump g (and (getr *) (overlap mood ’question))) ; Answer of question.
(jump g/end (nullr *) (say "I don’t know."))) ; Question not answered.

(g (rcall gnp (geta agent) (geta agent) ; Generate the agent as an np.
reg (jump g/subj)))

(g/subj (jump g/v (geta act)
(say (verbize ’past ; For this example, always use past tense.

(first (geta lex (geta act)))))))

(g/v (rcall gnp (geta object) (geta object) ; Generate the object.
reg (to g/end))

(to (g/end) (null (geta object)))) ; No object.

98 CHAPTER 9. SNALPS: THE SNEPS NATURAL LANGUAGE PROCESSING SYSTEM

(g/end (pop nil t))

(gnp (to (gnp/end) (geta propername (geta object-))
(say (geta propername (geta object-)))) ; Generate an npr.

(to (gnp/end) (geta class (geta member-)) ; An indef np.
(say (cons "a" #!((find (lex- class- ! member) ˜(getr *))))))

(call g * (geta act) (say "that") * ; An embedded proposition
(to gnp/end)))

(gnp/end (pop nil t))

Here is a sample run using this grammar and the same lexicon as before:

--> (parse)
ATN parser initialization...
Trace level = 0.
Beginning at state ’S’.

Input sentences in normal English orthographic convention.
Sentences may go beyond a line by having a space followed by a <CR>
To exit the parser, write ˆend.

: A dog bit John.
I understand that a dog bit John
Time (sec.): 0.25

: The dog slept.
I understand that a dog slept
Time (sec.): 1.884

: Mary believes that John likes the dog.
I understand that Mary believed that John liked a dog
Time (sec.): 0.4

: Mary studies Computer Science.
I understand that Mary studied Computer Science
Time (sec.): 0.2

: Mary used a computer.
I understand that Mary used a computer
Time (sec.): 0.233

: John saw a saw.
I understand that John saw a saw
Time (sec.): 0.217

: What bit John?
a dog bit John
Time (sec.): 0.167

9.5. EXAMPLES 99

: Who sleeps?
a dog slept
Time (sec.): 0.917

: Who studied?
Mary studied
Time (sec.): 0.167

: Who uses the computer?
Mary used a computer
Time (sec.): 0.267

: Who likes a dog?
I don’t know.
Time (sec.): 0.167

: Who sees a saw?
John saw a saw
Time (sec.): 0.217

The SNePS network built as a result of this interaction is shown in Figure 9.2. Note especially that when
definite noun phrases occurred in statements, they were represented by nodes that were already in the net
because of previous indefinite noun phrases.

100 CHAPTER 9. SNALPS: THE SNEPS NATURAL LANGUAGE PROCESSING SYSTEM

Figure 9.2: SNePS network after running the example.

Chapter 10

SNePS as a Database Management
System

SNePS can be used as a network version of a relational database system in which every element of the
relational database is represented by a base node, each row of each relation is represented by a molecular
node, and each column label (attribute) is represented by an arc label. Whenever a row r of a relation R
has an element ei in column ci, the molecular node representing r has an arc labeled R to the special node
relation, and an arc labelled ci pointing to the base node representing ei. Table 10.1 shows two relations
from the Supplier-Part-Project database of Date1, p. 114. Figure 10.1 shows a fragment of the SNePS network

Table 10.1: From Date’s Supplier-Part-Project Database

SUPPLIER
S# SNAME STATUS CITY
s1 Smith 20 London
s2 Jones 10 Paris
s3 Blake 30 Paris
s4 Clark 20 London
s5 Adams 30 Athens

PROJECT
J# JNAME CITY
j1 sorter Paris
j2 punch Rome
j3 reader Athens
j4 console Athens
j5 collator London
j6 terminal Oslo
j7 tape London

version of this database.

10.1 SNePS as a Relational Database
The three basic operations on relational databases are select, project, and join. The next three subsections
show how these operations may be expressed in SNePSUL.

10.1.1 Project
Project is a database operation that, given one relation, produces another that has all the rows of the first, but
only specific columns. (Actually some of the rows might collapse if the only distinguishing elements were

1C. J. Date, An Introduction to Database Systems 3rd Edition (Reading, MA: Addison-Wesley) 1981.

101

102 CHAPTER 10. SNEPS AS A DATABASE MANAGEMENT SYSTEM

Figure 10.1: Fragment of SNePS network for the Supplier-Part-Project Database

10.1. SNEPS AS A RELATIONAL DATABASE 103

in columns that were eliminated.) The SNePSUL dbproject function has been designed for this purpose.
For example, to show the STATUS and CITY of all suppliers, one can do

* (dbproject (find supplier relation) status city)
((STATUS (20) CITY (LONDON)) (STATUS (10) CITY (PARIS))
(STATUS (30) CITY (PARIS)) (STATUS (30) CITY (ATHENS)))
CPU time : 0.07

The dbproject function forms and returns a virtual relation, which is represented as a SNePS data type
called a set of flat cable sets. Compare the following two ways of getting complete details of the SUPPLIER
relation. The first uses the SNePSUL describe function to print the details of the nodes that make up the
relation:

* (describe (find supplier relation))
(M1! (CITY LONDON) (S# S1) (SNAME SMITH) (STATUS 20) (SUPPLIER RELATION))
(M2! (CITY PARIS) (S# S2) (SNAME JONES) (STATUS 10) (SUPPLIER RELATION))
(M3! (CITY PARIS) (S# S3) (SNAME BLAKE) (STATUS 30) (SUPPLIER RELATION))
(M4! (CITY LONDON) (S# S4) (SNAME CLARK) (STATUS 20) (SUPPLIER RELATION))
(M5! (CITY ATHENS) (S# S5) (SNAME ADAMS) (STATUS 30) (SUPPLIER RELATION))
(M1! M2! M3! M4! M5!)
CPU time : 0.15

The second uses dbproject to display a virtual relation with the same information:

* (dbproject (find supplier relation) supplier s\# sname status city)
((SUPPLIER (RELATION) S# (S1) SNAME (SMITH) STATUS (20) CITY (LONDON))
(SUPPLIER (RELATION) S# (S2) SNAME (JONES) STATUS (10) CITY (PARIS))
(SUPPLIER (RELATION) S# (S3) SNAME (BLAKE) STATUS (30) CITY (PARIS))
(SUPPLIER (RELATION) S# (S4) SNAME (CLARK) STATUS (20) CITY (LONDON))
(SUPPLIER (RELATION) S# (S5) SNAME (ADAMS) STATUS (30) CITY (ATHENS)))
CPU time : 0.12

Virtual relations are created without building any new SNePS network structure. To make these relations
permanent, use the SNePSUL dbAssertVirtual function. For example, to create a CITYSTATUS re-
lation that is a projection of the SUPPLIER relation down the CITY and STATUS attributes, we would first
define CITYSTATUS as a new SNePS relation:

* (define citystatus)
(CITYSTATUS)
CPU time : 0.03

Then we would do

* (describe (dbAssertVirtual (dbproject (find supplier relation) city status)
(citystatus relation)))

(M13! (CITY LONDON) (CITYSTATUS RELATION) (STATUS 20))
(M14! (CITY PARIS) (CITYSTATUS RELATION) (STATUS 10))
(M15! (CITY PARIS) (CITYSTATUS RELATION) (STATUS 30))
(M16! (CITY ATHENS) (CITYSTATUS RELATION) (STATUS 30))
(M13! M14! M15! M16!)
CPU time : 0.28

104 CHAPTER 10. SNEPS AS A DATABASE MANAGEMENT SYSTEM

10.1.2 Select
Select is an operation that is given a relation and specific values for some of its attributes, and yields the rows
of the relations in which those attributes take on those values. A selection from relation R1 in which attribute
a1i takes on value v1i is expressed in SNePSUL as

(find R1 relation a11 v11 ...a1n v1n).

For example, to select rows of the SUPPLIER relation where the CITY is Paris or Athens and the STATUS
is 30, we could do:

* (describe (find supplier relation city (paris athens) status 30))
(M3! (CITY PARIS) (S# S3) (SNAME BLAKE) (STATUS 30) (SUPPLIER RELATION))
(M5! (CITY ATHENS) (S# S5) (SNAME ADAMS) (STATUS 30) (SUPPLIER RELATION))
(M3! M5!)
CPU time : 0.08

If we want a new permanent relation, say supplier2, to be this selection from the SUPPLIER relation, we
could do:

* (define supplier2)
(SUPPLIER2)
CPU time : 0.03

* (describe
(dbAssertVirtual
(dbproject (find supplier relation city (paris athens) status 30)

s\# sname status city)
(supplier2 relation)))

(M17! (CITY PARIS) (S# S3) (SNAME BLAKE) (STATUS 30) (SUPPLIER2 RELATION))
(M18! (CITY ATHENS) (S# S5) (SNAME ADAMS) (STATUS 30) (SUPPLIER2 RELATION))
(M17! M18!)
CPU time : 0.23

10.1.3 Join
Join is a database operation that, given two relations,R1 andR2, with attributes a11, . . . , a1n and a21, . . . , a2m,
respectively, and an atttibute a = a1i = a2j produces a relation with attributes a11, . . . , a1n, a21, . . . , a2j−1, a2j+1, . . . , a2m,
and every row, e11, . . . , e1n, e21, . . . , e2j−1, e2j+1, . . . , e2m where e11, . . . , e1n was a row ofR1, and e21, . . . , e2j−1, e1i, e2j+1, . . . , e2m
was a row of R2. For example, Table 10.2 shows the join of the relations in Table 10.1 on the attribute CITY.

This join may be created and displayed by the SNePSUL dbjoin command, which, like
dbproject creates a virtual relation.

* (dbjoin city
(find supplier relation) (s\# sname status city)
(find project relation) (j\# jname))

(S# (S1) SNAME (SMITH) STATUS (20) CITY (LONDON) J# (J7) JNAME (TAPE))
(S# (S1) SNAME (SMITH) STATUS (20) CITY (LONDON) J# (J5) JNAME (COLLATOR))
(S# (S2) SNAME (JONES) STATUS (10) CITY (PARIS) J# (J1) JNAME (SORTER))
(S# (S3) SNAME (BLAKE) STATUS (30) CITY (PARIS) J# (J1) JNAME (SORTER))
(S# (S4) SNAME (CLARK) STATUS (20) CITY (LONDON) J# (J7) JNAME (TAPE))
(S# (S4) SNAME (CLARK) STATUS (20) CITY (LONDON) J# (J5) JNAME (COLLATOR))
(S# (S5) SNAME (ADAMS) STATUS (30) CITY (ATHENS) J# (J4) JNAME (CONSOLE))
(S# (S5) SNAME (ADAMS) STATUS (30) CITY (ATHENS) J# (J3) JNAME (READER))
CPU time : 0.35

10.2. SNEPS AS A NETWORK DATABASE 105

Table 10.2: The join of SUPPLIER and PROJECT on CITY

S# SNAME STATUS CITY J# JNAME
s1 Smith 20 London j5 collator
s1 Smith 20 London j7 tape
s2 Jones 10 Paris j1 sorter
s3 Blake 30 Paris j1 sorter
s4 Clark 20 London j5 collator
s4 Clark 20 London j7 tape
s5 Adams 30 Athens j3 reader
s5 Adams 30 Athens j4 console

Again, to make the virtual relation permanent, dbAssertVirtual is used:

* (define supplierproject)
(SUPPLIERPROJECT)
CPU time : 0.03

* (describe
(dbAssertVirtual
(dbjoin city

(find supplier relation) (s\# sname status city)
(find project relation) (j\# jname))

(supplierproject relation)))
(M19! (CITY LONDON) (J# J7) (JNAME TAPE) (S# S1) (SNAME SMITH) (STATUS 20)

(SUPPLIERPROJECT RELATION))
(M20! (CITY LONDON) (J# J5) (JNAME COLLATOR) (S# S1) (SNAME SMITH) (STATUS 20)

(SUPPLIERPROJECT RELATION))
(M21! (CITY PARIS) (J# J1) (JNAME SORTER) (S# S2) (SNAME JONES) (STATUS 10)

(SUPPLIERPROJECT RELATION))
(M22! (CITY PARIS) (J# J1) (JNAME SORTER) (S# S3) (SNAME BLAKE) (STATUS 30)

(SUPPLIERPROJECT RELATION))
(M23! (CITY LONDON) (J# J7) (JNAME TAPE) (S# S4) (SNAME CLARK) (STATUS 20)

(SUPPLIERPROJECT RELATION))
(M24! (CITY LONDON) (J# J5) (JNAME COLLATOR) (S# S4) (SNAME CLARK) (STATUS 20)

(SUPPLIERPROJECT RELATION))
(M25! (CITY ATHENS) (J# J4) (JNAME CONSOLE) (S# S5) (SNAME ADAMS) (STATUS 30)

(SUPPLIERPROJECT RELATION))
(M26! (CITY ATHENS) (J# J3) (JNAME READER) (S# S5) (SNAME ADAMS) (STATUS 30)

(SUPPLIERPROJECT RELATION))
(M19! M20! M21! M22! M23! M24! M25! M26!)
CPU time : 0.92

10.2 SNePS as a Network Database

Although SNePS can be treated as a relational database, as shown in the previous section, it is more naturally
a network database. For example, to find the names of suppliers with the same status as suppliers in the same
city as the sorter project using relational database techniques, one would join the SUPPLIER and PROJECT

106 CHAPTER 10. SNEPS AS A DATABASE MANAGEMENT SYSTEM

relations on CITY, join the result with SUPPLIER again on STATUS, select rows where PROJECT is sorter,
and project the result on the SNAME attribute.

However, in SNePSUL, one could just do

* (find (sname- status status- city city- jname) sorter)
(ADAMS BLAKE JONES)
CPU time : 0.02

Additional examples of these techniques may be found in the SNePS DBMS demonstration.

10.3 Database Functions
Functions specifically supplied for treating SNePS as a Database Management System are documented in
this section. Additional ones may be created using the functions documented in Chapter 5. Note also innet
and outnet, documented in Section 2.4, for saving the database across runs.

(dbAssertVirtual virtualexp [([relation nodeset]∗)])
Evaluates virtualexp, which must return a virtual relation (set of flat cable sets), appends the list ([relation
nodeset]∗) to each flat cable set, asserts each resulting flat cable set as a SNePS molecular node, and returns
the set of asserted nodes.

(dbcount nodesetexp)
Evaluates the SNePSUL nodeset expression, nodesetexp, and returns a node whose identifier looks like the
number which is the number of nodes in the resulting set.

(dbjoin relation nodesetexp1 relations1 nodesetexp2 relations2)
A virtual relation (a set of flat cable sets) is created and returned. The virtual relation is formed by taking the
nodes returned by the SNePSUL node set expression, nodesetexp1 and the nodes returned by the SNePSUL
node set expression, nodesetexp2, joining these two relations on the attribute relation, and then projecting
the result down the relations1 attributes from the first nodeset and the relations2 attributes from the second
nodeset. Note that relations1 and relations2 is each a list of relations.

(dbmax nodesetexp)
Evaluates the SNePSUL nodeset expression, nodesetexp, which must evaluate to a set of nodes all of whose
identifiers look like numbers, and returns the node whose identifier looks like the biggest of the numbers.

(dbmin nodesetexp)
Evaluates the SNePSUL nodeset expression, nodesetexp, which must evaluate to a set of nodes all of whose
identifiers look like numbers, and returns the node whose identifier looks like the smallest of the numbers.

(dbproject nodesetexp relations)
A virtual relation (a set of flat cable sets) is created and returned. The virtual relation is formed by taking
the nodes returned by the SNePSUL node set expression, nodesetexp, and projecting down the SNePSUL
relations included in the sequence, relations.

(dbtot nodesetexp)
Evaluates the SNePSUL nodeset expression, nodesetexp, which must evaluate to a set of nodes all of whose
identifiers look like numbers, and returns a node whose identifier looks like the sum of the numbers.

University at Buffalo Public License
(“UBPL”) Version 1.0

1. Definitions.
1.0.1. “Commercial Use”

means distribution or otherwise making the Covered Code available to a third party.

1.1. “Contributor”
means each entity that creates or contributes to the creation of Modifications.

1.2. “Contributor Version”
means the combination of the Original Code, prior Modifications used by a Contributor, and the Mod-
ifications made by that particular Contributor.

1.3. “Covered Code”
means the Original Code or Modifications or the combination of the Original Code and Modifications,
in each case including portions thereof.

1.4. “Electronic Distribution Mechanism”
means a mechanism generally accepted in the software development community for the electronic
transfer of data.

1.5. “Executable”
means Covered Code in any form other than Source Code.

1.6. “Initial Developer”
means the individual or entity identified as the Initial Developer in the Source Code notice required by
Exhibit A.

1.7. “Larger Work”
means a work which combines Covered Code or portions thereof with code not governed by the terms
of this License.

1.8. “License”
means this document.

1.8.1. “Licensable”
means having the right to grant, to the maximum extent possible, whether at the time of the initial grant
or subsequently acquired, any and all of the rights conveyed herein.

1.9. “Modifications”
means any addition to or deletion from the substance or structure of either the Original Code or any
previous Modifications. When Covered Code is released as a series of files, a Modification is:

107

108 UNIVERSITY AT BUFFALO PUBLIC LICENSE (“UBPL”) VERSION 1.0

a. Any addition to or deletion from the contents of a file containing Original Code or previous
Modifications.

b. Any new file that contains any part of the Original Code or previous Modifications.

1.10. “Original Code”
means Source Code of computer software code which is described in the Source Code notice required
by Exhibit A as Original Code, and which, at the time of its release under this License is not already
Covered Code governed by this License.

1.10.1. “Patent Claims”
means any patent claim(s), now owned or hereafter acquired, including without limitation, method,
process, and apparatus claims, in any patent Licensable by grantor.

1.11. “Source Code”
means the preferred form of the Covered Code for making modifications to it, including all modules
it contains, plus any associated interface definition files, scripts used to control compilation and in-
stallation of an Executable, or source code differential comparisons against either the Original Code
or another well known, available Covered Code of the Contributor’s choice. The Source Code can be
in a compressed or archival form, provided the appropriate decompression or de-archiving software is
widely available for no charge.

1.12. “You” (or “Your”)
means an individual or a legal entity exercising rights under, and complying with all of the terms of, this
License or a future version of this License issued under Section 6.1. For legal entities, “You” includes
any entity which controls, is controlled by, or is under common control with You. For purposes of this
definition, “control” means (a) the power, direct or indirect, to cause the direction or management of
such entity, whether by contract or otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.

2. Source Code License.

2.1. The Initial Developer Grant.

The Initial Developer hereby grants You a world-wide, royalty-free, non-exclusive license, subject to third
party intellectual property claims:

a. under intellectual property rights (other than patent or trademark) Licensable by Initial Developer to
use, reproduce, modify, display, perform, sublicense and distribute the Original Code (or portions
thereof) with or without Modifications, and/or as part of a Larger Work; and

b. under Patents Claims infringed by the making, using or selling of Original Code, to make, have made,
use, practice, sell, and offer for sale, and/or otherwise dispose of the Original Code (or portions thereof).

c. the licenses granted in this Section 2.1 (a) and (b) are effective on the date Initial Developer first
distributes Original Code under the terms of this License.

d. Notwithstanding Section 2.1 (b) above, no patent license is granted: 1) for code that You delete from
the Original Code; 2) separate from the Original Code; or 3) for infringements caused by: i) the
modification of the Original Code or ii) the combination of the Original Code with other software or
devices.

3.. DISTRIBUTION OBLIGATIONS. 109

2.2. Contributor Grant.
Subject to third party intellectual property claims, each Contributor hereby grants You a world-wide, royalty-
free, non-exclusive license

a. under intellectual property rights (other than patent or trademark) Licensable by Contributor, to use,
reproduce, modify, display, perform, sublicense and distribute the Modifications created by such Con-
tributor (or portions thereof) either on an unmodified basis, with other Modifications, as Covered Code
and/or as part of a Larger Work; and

b. under Patent Claims infringed by the making, using, or selling of Modifications made by that Contrib-
utor either alone and/or in combination with its Contributor Version (or portions of such combination),
to make, use, sell, offer for sale, have made, and/or otherwise dispose of: 1) Modifications made by that
Contributor (or portions thereof); and 2) the combination of Modifications made by that Contributor
with its Contributor Version (or portions of such combination).

c. the licenses granted in Sections 2.2 (a) and 2.2 (b) are effective on the date Contributor first makes
Commercial Use of the Covered Code.

d. Notwithstanding Section 2.2 (b) above, no patent license is granted: 1) for any code that Contributor has
deleted from the Contributor Version; 2) separate from the Contributor Version; 3) for infringements
caused by: i) third party modifications of Contributor Version or ii) the combination of Modifications
made by that Contributor with other software (except as part of the Contributor Version) or other
devices; or 4) under Patent Claims infringed by Covered Code in the absence of Modifications made
by that Contributor.

3. Distribution Obligations.

3.1. Application of License.
The Modifications which You create or to which You contribute are governed by the terms of this License,
including without limitation Section 2.2. The Source Code version of Covered Code may be distributed only
under the terms of this License or a future version of this License released under Section 6.1, and You must
include a copy of this License with every copy of the Source Code You distribute. You may not offer or
impose any terms on any Source Code version that alters or restricts the applicable version of this License or
the recipients’ rights hereunder. However, You may include an additional document offering the additional
rights described in Section 3.5.

3.2. Availability of Source Code.
Any Modification which You create or to which You contribute must be made available in Source Code
form under the terms of this License either on the same media as an Executable version or via an accepted
Electronic Distribution Mechanism to anyone to whom you made an Executable version available; and if
made available via Electronic Distribution Mechanism, must remain available for at least twelve (12) months
after the date it initially became available, or at least six (6) months after a subsequent version of that particular
Modification has been made available to such recipients. You are responsible for ensuring that the Source
Code version remains available even if the Electronic Distribution Mechanism is maintained by a third party.

3.3. Description of Modifications.
You must cause all Covered Code to which You contribute to contain a file documenting the changes You
made to create that Covered Code and the date of any change. You must include a prominent statement that
the Modification is derived, directly or indirectly, from Original Code provided by the Initial Developer and

110 UNIVERSITY AT BUFFALO PUBLIC LICENSE (“UBPL”) VERSION 1.0

including the name of the Initial Developer in (a) the Source Code, and (b) in any notice in an Executable
version or related documentation in which You describe the origin or ownership of the Covered Code.

3.4. Intellectual Property Matters
(a) Third Party Claims

If Contributor has knowledge that a license under a third party’s intellectual property rights is required to
exercise the rights granted by such Contributor under Sections 2.1 or 2.2, Contributor must include a text
file with the Source Code distribution titled “LEGAL” which describes the claim and the party making the
claim in sufficient detail that a recipient will know whom to contact. If Contributor obtains such knowledge
after the Modification is made available as described in Section 3.2, Contributor shall promptly modify the
LEGAL file in all copies Contributor makes available thereafter and shall take other steps (such as notifying
appropriate mailing lists or newsgroups) reasonably calculated to inform those who received the Covered
Code that new knowledge has been obtained.

(b) Contributor APIs

If Contributor’s Modifications include an application programming interface and Contributor has knowledge
of patent licenses which are reasonably necessary to implement that API, Contributor must also include this
information in the LEGAL file.

(c) Representations.

Contributor represents that, except as disclosed pursuant to Section 3.4 (a) above, Contributor believes that
Contributor’s Modifications are Contributor’s original creation(s) and/or Contributor has sufficient rights to
grant the rights conveyed by this License.

3.5. Required Notices.
You must duplicate the notice in Exhibit A in each file of the Source Code. If it is not possible to put such
notice in a particular Source Code file due to its structure, then You must include such notice in a location
(such as a relevant directory) where a user would be likely to look for such a notice. If You created one or
more Modification(s) You may add your name as a Contributor to the notice described in Exhibit A. You must
also duplicate this License in any documentation for the Source Code where You describe recipients’ rights
or ownership rights relating to Covered Code. You may choose to offer, and to charge a fee for, warranty,
support, indemnity or liability obligations to one or more recipients of Covered Code. However, You may do
so only on Your own behalf, and not on behalf of the Initial Developer or any Contributor. You must make
it absolutely clear than any such warranty, support, indemnity or liability obligation is offered by You alone,
and You hereby agree to indemnify the Initial Developer and every Contributor for any liability incurred by
the Initial Developer or such Contributor as a result of warranty, support, indemnity or liability terms You
offer.

3.6. Distribution of Executable Versions.
You may distribute Covered Code in Executable form only if the requirements of Sections 3.1, 3.2, 3.3, 3.4
and 3.5 have been met for that Covered Code, and if You include a notice stating that the Source Code version
of the Covered Code is available under the terms of this License, including a description of how and where
You have fulfilled the obligations of Section 3.2. The notice must be conspicuously included in any notice in
an Executable version, related documentation or collateral in which You describe recipients’ rights relating
to the Covered Code. You may distribute the Executable version of Covered Code or ownership rights under
a license of Your choice, which may contain terms different from this License, provided that You are in

4.. INABILITY TO COMPLY DUE TO STATUTE OR REGULATION. 111

compliance with the terms of this License and that the license for the Executable version does not attempt to
limit or alter the recipient’s rights in the Source Code version from the rights set forth in this License. If You
distribute the Executable version under a different license You must make it absolutely clear that any terms
which differ from this License are offered by You alone, not by the Initial Developer or any Contributor. You
hereby agree to indemnify the Initial Developer and every Contributor for any liability incurred by the Initial
Developer or such Contributor as a result of any such terms You offer.

3.7. Larger Works.
You may create a Larger Work by combining Covered Code with other code not governed by the terms of
this License and distribute the Larger Work as a single product. In such a case, You must make sure the
requirements of this License are fulfilled for the Covered Code.

4. Inability to Comply Due to Statute or Regulation.
If it is impossible for You to comply with any of the terms of this License with respect to some or all of
the Covered Code due to statute, judicial order, or regulation then You must: (a) comply with the terms
of this License to the maximum extent possible; and (b) describe the limitations and the code they affect.
Such description must be included in the LEGAL file described in Section 3.4 and must be included with all
distributions of the Source Code. Except to the extent prohibited by statute or regulation, such description
must be sufficiently detailed for a recipient of ordinary skill to be able to understand it.

5. Application of this License.
This License applies to code to which the Initial Developer has attached the notice in Exhibit A and to related
Covered Code.

6. Versions of the License.

6.1. New Versions
University at Buffalo (“UB”) may publish revised and/or new versions of the License from time to time. Each
version will be given a distinguishing version number.

6.2. Effect of New Versions
Once Covered Code has been published under a particular version of the License, You may always continue
to use it under the terms of that version. You may also choose to use such Covered Code under the terms of
any subsequent version of the License published by UB. No one other than UB has the right to modify the
terms applicable to Covered Code created under this License.

6.3. Derivative Works
If You create or use a modified version of this License (which you may only do in order to apply it to code
which is not already Covered Code governed by this License), You must (a) rename Your license so that the
phrases “University at Buffalo”, “University at BuffaloPL”, “UBPL” or any confusingly similar phrase do
not appear in your license (except to note that your license differs from this License) and (b) otherwise make
it clear that Your version of the license contains terms which differ from the University at Buffalo Public
License. (Filling in the name of the Initial Developer, Original Code or Contributor in the notice described in
Exhibit A shall not of themselves be deemed to be modifications of this License.)

112 UNIVERSITY AT BUFFALO PUBLIC LICENSE (“UBPL”) VERSION 1.0

6.4. Origin of License

This License is derived from the familiar Mozilla Public License Version 1.1 (“MPL”) and differs only in that
1) the title now refers to UB to indicate that UB is the licensor; 2) UB retains the sole right to publish revised
versions of this license (See 6.1 and 6.2); 3) Section 6.3 now refers to the phrases “University at Buffalo”,
“University at BuffaloPL”, “UBPL”; 4) the License shall be governed by law provisions of the state of New
York and any litigation relating to this License shall be subject to the jurisdiction of the state and federal
courts of the State of New York and all parties consent to the exclusive personal jurisdiction of those courts
(See 11); and 5) Research Foundation of State University of New York, on behalf of University at Buffalo is
cited as the copyright owner of the original code (See Exhibit A).

7. DISCLAIMER OF WARRANTY

COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN “AS IS” BASIS, WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION,
WARRANTIES THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A
PARTICULAR PURPOSE OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE COVERED CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE
DEFECTIVE IN ANY RESPECT, YOU (NOT THE INITIAL DEVELOPER OR ANY OTHER CONTRIB-
UTOR) ASSUME THE COST OF ANY NECESSARY SERVICING, REPAIR OR CORRECTION. THIS
DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO USE
OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

8. Termination

8.1. This License and the rights granted hereunder will terminate automatically if You fail to comply with
terms herein and fail to cure such breach within 30 days of becoming aware of the breach. All subli-
censes to the Covered Code which are properly granted shall survive any termination of this License.
Provisions which, by their nature, must remain in effect beyond the termination of this License shall
survive.

8.2. If You initiate litigation by asserting a patent infringement claim (excluding declatory judgment ac-
tions) against Initial Developer or a Contributor (the Initial Developer or Contributor against whom
You file such action is referred to as “Participant”) alleging that:

(a) such Participant’s Contributor Version directly or indirectly infringes any patent, then any and all
rights granted by such Participant to You under Sections 2.1 and/or 2.2 of this License shall, upon
60 days notice from Participant terminate prospectively, unless if within 60 days after receipt of
notice You either: (i) agree in writing to pay Participant a mutually agreeable reasonable royalty
for Your past and future use of Modifications made by such Participant, or (ii) withdraw Your
litigation claim with respect to the Contributor Version against such Participant. If within 60
days of notice, a reasonable royalty and payment arrangement are not mutually agreed upon in
writing by the parties or the litigation claim is not withdrawn, the rights granted by Participant to
You under Sections 2.1 and/or 2.2 automatically terminate at the expiration of the 60 day notice
period specified above.

(b) any software, hardware, or device, other than such Participant’s Contributor Version, directly or
indirectly infringes any patent, then any rights granted to You by such Participant under Sections
2.1(b) and 2.2(b) are revoked effective as of the date You first made, used, sold, distributed, or
had made, Modifications made by that Participant.

9.. LIMITATION OF LIABILITY 113

8.3. If You assert a patent infringement claim against Participant alleging that such Participant’s Contributor
Version directly or indirectly infringes any patent where such claim is resolved (such as by license
or settlement) prior to the initiation of patent infringement litigation, then the reasonable value of the
licenses granted by such Participant under Sections 2.1 or 2.2 shall be taken into account in determining
the amount or value of any payment or license.

8.4. In the event of termination under Sections 8.1 or 8.2 above, all end user license agreements (excluding
distributors and resellers) which have been validly granted by You or any distributor hereunder prior to
termination shall survive termination.

9. LIMITATION OF LIABILITY

UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER TORT (INCLUD-
ING NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL YOU, THE INITIAL DEVELOPER, ANY
OTHER CONTRIBUTOR, OR ANY DISTRIBUTOR OF COVERED CODE, OR ANY SUPPLIER OF
ANY OF SUCH PARTIES, BE LIABLE TO ANY PERSON FOR ANY INDIRECT, SPECIAL, INCIDEN-
TAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER INCLUDING, WITHOUT LIMITA-
TION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER FAILURE OR MAL-
FUNCTION, OR ANY AND ALL OTHER COMMERCIAL DAMAGES OR LOSSES, EVEN IF SUCH
PARTY SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITA-
TION OF LIABILITY SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL INJURY RE-
SULTING FROM SUCH PARTY’S NEGLIGENCE TO THE EXTENT APPLICABLE LAW PROHIBITS
SUCH LIMITATION. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION
OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THIS EXCLUSION AND LIMITATION MAY
NOT APPLY TO YOU.

10. U.S. government end users

The Covered Code is a “commercial item,” as that term is defined in 48 C.F.R. 2.101 (Oct. 1995), consisting
of “commercial computer software” and “commercial computer software documentation,” as such terms are
used in 48 C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through
227.7202-4 (June 1995), all U.S. Government End Users acquire Covered Code with only those rights set
forth herein.

11. Miscellaneous

This License represents the complete agreement concerning subject matter hereof. If any provision of this
License is held to be unenforceable, such provision shall be reformed only to the extent necessary to make it
enforceable. This License shall be governed by law provisions of the state of New York (except to the extent
applicable law, if any, provides otherwise), excluding its conflict-of-law provisions. With respect to disputes
in which at least one party is a citizen of, or an entity chartered or registered to do business in the United States
of America, any litigation relating to this License shall be subject to the jurisdiction of the state and federal
courts of the State of New York and all parties consent to the exclusive personal jurisdiction of those courts,
with the losing party responsible for costs, including without limitation, court costs and reasonable attorneys’
fees and expenses. The application of the United Nations Convention on Contracts for the International Sale
of Goods is expressly excluded. Any law or regulation which provides that the language of a contract shall
be construed against the drafter shall not apply to this License.

114 UNIVERSITY AT BUFFALO PUBLIC LICENSE (“UBPL”) VERSION 1.0

12. Responsibility for claims
As between Initial Developer and the Contributors, each party is responsible for claims and damages arising,
directly or indirectly, out of its utilization of rights under this License and You agree to work with Initial
Developer and Contributors to distribute such responsibility on an equitable basis. Nothing herein is intended
or shall be deemed to constitute any admission of liability.

13. Multiple-licensed code
Initial Developer may designate portions of the Covered Code as “Multiple-Licensed”. “Multiple-Licensed”
means that the Initial Developer permits you to utilize portions of the Covered Code under Your choice of the
UBPL or the alternative licenses, if any, specified by the Initial Developer in the file described in Exhibit A.

Exhibit A - University at Buffalo Public License. 115

Exhibit A - University at Buffalo Public License.
The contents of this file are subject to the University at Buffalo Public License Version 1.0 (the ”License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.cse.buffalo.edu/sneps/Downloads/ubpl.pdf.

Software distributed under the License is distributed on an ”AS IS” basis, WITHOUT WARRANTY OF
ANY KIND, either express or implied. See the License for the specific language governing rights and limi-
tations under the License.

The Original Code is SNePS 2.7.

The Initial Developer of the Original Code is Research Foundation of State University of New York, on behalf
of University at Buffalo.

Portions created by the Initial Developer are Copyright (C) 2007 Research Foundation of State University of
New York, on behalf of University at Buffalo. All Rights Reserved.

Contributor(s): .

NOTE: The text of this Exhibit A may differ slightly from the text of the notices in the Source Code files of
the Original Code. You should use the text of this Exhibit A rather than the text found in the Original Code
Source Code for Your Modifications.

Index

!, 6, 7, 16
*, 7, 17
+, 2, 17
-, 12, 17
=, 7, 17
>, 18
?, 7, 19
#, 6, 7, 16
#!, 47
$, 6, 7, 16
%, 58
&, 2, 17
, 18
ˆ , 10, 17, 58
ˆ ˆ , 10, 58

achieve, 39, 67
act-effect, 43
act-plan, 36
act-precondition, 40
activate, 2, 16, 58
activate!, 2, 58
active connection graph, 58, 62
ActPlan, 68
add, 16
add-to-context, 15, 58
adopt, 16, 29, 67
all-hyps, 9
and, 14
apply-function-to-ns, 47
arc labels, 12
ask, 2, 58, 70
askifnot, 2, 58, 70
askwh, 2, 58, 70
askwhnot, 2, 58, 70, 71
assert, 6, 7, 16
assertions

SNEPSUL variable, 7
parser::atn-read-sentence, 11
atnin, 79
attach-function, 74
attach-primaction, 35

attachedfunction, 73

belief revision, 75
belief space, 75
beliefs-about, 19, 58
believe, 2, 29, 67, 75
blieve, 75
bnscommands

SNEPSUL variable, 7
break-arc, 79
build, 5, 6, 13, 16

snip::*choose-randomly*, 30
clear-infer, 17, 58
clear-infer-all, 17
clearkb, 58
commands

infix, 5
macro, 6
postfix, 6
prefix, 5
SNEPSUL, 5

commands
SNEPSUL variable, 7

compose, 14
context, 75

current, 7
default, 7

:context, 9
context-specifier, 9
contexts, 7

extensionally defined, 7
intensionally defined, 7
names, 7
nodes in, 7
operating on, 15

converse, 14
copyright, 58
current context, 75
current-configuration, 80

dbAssertVirtual, 106
dbcount, 106

116

INDEX 117

dbjoin, 106
dbmax, 106
dbmin, 106
dbproject, 106
dbtot, 106
dc-lisp, 11
dc-no-pause, 11
dc-pause-help, 11
dc-quit, 11
dc-quit-all, 11
dc-read-pause, 11
dc-set-pause, 11
dc-sneps, 11
dc-snepslog, 11
deduce, 12, 19
deducefalse, 2, 19
deducetrue, 2, 19
deducewh, 2, 19
deducewhnot, 2, 19
default-defaultct, 7
defaultct

SNEPSUL variable, 7, 9, 15
define, 12
define-attachedfunction, 73
define-frame, 58
define-path, 13, 59
define-primaction, 28
defsnepscom, 51
demo, 10, 59
depthCutoffBack, 25, 66
depthCutoffForward, 25, 66
derived belief, 75
describe, 18
describe-context, 15, 59
describe-terms, 59
disbelieve, 2, 29, 67
do-all, 30, 45, 67
do-one, 30, 45, 67
domain-restrict, 15
dot, 3, 18
dump, 18

Effect, 68
endLispConnection, 71
erase, 16
ev-trace, 25
exception, 14
expert, 59

files
auxiliary, 10

compatibility, 11
find, 5, 19
findassert, 5, 19
findbase, 19
findconstant, 19
findpattern, 19
findvariable, 19
fnscommands

SNEPSUL variable, 7
Franz ACL, 5, 18, 70
full-describe, 18
function, SNEPSUL, 5

getValFromVar, 71
goal-plan, 39
GoalPlan, 68

hypotheses, 7
hypothesis, 75

if-do, 28
ifdo, 67
in-trace, 25
inference

path-based, 13
reduction, 12, 13

infertrace, 25
innet, 10
intext, 10
irreflexive-restrict, 14
isConnected, 71

Java-SNePS API, 5, 70
JavaSnepsAPI, 70
JIMI, 3, 5, 18
JUNG, 3, 5, 18

kinconsistent, 7
kplus, 14
kstar, 14

lexin, 79
lisp, 9, 59
lisp-list-to-ns, 47
lisp-object-to-node, 47
list-asserted-wffs, 59
list-context-names, 15
list-contexts, 59
list-hypotheses, 15
list-nodes, 17
list-terms, 59
list-wffs, 2, 59

118 INDEX

load, 60

multi::print-regs, 26

nl-tell, 70
node-to-lisp-object, 47
nodes

asserted, 6, 7
base, 6
in contexts, 7
molecular, 6
pattern, 6
proposition, 7
types of, 6
unasserted, 6, 7
variable, 6, 61

nodes
SNEPSUL variable, 7

nogood, 77
normal, 60
not, 14
ns-to-lisp-list, 47
nscommands

SNEPSUL variable, 7

or, 14
outnet, 10

parse, 79
parser:nl-tell, 70
path-based inference, 13
paths

syntax and semantics, 13
patterns

SNEPSUL variable, 7
perform, 27, 40, 60
plan-act, 36
plan-goal, 39
plantrace, 40
Precondition, 68
primitive action functions, 28

table of, 36
primitive actions, 28
primitive acts, 28
procedural attachment, 73
procedure, SNEPSUL, 5

range-restrict, 15
reduction inference, 12, 13
relations, 12

converse, 12
initial, 12

relations
SNEPSUL variable, 7, 12

relative-complement, 14
remove-from-context, 15, 60
resetnet, 17
rscommands

SNEPSUL variable, 7

set-context, 15, 60
set-default-context, 15, 60
set-mode-1, 60
set-mode-2, 60
set-mode-3, 60
show, 2, 3, 5, 18, 61
silent-erase, 16
SNeBR, 75
sneps, 9
snepslog:ask, 70
snepslog:init-java-sneps-connection,

70
snepslog:tell, 69
SNeRE, 27, 67
snif, 31, 67
SNIP, 21, 64
sniterate, 31, 67
snsequence, 30, 67
support set, 61
support set, 59, 76
surface, 19

tell, 69, 70
terminalPunctuation, 61, 62
topcommands

SNEPSUL variable, 7
trace, 61

unadopt, 30, 67
unbreak-arc, 80
undefine, 12
undefine-path, 13, 61
undefsnepscoms, 53
unev-trace, 25
unin-trace, 26
Unique Variable Binding Rule, 64
unitpath, 12, 13
unlabeled, 61
untrace, 61
cl-user:*use-gui-show*, 3, 61

variables
SNEPSUL, 7

variables

INDEX 119

SNEPSUL variable, 7
varnodes

SNEPSUL variable, 7
verbize, 88

wff, 62, 63
wffCommand, 61, 62
wffName, 61

unassigned, 62
wffNameCommand, 61
when-do, 27
whendo, 67
whenever-do, 27
wheneverdo, 67
with-snepsul-standard-eval, 48
with-snepsul-toplevel-style-eval, 48
with-snepsul-trace-eval, 48
withall, 32, 67
withsome, 33, 68
wordize, 89

