
Part Number: 2841; Rev. 4
Mobility Robot Integration Software User’s Guide

Copyright and Liability Information

, or
agnetic,
ssion

o
n con-

s, and
arran-
accom-

s or
l, inci-
ption).

inci-
, and

arks

ective
com-
Copyright and Liability Information

Copyright 2000, iRobot Corp. All Rights Reserved.

No part of this manual may be copied or distributed, transmitted, transcribed, stored in a retrieval system
translated into any human or computer language, in any form or by any means, electronic, mechanical, m
manual, or otherwise, including photocopying, or disclosed to third parties, without express written permi
from iRobot Corp., 32 Fitzgerald Dr., Jaffrey, NH 03452, USA.

Limits of Liability

While every precaution has been taken in the preparation of this documentation, iRobot Corp. assumes n
responsibility whatsoever for errors or omissions, or for damages resulting from the use of the informatio
tained herein.

To the maximum extent permitted by applicable law, iRobot Corp., its officers, employees and contractor
their suppliers disclaims all warranties, either expressed or implied, including, but not limited to, implied w
ties of merchantability and fitness for a particular purpose, with regard to the hardware, software, and all
panying or subsequently supplied written materials and documentation.

To the maximum extent permitted by applicable law, in no event shall iRobot Corp., its officers, employee
contractors, or their suppliers, be liable for any damages whatsoever (including without limitation, specia
dental, consequential, or indirect damages for personal injury, loss of business profits, or business interru

Special Note

Because some states/jurisdictions do not allow the exclusion or limitation of liability for consequential or
dental damages, the above limitations may not apply to you. This warranty gives you specific legal rights
you may also have other rights which vary from state/jurisdiction to state/jurisdiction.

Trademarks

ATRV, ATRV-Jr, ATRV-Micro, ATRV-Mini, B14, B14r, B21, B21r, FARnet, iRobot, K8, Magellan,
Magellan Pro, Mobility, rFLEX, Robots for the Real World, TRANSIT, Urban Robot, and Urbie are tradem
of iRobot Corp.

Other product and company names mentioned may be trademarks or registered trademarks of their resp
companies. Mention of third-party products is for informational purposes only and constitutes neither a re
mendation nor an endorsement.
Mobility Robot Integration Software User’s Guide ii

Contents

x

x

i
i
i

8
9

Contents
PREFACE Preface

Welcome To the World of iRobot Research Mobile Robotics ix

Technical Support From iRobot . ix
Email Support . x
Web Page Support .
Mailing List Support . x
Phone Calls .

Documentation .x
Using This Guide. .x
Documentation Feedback .x

CHAPTER 1 Getting Started with Mobility Robot Integration Software

Welcome to Mobility Robot Integration Software .1 - 1

What is Mobility Robot Integration Software? .1 - 2
Why did we develop Mobility? . 1 - 4

Getting Ready to Explore Mobility .1 - 5

CHAPTER 2 A Tour of Mobility With the MOM Graphical Interface

Running MOM .2 - 1
Viewing Sonar Sensor Output through MOM. 2 - 3
Driving your Robot with MOM . 2 - 4

CHAPTER 3 Examples of Mobility Programs

Robot Programming Tips and Tricks .3 - 1

A Simple Mobility Program: simple_follow .3 - 2
Simple Follow Program. 3 - 4
Notes On Simple Follow Program . 3 - 7

Getting More Sensor Readings: simple_follow_2 .3 - 8
Getting SICK-PLS Laser Scanner Readings . 3 -
Getting Base Sonar Readings . 3 -
A Note on Indexing on the B21r . 3 - 9
Getting Bump Panel Readings . 3 - 10
Mobility Robot Integration Software User’s Guide iii

Contents

8

3

The Program simple_follow_2 .3 - 11
Makefile for simple_follow_2. 3 - 19

Mobility In Action – More Realistic Examples .3 - 19
Square_and_Circle: A Mobility Sample Program. 3 - 20
Square_and_Circle’s System Configuration . 3 - 21
Filling Out Square_and_Circle’s Functionality. 3 - 21
Wander: A More Interesting Mobility sample program. 3 - 21
Wander’s System Configuration . 3 - 21
Filling Out Wander’s Functionality . 3 - 21

Designing a Mobility Program .3 - 21

CHAPTER 4 MOM — The Mobility Graphical Interface

MOM: An Overview .4 - 1

Understanding MOM's Environment .4 - 3

iRobot Factory Pre-installed Configuration .4 - 5

Invoking the Naming Service. .4 - 6

The Base Server .4 -

Starting Up MOM. .4 - 9
MOM's Graphical Interface. 4 - 10
Range (Sonar) View .4 - 11
The Object Hierarchy . 4 - 12
Properties. 4 - 1
Debug Output . 4 - 14
Coming Soon. 4 - 14
Creating and Running Objects . 4 - 15
Active Objects . 4 - 15
Hot-Pluggable Connections. 4 - 15
Adding a Viewer . 4 - 16
Loading Configurations. 4 - 16
Saving Configurations. 4 - 16

CHAPTER 5 Mobility Programming With Class Frameworks (C++ and
Java)

The Mobility Class Framework Model (Language Dependent C++/Java) .5 - 1
Interface Methods . 5 - 2
Helper Methods . 5 - 2
Template Methods . 5 - 3
Hook Methods . 5 - 3
Mobility Robot Integration Software User’s Guide iv

Contents

5

9
0
0
0

1

3

1

2

Building on the Mobility Class Framework .5 - 3

The Elements of Mobility Robot Integration Software5 - 4

Mobility Tools: Robot Tools and User Interfaces .5 - 5

The Basics: Robot Components and Interfaces .5 -
Interface Definitions . 5 - 6
Object Request Broker (ORB) . 5 - 6
O/S Abstraction Layers . 5 - 7

CHAPTER 6 Mobility Robot Integration Software Overview

Mobility Robot Object Model (Language Independent) 6 - 1
Robot Object Model Overview . 6 - 1

An Example Mobility Robot Control System .6 - 3
The Mobility Core Interfaces . 6 - 5
Contained Objects Interface . 6 - 6
Object Container Interface . 6 - 7
Property Container Interface . 6 - 8
ActiveObject Interface. 6 - 8
Object Factory Interface . 6 - 8
Mobility Externalization Interfaces. 6 - 9
MobilityComponents Module . 6 - 9
StateChangeHandler Interface. 6 -
SystemComponent. 6 - 1
SystemComponentStatus. 6 - 1
CompositeSystemComponent . 6 - 1
ActiveSystemComponent . 6 - 10
SystemModuleComponent . 6 - 10
StateObserver .6 - 1
MobilityData Module .6 - 11
DynamicObject Interface. .6 - 11
Mobility StateComponents .6 - 11
Managing System Configuration. 6 - 13
Property Container Interface . 6 - 13
Putting the Components Together . 6 - 1

CHAPTER 7 Mobility Building Blocks: Basic Robot Components and
Interfaces

The Robot as a Hierarchy. .7 -
Robot Abstractions, Objects and Interfaces . 7 - 2
Sensor Systems . 7 -
Mobility Robot Integration Software User’s Guide v

Contents

3
3
5

9

Sonar Sensing . 7 -
How the Sonar Sensors Work . 7 -
How The Sonar Sensors Can be Fooled . 7 -
Infrared Sensing . 7 - 6
Robotic Tactile Sensing. 7 - 7
Odometry and Position Control: the RobotDrive Object 7 - 7
How Mobility Processes Encoder Data. 7 - 8
Actuator System Abstractions . 7 - 8
Robot Shape Abstractions . 7 -
Behavioral Abstractions . 7 - 9
Parallel Behaviors . 7 - 9
Layers of Control. 7 - 9
Mobility Building Blocks for Extensiblity . 7 - 9
Keeping Track of Obstacles: Local Map. 7 - 10
The GUI Tools. 7 - 10
The Programming Interface. 7 - 10
Playing Nice: Guarded Motion . 7 - 10
The Programming Interface. 7 - 10
Getting to the Point: Pose Control. 7 - 10

CHAPTER 8 Sim: The Mobility Simulator

The Mobility Simulator .8 - 1
Sim’s World Simulator Core . 8 - 2
The GUI Tools. 8 - 2
The Programming Interfaces . 8 - 2
Sim’s Robot Hardware Simulator Modules. 8 - 2
The Robot Simulator Visualization Interface . 8 - 2
Web-Based Visualization Interface . 8 - 2
RML 2.0 Interface . 8 - 2
Running Other Objects with Sim . 8 - 2

CHAPTER 9 Advanced Issues And Common Questions

How Do I...? .9 - 1
Work with a multi-robot team? . 9 - 1
Write modules that handle multiple robots? . 9 - 1
Deal with multiple threads in my modules? . 9 - 1
Make my own interfaces and extend the robot object model? 9 - 1
Use my old BeeSoft programs with Mobility? . 9 - 2
Use my old Saphira programs with Mobility? . 9 - 2
Program Mobility from my LISP system? . 9 - 2
Mobility Robot Integration Software User’s Guide vi

Contents

2
3
3

1

Change a Mobility-defined interface?. 9 - 2

Why Did You...? .9 - 2
Use CORBA 2.x as an interface standard? . 9 -
Change from BeeSoft? . 9 -
Support only C++ and Java? . 9 -

APPENDIX A Installing Mobility

Install Linux on the Robot’s On-board PC and Prepare it for Mobility. . . A - 2
For Red Hat Linux 5.1 only: . A - 3

Set Up a mobility Account. . A - 4

Download Mobility software.. A - 5

Install Mobility . A - 7
For Red Hat Linux 5.1 only: . A - 8

Configure an Off-board PC for Radio RS-232 Link A - 8
Magellan. A - 8
Install MOM Only on a Desktop PC. A - 9
MOM-only on Linux . A - 9
MOM-only on Windows . A - 10
Install Base Server Only on a Robot PC. . A - 10

APPENDIX B External Copyright Information

JaccORB and OmniORB2 . B - 1
GNU Library General Public License . B - 1
Preamble . B -
Terms and Conditions for Copying, Distribution, and Modification B - 4
No Warranty . B - 10

How to Apply These Terms to Your New Libraries. B - 11

GLOSSARY Glossary
Mobility Robot Integration Software User’s Guide vii

Mobility Robot Integration Software User’s Guide viii

Figures

FIGURE 1 - 1. The Mobility Environment in Context1 - 3

FIGURE 2 - 1. MOM’s Object Hierarchy View Window 2 - 3

FIGURE 2 - 2. MOM Drive View and Range View Windows.2 - 4

FIGURE 4 - 1. MOM’s Object Hierarchy View Window 4 - 10

FIGURE 4 - 2. Selecting MOM’s Range View Window 4 - 11

FIGURE 4 - 3. MOM’s Drive View Window and Range View Window.4 - 12

FIGURE 5 - 1. Mobility in the Context of the C++ and Java Programming
Environments .5 - 5

FIGURE 6 - 1. An Example Mobility Robot Software Setup 6 - 3

FIGURE 6 - 2. Mobility Class Diagram: Core and Components6 - 5

FIGURE 6 - 3. Mobility Object States .6 - 7

FIGURE 6 - 4. Anatomy of a Mobility Base Server.6 - 15

FIGURE 6 - 5. Data Flow in a Mobility Base Server6 - 16

FIGURE 7 - 1. How the Sonar Sensor Can Be Fooled: Ranging Errors . .7 - 5

FIGURE 7 - 2. How the Sonar Sensor Can Be Fooled: Angular Errors. . .7 - 6

Figures

PREFACE Preface
our
ting
et
ents

,
in the
t and
sup-
Welcome To the World of iRobot Research Mobile
Robotics

Welcome and congratulations! You have made a wise decision in purchasing y
new robot from iRobot. iRobot is the acknowledged industry leader in the exci
field of cutting-edge mobile robotics. Everyone at iRobot is eager to help you g
your robot up and running as quickly and easily as possible. Spend a few mom
reading through the documents supplied with your new robot.

Technical Support From iRobot

iRobot wants your research robot to work for you. As you work with your robot
you may encounter questions or problems that are not adequately addressed
documentation. When this happens, contact iRobot technical support. The bes
most convenient way to contact technical support is by filling out the technical
port request form at our website: www.rwii.com/rwi/rwisupport.html.
Mobility Robot Integration Software User’s Guide

http://www.rwii.com/rwi/rwisupport.html

Technical Support From iRobot

e.

 or

re to
crip-
r
s.

ort

ew

obot

m-

2-
se
Email Support

iRobot technicians and engineers prefer email support dialogues. Email allows
iRobot to preserve both problem descriptions and solutions for future referenc

If you have hardware or software questions not addressed in this User’s Guide
other documentation, please email your question to support@rwii.com. Do not
direct your email to a specific individual. This ensures that your question will
receive attention from the engineer or technician best suited to help you. Be su
include your name, university or business, robot serial number, a detailed des
tion of your problem, and your phone number. An iRobot technician or enginee
will get back to you, usually within 24 hours, and, in some cases, within minute

Web Page Support

Our web page, http://www.rwii.com (or http://www.isr.com) includes some supp
information. Authorized Mobility users can download the latest releases of the
Mobility software and documentation from the software section of the site. As n
support pages are brought up, iRobot will announce them via a mailing list.

Mailing List Support

The mailing list users@rwii.com provides users of Mobility and other iRobot
research robotics products a forum to share ideas, concerns, and thoughts. iR
will make important announcements through this list. These could include
announcements, software updates and patch announcements, solutions to co
monly experienced problems, and late-breaking iRobot and robotics news.

NOTE: This is a public list; all subscribers will see all posts. To sub-
scribe, send a message to: users-request@rwii.com. In the
subject line type “subscribe”. It will ignore any text in the
body of the email. iRobot uses a mailing list manager called
SmartList.

Phone Calls

We understand that, occasionally, a phone call may be necessary. Call 603-53
6900 for support, or fax us at 603-532-6901. If you do call with a question plea
have your robot within easy reach when you call.
Mobility Robot Integration Software User’s Guide x

http://www.isr.com

Documentation

ther
enta-
doc-

d, is
w

he
tures
 to
ar-
,

We
in a

-

Documentation

Some iRobot research robots are equipped with hardware and software from o
suppliers. Since the exact configuration of each robot may be different, docum
tion for third-party extensions is presented separately. Think of the third-party
uments as appendixes to this User's Guide.

Using This Guide

This User’s Guide, in combination with the other documents you have receive
your tool for getting started with your robot. The first two chapters show you ho
to set up radio communication between your robot and your base computer. T
next chapters identify the important parts, connectors, switches, and other fea
of your robot and how to set it up for operation. The final chapters tell you how
drive your robot, and perform routine maintenance. The appendixes provide w
ranty information, a list of available accessories, rFLEX Control system details
and other related information.

Documentation Feedback

iRobot wants all its documents to be complete, accurate, friendly, and helpful.
welcome feedback to help us improve our documentation. If you find an error
document, feel an explanation is unclear, or feel something is missing or incom
plete, please send email to docs@rwii.com.
Mobility Robot Integration Software User’s Guide xi

CHAPTER 1 Getting Started with
Mobility Robot
Integration Software
our

or all
in

-

-
nt

uch

ail.
Welcome to Mobility Robot Integration Software

Review this Mobility Robot Integration Software User’s Guide to get acquainted
with the basic philosophy and concepts of Mobility, and to get started writing y
own Mobility programs, using Mobility-supplied tools.

To supplement this User's Guide, a complete set of reference documentation f
Mobility interfaces has been supplied as part of your Mobility distribution. It is
HTML-format, allowing easy online viewing and rapid cross-reference between
sections while programming.

In this chapter, you will take a whirlwind tour of Mobility’s object-oriented archi
tecture and find out a little about the structure of the system.

In the following chapter, you will walk through a simple example Mobility pro-
gram, “Simple-Follow,” designed to introduce you to Mobility concepts and pro
gramming. Because Mobility is such a revolutionary robot software developme
package, even veteran programmers and experienced roboticists can learn m
from studying this sample program.

Further chapters describe the Mobility robot integration software in greater det
Mobility Robot Integration Software User’s Guide

What is Mobility Robot Integration Software?

ed
bility
ext

f
The complete Mobility robot integration software package has been pre-install
on your system. There are only a few simple steps you need to take to get Mo
up and running in your own environment. You will learn how to do this in the n
chapter.

But first, take a few minutes to read the overview of the Mobility system.

NOTE: If you are upgrading to (from BeeSoft, for example) or evalu-
ating Mobility and did not purchase a fully configured com-
puter system from iRobot, or, for some reason need to re-
install Mobility, see Appendix A “Installing Mobility” for
detailed instructions for installing Mobility.

What is Mobility Robot Integration Software?

Mobility robot integration software is a distributed, object-oriented toolkit for
building control software for single and multi-robot systems. Mobility consists o
the following:

• A set of software tools

• An object model for robot software

• A set of basic robot control modules

• An object-oriented class framework to simplify code development
Mobility Robot Integration Software User’s Guide 1 - 2

What is Mobility Robot Integration Software?

n-

pro-
nd
y”

ntity,
, actua-
ible
thms,

uch
ass
ua-
FIGURE 1 - 1. The Mobility Environment in Context

As Figure 1 - 1, “The Mobility Environment in Context,” on page 1 - 3 shows,
Mobility defines the Mobility Robot Object Model using the Common Object
Request Broker Architecture (CORBA) 2. X standard Interface Definition Lan-
guage (IDL). By following the CORBA 2.x standard, Mobility supports many la
guages across many computing platforms. The Mobility Class Framework
complements the Robot Object Model and greatly simplifies the development
cess by allowing you to reuse implementations of the basic system elements a
only add what you need to implement your ideas. Appendix A “Installing Mobilit
provides further information on CORBA itself

The Robot Object Model defines a robot system as a distributed, hierarchically
organized set of objects. Each object is a separate unit of software with an ide
interfaces, and state. Objects represent abstractions of whole robots, sensors
tors, behaviors, perceptual processes and data storage. Objects provide a flex
model of a robot system that can be reconfigured as new hardware, new algori
and new applications are developed.

The Mobility Class Framework mirrors the Robot Object Model and handles m
of the grunt work involved in programming robot software. By deriving a new cl
from the Mobility Class Framework, you can easily add your own sensors, act
Mobility Robot Integration Software User’s Guide 1 - 3

What is Mobility Robot Integration Software?

 even
ces

re

work
so
es for
tem

.

t-
a

 sys-
tors, behaviors, perceptual processes and data classes to the system. Mobility
allows you to extend the Robot Object Model itself by defining your own interfa
using CORBA 2.X standard Interface Definition Language (IDL). Because all
objects in the Mobility environment support a common set of interfaces, they a
called System Components.

Mobility supports both Java and C++, but Release 1.1 provides the class frame
only for the C++ language. The Mobility tool set runs on Linux 2.x. Mobility is al
compatible with Java 1.1 and uses Java to provide cross-platform user interfac
configuration, management, testing and visualization of your robot software sys
in action.

Why did we develop Mobility?

In working with roboticists in labs all over the world, iRobot engineers couldn't
help noticing that none of the several robot development systems in use really
offered researchers the best, most capable development environment possible
After carefully studying the deficiencies in existing systems, iRobot engineers
designed Mobility robot integration software from the ground up, specifically to
support:

• Extensibility over time

• Multiple robot systems

• Integration among researchers

• High software component reuse

• Parallel and distributed processing for robot control

• Adherence to standardized protocol where feasible

• A degree of robot independence

The combination of these elements distinguishes Mobility robot integration sof
ware from other available systems. You might be used to having a library with
fixed set of functions (a “robot API”) as your primary abstraction for robot pro-
gramming. Mobility gives you much more than this. Think of Mobility’s System
Components as an “extensible API.”

NOTE: The online reference is the definitive reference for all the APIs
within Mobility.

Mobility is specifically designed to address a critical issue in robotics research:
tem integration. Real World Interface wants to support the growing robotics
Mobility Robot Integration Software User’s Guide 1 - 4

Getting Ready to Explore Mobility

obot
ble.
research and development community with the Mobility Development Environ-
ment so that they may more readily integrate their research ideas into working r
systems. Therefore, Mobility adheres to standardized protocols where applica

Getting Ready to Explore Mobility

Your robot system was delivered from iRobot with Linux and Mobility pre-
installed.

NOTE: If Mobility was not pre-installed, or you need to re-install it,
see Appendix A “Installing Mobility” for instructions. Install
Mobility before proceeding.
Mobility Robot Integration Software User’s Guide 1 - 5

Getting Started with Mobility Robot Integration Software

1 - 6
 Mobility Robot Integration Software User’s Guide

CHAPTER 2 A Tour of Mobility With
the MOM Graphical
Interface
ace
u

estab-

d
h-

ot

The best way to get acquainted with Mobility is through its graphical user interf
component, called the Mobility Object Manager, or just MOM. To use MOM, yo
must first have assigned your robot an IP address and a hostname, and have
lished communication with your robot.

After your quick initial tour with MOM, you'll want to study MOM's structure an
capabilities more completely by reading Chapter 4 “MOM — The Mobility Grap
ical Interface”.

NOTE: The information here assumes that your robot computer has a
full Mobility installation.

If you want to run MOM on a computer that does not have
Mobility installed, you can create “MOM-only” configuration
and copy it to the display computer. Instructions for creating a
“MOM-only” Mobility installation can be obtained by con-
tacting iRobot support. MOM runs on Linux, Windows 95,
and Windows NT.

Running MOM

This section describes a very simple way to run MOM that will work if your rob
has an on-board PC with a Mobility 1.1 installation as shipped from Real World
Mobility Robot Integration Software User’s Guide

Running MOM

r

dio
ns

op
r

he

and

w-
MOM
 to
 the

fault.
Interface. (Chapter 4 “MOM — The Mobility Graphical Interface” explains othe
ways to set up MOM.)

Some robots, such as the Magellan, may have no on-board PC. They use a ra
RS-232 link to communicate with a desktop PC running Linux. These instructio
will also work once you have installed the Mobility 1.1 software onto the deskt
PC connected to the radio RS-232 link. (See Appendix A “Installing Mobility” fo
detailed instructions.)

There are five steps to start up your robot and run MOM.

1. Make sure the robot is turned on and enabled for software control. Check t
User's Guide for your robot and the rFLEX Robot Control System User’s Guide
to review correct robot startup and shutdown procedures.

2. Log in to the computer as user:mobility , password:mbyrwi

3. Run the Naming Service with the command
prompt> name -i

4. Run the base server with the command
prompt> base

5. Open another window on the robot computer and run MOM with the comm
prompt> mom

This simple method allows you to check out your robot, Mobility, and MOM. Ho
ever, there are certain disadvantages to running a graphical program such as
over a radio network to display on an X server on another computer. For MOM
display properly, the DISPLAY environment variable must be set correctly and
X server must allow MOM to access its display.

In most University and research settings, these details are taken care of by de
You may need to give the command:

prompt> xhost +
Mobility Robot Integration Software User’s Guide 2 - 2

Running MOM

g-

u-
e
pond

on your desktop computer.

FIGURE 2 - 1. MOM’s Object Hierarchy View Window

CAUTION: There may be significant display and mouse-input performance de
radation due to displaying MOM over the network. You must use
extreme caution when driving your robot using MOM in this config
ration, as there may be significant delays between when you mak
mouse movements and button events, and when the robot can res
to them,

Viewing Sonar Sensor Output through MOM

To see input from your robot’s sonar sensors, click on <your robot>, then on
“Sonar.” Then, right-click on “Segment.” A menu will pop up. Select “Range
View.” A new window will appear inside the framing MOM window, dynamically
showing the sonar data coming from your robot.

The range viewer polls the robot for a new reading once every second.
Mobility Robot Integration Software User’s Guide 2 - 3

Running MOM

,

me

your

y
Driving your Robot with MOM

To drive your robot through MOM, click on <your robot>, then on “Drive.” Then
right-click on “Command” and select “Drive View.” A new window will appear
inside the MOM window.

FIGURE 2 - 2. MOM Drive View and Range View Windows

This interface operates essentially the same as the joystick. Until you have so
experience driving your robot with the MOM interface, be especially careful to
move slowly and carefully.

Move the mouse to the center of the Drive View window. Press and hold down
mouse button. While holding the mouse button:

1. Slide the mouse up to drive the robot forward

2. Slide the mouse down to drive the robot in reverse.

3. Move the mouse right on the screen to turn the robot to the right.

4. Move the mouse left on the screen to tun the robot to the left.

NOTE: Note: The further from the center of the window, the higher
the robot's velocity.

This concludes your brief tour of Mobility using MOM. We hope you're enjoying
your new Real World Interface robot! To learn more about MOM and to its man
features and abilities, turn to Chapter 4 “MOM — The Mobility Graphical Inter-
face”.
Mobility Robot Integration Software User’s Guide 2 - 4

CHAPTER 3 Examples of Mobility
Programs
g
bot,
ents

ricks
ion-
thing

th
, and
am-
n

eum
After studying this chapter, you'll know how to write your own components usin
the standard Mobility interfaces and the Mobility Class Framework. Here at iRo
we've used the same procedures described here to to develop all the compon
included in Mobility robot integration software.

If you’re not a seasoned robot programmer, read the next section on Tips and T
before you do too much robot programming. But because Mobility is so revolut
ary, even veteran programmers and experienced roboticists might learn some
here.

Robot Programming Tips and Tricks

Our robots are, simply, self-contained, self-propelled mobile units equipped wi
sensors for making observations about the environment in which they operate
with mechanisms for moving around in, and affecting, that environment. For ex
ple, an iRobot robot can roll over to a workbench, stop just short of it, pick up a
object, turn in another direction, roll to another workbench, and put the object
down. One of our robots has even been trained to roam the corridors of a mus
exhibit and interact with visitors.
Mobility Robot Integration Software User’s Guide

A Simple Mobility Program: simple_follow

t

table,
 of
rrors.
age-
mi-

istics
ional
ut the
 roll

no
-

ct
oach
s

er
ing
iar-

er-

Training a robot to accurately observe and reliably interact with its environmen
might seem simple, especially with the advantages of Mobility robot integration
software. But robots are often called upon to operate in noisy, messy, unpredic
rapidly-changing environments. Robot programmer must always be cognizant
such factors as inexact observations, imprecise movements and undetected e
Responsible roboticists take pride in their safety precautions, prudent lab man
ment policies and in the special care they take to prevent uniquely robotic cala
ties.

As a robot programmer, you need to be always aware of the unique character
of your robot’s mechanisms and its surroundings. For example, when convent
software detects an error, it either recovers automatically or sends a notice abo
exact nature of the error. A robot, on the other hand, might simply stand there,
away in the wrong direction or enter some undefined state.

So, robot programmers can’t simply follow the algorithm: “Observe, act and, if
errors are reported, exit and pursue the next task in line.” Rather, the robot pro
grammer must take special care to try to increase the likelihood that the action
requested does, in fact, occur. A more iterative algorithm increases the odds:
“Observe, act, observe again to discern the results of acting, act again to corre
inaccuracies in the previous action, observe again...” and so on. Such an appr
is built right into Mobility. The example Mobility programs presented later in thi
chapter illustrate this design approach.

CAUTION: The following sample programs will cause your robot to move und
the control of software. Make sure you disconnect all cables dangl
from the robot, place the robot in a clear, flat, open area and famil
ize yourself with the location of all robot emergency stop buttons
before running any sample programs.

Remember you can halt sample programs by pressing return.
Remember you can halt your robot at any time by pressing any em
gency stop button.

A Simple Mobility Program: simple_follow

Before too long, you'll be on your way to writing a full-fledged Mobility program
with its own components, active objects and properties. But first, take a few
Mobility Robot Integration Software User’s Guide 3 - 2

A Simple Mobility Program: simple_follow

o-

obot
cle,
rce

e

he
k at

croll-

ses

ng.

bil-

gram
moments to go through this simple sample program that lets you use the comp
nents in a Mobility base server in a client-only manner. This example, called
simple_follow, is a robot control program that reads the sonar sensors of your r
and drives the robot forward until it is within about 1 meter of the nearest obsta
at which point the robot stops. Run the example and then look through the sou
code to learn how it works.

NOTE: Some robots require additional steps to enable robot motion
after the base server has begun executing. Check the docu-
mentation for your own root for more information on this
important safety feature.

To get started easily, start up MOM. (See Chapter 2 “A Tour of Mobility With th
MOM Graphical Interface”.)

Start up the base server for your robot. (If you remember the name you gave t
base server, you can just type it in for the sample program, or use MOM to loo
the objects running in your base server to get the robot name.)

While you're running simple_follow, view the robot's sonars with MOM.

Run the sample program by typing:

prompt> simple_follow –robot <your robot name here>

You’ll see the banner for the program start and then (after a few moments) a s
ing list of range numbers. Your robot will start moving, striving to establish a 1-
meter distance between itself and obstacles in its environment. If the robot sen
that it is too close (about 30cm) to an obstacle, it will stop moving. Terminate
simple_follow at any time by pressing the enter key. If you’re running MOM,
you’ll be able to view the sensor feedback while your sample program is runni

The source code for the simple_follow sample program is available in your Mo
ity distribution as the file:

src/mby/examples/simple_follow/simple_follow.cpp

The file is also included here, so you can follow along and see how such a pro
is constructed.
Mobility Robot Integration Software User’s Guide 3 - 3

A Simple Mobility Program: simple_follow
Simple Follow Program

//
// Simple test program for the "user library" framework
classes of Mobility.
// This program is designed to exercise and test the function-
ality of the
// simplified environment provided by the user library.
//
// Robert Todd Pack, IS Robotics, Real World Interface Divi-
sion.
//
#include "userlib.h"
#include "mobilityutil.h"
int main (int argc, char *argv[])
{
 char *modulename;
 char *robotname;
 SystemModule_i::init_orb(argc,argv);
 // Pick module name arguments.
 modulename = mbyUtility::get_option(argc,argv,"-
name","UserTest");
 mbyBasicModule *m_pModule = new mbyBasicModule(module-
name,argc,argv);
 // Pick robot name arguments.
 robotname = mbyUtility::get_option(argc,argv,"-robot","ATRV-
Jr");

 mbyBasicRobot *m_pRobot = new mbyBasicRobot("RobotX",robot-
name);
 // Use this robot in our module.
 if (m_pModule->add_new_component(m_pRobot) < 0)
 fprintf(stderr,"Module add error.\n");
 // Turn the module on, initializes robot objects and con-
nects to servers.
 m_pModule->start_module();
 // We're going to look at some range data so make a place for
it.
 MobilityGeometry::SegmentData ranges;
 unsigned int index;
 // These are parameters for our "follow" algorithm.
 float haltdist = 0.2; // 20cm halts
 float followdist = 0.9; // 0.9m follow distance.
 float mindist; // Computed minimum sensor distance.
 float minfrontdist; // Computed minimum front distance.
Mobility Robot Integration Software User’s Guide 3 - 4

A Simple Mobility Program: simple_follow
 float tempdist; // Computed temp dist value compared
to min/minfront.
 float translate,rotate; // Command velocities.
 float minx; // X coordinate of minimum reading.
 // Now we're ready to control the robot. Do whatever we want
in this loop,
 // call other functions, access the robot object. The inter-
nal threads
 // of the Mobility C++ class framework handle all the low-
level details
 // for you.
 while (1)
 {
 m_pRobot->get_range_state(ranges); // Get latest range
data we have.
 // Process sonar data (you get back a set of line seg-
ments).
 // This shows how you can loop through all the segments
you
 // get back from the sonar source.
 mindist = 100000.0; // Set to "really large" dis-
tances.
 minfrontdist = 100000.0;
 minx = 0;
 for (index = 0; index < ranges.end.length(); index++) {
 tempdist = sqrt((ranges.org[index].x -
ranges.end[index].x)*
 (ranges.org[index].x -
ranges.end[index].x)+
 (ranges.org[index].y -
ranges.end[index].y)*
 (ranges.org[index].y -
ranges.end[index].y));
 // Find the minimum length value.
 if (tempdist < mindist)
 mindist = tempdist;
 // Find the minimum front distance value. (Only things
in front
 // of the robot count).
 if ((ranges.end[index].x - ranges.org[index].x)> 0.2) {
 if (tempdist < minfrontdist)
 {
 minfrontdist = tempdist;
 minx = ranges.end[index].x;
 }
Mobility Robot Integration Software User’s Guide 3 - 5

A Simple Mobility Program: simple_follow
 }
 }
 // Show what you found.
 fprintf(stderr,
 "Sonar Values: Minimum Dist: %f Min Front Dist:
%f\n",
 mindist,
 minfrontdist);
 // Compute new drive command based on these distances.
 if (mindist < haltdist) {
 translate = 0.0;
 rotate = 0.0;
 }
 else if ((minfrontdist < (followdist + 0.2))&&
 (minfrontdist > (followdist - 0.2))) {
 translate = 0.0;
 rotate = 0.0;
 }
 else if (minfrontdist > (followdist + 0.2)) {
 translate = 0.15; // Drive forward.
 if (minx < -0.3)
 rotate = -0.1;
 else if (minx > 0.3)
 rotate = 0.1;
 else
 rotate = 0.0;
 }
 else if (minfrontdist < (followdist - 0.2)) {
 translate = -0.15; // Drive backward.
 rotate = 0.0;
 }
 // Show our command.
 fprintf(stderr,"CMD: %f %f",translate,rotate);

 // Send a command based on what we've seen on sensors.
 if (m_pRobot->send_velocity_command(translate,rotate) <
0)
 fprintf(stderr,"Command error.\n");

 // Check for keypress to terminate the program.
 if (mbyUtility::chars_ready() > 0) {
 // Stop robot before we exit.
 m_pRobot->send_velocity_command(0.0,0.0); // Zero
velocity is stop.
 break;
Mobility Robot Integration Software User’s Guide 3 - 6

A Simple Mobility Program: simple_follow

he

face

re,
der

e it
ou

s

-

 }
 else // Wait a small time before the next loop. 0.2 sec-
ond, keep going.
 {
 // This is an portable thread library call to sleep
your loop.
 omni_thread::sleep(0,200000000);
 }
 }
 // Turn module off, disconnects from servers and releases
resources.
 m_pModule->end_module();
 // Clean up memory.
 delete m_pRobot;
 delete m_pModule;
 return 0;
}// End of main.

Notes On Simple Follow Program

The things to remember from this example are:

Mobility locates components by pathnames (like the sonar sensor object and t
drive command object).

• Mobility components support many interfaces, and you can ask for the inter
you need (like the SegementState interface).

• Mobility components provide different, portable abstractions of robot hardwa
and you can ask for the abstraction you need (like the objects contained un
Sonar).

• You can use MOM to check on your robot software while it ‘s running and se
in operation in real-time (like when you watched the sonar readings when y
ran simple_follow).

• The simple_follow example makes a fairly unintelligent robot. (We’ll fix this a
we go along!)

In the following section, you'll find out how to extend simple_follow to get read
ings from some of your robot's other sensors.
Mobility Robot Integration Software User’s Guide 3 - 7

Getting More Sensor Readings: simple_follow_2

de

hat is

oard
n the
nts.)
Getting More Sensor Readings: simple_follow_2

Mobility provides uniform interfaces to many different types of hardware. The co
in the simple_follow sample program described above can be modified and
extended to obtain range readings simply by changing the name of the object t
the data source.

Getting SICK-PLS Laser Scanner Readings

For example, let's say you want to get the readings from your robot's optional
SICK-PLS laser scanner.

NOTE: This option is not available on all robot models. If your robot
is equipped with a SICK-PLS laser scanner, you have a pro-
gram called pls-server that is a Mobility hardware server for
the laser. If you start up the robot base server and pls-server as
well, you'll find both of them viewable through MOM, the
Mobility Object Manager.

simple-follow:
 // Build a pathname to the component we want to use to get
sensor data.
 sprintf(pathName,"%s/Sonar/Segment",robotName); // Use robot
name arg.
// Locate the component we want.
 ptempObj = pHelper->find_object(pathName);
change to:
 // Build a pathname to the component we want to use to get
sensor data.
 sprintf(pathName,"Pls/Laser/Segment");
// Locate the component we want.
 ptempObj = pHelper->find_object(pathName);

Then, when you get the segment state object, the data source will be the on-b
laser scanner. You could add a new segment state object and use them both i
program. (They both provide the same kind of data, that is, range data segme

new code:

 // Find the laser data (we're going to use sensor feedback).

 // The XX_var variable is a smart pointer for memory manage-
ment.

 MobilityGeometry::SegmentState_var pLaserSeg;
Mobility Robot Integration Software User’s Guide 3 - 8

Getting More Sensor Readings: simple_follow_2

er

g the
t
te
rs.

of
s.
 MobilityGeometry::SegmentData_var pLaserSegData;

 // Request the interface we want from the object we found

 try {

 pLaserSeg = MobilityGeometry::SegmentState::_narrow(ptem-
pObj);

 }

 catch (...)

 {

 return -1; // We're through if we can't use sensors.

 }

Later in your loop:

 // This actually samples the laser state. Looks just
like
 // the one for accessing sonar.
 pLaserSegData = pLaserSeg->get_sample(0);

This code lets you get data from your on-board sonars and your SICK-PLS las
scanner at the same time.

NOTE: Future releases of Mobility will include a framework to make
such things much simpler and more straightforward!

Getting Base Sonar Readings

Use the same approach to get base sonar sensor data as well, simply by usin
name of the base sonar object (look at the server using MOM to find the objec
names you want) instead of "Sonar" above. If your robot is a B21r, read the no
below for some robot-specific details on indexing rotation and base-skirt senso

A Note on Indexing on the B21r

Mobility is aware that the base skirt of the B21r does not rotate with the robot.
After one full rotation of the robot, the skirt index is updated and the positions
bump panels and sonars on the base are available in correct robot coordinate
Mobility Robot Integration Software User’s Guide 3 - 9

Getting More Sensor Readings: simple_follow_2

. If
he
he
or

te.
her
the
of

is
There is no "automatic" indexing, because it is usually too annoying for people
you need the skirt sensor readings to be valid and in robot coordinates, have t
robot do a slow spin when you first start the base server. Upon completion of t
spin, it will be correctly indexed. Mobility will subsequently transform your sens
readings into robot coordinates correctly.

Getting Bump Panel Readings

The bump-panels of the robot server use a different data type, called PointSta
The bump-sensors are a colleciton of points and a set of flags indicating whet
the bump switch at a given point is closed. They work in the same manner as
other sensors, with a very similar interface, the only differences are the types
data and the source object names.

You can get ahold of the bump data, for example, in the robot's base, using th
code:

// Build a pathname to the component we want to use to get sen-
sor data.
 sprintf(pathName,"%s/BaseContact/Point",robotName); // Use
robot name
arg.
// Locate the component we want.
 ptempObj = pHelper->find_object(pathName);
 MobilityGeometry::PointState_var pBumpPoint;
 MobilityGeometry::Point3Data_var pBumpData;
 // Request the interface we want from the object we found
 try {
 pBumpPoint = MobilityGeometry::PointState::_narrow(ptem-
pObj);
 }
 catch (...)
 {
 return -1; // We're through if we can't use sensors.
 }

Later in your loop:

 // This actually samples the laser state. Looks just
like
 // the one for accessing sonar and laser
 pBumpData = pBumpPoint->get_sample(0);
 // You use bump data like this:
 // The BumpData will be a sequence of Point3 types
Mobility Robot Integration Software User’s Guide 3 - 10

Getting More Sensor Readings: simple_follow_2

s and
ht-

ec-

llow

s
ple
 // just like the sonar data is a sequence of Segment
types.
 pBumpData->point[1..k].x
 pBumpData->point[1..k].y
 pBumpData->point[1..k].z
 pBumpData->point[1..k].flags == 1 if the bump is hit.

The base server transforms all sensor readings into robot coordinates. Length
distances are in meters. Orientations and angles are in radians. There is a "rig
handed" robot coordinate system fixed to the drive system of the robot. The +X
direction is robot forward. The +Y direction is to the left of the robot. The +Z dir
tion is up.

The Program simple_follow_2

/* This is the simple follow 2 sample program for Mobility 1.0:

The purpose of this example is to show how to use other sensors in a simple fo
program.

This program is a stepping stone to a full fledged Mobility program that provide
the same functionality, but is built from Mobility components, rather than a sim
main program loop.

NOTE: This program is not an example of good robot program
design. It is intended as a simple introduction to using some of
the functions and interfaces in Mobility.

 Real World Interface, Inc. Robert Todd Pack
*/
// These includes pull in interface definitions and utilities.
#include "mobilitycomponents_i.h"
#include "mobilitydata_i.h"
#include "mobilitygeometry_i.h"
#include "mobilityactuator_i.h"
#include "mobilityutil.h"
#include <math.h>

// Start of main program.
int main (int argc, char *argv[])
{
 //
 // This framework class simplifies setup and initialization
for
 // client-only programs like this one.
Mobility Robot Integration Software User’s Guide 3 - 11

Getting More Sensor Readings: simple_follow_2
 //
 mbyClientHelper *pHelper;
 // These variables are "environments" which are used to pass
around
 // complex (more than success/fail) error information.
 // CORBA::Environment env,env2;

 // This is a generic pointer that can point to any CORBA
object
 // within Mobility.
 CORBA::Object_ptr ptempObj;
 // This is a smart pointer to an object descriptor. Automa-
cially
 // manages memory.
 // The XXX_var classes automaticall release references for
 // hassle-free memory management.
 MobilityCore::ObjectDescriptor_var pDescriptor;
 // This is a buffer for object names.
 char pathName[255];
 // Holds -robot command line option.
 char *robotName;
 // ACE_OS is a class that provides a portable wrapper around
lots
 // of standard OS/C library functions like fprintf.
 fprintf(stderr,
"********** Mobility Simple-Follow-2 Example***********\n");
 // Look for robot name option so we know which one to run.
 robotName = mbyUtility::get_option(argc,argv,"-robot");
 if (robotName == NULL) {
 fprintf(stderr,"Need a robot name to use.\n");
 return -1;
 }
 fprintf(stderr, "Connect Sonar.\n");
 // All Mobility servers and clients use CORBA and this ini-
tialization
 // is required for the C++ language mapping of CORBA.
 pHelper = new mbyClientHelper(argc,argv);
 // Build a pathname to the component we want to use to get
sensor data.
 sprintf(pathName,"%s/Sonar/Segment",robotName); // Use robot
name arg.
 // Locate the component we want.
 ptempObj = pHelper->find_object(pathName);
 // Find the sonar data (we're going to use sensor feedback).
Mobility Robot Integration Software User’s Guide 3 - 12

Getting More Sensor Readings: simple_follow_2
 // The XX_var variable is a smart pointer for memory manage-
ment.
 MobilityGeometry::SegmentState_var pSonarSeg;
 MobilityGeometry::SegmentData_var pSegData;
 // Request the interface we want from the object we found
 try {
 pSonarSeg = MobilityGeometry::SegmentState::_narrow(ptem-
pObj); //,env);
 }
 catch (...)
 {
 return -1; // We're through if we can't use sensors.
 }
 /
**/
/* New Stuff Here: Optional laser scanner sensor inputs*/ /
**/
 fprintf(stderr, "Connect Laser.\n");
 // Build a pathname to the component we want to use to get
laser
 // scanner data. Only works using standard pls-server for
SICK-PLS.
 sprintf(pathName,"Pls/Laser/Segment");
 // Locate the component we want.
 ptempObj = pHelper->find_object(pathName);
 // Find the laser data (we're going to use sensor feedback).
 // The XX_var variable is a smart pointer for memory manage-
ment.
 MobilityGeometry::SegmentState_var pLaserSeg;
 MobilityGeometry::SegmentData_var pLaserSegData;
 int use_laser;
 // Request the interface we want from the object we found
 try {
 pLaserSeg = MobilityGeometry::SegmentState::_narrow(ptem-
pObj);
 if (pLaserSeg != MobilityGeometry::SegmentState::_nil())
 use_laser = 1;
 }
 catch (...)
 {
 use_laser = 0;
 pLaserSeg = MobilityGeometry::SegmentState::_nil();
 fprintf(stderr,"We didn't get the laser. Bummer!");
 }
Mobility Robot Integration Software User’s Guide 3 - 13

Getting More Sensor Readings: simple_follow_2
 /

******/
 /* New Stuff Here: Optional Contact sensor inputs for B21
*/
 /

******/
 fprintf(stderr, "Connect Base Bump.\n");
 // Build a pathname to the component we want to use to get
sensor data.
 sprintf(pathName,"%s/BaseContact/Point",robotName); // Use
robot name arg.
 // Locate the component we want.
 ptempObj = pHelper->find_object(pathName);

 MobilityGeometry::PointState_var pBumpPoint;
 MobilityGeometry::Point3Data_var pBumpData;
 int use_bump = 0;
 // Request the interface we want from the object we found
 try {
 pBumpPoint = MobilityGeometry::PointState::_narrow(ptem-
pObj);
 if (pBumpPoint != MobilityGeometry::PointState::_nil())
 use_bump = 1;
 }
 catch (...)
 {
 fprintf(stderr,"We didn't get base bumps. Bummer!");
 pBumpPoint = MobilityGeometry::PointState::_nil();
 use_bump = 0;
 }

 // Build pathname to the component we want to use to drive
the robot.
 sprintf(pathName,"%s/Drive/Command",robotName); // Use robot
name arg.
 // Locate object within robot.
 ptempObj = pHelper->find_object(pathName);
 // Find the drive command (we're going to drive the robot
around).
 // The XX_var is a smart pointer for memory management.
 MobilityActuator::ActuatorState_var pDriveCommand;
 MobilityActuator::ActuatorData OurCommand;
Mobility Robot Integration Software User’s Guide 3 - 14

Getting More Sensor Readings: simple_follow_2
 // We'll send two axes of command. Axis[0] == translate,
Axis[1] == rotate.
 OurCommand.velocity.length(2);
 // Request the interface we need from the object we found.
 try {
 pDriveCommand = MobilityActuator::Actua-
torState::_duplicate(
 MobilityActuator::ActuatorState::_narrow(ptem-
pObj));
 }
 catch (...)
 {
 return -1;
 }

 // Now, here is a loop that continually checks robot sen-
sors,
 // and sends new drive commands to make the robot follow.
 // There are lots slicker ways to do this, but this is the
 // simple example, so bear with us until later examples.
 unsigned long index1; // Counts through sensor readings.
 float haltdist = 0.2; // 20cm halts
 float followdist = 0.9; // 0.9m follow distance.
 int bumped = 0;
 int seg_count = 0;
 float mindist; // Computed minimum sensor distance.
 float minfrontdist; // Computed minimum front distance.
 float tempdist; // Computed temp dist value compared
to min/minfront.
 fprintf(stderr,
 "********** Mobility Simple-Follow-2: Main Loop
***********\n");
 while(1)
 {
 if (pSonarSeg != MobilityGeometry::SegmentState::_nil())
 pSegData = pSonarSeg->get_sample(0);
 /
**/
 /* New Stuff Here */
 /
**/
 if (pLaserSeg != MobilityGeometry::SegmentState::_nil())
 pLaserSegData = pLaserSeg->get_sample(0);
 /
**/
Mobility Robot Integration Software User’s Guide 3 - 15

Getting More Sensor Readings: simple_follow_2
 /* New Stuff Here */
 /
**/
 if (pBumpPoint != MobilityGeometry::PointState::_nil())
 pBumpData = pBumpPoint->get_sample(0);
 /
**/
 /* Now we have sonar+laser+bump data */
 /
**/

 // Process sonar data (you get back a set of line seg-
ments).
 // This shows how you can loop through all the segments
you
 // get back from the sonar source.
 mindist = 100000.0; // Set to "really large" dis-
tances.
 minfrontdist = 100000.0;
 seg_count = 0;
 // Find minimum front distance and minimum overall dis-
tance.
 for (index1 = 0; index1 < pSegData->org.length();
index1++) {
 // Compute segment lengths.
 tempdist = sqrt(
 (pSegData->org[index1].x - pSegData-
>end[index1].x)*
 (pSegData->org[index1].x - pSegData-
>end[index1].x)+
 (pSegData->org[index1].y - pSegData-
>end[index1].y)*
 (pSegData->org[index1].y - pSegData-
>end[index1].y));
 // Find the minimum length value.
 if (tempdist < mindist)
 mindist = tempdist;
 // Find the minimum front distance value. (Only
things in front
 // of the robot).
 if ((pSegData->end[index1].x - pSegData-
>org[index1].x)> 0.2) {
 if (tempdist < minfrontdist)
 minfrontdist = tempdist;
 }
Mobility Robot Integration Software User’s Guide 3 - 16

Getting More Sensor Readings: simple_follow_2
 seg_count++;
 }
 /
**/
 /* New Stuff Here */
 /
**/
 // Do the same thing for our new laser data.
 // Find minimum front distance and minimum overall dis-
tance.
 if (use_laser == 1)
 {
 for (index1 = 0; index1 < pLaserSegData-
>org.length(); index1++) {
 // Compute segment lengths.
 tempdist = sqrt(
 (pLaserSegData->org[index1].x-
 pLaserSegData->end[index1].x)*
 (pLaserSegData->org[index1].x-
 pLaserSegData->end[index1].x)+
 (pLaserSegData->org[index1].y-
 pLaserSegData->end[index1].y)*
 (pLaserSegData->org[index1].y-
 pLaserSegData->end[index1].y));
 // Find the minimum length value.
 if (tempdist < mindist)
 mindist = tempdist;
 // Find the minimum front distance value. (Only
things in front
 // of the robot).
 if ((pLaserSegData->end[index1].x-
 pLaserSegData->org[index1].x)> 0.2) {
 if (tempdist < minfrontdist)
 minfrontdist = tempdist;
 }
 }
 seg_count++;
 }
 /
**/
 /* New Stuff Here */
 /
**/
 // Are we bumping something?
 bumped = 0;
Mobility Robot Integration Software User’s Guide 3 - 17

Getting More Sensor Readings: simple_follow_2
 if (use_bump == 1)
 {
 fprintf(stderr,"BMP");
 for (index1 = 0; index1 < pBumpData->point.length();
index1++) {
 if (pBumpData->point[index1].flags == 1)
 bumped = 1;
 }
 }
 // Show us what was found.
 fprintf(stderr,
 "Range Values: %d Minimum Dist: %f Min Front
Dist: %f\n",
 seg_count,
 mindist,
 minfrontdist);
 // Compute new drive command based on these distances.
 // Halt if we're too close or if we're bumped.
 if ((mindist < haltdist)||(bumped != 0)) {
 OurCommand.velocity[0] = 0.0;
 OurCommand.velocity[1] = 0.0;
 }
 else if ((minfrontdist < (followdist + 0.2))&&
 (minfrontdist > (followdist - 0.2))) {
 OurCommand.velocity[0] = 0.0;
 OurCommand.velocity[1] = 0.0;
 }
 else if (minfrontdist > (followdist + 0.25)) {
 OurCommand.velocity[0] = 0.15;
 OurCommand.velocity[1] = 0.0;
 }
 else if (minfrontdist < (followdist - 0.25)) {
 OurCommand.velocity[0] = -0.15;
 OurCommand.velocity[1] = 0.0;
 }
 fprintf(stderr,"CMD: %f %f",OurCommand.velocity[0],
 OurCommand.velocity[1]);
 pDriveCommand->new_sample(OurCommand,0);
 // Was there a character pressed?
 if (mbyUtility::chars_ready() > 0) {
 // Stop robot.
 OurCommand.velocity[0] = 0.0;
 OurCommand.velocity[1] = 0.0;
 pDriveCommand->new_sample(OurCommand,0);

Mobility Robot Integration Software User’s Guide 3 - 18

Mobility In Action – More Realistic Examples
 return 0;
 }
 else // Wait a small time before the next loop. 0.1 sec-
ond, keep going.
 {
 omni_thread::sleep(0,100000000);
 }
 }
 return 0;
}

Makefile for simple_follow_2

#--

#
Makefile for Mobility example: simple_follow_2
#
#--

Do you want every command printed, or just errors? (Q=Quiet)
ifndef Q
Q = @
#Q =
endif
Sources to compile
CPP_SRCS =
C_SRCS =
Libraries used by these test programs
#LDLIBS +=
define the name of the executables (up to 3)
PROG = simple-follow2
include the master Mobility library makefile
include $(MOBILITY_ROOT)/etc/scripts/cppexec.mf

Mobility In Action – More Realistic Examples

NOTE: The sample programs “square_and_circle” and “wander” dis-
cussed in the following sections are not yet fully developed
and tested for Mobility 1.1, and may not be included in your
distribution.
Mobility Robot Integration Software User’s Guide 3 - 19

Mobility In Action – More Realistic Examples

d
bject

t
eir

d
s
 the

just
ou
ake
hen
 To

 of

s.

m-

om-
ous

rive

n-
Let’s say you have a mobile robot with some sonars, some infrared sensors an
some tactile sensors. When a sonar detects its ping bouncing back to it off an o
in its environment, the robot can ascertain the distance between itself and tha
object. The infrared and tactile sensors return similar information, based on th
own characteristics.

In the following sections, you’ll work with a robot demonstration program calle
wander that lets your robot wander about while avoiding running into obstacle
within an 180-degree-arc heading of itself. A function within wander examines
current situation at any given instant, determining if anything is in the way, and
modifying speed and heading accordingly.

But to actively avoid obstacles within a particular distance, calling this function
once is clearly insufficient. New obstacles may come into range at any time. Y
might call the function periodically, to continuously scan the environment and t
evasive action as appropriate. Or, you might decide to call the function only w
the robot has received new readings from its sonar, infrared or tactile sensors.
implement either scheduling scenario, use Mobility’s ActiveComponent.

With ActiveComponent, you define a set of instructions to various components
the robot, and specify under what conditions each is to be invoked:

• on a schedule based on the elapsed time between invocations;

• upon triggering event, such as a sonar reading; or,

• using a simple timer.

The ActiveComponent takes care of invoking the function at the specified time
ActiveComponent will keep on invoking the function, on schedule, until either a
module explicitly asks it to stop, or when you interrupt the program. The active
component replaces the simple “main loop” you used in the simple_follow exa
ple.

In your robot system, many tasks must all be invoked repeatedly. With ActiveC
ponent directing traffic, though, your program can manage multiple asynchron
tasks invoked by multiple modules.

Square_and_Circle: A Mobility Sample Program

This sample Mobility program demonstrates how to use the PoseController to d
your robot in a square or circular route on the floor of your lab. It shows how to
configure Mobility robot integration software for use with the low-level PoseCo
Mobility Robot Integration Software User’s Guide 3 - 20

Designing a Mobility Program

d-
l
d
ion
e by
ples.

you

t loca-

ro-

ion

o you

 and
d
troller and with Mobility’s built-in collision avoidance component called Guarde
Motion. The combination of these two components offers a reactive, high-leve
interface to your robot. The organization of these components follows a layere
model for combining software for robots. The PoseController and GuardedMot
together form a “layer” between higher level commands and the robot hardwar
incorporating sensor data and generating commands based on reactive princi

The PoseController component provides an interface of target points that lets
command the robot to head towards a set of target points (“waypoints”) in
sequence. The PoseController considers only the target points and the curren
tion of the robot. Without the help of GuardedMotion, the PoseController would
run into obstacles. Working together, the PoseController and GuardedMotion p
vide a simple but effective low-level robot controller.

Square_and_Circle’s System Configuration

Filling Out Square_and_Circle’s Functionality

Wander: A More Interesting Mobility sample program

Wander’s System Configuration

Filling Out Wander’s Functionality

Designing a Mobility Program

A Mobility program consists of System Components, some written by you and
some provided by iRobot and others. Mobility modules let you collect informat
from the robot’s hardware. Mobility components take care of managing robot
resources and communication among all onboard programs and processors, s
don’t have to deal with that part of robot programming.

To write a Mobility program:

1. Derive some new component class(es) from the Mobility Class Framework,
add to or override built-in functions to make the robot do something new an
Mobility Robot Integration Software User’s Guide 3 - 21

Designing a Mobility Program

s
ese

pu-
tial

u
hen

ry

ger.
e.
different from the default framework behavior. (This should not be difficult, a
the default framework behavior does precisely nothing.) When you derive th
new components, you specify their behavior by filling in functions that are
called automatically by the class framework when certain user-defined com
tations are needed. You also write the initialization functions that set the ini
state of your components.

2. Write a main program to create the SystemModule component for your new
program. Add the new components you‘ve written to the SystemModule. Yo
might also want to set some default property values for your components w
you create them.

3. Write code to initialize your SystemModule, which will initialize any compo-
nents you’ve inserted into the module.

4. Write code to activate your SystemModule. This will initialize the ORB libra
and connect your program with the top-level naming service for Mobility so
your program can be viewed and managed from the Mobility System Mana
This will also activate any ActiveComponents that are part of your new cod
Mobility Robot Integration Software User’s Guide 3 - 22

CHAPTER 4 MOM — The Mobility
Graphical Interface
l
phi-
s
 is

n
dle

ebug
.
n-
 you
The Mobility Development Environment offers a set of tools that let you contro
Mobility-supplied objects, and your own objects, through a set of common gra
cal interfaces. These tools also let you visually debug your ideas and algorithm
faster and more easily than ever before. The Mobility tool you'll use most often
also the core of the Mobility tool interface. It's called MOM, the Mobility Object
Manager.

Mobility also provides direct support of multiple robots, and with MOM, you ca
easily visualize several robots running at the same time — finally getting a han
on those tricky multi-robot coordination problems.

NOTE: Mobility fully supports distributed, decentralized robot con-
trol software. However, Mobility supports a centralized man-
agement structure to simplify the process of configuration,
management and development of multi-robot systems.

MOM: An Overview

MOM is a graphical user interface that lets you observe, tune, configure, and d
the components of your Mobility robot control programs -- as they are running
With MOM, you can launch programs, create objects, edit object properties, co
nect and configure objects and control which objects are active. MOM also lets
Mobility Robot Integration Software User’s Guide

MOM: An Overview

a-
man-

r
and

rtic-

is
st

-
e
bot

om-
g
ther

m-
ys-
ed by
launch a variety of object viewers that provide visualization of your robot’s actu
tors, sensors, algorithm outputs and debugging information, all from a central
agement point.

MOM is your primary tool for interacting with your Mobility robot programs. Fo
example, you can use MOM to teleoperate your robot. MOM is written in Java
communicates with your Mobility components through CORBA.

MOM depends on a few “background” programs running on computers that pa
ipate in the Mobility system. The scope of a Mobility system is contained within
objects that are accessible from a top-level Naming Service. The location of th
naming-service is not fixed; there are no hard-coded “port numbers” or multica
schemes in Mobility.

Because MOM and the Mobility objects controlling your robot are a truly distrib
uted object system, there are many ways to arrange your programs. At least th
Mobility base server must run on the computer physically connected to your ro
hardware. Other programs containing Mobility objects may run on the same or
other computers. MOM itself usually achieves its best performance running
directly on your desktop or lab computer, although it can also run on another c
puter and display on your desktop by using the X window protocol. The Namin
Service can run on the robot computer, your desktop or lab computer, or any o
convenient computer.

You can easily and simply run multiple Mobility systems on the same set of co
puters at the same time without fear of conflicts. How? You simply start each s
tem with a separate workspace of distributed objects. Each workspace is defin
its own separate Naming Service.
Mobility Robot Integration Software User’s Guide 4 - 2

Understanding MOM's Environment

e

y

ot-
y

t:

vi-

ith

 sepa-
ing
 to

-
 a
-

ice.
Understanding MOM's Environment

Three key aspects of MOM’s environment are explained in this section:

1. environment variables;

2. the Naming Service; and

3. some of the different ways Mobility programs can be distributed.

Many of Mobility’s programs and scripts need to access files and tools from th
Mobility distribution. While Mobility is normally installed in ~mobility/mobil-

ity-b-1.1.0/ (the exact release letter and numbers vary, of course), you ma
install it elsewhere.

Mobility programs and scripts read the MOBILITY_ROOT environment variable to
find the root directory of the Mobility software distribution. In much of the iRob
supplied Mobility documentation, we refer to directories and files in the Mobilit
distribution by writing MOBILITY_ROOT in place of the actual installation direc-
tory.

There are several important environment variables that must be set properly in
order to develop and run software using Mobility. iRobot provides a Bash scrip
MOBILITY_ROOT/etc/setup that sets them all.

You must use the source command to read this script. The script expects the en
ronment variable MOBILITY_ROOT to be set already, and it sets JAVA_HOME,

LD_LIBRARY_PATH, CLASSPATH, and PATH. The setup script is designed to work
properly if source’d multiple times.

In the CORBA distributed object environment, one object can communicate w
another object only if it has the other’s Object Reference . A program that cre-
ates several objects can give them one anothers’ references, but for objects in
rate programs (such as the robot base server and MOM) there is a bootstrapp
problem: How does an object reference for any object in one program first get
another program?

The CORBA standard solves this problem with the Naming Service . Important
objects in each program register themselves with the Naming Service. Any pro
gram can query the Naming Service to get the object reference registered with
(string) name. MOM queries the Naming Service for all registered objects. How
ever, each program still has to obtain the object reference to the Naming Serv
Mobility Robot Integration Software User’s Guide 4 - 3

Understanding MOM's Environment

le
ing

es
ad,
-
ri-

 your
 the

m-
k.

ser's

 robot

puter

c-
When a CORBA object reference is written out, it is called an IOR (Interoperab
Object Reference). An IOR is about 250 bytes of hexadecimal. When the Nam
Service program starts up, the IOR of the Naming Service is written to a file. In
order for Mobility programs to interoperate, they must all obtain the IOR of the
same Naming Service. In a distributed, networked environment with some nod
(the robots) connected by radio, shared filesystems are not very reliable. Inste
Mobility programs use a URL to obtain the file containing the IOR. Mobility pro
grams read the URL for the CORBA Naming Service from the environment va
able $MOBILITY_NS. By convention, the URL takes the form

http://<hostname>/~mobility/NamingService
For example, if the Naming Service runs on the host robbie,
using Bash you would give the command:
prompt> export MOBILITY_NS=http://robbie/~mobility/NamingSer-
vice
prior to running any Mobility program.

It often makes a great deal of sense to set the MOBILITY_ROOT and MOBILITY_NS
environment variables, and to source MOBILITY_ROOT/etc/setup from your
home directory’s.bashrc file. The mobility user account on iRobot factory-
installed computers is set up this way, as described in the next section.

The base server must execute on the computer that is physically connected to
robot. Most iRobot robots have a single on-board PC running Linux, and that is
computer that must run the base server. On the iRobot Magellan robot, the co
puter may be a desktop computer connected to the robot by a radio RS-232 lin

In the case of a B21r or ATRV robot with more than one computer, check the U
Guide for your robot to determine which one is connected to the base.

NOTE: If Mobility is not installed on the robot computer, it is possible
to create a “base-only” configuration and copy it to the robot
computer. See Appendix A “Installing Mobility” for details.

This physically-connected computer that executes the base server is called the
computer.

The base server and MOM need not execute on the same computer. The com
that MOM runs on is the display computer.

• MOM must run on a computer with a graphical display suitable for an intera
tive GUI program, such as a desktop computer.
Mobility Robot Integration Software User’s Guide 4 - 4

iRobot Factory Pre-installed Configuration

n on
 It is

,
can

ins

odel.
 an

r-
M

bot
 but
• MOM must be able to contact the base server via the Internet. They may ru
the same computer, or they may run on computers on separate continents.
likely to be problematic if there is a firewall between them.

• If you want to run MOM on a computer that does not have Mobility installed
for example, a desktop computer running Windows 95 or Windows NT, you
create a “MOM-only” configuration and copy it to the display computer as
described in Appendix A “Installing Mobility”.

NOTE: MOM can actually run on one computer and display on
another by using X Windows. The “display computer”
referred to in this document is always the one that is actually
running MOM, not the one to which MOM’s display happens
to be directed.

iRobot Factory Pre-installed Configuration

When Mobility is installed at iRobot's factory, the mobility user account on the
robot computer has its environment set up automatically in its .bashrc file. It
expects the Naming Service to be run on the robot computer. Its .bashrc conta
something like the following lines:

export MOBILITY_ROOT=~/mobility-b-1.1.1
export MOBILITY_NS=http://`hostname –s`/~mobility/NamingSer-
vice
alias base=b14rserver
if [-f $MOBILITY_ROOT/etc/setup]; then
 source $MOBILITY_ROOT/etc/setup
fi

The first line sets the MOBILITY_ROOT environment variable to the root of the tree
of installed Mobility software and tools. The second line sets the MOBILITY_NS
environment variable to the conventional URL on the robot computer. The third
line creates the command “base” to run the base server for the specific robot m
The fourth through sixth lines source the Mobility setup script, but won’t cause
error if the Mobility software is not where it is expected.

The instructions in Chapter 2 “A Tour of Mobility With the MOM Graphical Inte
face” tell you how to run the Naming Service, the Mobility base server, and MO
all on your robot computers. (In the terminology of the previous section, the ro
computer and the display computer are the same.) This configuration will work,
Mobility Robot Integration Software User’s Guide 4 - 5

Invoking the Naming Service

r
ys.

on

elves
on-
ndle

-

most likely with poor performance because of the X Window traffic running ove
the radio ethernet from the robot computer to your desktop where MOM displa

To get good performance from MOM, it must run on the computer upon whose
screen it displayed. Appendix A “Installing Mobility” describes in detail how to
install Mobility — either the full release or just MOM — on your desktop com-
puter. Then, on your display computer, set MOBILITY_NS to the same URL that the
robot computer uses and run MOM again.

Invoking the Naming Service

The Naming Service daemon program is invoked with the ‘name’ command. It is a
script in MOBILITY_ROOT/etc .

It reads the environment variable MOBILITY_NS as well as the ones set by the
setup script. name has several command-line options:

• -i print out the IOR of the Naming Service

• -r kill, then restart the Naming Service daemon

• -k kill the Naming Service daemon

Unless -r or -k is given, name checks to see whether the Naming Service daem
is already running on this computer. If so, it prints a message to that effect and
exits. Otherwise, it starts the Naming Service daemon. You must run name on the
same computer that is named in the MOBILITY_NS URL .

Occasionally, when a robot program aborts, its objects do not unregister thems
from the Naming Service. The Naming Service will then hand out an IOR to a n
existent object. The Java ORB is still somewhat experimental and does not ha
this error gracefully. If your Naming Service has this kind of garbage in it, MOM
will most likely not find the actual objects in the Naming Service. iRobot recom
mends three possible ways of dealing with this problem:

1. Start the aborted program again. It will register a new object with the same
name, replacing the invalid object reference.

2. Shut down all Mobility programs using the Naming Service and restart the
Naming Service with the name -r command.
Mobility Robot Integration Software User’s Guide 4 - 6

Invoking the Naming Service

 and

ally
o that
.

rite
ill

nces

ms,
ach

 in
3. Try running the nsclean Mobility utility. This utility is intended to remove
invalid object references, but it doesn't always work. It takes no arguments
reads the MOBILITY_NS environment variable.

If you're working with multiple robots together, all the robots (actually, all the
Mobility programs) must use a single Naming Service. In this situation it is usu
best to run the Naming Service on a computer that is not in one of the robots, s
there is only one radio link hop between any program and the Naming Service

NOTE: In a robot laboratory with multiple independent researchers
working concurrently with multiple robots, it is sometimes
beneficial to isolate the separate development efforts from
each other. Run a separate instance of the Naming Service
daemon for each development effort.

While the name script reads and uses MOBILITY_NS, it's not able to distinguish
multiple Naming Service daemons running on a single computer even if they w
their IORs to different files. In the unlikely event that you need to do that, you w
have to directly invoke the Naming Service daemon yourself. All other Mobility
software accesses the Naming Service by its IOR, so as long as multiple insta
of the Naming Service daemon write their IORs to different locations, only the
name script would get confused.

If you are running multiple Naming Services on computers that share filesyste
different URL’s might end up referring to the same actual file. Make sure that e
Naming Service ends up writing its IOR to a different physical file.

The following example uses Bash shell syntax, assumes Mobility was installed/

home/mobility/mobility-b-1.1.0 , and assumes you want the Naming Ser-
vice to write its IOR to http://computer/~mobility/NamingService .

prompt> export MOBILITY_ROOT=/home/mobility/mobility-b-1.1.0
prompt> export MOBILITY_NS=http://computer/~mobility/Naming-
Service
prompt> source $MOBILITY_ROOT/etc/setup
prompt> name -i

If the Naming Service is already running, name will print a message to that effect
and harmlessly exit.
Mobility Robot Integration Software User’s Guide 4 - 7

The Base Server

s give
itua-

ious
an
 refer-
The Base Server

The base server for your robot is a program located in $MOBILITY_ROOT/bin ,
named after your robot model as follows:

TABLE 4 - 1. Mobility Base Server Program For Type of Robot

NOTE: Early ATRV robots use a different base server, “atrvserve ”.

Custom robots generally have custom base servers.

When Mobility is installed at the iRobot factory, the mobility user account
arranges that the proper base server will run if you give the ‘base ’ command.

The base server prints out a lot of diagnostic messages. Often these message
the appearance of an error even during normal operation. The most common s
tions are:

1. When the base server attempts to register with the Naming Service, if a prev
run of the base server exited uncleanly leaving an invalid object reference,
error message is printed but the base server goes on to replace the invalid
ence with a reference to itself.

Robot Type Mobility Base Server Program Name

ATRV atrv2server

ATRV-Jr atrvjserver

ATRV-micro uatrvserver

B21r b21rserver

B21 b21server

Magellan magellanserver

B14r b14rserver

B14 b14server

Pioneer AT pioneerserver

Pioneer pioneerserver
Mobility Robot Integration Software User’s Guide 4 - 8

Starting Up MOM

st
e

n

e
he
 no
l port
evice.

uter's

is
ll run
the

d, the
ar-
2. When the base server starts communicating with the robot firmware (in mo
models, the rFLEX controller), there are often a few error messages until th
two computers get synchronized.

3. In some robot models, it is normal for there to be occasional communicatio
errors.

All base servers to date communicate with the robot hardware through a singl
RS-232 connection. The Linux device for this connection can be specified on t
command line. This option is primarily useful on models like the Magellan with
on-board computer. The RS-232 radio modem may be connected to any seria
on the PC, but the base server must be informed of the corresponding Linux d

The following example runs a Magellan base server, assuming the robot comp
name is "robot " and the radio modem is connected to /dev/cur2 .

prompt> export MOBILITY_ROOT=/home/mobility/mobility-b-1.1.0
prompt> export MOBILITY_NS=http://robot/~mobility/NamingSer-
vice
prompt> source $MOBILITY_ROOT/etc/setup
prompt> magellanserver –deviceport /dev/cur2

Starting Up MOM

Like the base server, MOM must be given the URL of the Naming Service. Th
can be done in the same way as the base server. The following commands wi
MOM on the computer named “desktop”, with the Naming Service running on
computer named “robot” and the Mobility software installed in /home/

projects/mobility .

prompt> export MOBILITY_ROOT=/home/projects/mobility
prompt> source $MOBILITY_ROOT/etc/setup
prompt> export MOBILITY_NS=http://robot/~mobility/NamingSer-
vice
prompt> mom

It takes a few moments for the MOM screen to come up as the Java classes loa
ORB initializes and connects to the Naming Service, and the MOM object hier
chy view appears.
Mobility Robot Integration Software User’s Guide 4 - 9

Starting Up MOM

il-

1,

ar
 the

f your

 the
mpo-
like
m-
ort to

the

MOM's Graphical Interface

To start the MOM interface, review the instructions in Chapter 2 “A Tour of Mob
ity With the MOM Graphical Interface”.

When you start up MOM, the Hierarchy View Window appears (see Figure 4 -
“MOM’s Object Hierarchy View Window,” on page 4 - 10:

FIGURE 4 - 1. MOM’s Object Hierarchy View Window

The object hierarchy view, or just “object view” for short, is very similar to famili
GUI programs that show directory hierarchies. The single root node you see in
object view represents the base server program and is named for the model o
robot.

Click on the dot to the left of a node or double-click on the node itself to toggle
display of its children. Explore the hierarchy below the root node to see the co
nents of the base server program. Individual components can be named, just
files in a directory hierarchy, with a full path name from the root node. For exa
ple, in a Pioneer base server, the component object that monitors the RS-232 p
the robot is named

/Pioneer/Hardware.

Clicking the right mouse button on a component object pops up a menu of all
viewers known to MOM that can display something about that object. The two
most useful for robot teleoperation are described next.
Mobility Robot Integration Software User’s Guide 4 - 10

Starting Up MOM

ject

pup
nes
onar

ng

s
e
io
”

de
Range (Sonar) View

To see graphically the live output of your robot’s sonar sensors, expand the ob
hierarchy:

/<robotþmodel>/Sonar/Segment

Click your right mouse button on Segment and select Range View from the po
menu. You’ll see a dynamic, scaled display of the sonar sensors. The sonar co
are drawn at 50 pixels per meter. The Java program polls the base server for s
data. Buttons across the top of the MOM Window allow you to control the polli
behavior.

FIGURE 4 - 2. Selecting MOM’s Range View Window

CAUTION: Safety First! When running your robot, always be prepared to pres
the Emergency Stop button to prevent unintentional damage to th
robot, other lab equipment, or personal injury. Be aware that a rad
link problem could cause the robot not to receive a software “stop
command.

To tele-operate your robot, expand the object hierarchy so you can see the no

/<robotþmodel>/Drive/Command
Mobility Robot Integration Software User’s Guide 4 - 11

Starting Up MOM

up

erti-
 no

eft
and

e

-
repre-
nts,

 com-
 sonar
Click the right mouse button on Command and select Drive View from the pop
menu. The Drive View and Range View windows will display (see Figure 4 - 3,
“MOM’s Drive View Window and Range View Window,” on page 4 - 12).

FIGURE 4 - 3. MOM’s Drive View Window and Range View Window

The grid area in the center operates much like an iRobot joystick control. The v
cal axis of the grid represents translation: up for forward, down for reverse, with
movement in the center. The horizontal axis represents rotation: left to rotate l
and right to rotate right. Place the cursor at or very near the center of the grid
hold the left button down.

Slowly and carefully move the cursor while holding the left button down, and th
robot will move. Let up on the mouse button and the robot will stop.

The Object Hierarchy

The object view in MOM shows the hierarchy of your Mobility software compo
nent objects. A root node in the default tree represents a program, its children
sent its major software components, and their children represent subcompone
and so forth.

For example, in the base server program the sonar sensing system is a major
ponent, with subcomponents representing three forms that the data from each
sensor can take:
Mobility Robot Integration Software User’s Guide 4 - 12

Starting Up MOM

ts. A
n the
he

BA
ow-

ver-
t

y
A

nd

ou
f
orth-
M

ree
ic.

o
ompo-
er-
by
free-

ore
, you
Raw A distance reading given in meters.

Point An (X, Y, Z) point in robot coordinates of the detected object.

Segment An (X, Y, Z) origin and (X, Y, Z) endpoint of the region of free
space from the sonar sensor to the detected object.

Through these three objects, the sonar data is available in three different forma
component that requires sonar data obtains it from the object that provides it i
desired format. The Sonar component is responsible for updating the data in t
three subcomponents as new readings become available.

Normally, all the components communicate with one another through the COR
interfaces, so in principle each component could be alone in its own program. H
ever, components within the same program interact with no communications o
head. Thus, performance is typically what drives the assignment of componen
objects to programs.

The robot control software you write can act as a client to the provided Mobilit
software components, or, you can write full-fledged components of your own.
client-only program will be invisible to MOM, whereas components can take
advantage of numerous features of MOM such as properties, active objects, a
hot-pluggable connections.

Properties

A Mobility component can have a set of properties that are visible to MOM. If y
implement all the tuning parameters of your algorithms as Mobility properties o
your software components, you can tune the parameters at runtime and (in a f
coming release of Mobility) save and restore them using Mobility tools. The MO
Property Viewer allows you to access property values at runtime. There are th
ways you can use properties: read-only, initialization-writable, and fully dynam

Read-only: A component can use properties to provide additional information t
its clients. For example, the standard sonar sensing and laser range sensing c
nents provide the divergence property that gives the angle of sensor beam div
gence in radians, as a floating point number. Such a property is only readable
clients. The Range View client uses this property value to correctly depict the
space cones.

Initialization-writable: Active components have properties that may be set bef
the component starts running, but cannot be modified thereafter. For example
Mobility Robot Integration Software User’s Guide 4 - 13

Starting Up MOM

lu-

 writ-

kes
ic

med
ier-
 sen-

n
ce.

a
g
ing

ity

ad
ts that

n
could write a metric-grid-based navigation system to have a settable grid reso
tion, but for performance reasons you choose not to allow the resolution to be
adjusted once the navigation system starts running. Such a property would be
able only during component initialization and read-only thereafter.

Fully-dynamic: A dynamic property can be set at any time and the new value ta
effect immediately. For example, a wall-following algorithm could use a dynam
property to define the distance it maintains from the wall.

Debug Output

By convention, most Mobility objects that can contain other objects (in other
words, objects that support the ObjectContainer interface) contain an object na
Debug. You’ve probably already seen one or two of these in the MOM object h
archy viewer. These Debug objects are very much like the objects representing
sor input data. They are updated periodically with new data you can observe i
MOM with a viewer. They implement the same underlying DynamicState interfa

A Debug object’s data is in the form of strings of characters, (Other sensor dat
could also be character strings, but that would be unusual.) What makes Debu
objects unique is that they are used by software components to output debugg
information. Instead of writing to UNIX standard error or a DOS console, Mobil
software components write debugging information to their Debug object. The
MOM viewer for a Debug object is a scrollable text window in which you can re
its messages. You can create and use Debug objects from software componen
you write.

Coming Soon

The following sections highlight some of the features you can look forward to i
future releases.

NOTE: Release 1.1 of Mobility does not completely support many
designed interfaces and capabilities, in both the Class Frame-
work and in MOM.

• Creating and Running Objects

• Active Objects

• Hot-Pluggable Components

• Adding a Viewer

• Loading Configurations
Mobility Robot Integration Software User’s Guide 4 - 14

Starting Up MOM

 well
 to

 of
ct all

 to

.
d of
ct
acti-
ent
em

 inter-
t each

t of
ource
• Saving Configurations

NOTE: Do you have an idea for a useful feature that is not included in
the current release of MOM or Mobility? As always, iRobot
welcomes your feedback to help guide our development
efforts. Real World Interface appreciates user feedback and
will consider for future releases, all submitted ideas for
enhancements and features. Just drop an email to sup-
port@rwii.com.

Creating and Running Objects

The MOM can communicate with objects that support process management as
as with object factory interfaces. Thus, you can dynamically add new elements
your running robot system from MOM. For example, you could configure a set
robots for a demonstration, create and set parameters of a demo program obje
from the Mobility Object Manager interface, and then activate the demo object
show off your work.

Active Objects

Active Mobility components each have their own thread of control. Before an
active object gets its own thread, its initialization-only properties can be written
Once it is activated, those properties become read-only and it receives a threa
its own with which to carry out its computation. A fully implemented active obje
can be deactivated, properties and connections modified, and subsequently re
vated any number of times, all through the MOM. This lets you rapidly experim
with combinations of several modules or robot behaviors simply by switching th
on or off from your MOM console.

The robot base servers contain active objects that monitor the robot hardware
face(s) and that push sensor data to their other major software components tha
manage a kind of sensor data.

Hot-Pluggable Connections

A Mobility component can “advertise” that it expects to use another componen
a particular type. This usage can be optional or required, and can be either a s
or a sink of data.
Mobility Robot Integration Software User’s Guide 4 - 15

Starting Up MOM

ent
 in

 you
he
reate

ces,
y

ored
o be

ion
enta-

e
Adding a Viewer

Additional, user-written viewers can be added to MOM without modifying or
recompiling MOM. This feature will be improved and documented in a subsequ
release of Mobility. If you find it necessary to add a viewer of your own to MOM
the meantime, please contact iRobot software support for advice.

Loading Configurations

Because all Mobility objects support a common set of core interfaces, you can
dynamically load a configured robot system from persistent storage. MOM lets
select a robot system configuration file and load that file into a robot system. T
load process automatically launches robot servers, uses factory interfaces to c
objects and initializes the objects from the data stored in the configuration file.

Saving Configurations

Because all objects in the Mobility system support a common set of core interfa
MOM can ask each object in the system to save its persistent state into a file b
using the externalization interfaces. A saved system configuration can be rest
later. After spending several hours tuning the robot demo, it’s very convenient t
able to store this information for a presentation of your work later.

The combination of dynamically editable properties and centralized configurat
management provide an environment that encourages a wide range of experim
tion with algorithm parameters while providing a straightforward way to manag
and compare multiple configurations of your system.
Mobility Robot Integration Software User’s Guide 4 - 16

CHAPTER 5 Mobility Programming
With Class Frameworks
(C++ and Java)
t
he
inte-
the
ts

ur
rit-
dun-

tom-
 and

to spe-
The Mobility Class Framework Model (Language
Dependent C++/Java)

The Mobility Class Framework (MCF) is a set of language-specific classes tha
provide the implementation for the core functionality of your Mobility system. T
MCF provides base classes that implement most of the interfaces needed for
gration with Mobility robot integration software. The class frameworks provide
basic implementation of the MobilityCore, MobilityData and MobilityComponen
interfaces for all Mobility-defined robot objects and interfaces.

NOTE: Release 1.1 of Mobility provides the Class Gramework in
C++ only.

The class framework provides much of the implementation required to build yo
project using the Mobility Core Object Model. You can reuse that code by inhe
ing from the framework base classes. The class frameworks help eliminate re
dant programming effort in writing your own Mobility object implementations

The class framework provides a “working skeleton” of the system you can cus
ize to create you own Mobility hardware servers, behaviors, perceptual routines
data objects. From the framework base classes, you derive your own classes
cialize or extend the functionality of the system for your application.
Mobility Robot Integration Software User’s Guide

The Mobility Class Framework Model (Language Dependent C++/Java)

ses
enta-

s and

na-
r
tions
 by
ds to
e

f a

 and

es so
lating

ass
NOTE: Your derived classes will have access to some of the state of
the framework base classes, but the base classes allocate stor-
age and manage this state. Therefore, if you interfere with this
internal base-class data structure, you might create problems.

In addition to implementations for standard interface methods, framework clas
define additional state and methods that are specific to the framework implem
tion. These data types and methods make it easier to write your own derived
classes.

The Mobility Class Framework provides four methods by which your derived
classes may extend or specialize the operation of the framework:

1. Interface Methods

2. Helper Methods

3. Template Methods

4. Hook Methods.

Think of these methods as the interface between Mobility-supplied base classe
your own code.

Interface Methods

Interface Methods are virtual methods that directly implement the interface sig
tures defined in the Mobility Robot Object Model (MROM) by the IDL files. You
derived classes may override these methods to directly implement certain func
required of Mobility objects. However, most of these functions are implemented
the MCF and the implementations of these functions use the other three metho
provide more portable, safer extensions for base class functionality. Most of th
time you don't have to override or implement these methods directly.

Helper Methods

Helper Methods are called by derived classes to access and/or manage part o
base class state. They are essentially utility functions used to simplify method
implementations for derived class implementations.Helper methods are defined
implemented by the base classes in the Mobility class framework itself.

Helper methods provide accessors for state that is managed by the base class
that derived classes can safely access base class data without directly manipu
the internal base-class owned storage. Each Mobility class framework base cl
Mobility Robot Integration Software User’s Guide 5 - 2

Building on the Mobility Class Framework

y that
lper

se
n of
en-

to
ork

nta-
k

ew

torage
se lists

ing

d to
s

e
defines additional helper methods that correspond to the new state managed b
base class. The implementation of base classes does not normally override he
methods, but rather calls these base class methods directly.

Template Methods

Template Methods are virtual methods called at particular points within the ba
class implementation of Interface Methods to obtain data or allow customizatio
handling from within derived classes. Derived classes normally provide implem
tations that override the template methods of their base class. Using Template
Methods is like “filling in a form” for your implementation.

Hook Methods

Hook Methods are virtual methods invoked by the base class implementation
provide an alternate implementation of an Interface Method. When the framew
calls Hook Methods it is delegating nearly all the functionality required for the
implementation of an Interface Method to a derived class. The default impleme
tion of base class methods generally provides a kind of “null operation” for hoo
methods. If you want to override the behavior of the framework, provide new
implementations for the hook methods in your derived objects. Think of using
Hook Methods as a way to extend the processing of the framework to cover n
cases by deriving classes from the framework base classes.

Some of the data structures visible to derived classes are lists of data whose s
is owned by base classes. Base classes also manage the state of the lists. The
are implemented using language-specific list mechanisms.

In the case of C++ these lists are templates that provide an iterator for search
through the list. While it is possible to directly use the lists maintained by base
classes in a derived class implementation, you shouldn’t manipulate the lists
directly. Instead, use a combination of a Helper Method and a Template Metho
“iterate through the list” and perform operations on each element of base clas
state.

Building on the Mobility Class Framework

Mobility’s object-oriented class framework is a set of classes that provides bas
implementations of elements of the Robot Object Model.
Mobility Robot Integration Software User’s Guide 5 - 3

The Elements of Mobility Robot Integration Software

s.

s the
 for
 this

ndard

the
con-
e
-
.x
To build robot software for Mobility, simply:

1. Write a subclass of one of the framework objects; and

2. Extend and/or override the built-in behavior of that class to implement the
object for a new sensor, actuator, behavior, data store or perceptual proces

Simple programming tasks thus remain simple within the relatively complex
Mobility software system.

For each Mobility Component there is a framework base class that implement
core interfaces for that component. The framework class has implementations
every standard interface on the component itself. When you derive a class from
framework base class you can provide new implementations to replace the sta
functionally, or rely on the base class for the implementation.

The implementation of the class framework is separated from the definition of
object model. Thus, you can program every aspect of robot software yourself,
forming only to the Robot Object Model, and still remain completely compatibl
with the other elements of your Mobility system. You can develop Mobility-com
patible software modules in any programming language for which a CORBA 2
IDL interface is available.

The Elements of Mobility Robot Integration
Software

Mobility robot integration software comprises the following:

• Basic Mobility Tools (Java User Interface Programs)

• Basic Mobility Objects (C++ Programs)

• A C++ Class Framework (C++ shared library and headers)

• Interface definitions (IDL files and shared libraries)

• Support Tools and Utilities (C/C++ Programs)

• An Object Request Broker (basic shared libraries)
Mobility Robot Integration Software User’s Guide 5 - 4

Mobility Tools: Robot Tools and User Interfaces

n-
bug-

. See

ter-
ents.
d are

ter-
 per-
• An OS Abstraction Layer (basic shared libraries)

FIGURE 5 - 1. Mobility in the Context of the C++ and Java Programming
Environments

Mobility Tools: Robot Tools and User Interfaces

Mobility’s basic toolkit provides a GUI, or graphical user interface, to the basic
Mobility objects. This GUI is called MOM, the Mobility Object Manager. Using
MOM, you can drive your robot under teleoperation, view sensor feedback, ma
age the state of objects, configure and tune the parameters of objects, view de
ging feedback from objects and generally keep a handle on your robot system
Chapters 3 and 5 of this Manual for more details on MOM.

The Basics: Robot Components and Interfaces

In Mobility robot integration software, robot hardware, behaviors, plans, and in
nal representations are all represented and programmed as software compon
These components each support a common subset of the Mobility interface an
called Mobility Components. Some Mobility Components support additional in
faces that allow them to contain other objects, execute on their own thread, or
Mobility Robot Integration Software User’s Guide 5 - 5

The Basics: Robot Components and Interfaces

ble
 is
l

that
 the

rd
t
r
enta-
-

n-

d

r
ent
stems.

-

m-
 use
form other functions. Specific Mobility Components may support new special
interfaces that pertain to individual pieces of functionality.

You may be familiar with the concept of client-server computing. Several availa
robot development environments take the client-server approach. But Mobility
different. Everything in Mobility, including each program you write, is both a ful
client and a full server. A Mobility object is both a client of other objects and a
server for other objects.

In distributed object systems like Mobility the terms “client” and “server” apply
only to the invocation of a particular method. During that invocation the object
invoked the method is the client of the method and the object that is executing
method is the server.

Interface Definitions

Mobility’s interface definitions are a set of files written using the CORBA standa
interface definition language (IDL). This language allows definition of an objec
system and interfaces for that system in a way that is independent of particula
computing platforms or programming languages. Of course, the actual implem
tion of these interfaces depends on a particular platform and programming lan
guage, but by defining interfaces using standard IDL we can ensure that other
implementations will work with objects that we implement, as long as they are
based on the same interfaces.

In release 1.1 of Mobility, iRobot supports tools for C++. There are CORBA sta
dard ORB implementations available for LISP, so LISP users can use Mobility
robot integration software by compiling the Mobility IDL files using a LISP-base
ORB.

Object Request Broker (ORB)

Mobility uses CORBA to communicate among objects. The implementation of
CORBA used by Mobility has a shared library called the Object Request Broke
(ORB). The ORB is a communication management library that allows transpar
access to objects in different address spaces on the same or other computer sy
Mobility also includes interface libraries that are compiled versions of the inter
faces that define the Mobility Core Object Model.

Mobility’s interface libraries use the ORB libraries to allow your programs to co
municate with other programs, for example, with the robot manager. When you
Mobility Robot Integration Software User’s Guide 5 - 6

The Basics: Robot Components and Interfaces

mu-

 This
ele-
k.
objects local to your process, there is no additional overhead for CORBA com
nications; the ORB library is not invoked in this case

O/S Abstraction Layers

Mobility is based on an ORB that is, in turn, based on an OS abstraction layer.
OS abstraction layer provides a high degree of portability to many of the core
ments of Mobility, including the ORB itself and the Mobility C++ class framewor

Mobility’s portability layer will allow support of a wide variety of operating sys-
tems, including Windows/NT.

NOTE: In Release 1.1 of Mobility, iRobot supports only the Linux OS
Mobility Robot Integration Software User’s Guide 5 - 7

CHAPTER 6 Mobility Robot
Integration Software
Overview
 rep-
ed
obot

ect
eu-

.
to
e
s
Mobility Robot Object Model (Language
Independent)

The Mobility Robot Object Model defines the interfaces and objects needed to
resent and manage robot software as a set of concurrently executing, distribut
software components. These components represent software abstractions of r
hardware and behavior. The Mobility Robot Object model (MROM) is defined
using an object-oriented approach that is in turn based on the CORBA 2.x obj
model. The interfaces of the MROM are defined in a programming-language n
tral interface language called Interface Definition Language (IDL).

Robot Object Model Overview

The Robot Object Model describes a robot as:

“a hierarchical collection of object instances that provide interfaces to each
component of the robot system.”

The top of the Robot Object Model is the CORBA 2.x standard naming service
This naming service (also referred to as a name server), allows your software
access the many elements of multi-robot software systems. The top level nam
server contains a directory of robot objects and shared support objects, such a
maps shared by a robot team or a blackboard for multi-robot coordination.
Mobility Robot Integration Software User’s Guide

Mobility Robot Object Model (Language Independent)

 The
cess

m-

onar
mpo-
bot
tua-

d
Each robot has its own SystemModuleComponent in the Robot Object Model.
SystemModuleComponent provides a set of interfaces that allow organized ac
to all the components of each robot.

Each SystemModuleComponent contains a set of SystemComponents. Syste
Components serve as handy abstractions of

• robot hardware;'

• robot software;

• robot behaviors;

• data stores; and

• perceptual processes.

Typical System Components a robot might include odometry, tactile sensors, s
sensors and actuators. If your robot has a laser scanner, its SystemModuleCo
nent would be configured with an additional laser sensor component. If your ro
has an arm, its SystemModuleComponent would be configured with an arm ac
tor component.

Through the interfaces provided by the SystemModuleComponent, you can ad
and remove services, and discover services dynamically at runtime.
Mobility Robot Integration Software User’s Guide 6 - 2

An Example Mobility Robot Control System

s”
e a

sim-
ula-

nd
od-
ents.
t sup-
Mobility's definition of a robot as “a collection of dynamically connected object
makes it easy to reconfigure robot systems with new hardware and to integrat
wide variety of modules into the overall software system. And because all low-
level robot hardware abstractions are explicitly specified, your robot hardware
ulators are guaranteed 100% code compatibility between actual robots and sim
tions.

FIGURE 6 - 1. An Example Mobility Robot Software Setup

An Example Mobility Robot Control System

Mobility robot integration software includes an implementation of the modules a
components needed to access all iRobot robot hardware from other Mobility m
ules. Many robot accessories offered by iRobot are also supported by compon
These basic robot components provide abstractions of the robot hardware tha
port a wide variety of robot control algorithms, both high and low-level.
Mobility Robot Integration Software User’s Guide 6 - 3

An Example Mobility Robot Control System

and
s
f

ing
vel

ion”,
sic

e
 be
rac-
f

men-
e
cture

ill
-

All basic components are written using the same Mobility Robot Object Model
the Mobility C++ Class Framework you’ll use whenever you write C++ module
for Mobility robot integration software. These components manage all details o
serial packet protocols, talking over the access bus to sonar sensors and deal
with robot geometry information so that you can focus on developing higher-le
control software with some degree of cross-robot portability.

Other components provide desirable behaviors for robots, such as “avoid collis
“wander”, “follow walls” and “go to point.” These can be combined to form a ba
reactive controller for any iRobot robot.

The Mobility Robot Object Model (MROM) is defined using the CORBA Interfac
Definition Language (IDL). IDL allows sets of data structures and interfaces to
defined without regard to platform or programming language. This type of abst
tion completely separates the interfaces of objects from the implementations o
those objects.

IDL also permits the definition of compound interfaces (interfaces that are the
union of several other interfaces). Therefore, it's possible for a particular imple
tation of an object to support multiple, different interfaces at the same time. Th
structure of these interfaces and compound interfaces is analogous to the stru
of classes and derived classes in object-oriented programming languages.

Figure 6 - 2, “Mobility Class Diagram: Core and Components,” on page 6 - 5
shows part of the class/interface structure of Mobility. Studying this diagram w
help you understand the next several sections, which define the interfaces sup
ported by the objects used to build robot control software in Mobility.
Mobility Robot Integration Software User’s Guide 6 - 4

An Example Mobility Robot Control System

se
FIGURE 6 - 2. Mobility Class Diagram: Core and Components

The Mobility Core Interfaces

MobilityCore Interfaces are the backbone of the Mobility software system. The
interfaces provide for

• location of components;

• organization of components into hierarchies;

• property management; and

• active objects.
Mobility Robot Integration Software User’s Guide 6 - 5

An Example Mobility Robot Control System

ou

bed

hat

ir

scrip-
obil-

o

wn

t yet
Most of the elements of the Mobility software system (including components y
write yourself) are MobilityComponents. MobilityComponents are objects that
support a specific combination of the MobilityCore interfaces and will be descri
later. The following descriptions describe each of the Mobility Core Interfaces.

Contained Objects Interface

The ContainedObject Interface is supported by all ContainedObjects, objects t

1. have explicit identity;

2. can be located in containers; and

3. know that they are part of a container structure.

Other objects can be put into containers, but they will not be able to locate the
own container.

Each ContainedObject has a self-describing data structure called the object de
tor. The object descriptor structure describes each object contained within a M
ity container. The object descriptor identifies

• the class of the object;

• any special service parameters;

• the instance name of the object;

• a list of Mobility interfaces supported by the object;

• a documentation string, a simple description of the object; and

• the object's ObjectStatus.

The ObjectStatus describes the basic states for all Mobility objects.

1. An object is created in the Uninitialized. state

2. An object's creator must initialize an object before use, causing the object t
enter the Initialized state.

3. An initialized object may become an Active object, that is, may receive its o
thread control.

4. When an Active object is stopped or waiting for synchronization, it is in the
ActiveWaiting state.

5. When an Active object has been alerted of a particular condition, but has no
synchronized itself, it is in the ActiveAlerted state.
Mobility Robot Integration Software User’s Guide 6 - 6

An Example Mobility Robot Control System

r con-
t-
d or

s.
 these
ence
These states, and the relationships among them, are shown in.

FIGURE 6 - 3. Mobility Object States

Object Container Interface

An Object Container is a component that also supports the interface needed fo
taining other Mobility components. This additional interface is called the Objec
Container interface. The ObjectContainer Interface allows objects to be inserte
removed from a container at runtime, and supports dynamic location of objects
within the system.

Mobility objects are organized hierarchically. For example, from the top down,
robot configurations contain services. Services, in turn, contain object interface
Objects and other system elements may contain subordinate elements. Any of
Mobility ContainedObjects can be located via a pathname consisting of a sequ
of name element strings.
Mobility Robot Integration Software User’s Guide 6 - 7

An Example Mobility Robot Control System

child
f a sin-
s for

r
e.

 used

t are

trol
 and
izes

ports

to-
bil-

o-
ObjectContainer objects are frequently notified of changes or updates to their
objects and are used to update a group of child objects, based on the update o
gle child object. The Object Container Interface is also supported by container
other Mobility system elements.

Property Container Interface

The Property Container Interface allows other system elements (including use
interface programs) to examine and modify the properties of an object at runtim
This interface is supported by an object (like a service) that handles properties
for its configuration and management.

Many types of objects and modules support dynamic and static properties tha
used to manage configuration. The property descriptor structure identifies and
names properties within Mobility. Some examples of properties are

• the I/O port used by a hardware server

• the conversion factor between device units and physical units

• the “gain parameters” of a control algorithm

ActiveObject Interface

The ActiveObject Interface allows clients to create and manage ActiveObjects
within Mobility.

An ActiveObject encapsulates an activity that is an independent thread of con
within the system. ActiveObjects respond based on timeouts or other triggers,
represent a prioritized path of execution. An active object periodically synchron
with other active objects and can wait for other active objects. Once the active
object is stopped, it can be restarted. Many of the components that handle I/O
in Mobility, for example, are ActiveObjects.

Object Factory Interface

Object factories permit the dynamic creation of Mobility objects at runtime. Fac
ries allow clients to dynamically create new objects within running servers. Mo
ity’s ability to reload a configuration of objects from persistent storage derives
partly from the services provided by factory objects. The SystemModuleComp
nent is one Mobility object that supports the Object Factory Interface.
Mobility Robot Integration Software User’s Guide 6 - 8

An Example Mobility Robot Control System

c-

rite

m

he
e
ation
it-

m

em.
-
 the

on in
or
ore
mi-
 by
Mobility Externalization Interfaces

Externalization Interfaces support persistent configurations of Mobility compo-
nents. A group of software modules, along with their properties and interconne
tions can be stored in a configuration on disk and restored later.

NOTE: The externalization functionality is not implemented for the
Mobility 1.1 release.

Two primary abstractions are used in the externalization Interface:

1. The I/O Stream, an abstraction of a serial medium that supports read and w
operations like files

2. The externalizable object, which can write its persistent state to an IOStrea
when requested

Each externalizable object has a “key” that is stored with it. Through this key t
Mobility system can locate the factory to dynamically create the object when th
object is to be restored from persistent storage. The structure of the externaliz
system allows for the centralized management of configuration, while still perm
ting fully distributed processing and decision making within a multi-robot syste
Externalization Interface

MobilityComponents Module

This module defines combinations of MobilityCore and MobilityExternalization
interfaces that are implemented by the components of a Mobility software syst
Software that you write for Mobility will generally be some type of MobilityCom
ponent and will be derived from framework base classes that provide much of
implementation for MobilityComponent interfaces for you.

StateChangeHandler Interface

This is the core notification mechanism between dynamic state and computati
Mobility. This interface is implemented by Mobility objects that want to register f
state change notifications with a portion of dynamic state within the system. M
complex notification schemes are based on this simple notification, further exa
nation of state, and other factors. StateChangeHandlers are usually registered
containers that enforce constraints between contained objects.
Mobility Robot Integration Software User’s Guide 6 - 9

An Example Mobility Robot Control System

r and
ot
rties
back-
trol
ntly.

tates

trol

rchy
related
teSys-
 col-

le
ng

 is,
tory

mi-
od-
SystemComponent

The SystemComponent Interface defines an object that is a property containe
is streamable to persistent storage. System Component objects represent rob
hardware and software “modules” that respond to configuration through prope
and can be registered as StateChangeHandlers. These components form the
bone of most modules. The system component classes also have several con
states that allow system components to process updates and requests differe

SystemComponentStatus

The SystemComponentsStatus enumeration defines the possible processing s
for SystemComponent classes:

1. Disabled state: a component may simply do nothing in response to certain
updates

2. Reactive state: a component will respond fully to updates

3. Active state: a component will take actions based on internal threads of con

CompositeSystemComponent

The CompositeSystemComponent can contain other Mobility objects in a hiera
of object instances. CompositeSystemComponents can be used to aggregate
state and computational objects and treat them as a group. A special Composi
temComponent, called the SystemModuleComponent becomes the “root” of a
lection of objects within a single process.

ActiveSystemComponent

The ActiveSystemComponent has its own thread of control. Objects that samp
hardware, communicate between processes across networks, or coordinate lo
term, open ended processing are frequently ActiveSystemComponents.

SystemModuleComponent

A Mobility SystemModuleComponent is a CompositeSystemComponent. That
it contains all the other components in the module. It provides the generic “fac
interface” that allows clients or managers to create objects in the module.

The SystemModuleComponent also supports the creation of new objects dyna
cally at runtime. It is essentially a use of the “factory design pattern” to allow m
Mobility Robot Integration Software User’s Guide 6 - 10

An Example Mobility Robot Control System

n

f
nts

ject
 a
f state

pro-
ig-
y to

ts
bility-
e are
e-

your

e
ied
ed,

 noti-

i-
o-
ules to support dynamic creation of services under the control of a configuratio
client.

StateObserver

The StateObserver object is an explicit subscription object created by clients o
state objects. The StateObserver gets configured for various state change eve
and uses its internal thread to “push” or send notifications back to a client.

Combining the notification mechanism of data objects with a StateObserver ob
allows you to build very flexible update mechanisms. A StateObserver acts as
StateChangeHandler and attaches a number of client interfaces to a number o
objects.

When the State Observer is triggered, it updates the client objects with the ap
priate state information. Typically, a client object will configure the rest of the tr
gering mechanism through instance properties for maximum flexibility. One wa
think of the StateObserver is as a programmable “caller-backer” object.

MobilityData Module

This module defines combinations of the MobilityCore and MobilityComponen
interfaces as well as some new interfaces. The components defined in the Mo
Data module serve as state storage components for the Mobility system. Ther
both generic StateComponents and typed StateComponents. The current fram
work provides implementations for these components that are ready to use in
own software.

DynamicObject Interface

This interface captures objects that generate change events. The primary stat
mechanism is a subclass of this generic object. DynamicObjects can be modif
externally and are designed to tell any registered parties when they are modifi
through a notification interface. Objects that support these interfaces work with
objects that support the StateChangeHandler interface to support event-based
fication and data push.

Mobility StateComponents

Mobility StateComponents are representations of state that are updated dynam
cally and support multiple observers of this update. Some Mobility StateComp
Mobility Robot Integration Software User’s Guide 6 - 11

An Example Mobility Robot Control System

e (that
-

rom

tions
 of the

re
erver
e
that

es
 will
this

ta in

s

rs).

and

g

s.
nents are also container objects and contain many sub-representations of stat
is, different views or levels of detail.) Mobility StateComponents form a “percep
tual buffer space.” Change is communicated by propagating notification calls f
states to registered clients.

Think of StateComponents as type-safe mini-blackboards.

Mobility’s standardized container interfaces allow data objects and representa
to be extended over time. Thus, new elements can be added to meet the need
robotics research and development community.

The StateComponents that represent the lowest level of the robot hardware a
updated dynamically and asynchronously. Multiple active objects in the base s
interact with robot I/O ports and update the lowest level StateComponents. Th
change notification from these updates initiate the processing and transforms
provide higher level-abstractions.

All StateComponents have similar interfaces. StateComponents of various typ
exist for various purposes in the Mobility system. The set of StateComponents
grow over time as needed. The basic StateComponents that are supported at
time are:

• BvectorState — Byte vectors are useful for sparse raw sensor data.

• FvectorState — Floating point vector state is good for converted sensor da
meters.

• IvectorState — Integer vector state is good for communication of dense raw
sensor data.

• TransformState — Represents changing geometric transformations such a
odometry.

• PointState — Set of 3D points in space (like sonar target points).

• SegmentState — Set of 3D line segments in space (like sonar beam cente

• ActuatorState — Represents the status of an actuator or an actuator comm
value.

• StringState — Set of strings is a useful state for blackboards and debuggin
information.

• ImageState — Integer image data from most cameras.

• FimageState — Floating point image data from things like probability image
Mobility Robot Integration Software User’s Guide 6 - 12

An Example Mobility Robot Control System

nd,

ing
e, a 6-
se

ts, to
i-

sys-
 stor-
.

n
er-
s well

er
ck
 of

o
y
• GenericState — Used as a catch-all for passing various state samples arou
less efficient than typed interfaces.

This type of object represents raw actuator data for a set of actuators, present
generalized notions of status and command for a set of actuators. For exampl
axis manipulator might take a 6-element force command, or a mobile robot ba
might take a translate force and a rotate “torque,” that is, a generalized force.

Managing System Configuration

Mobility’s ObjectContainers let you easily manage the configuration of a multi-
robot system. The ObjectContainer model allows a user, or other system objec
“browse” through the system and examine its structure and components dynam
cally at runtime.

Three other sets of interfaces deal primarily with configuration of the system:

• Properties

• Factories

• Externalization

These interfaces work together to provide the ability to configure a multi-robot
tem from a single program, as well as to save that configuration to permanent
age and load that same configuration from storage back into a running system

Property Container Interface

All Mobility components are property containers. Properties allow users or eve
other objects in the system to modify or “tune” the operation of an object. Prop
ties store hardware configuration data like port names and robot parameters a
as behavioral parameters like a robot’s safety distance for avoiding obstacles.
Objects respond to some of their properties only when they are initialized. Oth
properties are dynamic. Dynamic properties, for example, the gain of a feedba
controller or the keep-off distance of an avoidance routine, affect the operation
the object immediately and can be changed at runtime.

Putting the Components Together

Let’s look at an example of all these classes and interfaces working together t
build a robot hardware abstraction from a set of reusable, configurable Mobilit
objects. Figure 6 - 2, “Mobility Class Diagram: Core and Components,” on
Mobility Robot Integration Software User’s Guide 6 - 13

An Example Mobility Robot Control System

po-
nique
t

iza-
rar-
chy
e.

ta
,

the
 state

he
-

ect to

 the
ata,

raw”

otifi-
enta-
f the
ation

 and
 “tar-
ject

 the
arch
te-
page 6 - 5 shows a SystemModule that contains several different MobilityCom
nents, each of which represents a different part of the robot system and has a u
pathname within the hierarchy of instances. shows two different types of objec
interactions.

• Solid lines and arrows show the system’s containment hierarchy, the organ
tional plan that forms the backbone of the Mobility system. Through this hie
chy, objects locate one another and discover available services. This hierar
also allows for managing properties and saving objects to persistent storag

• Dashed lines and arrows show the dynamic flow of sensor and actuator da
through the system. These interactions include updates of DynamicObjects
notifications between DynamicObjects and their container objects through
StateChangeHandler interfaces and other calls that update and modify the
objects.

To see how data might flow through a robot system, let’s look at sonar data. T
ActiveSystemComponent called “Hardware I/O” is a subclass of ActiveSystem
Component that knows how to talk to a particular set of robot hardware, in this
case, the sonar sensors. The “Hardware I/O” component is configured to conn
several StateObjects that represent relatively raw sonar data going to and from
robot hardware. When the “Hardware I/O” component updates the raw sonar d
contained within a class of StateObject called FvectorState, the owner of the “
data is notified through the StateChangeHandler interface.

The “Sonar” object, a subclass of the CompositeStateObject, processes this n
cation and uses its knowledge of sonar geometry to update its abstract repres
tions of the robot state called “targets” and “rays,” geometric representations o
raw sonar data. These abstract representations are more useful than raw inform
because the robot-specific geometry is handled within the “Sonar” component
users of the data don’t depend as much on specific robot hardware. When the
gets” are updated, they trigger conditions to push this update into a remote ob
somewhere else in the system.

This combination of hierarchical structure and notification-based data flows are
keys to a extensible, flexible software development environment. As your rese
requirements evolve and expand, your Mobility robot system will remain fully in
grated even as it grows more capable.
Mobility Robot Integration Software User’s Guide 6 - 14

An Example Mobility Robot Control System
FIGURE 6 - 4. Anatomy of a Mobility Base Server
Mobility Robot Integration Software User’s Guide 6 - 15

An Example Mobility Robot Control System
FIGURE 6 - 5. Data Flow in a Mobility Base Server
Mobility Robot Integration Software User’s Guide 6 - 16

Mobility Robot Integration Software Overview

6 - 17
 Mobility Robot Integration Software User’s Guide

CHAPTER 7 Mobility Building Blocks:
Basic Robot Components
and Interfaces
ors,
 Pre-
n-

But
c-

ent
b-
amic

 proper-
urces
The Robot as a Hierarchy

Mobility’s basic robot components provide low-level abstractions of robot sens
actuators and physical properties in the form of Mobility System Components.
vious robot software packages utilized a kind of “base server” program that ma
aged some of the functionality provided by Mobility’s basic robot components.
Mobility’s basic robot components provide a much richer and extensible abstra
tion of the physical robot.

In Mobility, a robot is a hierarchically-arranged collection of elements. The top
level of any robot is the SystemModuleComponent, a Mobility SystemCompon
that contains the separate subsystems of an individual robot. Each of these su
systems is itself a CompositeSystemComponent. The subsystems contain dyn
StateObjects, updated based on the state of robot sensors and actuators, and
ties that allow client programs to discover and adapt to the properties and reso
of an individual robot at runtime.

Through the interfaces of these objects, client programs can obtain

• state information about the robot

• location of robot sensors

• properties of the robot sensors
Mobility Robot Integration Software User’s Guide

The Robot as a Hierarchy

ined

 hid-
ide
s
ces

for-
et

use-
ns

 for

imple
lows

here
of

ponent
mple,
mposi-
ild
• general shape of the robot body

• other basic geometric information determined by the robot hardware itself

Clients also command the robot to move by updating the state of objects conta
in the drive object.

While differences among robot hardware characteristics are never completely
den, Mobility objects let your programs easily and flexibly identify and use a w
variety of robot hardware.State Objects provide baseline abstraction for variou
robot hardware platforms and ways for clients to discover and adapt to differen
among robots.

Basic robot objects, especially sensors, provide different views of their state in
mation: raw sensor numbers and geometric information like robot-relative targ
points or contact-points.

Robot Abstractions, Objects and Interfaces

The Mobility Robot Object Model defines some common abstractions that are
ful for building robot control software. These abstractions include representatio
for

1. Sensor state

2. Actuator state

3. Physical robot shape

In addition to these fundamental abstractions, there are some basic interfaces
building robot behaviors or control layers for your robot control system.

The concept of state is captured by StateComponents. These objects provide s
state buffers that are accessible from anywhere in the Mobility system. This al
StateComponents to communicate state changes, and provide access points w
the internal operation of the software can be “viewed” remotely for debugging
algorithms.

Sensor Systems

The sensor systems of a robot are each represented as a CompositeStateCom
whose properties describe the relevant features of the sensor system. For exa
the divergence angle of sonar sensors is stored as a property in the Sonar Co
teStateComponent. There is usually a set of StateComponents included as ch
Mobility Robot Integration Software User’s Guide 7 - 2

The Robot as a Hierarchy

” of
vec-
nts
r sys-
ns

ral
nsor
ading

se,
tate

 the

 that
 pro-

s of
ender
, and

ot’s

 sec-
wn
 the
t,
o.

sly
d range

or
objects underneath a sensor system component that represent various “views
the sensor state. For sonar sensors these views include raw range data (in a F
torState component) as well as points (PointState component) and line segme
(SegmentState component). The combination of various state views and senso
tem properties allows displays and behaviors to adapt to the geometric variatio
among robot systems more easily.

Sonar Sensing

The sonar sensor object is a CompositeSystemComponent that contains seve
StateObjects that represent the state of the robot sonar sensors. The sonar se
object contains an FVectorState object that represents the raw sonar sensor re
for the robot. This information is provided primarily for debugging and testing u
because the sonar sensors also provide sonar readings in the form of a PointS
object. The PointState object provides target points for each sonar sensor on
robot in robot relative coordinates.

A SegmentState object provides line segments for each sonar sensor reading
include the origin and target point for each sonar reading. The range view tool
gram uses this view of the sonar system state to provide a visualization of the
robot’s sonar sensors.

How the Sonar Sensors Work

SONAR, an acronym for SOund Navigation And Ranging, models the contour
an environment based on how it catches and throws back sound waves. The s
generates a sonic, or sound, wave that travels outwards in an expanding cone
listens for an echo. The characteristics of that echo can help the listener locate
objects. The sonar sensors on an iRobot robot provide a useful map of the rob
surroundings, as long as their inherent limitations are realized

iRobot’s B21 robot, for example, reads its sonar sensors about three times per
ond. (Other robots update at different rates; check the User's Guide for your o
robot.) For each reading, the total time between the generation of the ping and
receipt of the echo, coupled with the speed of sound in the robot’s environmen
generates an estimate of the distance to the object that bounced back the ech

As the robot’s sonar sensors fire off pings and receive echoes, they continuou
update a data structure. Each sonar sensor detects obstacles in a cone-shape
that starts out, close in to the robot, with a half-angle of about 15 degrees, and
spreads outwards. An obstacle’s surface characteristics (smooth or textured, f
Mobility Robot Integration Software User’s Guide 7 - 3

The Robot as a Hierarchy

bot,
r
d do
 rea-

 and

erent

n
rrors;

arest

iously

 obsta-
f

each
veral
 proba-
example), as well as the angle at which an obstacle is placed relative to the ro
significantly affect how and even whether that obstacle will be detected. Rathe
than assuming that sonar sensor data is infallible, look at multiple readings an
appropriate cross checking. The sonar sensors can be fooled for any of these
sons:

• The sonar sensor has no way of knowing exactly where, in its fifteen-degree
wider cone of attention, an obstacle actually is.

• The sonar sensor has no way of knowing the relative angle of an obstacle.
Obstacles at steep angles might bounce their echoes off in a completely diff
direction, leaving the sonar sensor ignorant of their existence, as it never
receives an echo

• The sonar sensor can be fooled if its ping bounces off an obliquely-angled
object onto another object in the environment, which then, in turn, returns a
echo to the sonar sensor. This effect, called specular reflection, can cause e
the sonar sensors overestimate the distance between the robot and the ne
obstacle.

• Extremely smooth walls presented at steep angles, and glass walls, can ser
mislead the sonar sensors.

But each robot has multiple sonar sensors, providing redundancy and enabling
cross checking. Sonar sensors almost never underestimate the distance to an
cle. Therefore, it’s a good idea to examine the distances returned by a group o
sonar sensors and use only the lowest values.

Or, record multiple readings as the robot moves about, and use the data from
to build up an occupancy grid. If several readings, from several angles and se
sonar sensors, keep detecting an obstacle in more or less the same place, it’s
bly safe to mark that spot as occupied.
Mobility Robot Integration Software User’s Guide 7 - 4

The Robot as a Hierarchy

ge of
fect,

out
s can
How The Sonar Sensors Can be Fooled

When the sonar beam strikes a surface with a large angle of incidence, the ed
the wave front is reflected back to the sensor instead of the centerline. This ef
called radial error, often results in errors greater than one foot.

FIGURE 7 - 1. How the Sonar Sensor Can Be Fooled: Ranging Errors

In addition, because of the sonar sensor’s relatively large beam (its angle is ab
15 degrees), it tends to produce a rather blurred image of its surroundings. Thi
Mobility Robot Integration Software User’s Guide 7 - 5

The Robot as a Hierarchy

in

e of

 criti-
ular

ur-

he
y pen-

 (for

indi-
sity
t of
h, is
lead to angular error, which affects the robot’s impressions of its surroundings
ways similar to radial error.

FIGURE 7 - 2. How the Sonar Sensor Can Be Fooled: Angular Errors

After striking a surface at a large angle of incidence, the echo may bounce into
oblivion rather than reflecting a strong echo back to the sonar receiver. This typ
false reflection occurs when the incidence angle of the beam is greater than a
cal angle, denoted in Figure 7 - 2, “How the Sonar Sensor Can Be Fooled: Ang
Errors,” on page 7 - 6 ,as X, which defines the cone of reflection (CR) for the s
face.

A sonar beam striking a wall from outside the CR will be reflected away from t
sensor, producing an unrealistically long sonar ray. The sonar beam apparentl
etrates the wall.

Every surface material has its own CR half-angle, ranging from 7 or 8 degrees
glass) to nearly 90 degrees (for rough surfaces.)

Infrared Sensing

Your robot may be equipped with infrared sensors. These sensors provide an
cation of the proximity of an obstacle by emitting light and measuring the inten
of the reflection bounced back off the obstacle’s surface. Infrared light, the par
the electromagnetic spectrum of radiation above 0.75 millimeters in wavelengt
Mobility Robot Integration Software User’s Guide 7 - 6

The Robot as a Hierarchy

he

at
actile
nts the
g
e

t drive
ive
 com-

ral
ect
 the

e rev-

bot’s
as

oes
rol-
ne
pery
es to

u
 can
not visible to humans. (We perceive it only as heat.) Infrared sensors provide t
robot information it can use to help build up a picture of its surroundings.

Robotic Tactile Sensing

A robot’s tactile sensors are represented by a CompositeSystemComponent th
contains several StateObjects that represent the states of each of the robot’s t
sensors. The tactile sensor object contains a BVectorState object that represe
raw tactile sensor readings. This information is provided primarily for debuggin
and testing use. The tactile Sensor object also provides a PointState view of th
contact points of the robot.

Odometry and Position Control: the RobotDrive Object

The robot drive object is a Composite SystemComponent. It contains several
StateObjects that represent the state of the robot drive system and the curren
command. An ActuatorState object represents the state of the robot current dr
system. Another ActuatorState object represents the state of the current drive
mand.

The robot odometry object is a CompositeSystemComponent. It contains seve
StateObjects that represent the state of robot odometry. A TransformState obj
represents the current location of the robot. An FVectorState object represents
robot’s current velocity.

The robot’s mobile base is equipped with wheel encoders that keep track of th
olutions of the wheels as the robot travels about its environment. The robot’s
motion controller integrates these measurements to attempt to estimate the ro
current position at any time with respect to its original position; that is, where it w
when it started rolling.

While this measurement is highly accurate for short distances, error can and d
accumulate as the robot travels further afield. By itself, the robot’s motion cont
ler hardware has no way to detect wheel skid or errors in wheel tracking, routi
hazards in real-world research and operational environments plagued with slip
floors, carpeting, doorjambs and the like. Carpet fibers present special challeng
robots operating on carpeted surfaces.

Mobility provides odometry information computed from robot wheel rotation. Yo
can get the robot position in X,Y, and theta relative to the startup location. You
Mobility Robot Integration Software User’s Guide 7 - 7

The Robot as a Hierarchy

ters

.
s

trol
nto

te
ts
s also
ed

e
e

).

fety

mpo-
or
 The
ous
 actu-
also get the velocity of the robot in X,Y and theta. The odometry output is in me
and radians and the velocity output is meters/second and radians/second.

With Mobility, you need not concern yourself with processing raw encoder data
Mobility updates the odometry quite rapidly (> 10 Hz). Therefore, Mobility doe
not provide direct encoder feedback at this time

How Mobility Processes Encoder Data

Your robot's rFlex controller takes in the 4 raw encoders and does motion con
based on the encoder feedback. The rFlex controller combines the encoders i
two virtual axes:

1. Translate axis

2. Rotate axis

These “virtual encoders” are sent to Mobility. Mobility sends rotate and transla
velocity commands to these virtual axes. The Mobility base server also conver
these integers into actual units (meters and radians). The velocity of the axes i
reported and converted to meters/second and radians/second. A Mobility- bas
program can get updates from the virtual axes at about 10-15Hz.

The combination of encoders to virtual axes accommodates and corrects for th
slippage of the wheels in turning and when covering rough terrain to provide th
best estimate of the translation and rotation movements (position and velocity

CAUTION: iRobot does not support modification or access to the encoders,
because such access and/or modification can compromise the sa
or our robot control system.

NOTE: In future releases, Mobility will fuse the data from odometry
and a compass, improving both speed and accuracy of odome-
try readings.

Actuator System Abstractions

The actuator systems of a robot are each represented as a CompositeStateCo
nent whose properties describe the relevant features of the actuator system. F
example, the maximum acceleration of a robot base is captured as a property.
actuator system will also contain several child components that represent vari
views of the actuator system, including a child that represents the status of the
Mobility Robot Integration Software User’s Guide 7 - 8

The Robot as a Hierarchy

m.

hape
n
bot

p
nsor

obot.

-

one
s and

-
tics
e
ility.

ail-
ator system and a child that is the current command input to the actuator syste

Robot Shape Abstractions

The robot shape abstractions provide geometric descriptions of the physical s
of the robot at various levels of detail. Shape abstractions include things like a
overall “bounding box” for the robot, as well as more detailed descriptions of ro
shape.

NOTE: The robot shape abstractions are not supported by
Mobility 1.1 servers.

Behavioral Abstractions

Active objects, along with the ability to communicate dynamic state updates
between components, allow Mobility to support the development of closed-loo
robot control behaviors. These components combine input from one or more se
systems and generate commands for one or more actuator systems within a r

Parallel Behaviors

Mobility 1.1 does not include the necessary command arbitration facilities for
building parallel behaviors.

Layers of Control

The simplest form of behavior combination is to provide a “layer” between high
level control and lower level control. This “layer” combines some sensor inputs
with commands from a higher level component to produce the commands for
or more actuators. For example, the guarded motion combines drive command
sonar sensors from base server to provide reactive obstacle avoidance.

Mobility Building Blocks for Extensiblity

As iRobot continues to develop new features for Mobility robot integration soft
ware, we will package these features as reusable building-blocks for your robo
application development needs. Some of the packages will be included with th
environment and others will be offered as additional packages, based on Mob

The following sections provide brief descriptions of components that will be av
able for Mobility in future releases.
Mobility Robot Integration Software User’s Guide 7 - 9

The Robot as a Hierarchy

his
e the
r other
 can
ap
veral

ith

an
ocal

ut
d is
n-

ctuator
-

ther
obil-

e
obot
Keeping Track of Obstacles: Local Map

The Local Map components provide multiple views of a “robot-centric” space. T
space is like short-term memory for the robot system. It provides a place wher
results of processing various sensors may be stored and used by behaviors o
control algorithms to generate motion commands. The Local Map components
be part of the reactive layer for a robot control system. Everything in the Local M
decays with time so that spurious sensor results are eventually erased after se
seconds.

The GUI Tools

Along with the Local Map components there are additional viewers provided w
MOM that will allow on-line display of the state of the Local Map for debugging
the operation of the robot.

The Programming Interface

Local Map components provide additional interfaces and properties that you c
use to write your own perceptual routines or behaviors, based on the shared L
Map data base.

Playing Nice: Guarded Motion

Guarded motion is a kind of collision avoidance behavior that combines an inp
command with feedback from the robot sensors. The resulting motion comman
one that uses the robot’s sensors to avoid collision with obstacles in the enviro
ment.

The Programming Interface

Guarded Motion adds new components, but uses the same interfaces as an a
system. To programs that use Guarded Motion, it is a “virtual actuator” that pro
vides built in collision avoidance.

Getting to the Point: Pose Control

Many robot systems are designed to take “point commands.” Mobility, on the o
hand, is based on a more reactive, “velocity command” approach. However, M
ity’s Pose Control components provide a “position command” interface to the
robot. Mobility’s Pose Control components use the odometry feedback from th
robot , along with input commands, to generate a command that will push the r
into a specific position and orientation, or “pose”.
Mobility Robot Integration Software User’s Guide 7 - 10

CHAPTER 8 Sim: The Mobility
Simulator
g-
o-
r
e and

ent

e

 to
the
nti-
obot
al,
s,

y be
The Mobility Simulator

Mobility robot integration software supports full multi-robot simulation. The
Mobility Simulator, called Sim, provides a simple hardware simulation for debu
ging your algorithms before you try them out on a robot. Sim is a kinematic/ge
metric simulator and does not simulate the mass of objects, inertia, and simila
physical characteristics. Sim uses the models of sensors drawn from experienc
empirical measurement of sensor performance on real robot platforms.

Sim is a collection of Mobility components that, in concert, serve as a replacem
for the hardware components that interact with the lower level of a robot. Sim’s
core is a centralized database for keeping track of multiple robot clients and th
simulated world state.

Hardware simulator modules connect to this world simulator core, and provide
the rest of your Mobility system the simulation of a particular robot type. From
point of view of software interfaces, these hardware simulator modules are ide
cal to the base server components of real robot hardware. Thus, your Mobility r
control components run identically whether you are running Sim or driving a re
physical robot. Sim lets you test your code on different robot hardware platform
thereby discovering any untoward assumptions about robot geometry that ma
lurking in your code.
Mobility Robot Integration Software User’s Guide

The Mobility Simulator

lity-
at
tor
p

vide
t hard-
d
ful
im
iali-
Sim’s World Simulator Core

Sim’s world simulator core is the central database that describes the simulated
world in which you are testing your robot system. The simulator core is a Mobi
SystemComponent (just like base servers and your robot control programs) th
contains a dynamic database of objects and robot locations. The world simula
core is fully multithreaded; with more processing power available, it will scale u
to simulation of larger numbers of interacting robots.

The GUI Tools

The Programming Interfaces

Sim’s Robot Hardware Simulator Modules

Sim’s hardware simulator modules connect to the world simulator core and pro
the same software abstractions as modules that connect to real, physical robo
ware. Of course, Sim’s hardware simulators do not exactly mimic in quality an
fidelity real robot hardware in a real environment, but Sim is nonetheless a use
tool for debugging the first few passes of a new control algorithm. After using S
to sanity-check your robot programs, you won’t have to waste time on such triv
ties as accidental code bugs when you finally get to fire up a real robot.

The Robot Simulator Visualization Interface

Web-Based Visualization Interface

RML 2.0 Interface

Running Other Objects with Sim
Mobility Robot Integration Software User’s Guide 8 - 2

CHAPTER 9 Advanced Issues And
Common Questions
-

.
bots.

er

-

How Do I...?

Work with a multi-robot team?

Mobility lets you seamlessly integrate a multi-robot team and access all the ele
ments of a team from the Mobility System Manager.

Write modules that handle multiple robots?

All objects in a Mobility system are accessible through the hierarchy of objects
You can connect your module to any robot by using pathnames for different ro

Deal with multiple threads in my modules?

Mobility uses multithreaded modules to provide programming flexibility. Howev
some libraries are not compatible with the threading libraries under Linux.

Make my own interfaces and extend the robot object model?

Mobility lets you seamlessly integrate a multi-robot team and access all the ele
ments of a team from the Mobility System Manager.
Mobility Robot Integration Software User’s Guide

Why Did You...?

ort
 pos-
r

up-

ts of
with

i-

ility
efit

at
es-

s
ntrol
to-
ac-
Use my old BeeSoft programs with Mobility?

Mobility has a much larger scope than BeeSoft. Mobility does not include supp
for running BeeSoft programs unmodified. In most cases, though. it should be
sible to port your BeeSoft algorithms to Mobility. You might want to get togethe
with other BeeSoft users to plan your BeeSoft-to-Mobility migration strategy.

Use my old Saphira programs with Mobility?

Mobility is also much larger in scope than Saphira. Mobility does not include s
port for running Saphira programs unmodified.

Program Mobility from my LISP system?

Because Mobility uses an open standard to define the interfaces to all elemen
the system, you can use all the tools, GUIs and basic robot objects of Mobility
programs written in LISP. You’ll need a CORBA 2.X-compliant implementation
for your version of LISP, and you’ll need to compile the Mobility interface defin
tion files (IDL) for LISP. You won’t have the benefit of the class framework, but
you will be able to directly access all Mobility components.

Change a Mobility-defined interface?

iRobot respects and appreciates the diverse talents, projects and ideas of Mob
users. If you come up with a change or enhancement that you think would ben
Mobility’s core interfaces, please let us know. (support@rwii.com or
docs@rwii.com). iRobot engineers might have a suggestion to accomplish wh
you need to do without changing interfaces. Or, we may incorporate your sugg
tion into a future release of Mobility robot integration software.

Why Did You...?

Use CORBA 2.x as an interface standard?

The second version of the CORBA standard included a number of significant
improvements. Plus, several commercial and non-commercial implementation
were available. iRobot has noticed a tendency for developers to build robot co
software based upon custom, proprietary or non-standard communications pro
cols for managing the many different elements of a multi-robot system. This pr
Mobility Robot Integration Software User’s Guide 9 - 2

Why Did You...?

ke to

, nor
e
y a

 by a

ys-
tice doesn’t encourage the kind of cooperation and code re-use iRobot would li
see and support in the robotics research community

Change from BeeSoft?

BeeSoft’s simple API was just not adequate to support multiple robot systems
were there any facilities for building an infrastructure for a system that would b
extensible over time. We decided that our customers would be better served b
more complete, powerful and more fully integrated robot software package.

Support only C++ and Java?

These languages offer the most commonly available object-oriented tools used
large community of commercial and non-commercial developers. High-quality
Java and C++ development tools are available for a wide range of operating s
tems and the tools.
Mobility Robot Integration Software User’s Guide 9 - 3

APPENDIX A Installing Mobility

of

y
-

of

The

ed
o

er
These instructions assume that you have some experience with Linux system
administration. If you are new to Linux system administration you'll need a bit
help from someone more experienced.

(At the time of this writing, the iRobot engineers are working to turn the Mobilit
software into a set of RPM’s. RPM, the Redhat Package Manager, is a tremen
dously useful, easy-to-use, and powerful tool for installing, uninstalling, and
upgrading software packages on Linux. When that is complete, management
Mobility software will be significantly simplified.)

There are many scenarios in which you might need to install Mobility software
following scenarios are covered in this appendix.

You need to download and install a new release of Mobility on your robot.

• You want to install Mobility on another PC in your laboratory for software
development.

• You have a new Magellan or similar robot with no on-board PC, and you ne
to download, install, and configure Mobility to control your robot over a radi
RS-232 link.

• You want to install just MOM on a desktop computer in order to get good us
interface performance.
Mobility Robot Integration Software User’s Guide

Install Linux on the Robot’s On-board PC and Prepare it for Mobility.

sary

t

 that

el-

oard
p

soft-

ot
al
m to
 the

• You want to do software development off the robot, and copy only the neces
files onto the robot to run.

• You want to install Mobility on a new computer in your robot, so that it’s jus
the same as we install it at the factory.

NOTE: Your robot comes from iRobot with Linux and Mobility prein-
stalled. You do not need to do theses steps with a robot “out of
the box”.

The scenarios above are highly overlapping. Note, however, that The sections
follow are organized to minimize repetition. They are presented in the order in
which you're most likely to need to do them:

• Install Linux on the robot’s on-board PC and prepare it for Mobility.

• Set up a mobility account.

• Download Mobility software.

• Install Mobility.

• Configure an off-board PC for radio RS-232 link to a robot such as the Mag
lan.

• Install MOM only on a desktop PC.

• Install base server only on a robot PC.

Install Linux on the Robot’s On-board PC and
Prepare it for Mobility.

Follow these instructions to (re)install the operating system on the robot’s on-b
PC and make other preparations for the Mobility software. The PC will be set u
for self-hosted development. That is, the same computer may be used for the
ware development as well as actually running the software.

Consult your Red Hat documentation to install Red Hat Linux 5.2 (or 5.1). iRob
recommends that you connect the COM1 serial port of the robot's PC to a seri
port on another computer, and run a terminal emulator program such as Minico
access the PC console. Connect the robot's PC to your local ethernet and use
CDROM drive of another computer “over the net” to avoid having to connect a
CDROM to your robot PC.
Mobility Robot Integration Software User’s Guide A - 2

Install Linux on the Robot’s On-board PC and Prepare it for Mobility.

oft-

M’s

soft-

lse-
.

Do a reasonably full installation of Linux. Be sure to include networking, C++ s
ware development tools, httpd, and system administration tools. If you want a
graphical front-end to the multithreaded debugger, download the following RP
from the iRobot ftp server (see below) or elsewhere on the net.

ddd-doc-3.0-5.i386.rpm
ddd-static-3.0-5.i386.rpm

As root, install them with the commands

rpm -U ddd-doc-3.0-5.i386.rpm
rpm -U ddd-static-3.0-5.i386.rpm

For Red Hat Linux 5.1 only:

You need to install the required version of egcs (the C++ compiler) and some
ware for multithreaded debugging.

Obtain two tar files containing egcs from the iRobot ftp server (see below) or e
where on the net, and five files containing RPM’s for multithreaded debugging

egcs-core-1.0.3a.tar.gz
egcs-g++-1.0.3a.tar.gz
glibc-2.0.7-20.i386.rpm
glibc-devel-2.0.7-20.i386.rpm
glibc-debug-2.0.7-20.i386.rpm
glibc-profile-2.0.7-20.i386.rpm
gdb-4.17-5.i386.rpm

As root, build egcs and install it in the default location (/usr/local).

tar xzf egcs-core-1.0.3a.tar.gz
tar xzf egcs-g++-1.0.3a.tar.gz
cd egcs-1.0.3a/
./configure
make
make install

As root, install the multithreading libraries.

rpm -U glibc-2.0.7-20.i386.rpm
rpm -U glibc-devel-2.0.7-20.i386.rpm
rpm -U glibc-debug-2.0.7-20.i386.rpm
rpm -U glibc-profile-2.0.7-20.i386.rpm
rpm -U gdb-4.17-5.i386.rpm
Mobility Robot Integration Software User’s Guide A - 3

Set Up a mobility Account.

unt

lly

bil-

to
 set
ice

ver
low,

You are now finished preparing a robot computer for Mobility.

Set Up a mobility Account.

At the factory, all iRobot robot on-board computers are set up with a user acco
for the Mobility software. The account’s user name is mobility . This account is
configured to have all the environment variables and details set up automatica
upon login to minimize the effort of getting started with Mobility. Each software
developer will normally have his or her own individual account, sharing the Mo
ity libraries and programs that are in the mobility account.

When setting up an off-board computer for Mobility software development, or
control a robot that has no on-board computer, it is usually most convenient to
up a mobility account in nearly the same way. By convention, the Naming Serv
places its IOR in a file in ~mobility/public_html .

Before setting up a mobility account your computer, your computer must have
the Linux operating system installed.

As root, create the mobility user account. Give the account sudo privileges
(optional) and a password.

useradd mobility
visudo

At the end of the file, add the line:

mobility ALL=ALL
passwd mobility

Log in as mobility and edit the file ~/.bashrc. Determine which robot base ser
program is appropriate for your robot using the table in Chapter 5. In the text be
replace ***robotserver*** with the correct server program name. Be sure to
use the actual version number of your software release.

At the end of ~mobility/.bashrc :
export MOBILITY_ROOT=~/mobility-b-1.1.0
export MOBILITY_NS=http://`hostname -s`/~mobility/NamingSer-
vice
alias base=***robotserver***
if [-f $MOBILITY_ROOT/etc/setup]; then
Mobility Robot Integration Software User’s Guide A - 4

Download Mobility software.

le
ne

ter-
ser’s
 one

hical
source $MOBILITY_ROOT/etc/setup
fi

Create the directory ~mobility/public_html with permissions 2777 to hold the fi
containing the IOR of the Naming Service and to hold a link to the Mobility on-li
documentation.

cd
chmod a+rx .
mkdir public_html
chmod 2777 public_html

Create a symbolic link from ~mobility/public_html/docs to the online docu-
mentation.

cd ~/public_html
ln -s ~mobility/mobility-b-1.1.0/docs .

Enable the web server to serve the docs:

cd /etc/httpd/conf
sudo vi access.conf

After the line "<Directory />" change the line:

Options None

to be

Options Indexes Includes FollowSymLinks

Now restart the web server:

sudo /etc/rc.d/init.d/httpd stop
sudo /etc/rc.d/init.d/httpd start

Download Mobility software.

Obtain the latest release of the Mobility binary software from the Real World In
face FTP server. There may be several versions of the software and Mobility U
Guide available. iRobot recommends that you obtain the latest one (that is, the
with the highest version numbers). Other files are also available such as the
enhancements necessary for Red Hat Linux 5.1 to support Mobility and a grap
front end to the multithreaded debugger.
Mobility Robot Integration Software User’s Guide A - 5

Download Mobility software.

ur

.1

.

self:
You may download these files from iRobot whenever you need them during yo
installation process. There is no need to be root when you download them.

Use FTP and anonymous login to connect to ns.rwii.com.. Go to the Mobility 1
software package directory. The directory itself is invisible, and the case of the
directory name is criticall. Once you are in the directory, its contents are visible

ftp ns.rwii.com

(Use anonymous login)

cd private/moBility-1.1
bin
hash

Get the software packages that you want, for example, the Mobility software it

get mobility-b-1.1.0.tgz
bye

Here is a list of the files that you may find there, and their contents.
Mobility Robot Integration Software User’s Guide A - 6

Install Mobility

s
ion

5.2
 sec-

 If
s still
TABLE A - 1. Mobility Files and Their Contents

Install Mobility

Installing the Mobility software itself consists of installing a directory tree of file
and making one program setuid root. In addition, you must edit one configurat
file for Red Hat Linux 5.1 systems.

Before installing the Mobilty software, the computer must have Red Hat Linux
installed, or Red Hat Linux 5.1 plus the enhancements mentioned above in the
tion “Install Linux on the robot’s on-board computer and prepare it for Mobility”.
the computer is not on board a robot, the same operating system requirement
apply.

Untar the Mobility software, on-line documentation, etc. Make sure the killOmn-

iNames program is setuid root.

tar xzf mobility-b-1.1.0.tgz

This will produce the subdirectory mobility-b-1.1.0 .

Files Contents

mobility-b-1.1.0.tgz Mobility software (binary release), on-
line documentation, servers, and tools.

Mobility-1-1.zip The Mobility User’s Guide, in Microsoft
Word format (zipped).

ddd-doc-3.0-5.i386.rpm

ddd-static-3.0-5.i386.rpm

Optional graphical front-end for the
multithreaded debugger.

egcs-core-1.0.3a.tar.gz

egcs-g++-1.0.3a.tar.gz

glibc-2.0.7-20.i386.rpm

glibc-devel-2.0.7-20.i386.rpm

glibc-debug-2.0.7-20.i386.rpm

glibc-profile-2.0.7-20.i386.rpm

gdb-4.17-5.i386.rpm

Enhancements for Red Hat 5.1 only,
required for Mobility to run.
Mobility Robot Integration Software User’s Guide A - 7

Configure an Off-board PC for Radio RS-232 Link

io.
the
he

ink

 so
ort /

likely
cd mobility-b-1.1.0/etc
sudo chown root killOmniNames
sudo chmod u+s killOmniNames

For Red Hat Linux 5.1 only:

You must edit the file scripts/config.mf and change all three references to gcc
or g++ from /usr/bin to /usr/local/bin in order to get the egcs compiler
required by Mobility.

vi scripts/config.mf

Configure an Off-board PC for Radio RS-232 Link

Magellan.

Some robots such as the Magellan can be configured to have no on-board rad
Instead, there is a radio RS-232 link from the low-level dedicated controller in
robot to an off-board PC. Do the same install of Linux, Mobility software, and t
mobility user account as outlined above. Then make the following changes:

1. Determine the Linux device of the off-board PC to which the radio RS-232 l
is attached. (It will be something like /dev/cua1 or /dev/cur3.)

2. Edit the file ~mobility/.bashrc. Change the ‘base’ alias in ~mobility/.bashrc
that it specifies the radio device with the command line argument –devicep
dev/whatever. For example, change

base=magellanserver

to
base=’magellanserver –deviceport /dev/cua1’

The simplest way to test the setup is to try running the base server. The most
cause of failure is something wrong with the serial link. Possible causes are:

• wrong Linux device name

• wrong cabling (null modem or lack thereof) between the PC and the radio

• radio set for DTE in stead of DCE or vice versa

• other radio problem
Mobility Robot Integration Software User’s Guide A - 8

Configure an Off-board PC for Radio RS-232 Link

d on

e

or-

rtu-

en
sets

va
the

lla-

e
Install MOM Only on a Desktop PC

The Mobility Object Manager is a portable Java application that has been teste
Linux, Windows 95, and Windows NT 4.0. It is experimental software; it tickles
occasional bugs in the underlying Java implementations. We have found it to b
most reliable on Linux (in fact, it can crash Windows NT), but it has better perf
mance on Windows platforms.

At this time, the process of installing just MOM on any computer is manual. Fo
nately, it is not terribly difficult. Unfortunately, in our testing it has not worked to
put the compiled Java code into one (or several) JAR files.

The general procedure is to copy five sets of files to the target machine and th
create a script file that sets up the environment and launches MOM. The five
of files are:

• the directory tree rooted at MOBILITY_ROOT/java ,

• the directory tree rooted at MOBILITY_ROOT/tools/jacorb_dev ,

• the file MOBILITY_ROOT/tools/swing.ja r,

• the directory tree rooted at MOBILITY_ROOT/icons , and

• the Java development kit or runtime environment.

Because of the way Sun Microsystems licenses Java, if you wish to use the Ja
development kit, you must obtain it yourself. MOM is written for Java 1.1, and
source code must be modified for Java 1.2 (aka Java 2).

MOM-only on Linux

1. Select an installation directory. In these instructions we will call it
MOBILITY_ROOT.

2. Copy the four file sets so as to mirror the Java portion of a full Mobility insta
tion.

3. Obtain the Java development kit or runtime environment and install it.

4. Copy over MOBILITY_ROOT/etc/mom to be the basis for your launch script.
Either by editing the mom script or by setting environment variables, arrang
for the following settings:

• MOBILITY_ROOT is the root directory of the MOM-only Mobility software
installation.

• JAVA_HOME is the root directory of the Java JDK or JRE installation.
Mobility Robot Integration Software User’s Guide A - 9

Configure an Off-board PC for Radio RS-232 Link

lla-

OM.

oard
at
• CLASSPATH is set to $MOBILITY_ROOT/java:$MOBILITY_ROOT/tools/

jacorb_dev:$MOBILITY_ROOT/tools/swing.jar (it need not have java-

Classes in it).

• MOBILITY_NS optionally may be set to contain your site’s default URL of the
file containing the Naming Service’s IOR.

MOM-only on Windows

1. Select an installation directory. In these instructions we will call it
MOBILITY_ROOT.

2. Copy the four file sets so as to mirror the Java portion of a full Mobility insta
tion.

3. Obtain the Java development kit or runtime environment and install it.

4. Write a batch file to set the necessary environment variables and launch M
Something like the following should work on your system.

setþMOBILITY_NS="http://your_default_host/~mobility/NamingService"

if "%1"=="" goto no_arg
 set MOBILITY_NS=%1
:no_arg
set MOBILITY_ROOT="c:\wherever\you\installed\the\software"
setþCLPATH=%MOBILITY_ROOT%\java;%MOBILITY_ROOT%\tools\jacorb_
dev;%MOBILITY_ROOT%\tools\swing.jar;%CLASSPATH%
javaþ-class-
path:%CLPATH%þ-Dcom.isr.mby.root=%MOBILITY_ROOT%þ-Dcom.isr.mb
y.ns=%MOBILITY_NS%þcom.isr.mby.mom.Mom

You may prefer to set environment variables in autoexec.bat (Windows 95) or in
“My Computer” –> Properties –> Environment (Windows NT) and just refer to
them in the MOM launch script. We expect to find the CLASSPATH referred to in
the script defined in the environment by the Java installation.

If you prefer to start MOM without specifying where to find the Naming Service
(and then provide it with the Browse –> Connect menu item), leave out the
-Dcom.isr.mby.mom.ns=... command line argument.

Install Base Server Only on a Robot PC.

It's sometimes most convenient to run only the base server on the robot’s on-b
PC and to run all the other robot software on your desktop or lab computer. Th
Mobility Robot Integration Software User’s Guide A - 10

Configure an Off-board PC for Radio RS-232 Link

ple.
ty
for

ibed

 the
 and

B14
can be the case if you find it easier to debug software running locally, for exam
If for some reason you also find it undesirable to put a full installation of Mobili
on the robot’s on-board computer, then you can copy only the files necessary
running the base server to the robot’s on-board computer.

The on-board PC must have Linux installed and prepared for Mobility as descr
above. It need not have a mobility user account.

There is a script MOBILITY_ROOT/etc/makeBaseOnl y that extracts from a full
Mobility installation those files required for a given base server. The script has
built-in knowledge about which base servers require which libraries. It collects
base server program, all the libraries it requires, the Naming Service program,
scripts to make launching them simpler into a single tar file.

The following command creates a tar file containing the base-only setup for a
robot.

makeBaseOnly b14

Transfer the resulting file b14server.tgz to the robot’s on-board computer.
Select a directory in which to install the file. For example, /home/joe/robot .
Install the files in that directory. Two subdirectories will be created, base and etc .
The base subdirectory contains the programs and libraries, and the etc subdirec-
tory contains the scripts. You must edit etc/name and etc/base and enter the
installation directory into each.

cd /home/joe/robot
tar xzf b14server.tgz
vi etc/name

Change the line

$basedir = ‘/home/mobility/base’

to

$basedir = ‘/home/joe/robot’
vi etc/base

Change the line:

dir=~mobility/base

to
Mobility Robot Integration Software User’s Guide A - 11

Configure an Off-board PC for Radio RS-232 Link

ew

o
-
 in
dir=~joe/robot

DO NOT set MOBILITY_ROOT in your environment when you are running base-
only setup. If the base and name scripts note the presence of MOBILITY_ROOT in
the environment, they will assume a full Mobility installation.

CAUTION: In spite of our best efforts to the contrary, it is often the case that n
software versions are not reflected in the makeBaseOnly script. You
may find your base-only setup complains of a missing library or tw
that makeBaseOnly missed. If the base server fails to run and com
plains of missing libraries, check to see if the missing libraries are
the subdirectory base . if so, then there is a problem with your envi-
ronment or the etc/base script. If not, then makeBaseOnly left out
the library and you should manually copy it from
$MOPBILITY_ROOT/lib of a full Mobility installation.
Mobility Robot Integration Software User’s Guide A - 12

APPENDIX B External Copyright
Information
cu-
rary

e and
antee
 free

ig-
thors
JaccORB and OmniORB2

GNU Library General Public License

Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.

675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license do
ment, but changing it is not allowed. [This is the first released version of the lib
GPL. It is numbered 2 because it goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to shar
change it. By contrast, the GNU General Public Licenses are intended to guar
your freedom to share and change free software--to make sure the software is
for all its users.

This license, the Library General Public License, applies to some specially des
nated Free Software Foundation software, and to any other libraries whose au
decide to use it. You can use it for your libraries, too.
Mobility Robot Integration Software User’s Guide

JaccORB and OmniORB2

en-
istrib-

re or
ngs.

 you
o cer-

you
at

rary,
hem

d
nd/

ied

at
ta-

h to
in

ade
 at all.

 the
When we speak of free software, we are referring to freedom, not price. Our G
eral Public Licenses are designed to make sure that you have the freedom to d
ute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the softwa
use pieces of it in new free programs; and that you know you can do these thi

To protect your rights, we need to make restrictions that forbid anyone to deny
these rights or to ask you to surrender the rights. These restrictions translate t
tain responsibilities for you if

you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee,
must give the recipients all the rights that we gave you. You must make sure th
they, too, receive or can get the source code. If you link a program with the lib
you must provide complete object files to the recipients so that they can relink t
with the library, after making changes to the library and recompiling it. And you
must show them these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, an
(2) offer you this license which gives you legal permission to copy, distribute a
or modify the library.

Also, for each distributor's protection, we want to make certain that everyone
understands that there is no warranty for this free library. If the library is modif
by someone else and passed on, we

want its recipients to know that what they have is not the original version, so th
any problems introduced by others will not reflect on the original authors' repu
tions.

Finally, any free program is threatened constantly by software patents. We wis
avoid the danger that companies distributing free software will individually obta
patent licenses, thus in effect

transforming the program into proprietary software. To prevent this, we have m
it clear that any patent must be licensed for everyone's free use or not licensed

Most GNU software, including some libraries, is covered by the ordinary GNU
General Public License, which was designed for utility programs. This license,
Mobility Robot Integration Software User’s Guide B - 2

JaccORB and OmniORB2

his

as in

ur the
ply
e

x-
 the

for
s did

his
o-

s that
anges
ns of
s.

w.
d a

ic
GNU Library General Public License, applies to certain designated libraries. T
license is quite different from the ordinary

one; be sure to read it in full, and don't assume that anything in it Is the same
the ordinary license.

The reason we have a separate public license for some libraries is that they bl
distinction we usually make between modifying or adding to a program and sim
using it. Linking a program with a library, without changing the library, is in som
sense simply using the library, and is

analogous to running a utility program or application program. However, in a te
tual and legal sense, the linked executable is a combined work, a derivative of
original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License
libraries did not effectively promote software sharing, because most developer
not use the libraries. We

concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of
those programs of all benefit from the free status of the libraries themselves. T
Library General Public License is intended to permit developers of non-free pr
grams to use free libraries, while

preserving your freedom as a user of such programs to change the free librarie
are incorporated in them. (We have not seen how to achieve this as regards ch
in header files, but we have achieved it as regards changes in the actual functio
the Library.) The hope is that this will lead to faster development of free librarie

The precise terms and conditions for copying, distribution and modification follo
Pay close attention to the difference between a “work based on the library” an
“work that uses the library”. The former contains code derived from the library,
while the latter only works together with the library.

Note that it is possible for a library to be covered by the ordinary General Publ
License rather than by this special one.
Mobility Robot Integration Software User’s Guide B - 3

JaccORB and OmniORB2

 a
it

ed

”
at

im

k-
the
 def-
n

-
pro-
am

that

e
pic-
ht

r to
y of

you
Terms and Conditions for Copying, Distribution, and Modification

Section 1.This License Agreement applies to any software library which contains
notice placed by the copyright holder or other authorized party saying
may be distributed under the terms of this Library

General Public License (also called “this License”). Each licensee is
addressed as “you”.

A “library” means a collection of software functions and/or data prepar
so as to be conveniently linked with application programs (which use
some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which
has been distributed under these terms. A “work based on the Library
means either the Library or any derivative work under copyright law: th
is to say, a work containing the Library or a portion of it, either verbat
or with modifications and/or translated straightforwardly into another
language. (Hereinafter, translation is included without limitation in the
term “modification”.)

“Source code” for a work means the preferred form of the work for ma
ing modifications to it. For a library, complete source code means all
source code for all modules it contains, plus any associated interface
inition files, plus the scripts used to control compilation and installatio
of the library.

Activities other than copying, distribution and modification are not cov
ered by this License; they are outside its scope. The act of running a
gram using the Library is not restricted, and output from such a progr
is covered only if its contents constitute a work based on the Library
(independent of the use of the Library in a tool for writing it). Whether
that is true depends on what the Library does and what the program
uses the Library does.

Section 2. You may copy and distribute verbatim copies of the Library's complet
source code as you receive it, in any medium, provided that you cons
uously and appropriately publish on each copy an appropriate copyrig
notice and disclaimer of warranty; keep intact all the notices that refe
this License and to the absence of any warranty; and distribute a cop
this License along with the

Library.

You may charge a fee for the physical act of transferring a copy, and
may at your option offer warranty protection in exchange for a fee.
Mobility Robot Integration Software User’s Guide B - 4

JaccORB and OmniORB2

,
ch
ed

g

 to

y,
n

ppli-

ful.
a
.
nc-

on
are

ble
son-

c-
rib-
e

he
on

ry
a
e
Section 3. You may modify your copy or copies of the Library or any portion of it
thus forming a work based on the Library, and copy and distribute su
modifications or work under the terms of Step Section 1. above, provid
that you also meet all of these conditions:

i. The modified work must itself be a software library.

ii. You must cause the files modified to carry prominent notices statin
that you changed the files and the date of any change.

iii. You must cause the whole of the work to be licensed at no charge
all third parties under the terms of this License.

iv. If a facility in the modified Library refers to a function or a table of
data to be supplied by an application program that uses the facilit
other than as an argument passed when the facility is invoked, the
you must make a good faith effort to ensure that, in the event an a
cation does not supply such function or table, the facility still oper-
ates, and performs whatever part of its purpose remains meaning
(For example, a function in a library to compute square roots has
purpose that is entirely well-defined independent of the application
Therefore, Subsection 2d requires that any application-supplied fu
tion or table used by this function must be optional: if the applicati
does not supply it, the square root function must still compute squ
roots.)

These requirements apply to the modified work as a whole. If identifia
sections of that work are not derived from the Library, and can be rea
ably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those se
tions when you distribute them as separate works. But when you dist
ute the same sections as part of a whole which is a work based on th
Library, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise t
right to control the distribution of derivative or collective works based
the Library.

In addition, mere aggregation of another work not based on the Libra
with the Library (or with a work based on the Library) on a volume of
storage or distribution medium does not bring the other work under th
scope of this License.
Mobility Robot Integration Software User’s Guide B - 5

JaccORB and OmniORB2

is,
fer
his
ral

ad if

py,
t

it,
f
lete
ted

used
r-

uire-
com-

 is
is
a

s
or-

e-
r

hat

is
Section 4. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do th
you must alter all the notices that refer to this License, so that they re
to the ordinary GNU General Public License, version 2, instead of to t
License. (If a newer version than version 2 of the ordinary GNU Gene
Public License has appeared, then you can specify that version inste
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that co
so the ordinary GNU General Public License applies to all subsequen
copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the
Library into a program that is not a library.

Section 5. You may copy and distribute the Library (or a portion or derivative of
under Section 2) in object code or executable form under the terms o
Sections 1 and 2 above provided that you accompany it with the comp
corresponding machine-readable source code, which must be distribu
under the terms of Sections 1 and 2 above on a medium customarily
for software interchange. If distribution of object code is made by offe
ing access to copy from a designated place, then offering equivalent
access to copy the source code from the same place satisfies the req
ment to distribute the source code, even though third parties are not
pelled to copy the source along with the object code.

Section 6. A program that contains no derivative of any portion of the Library, but
designed to work with the Library by being compiled or linked with it,
called a “work that uses the Library”. Such a work, in isolation, is not
derivative work of the Library, and therefore falls outside the scope of
this License.

However, linking a “work that uses the Library” with the Library create
an executable that is a derivative of the Library (because it contains p
tions of the Library), rather than a “work that uses the library”. The ex
cutable is therefore covered by this License. Section 6 states terms fo
distribution of such executables.

When a “work that uses the Library” uses material from a header file t
is part of the Library, the object code for the work may be a derivative
work of the Library even though the source code is not.

Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for th
to be true is not precisely defined by law.
Mobility Robot Integration Software User’s Guide B - 6

JaccORB and OmniORB2

ay-
lines
less

ta-
y

a
n-
r

difi-

is

y-
ng

ad-

 2
th

g
he
le

 6a,
bu-

a
ified
If such an object file uses only numerical parameters, data structure l
outs and accessors, and small macros and small inline functions (ten
or less in length), then the use of the object file is unrestricted, regard
of whether it is legally a derivative work. (Executables containing this
object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute
the object code for the work under the terms of Section 6. Any execu
bles containing that work also fall under Section 6, whether or not the
are linked directly with the Library itself.

Section 7. As an exception to the Sections above, you may also compile or link
“work that uses the Library” with the Library to produce a work contai
ing portions of the Library, and distribute that work under terms of you
choice, provided that the terms permit modification of the work for the
customer's own use and reverse engineering for debugging such mo
cations.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by th
License. You must supply a copy of this License. If the work

during execution displays copyright notices, you must include the cop
right notice for the Library among them, as well as a reference directi
the user to the copy of this License. Also, you must do one of these
things:

i. Accompany the work with the complete corresponding machine-re
able source code for the Library including whatever changes were
used in the work (which must be distributed under Sections 1 and
above); and, if the work is an executable linked with the Library, wi
the complete machine-readable “work that uses the Library”, as
object code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable containin
the modified Library. (It is understood that the user who changes t
contents of definitions files in the Library will not necessarily be ab
to recompile the application to use the modified definitions.)

ii. Accompany the work with a written offer, valid for at least three
years, to give the same user the materials specified in Subsection
above, for a charge no more than the cost of performing this distri
tion.

iii. If distribution of the work is made by offering access to copy from
designated place, offer equivalent access to copy the above spec
materials from the same place.
Mobility Robot Integration Software User’s Guide B - 7

JaccORB and OmniORB2

 or

y”
e

ts

 the

s of
ing

ide-

that
ther
e

ed

rt
e

ry
ise

er,
se
 in

d it.
he
ou

ce
iv. Verify that the user has already received a copy of these materials
that you have already sent this user a copy.

For an executable, the required form of the “work that uses the Librar
must include any data and utility programs needed for reproducing th
executable from it. However, as a special exception,

the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major componen
(compiler, kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies
executable.

It may happen that this requirement contradicts the license restriction
other proprietary libraries that do not normally accompany the operat
system. Such a contradiction means you cannot use both them and the
Library together in an executable that you distribute.

Section 8. You may place library facilities that are a work based on the Library s
by-side in a single library together with other library facilities not cov-
ered by this License, and distribute such a combined library, provided
the separate distribution of the work based on the Library and of the o
library facilities is otherwise permitted, and provided that you do thes
two things:

i. Accompany the combined library with a copy of the same work bas
on the Library, uncombined with any other library facilities. This
must be distributed under the terms of the Sections above.

ii. Give prominent notice with the combined library of the fact that pa
of it is a work based on the Library, and explaining where to find th
accompanying uncombined form of the same work.

Section 9. You may not copy, modify, sublicense, link with, or distribute the Libra
except as expressly provided under this License. Any attempt otherw
to copy, modify, sublicense, link with, or distribute the Library is void,
and will automatically terminate your rights under this License. Howev
parties who have received copies, or rights, from you under this Licen
will not have their licenses terminated so long as such parties remain
full compliance.

Section 10.You are not required to accept this License, since you have not signe
However, nothing else grants you permission to modify or distribute t
Library or its derivative works. These actions are prohibited by law if y
do not accept this License. Therefore, by modifying or distributing the
Library (or any work based on the Library), you indicate your acceptan
Mobility Robot Integration Software User’s Guide B - 8

JaccORB and OmniORB2

is-

al

ns

ge-
 are
t

 the
ul-

 at
tri-
tly
se

y
ly,
s.

ts
;

e
is-
 he
 lic-

e a

-
ght

dis-

of this License to do so, and all its terms and conditions for copying, d
tributing or modifying the Library or works based on it.

Section 11.Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the origin
licensor to copy, distribute, link with or modify the Library subject to
these terms and conditions. You may not impose any further restrictio
on the recipients' exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties to this License.

Section 12.If, as a consequence of a court judgment or allegation of patent infrin
ment or for any other reason (not limited to patent issues), conditions
imposed on you (whether by court order, agreement or otherwise) tha
contradict the conditions of this License, they do not excuse you from
conditions of this License. If you cannot distribute so as to satisfy sim
taneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library
all. For example, if a patent license would not permit royalty-free redis
bution of the Library by all those who receive copies directly or indirec
through you, then the only way you could satisfy both it and this Licen
would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under an
particular circumstance, the balance of the section is intended to app
and the section as a whole is intended to apply in other circumstance

It is not the purpose of this section to induce you to infringe any paten
or other property right claims or to contest validity of any such claims
this section has the sole purpose of protecting the integrity of the free
software distribution system which is implemented by public license
practices. Many people have made generous contributions to the wid
range of software distributed through that system in reliance on cons
tent application of that system; it is up to the author/donor to decide if
or she is willing to distribute software through any other system and a
ensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to b
consequence of the rest of this License.

Section 13.If the distribution and/or use of the Library is restricted in certain coun
tries either by patents or by copyrighted interfaces, the original copyri
holder who places the Library under this License may add an explicit
geographical distribution limitation excluding those countries, so that
tribution is permitted only in or among countries not thus excluded. In
Mobility Robot Integration Software User’s Guide B - 9

JaccORB and OmniORB2

ons
r-

y
ns
ft-

-
e

he
ft-
such case, this License incorporates the limitation as if written in the
body of this License.

Section 14.The Free Software Foundation may publish revised and/or new versi
of the Library General Public License from time to time. Such new ve
sions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and “an
later version”, you have the option of following the terms and conditio
either of that version or of any later version published by the Free So
ware Foundation. If the Library does not specify a license version num
ber, you may choose any version ever published by the Free Softwar
Foundation.

Section 15.If you wish to incorporate parts of the Library into other free programs
whose distribution conditions are incompatible with these, write to the
author to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by t
two goals of preserving the free status of all derivatives of our free so
ware and of promoting the sharing and reuse of software generally.

No Warranty

Section 16.BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRAN-
TIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE
LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

Section 17.IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIB-
UTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
Mobility Robot Integration Software User’s Guide B - 10

How to Apply These Terms to Your New Libraries

o the
nd
na-

tach
war-
ere

ft-
er-

ass
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE
WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use t
public, we recommend making it free software that everyone can redistribute a
change. You can do so by permitting redistribution under these terms (or, alter
tively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to at
them to the start of each source file to most effectively convey the exclusion of
ranty; and each file should have at least the “copyright” line and a pointer to wh
the full notice is found.

 <one line to give the library's name and a brief idea of what it does.>

 Copyright (C) <year> <name of author>

 This library is free software; you can redistribute it and/or modify it under the
terms of the GNU Library General Public License as published by the Free So
ware Foundation; either version 2 of the License, or (at your option) any later v
sion. This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General
Public License for more details.

 You should have received a copy of the GNU Library General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 675 M
Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.
Mobility Robot Integration Software User’s Guide B - 11

How to Apply These Terms to Your New Libraries

l, if
ple;
You should also get your employer (if you work as a programmer) or your schoo
any, to sign a “copyright disclaimer” for the library, if necessary. Here is a sam
alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a
library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice
Mobility Robot Integration Software User’s Guide B - 12

GLOSSARY Glossary

 other
API:

on-
oft

-lan-
s-

ot’s

king

Angular reflection (sonar). The angle at which the sonar beam bouncing off an
obstacle is directed back at that sonar. This angle depends on the texture and
characteristics of the obstacle’s surface, and its position relative to the sonar.
Application program Interface.

BeeSoft. An iRobot robot application interface software package for mobile aut
omous robots. As Mobility supplants BeeSoft, iRobot’s official support for BeeS
will be frozen.

ContainedObject. This Mobility defined interface is support by nearly every
object that is part of a Mobility system.

Container. See Mobility Container.

CORBA (Common Object Request Broker Architecture). An OMG standard
that defines the protocols, programming language mappings and programming
guage-independent models for building distributed object-oriented software sy
tems.

Dead reckoning. Using the latest wheel encoder readings to determine the rob
position at any given time relative to its position when it started moving.

Drift. The error that accumulates in odometry due to wheel skid and other trac
errors, as the robot continues to move along a heading.

DynamicObject. This Mobility-defined interface is supported by all objects that
provide dynamic notification of updates.
Mobility Robot Integration Software User’s Guide

Glossary

s
e in

s
-

e

es-

es-
viron-

he

-
tes
ction

y

ated

ket.
ped
ill
Emergency stop button. A button or switch on your robot that immediately stop
all the motors, thereby stopping the robot’s motion. Thereafter, the robot will b
limp mode, that is, movable by hand.

Externalization Interface. Mobility defines these interfaces for future extension
of the basic Mobility system that support save and restore of Mobility robot con
trollers.

Externalization object. See Externalization Interface.

Factory Object Interface. Mobility defines this interface so Mobility Components
can be dynamically created under program control. (NOTE: This feature will b
supported in an upcoming release of Mobility.)

GNU. Software developed and licensed by the Free Software Foundation; nec
sary for proper installation of Linux.

Grid cell. A unit in a grid-based map, containing a value which indicates the pr
ence or absence of an obstacle in the corresponding region of the physical en
ment

Guarded motion. A mode of robotic travel in which the robot automatically tries
to avoid collisions with those obstacles that it can perceive with its sensors.

Heading. The direction in which the robot is moving at any given time.

IDL (Interface Definition Language). A programming-language-independent
language for defining objects and interfaces standardized by the OMG within t
CORBA 2.X standard.

Infrared sensor. A sensor that emits Infrared light C light in that part of the elec
tromagnetic spectrum above 0.75 millimeters in wavelength. The robot estima
the approximate distance to an obstacle by measuring the intensity of the refle
bounced back from the obstacle’s surface.

I/OStream. This interface is part of the externalization functionality supported b
upcoming releases of Mobility. See Externalization Interface.

Interface Definition Language. See IDL.

JDK. JAVA development kit.

Joystick. A human-operated control device that allows simultaneous, tele-oper
rotation and translation of an autonomous mobile robot. Each iRobot robot is
shipped with a joystick which can be plugged in the robot’s labeled joystick soc
(Check the documentation for your own robot.) Special Note: The joystick ship
with some iRobot robots has been specially modified to control your robot. It w
not work with other equipment or games you might have.
Mobility Robot Integration Software User’s Guide GLOSSARY - 2

Glossary

r
he

The
tion.
er
nder-
inus

V
ame
py-

e
 it

 to
rors
 in

ptual

he

 to
Con-

-

JRE. JAVA run-time environment.

Kill switch. Another term for the emergency stop button on your robot.

Laser rangefinder. A low-intensity, eye-safe laser on board some iRobot robots
that detects the proximity of an obstacle by “time of flight” C the time it takes fo
an invisible, concentrated beam of light to bounce off an obstacle and return. T
laser rangefinder measures in the nanosecond (billionths of a second) range.
laser rangefinder itself does not provide angular resolution, but ranging resolu
A precise encoder provides the angular resolution. In sum, the laser rangefind
package provides a much higher angular resolution than the sonar sensors, re
ing much more precise measurements, with an average accuracy of plus or m
five centimeters.

Linux. A completely free re-implementation of POSIX specifications, with SYS
and BSD extensions (meaning it looks like UNIX but does not come from the s
source code base), available both in source code form and binary form. It is co
righted by Linus B. Torvalds and other contributors, and is freely redistributabl
under the terms of the GNU public license. It is not in the public domain, nor is
shareware.

MCF. (See Mobility Class Framework.

MROM. See Mobility Robot Object Model.

Mobility Class Framework (MCF). The programming language-specific imple-
mentation of the Mobility Robot Object Model (MROM) interfaces you can use
speed your implementation of Mobility-based software systems. The MCF mir
the Mobility Robot Object Model and handles much of the grunt work involved
programming robot software. By deriving a new class from the Mobility Class
Framework you can easily add your own sensors, actuators, behaviors, perce
processes and data classes to the system. See MCF.

Mobility Container. Any Mobility Component that also supports the interface
needed for containing other Mobility Components. The additional interface is t
ObjectContainer interface.

Mobility Component. Any Mobility-based object that supports the core set of
interfaces to be utilized by other Mobility Components. This designation refers
an object that implements a basic set of interfaces: ContainedObject, Property
tainer, and StateChangeHandler.

Mobility Robot Object Model (MROM). An object model defined using
CORBA 2.X IDL files that defines the interfaces to each Mobility object in a pro
gramming language-independent manner.
Mobility Robot Integration Software User’s Guide GLOSSARY - 3

Glossary

f

ts,
 are

liza-
a-

es
po-

ter-

eel
pect
ls

e
s a
ser-

y,
 per-
 model
nd

Mobility robot integration software. A distributed, object-oriented toolkit for
building control software for single and multi-robot systems. Mobility consists o
the following components:

• a set of software tools

• an object model for robot software

• a set of basic robot control modules

• an object-oriented class framework to simplify code development

Mobility Object Manager (MOM). The Mobility Object Manager is a graphical
user interface written in Java that allows you to launch programs, create objec
edit object properties, connect and configure objects and control which objects
active. MOM also lets you launch a variety of object viewers that provide visua
tion of your robot’s actuators, sensors, algorithm outputs and debugging inform
tion all from a central management point. MOM uses the core Mobility interfac
to provide access and management functionality for a system of Mobility Com
nents; it serves as the “integrated view” of your robot system in Mobility

Mobility State Component. Any Mobility Component that supports the Dynami-
cObject interface for registration of interested objects that implement the
StateChangeHandler interface in addition to the normal Mobility Component in
faces.

MOM. See Mobility Object Manager.

Motion controller. The electronics that integrates the measurements of the wh
encoders to attempt to estimate the robot’s current position at any time with res
to its original position, that is, where it was when it started rolling. It also contro
the motion of the motors that drive the robot’s wheels.

Name server. This facility allows your software to access the many elements of
multi-robot software systems. The top of the Mobility Robot Object Model is th
CORBA 2.x standard naming service. Mobility’s top level name server contain
directory of robot objects or shared support objects. (Sometimes called name
vice or naming service.)

Object. A separate unit of software with identity interfaces and state. In Mobilit
objects represent abstractions of whole robots, sensors, actuators, behaviors,
ceptual processes and data storage. Together, these objects provide a flexible
of a robot system that can be reconfigured as new hardware, new algorithms a
new applications are developed for a robot system. A MobilityComponent is an
object that supports a defined set of interfaces. See MobilityComponent.
Mobility Robot Integration Software User’s Guide GLOSSARY - 4

Glossary

-
puter

ti-
me of

-

d

re
n
is-

heir

t to

 data

p-
en-

 The

Ros-
ss.
Object Request Broker. A communication management library that allows trans
parent access to objects in different address spaces on the same or other com
systems.

Object Descriptor. A ContainedObject’s self-describing data structure that iden
fies the class of the object, any special service parameters and the instance na
the object.

ObjectContainer. The ObjectContainer interface is supported by any
MobilityComponent that can contain, locate and manage other Mobility Compo
nents.

ObjectStatus. An enumeration that describes the basic states for all mobility
objects. An object can be Un-initialized, in ActiveWaiting state, or ActiveAlerte
state.

Odometry. The robot’s way of trying to keep track of where it is relative to whe
it was when it started moving, with the help of its wheel encoders in conjunctio
with its motion controller. While this measurement is highly accurate for short d
tances, error can and does accumulate as the robot travels further afield.

OMG (Object Management Group). A consortium of companies dedicated to
development of open, standardized methods for distributed object computing. T
primary standard is CORBA and its extensions.
See http://www.omg.org

ORB. See Object Request Broker.

Orientation. The direction in which the robot is headed, measured with respec
some standard reference frame.

Property. A piece of data that affects the operation of a Mobility Component.
These can be scaling factors, device port names or configuration or calibration
used by each Mobility Component to perform its task.

PropertyContainer. This interface is supported by all Mobility Components that
can have properties. See property.

Property Descriptor Structure. Identifies and names properties within Mobility.

Robot. In Mobility, a collection of dynamically connected objects are used to re
resent the robot. More generally, an electro-mechanical entity equipped with s
sory apparati and manipulative appurtenances, designed to perform routine or
repetitive tasks, or to operate in environments lethal or dangerous to humans.
term robot was adapted from the Czech word robota, meaning forced labor, by
Czech novelist and dramatist Karel Capek in his dystopian 1920 play, R.U.R. (
sum’s Universal Robots), a work exploring the dangers of technological progre
Mobility Robot Integration Software User’s Guide GLOSSARY - 5

Glossary

ne

ea-
nveys
d to
red

ho.

ceipt
rates

,
nars,

 obsta-

for-

robot
onent.

on-
s
om-
ity
ess.

eter.

m

ich
Rotation. Leftward or rightward motion, centered on the robot’s axis. Can be do
either in place, or in conjunction with translation.

Sensor. An electro/mechanical, electrical, optical or other device that detects, m
sures and/or records information about phenomena in its surroundings and co
that data in a usable form to a human, computer, or other entity that is prepare
use it. Mobility uses several kinds of sensors, such as sonar sensors and infra
sensors.

Sonar sensor. An ultrasonic transducer that generates a sonic, or sound, wave,
called a ping, that travels outwards in an expanding cone, and listens for an ec
For each reading, the total time between the generation of the ping and the re
of the echo, coupled with the speed of sound in the robot’s environment, gene
an estimate of the distance to the object that bounced back the echo.

Specular reflection. An anomaly that can occur when a sonar sensor’s ping
bounces off an obliquely-angled object onto another object in the environment
which then, in turn, returns an echo to the sonar. This effect can bedevil the so
causing them to overestimate the distance between the robot and the nearest
cle.

State Change Handler. This interface is supported by Mobility Components and
allows them to register for dynamic update notifications instead of polling for in
mation they need.

System Components. Abstractions of robot hardware, software, behaviors, data
stores and perceptual processes. Typical System Components provided for a
would include odometry, tactile sensors, sonar sensors and an actuator comp

SystemModuleComponent. Provides a set of interfaces that allow organized
access to all the components of each robot. Each SystemModuleComponent c
tains a set of SystemComponents. You can add, remove and discover service
dynamically at runtime through the interfaces provided by the SystemModuleC
ponent. The SystemModule component is a special implementation of a Mobil
Component that is designed to be the “root” of the objects within a single proc

Tactile sensors. Pressure-sensitive switches, mounted around the robot’s perim

Tele-operation. A hands-off direction of the robot’s movements, via user progra
control.

Translation. Forward or rearward motion of the robot, along the heading to wh
it is currently directed.

Velocity. The speed at which the robot moves along its heading.
Mobility Robot Integration Software User’s Guide GLOSSARY - 6

Glossary

the

g,
ncy
Wheel encoders. Devices in the robot base that keep track of the revolutions of
robot’s wheels. Used for odometry.

Wheel skid. Errors in robot wheel tracking, caused by routine hazards in real-
world research and operational environments such as slippery floors, carpetin
doorjambs, and the like. These errors are mitigated somewhat by the redunda
and cross-checking supplied by the robot’s other sensors.
Mobility Robot Integration Software User’s Guide GLOSSARY - 7

	Part Number: 2841; Rev. 4
	Mobility Robot Integration Software User’s Guide

	Copyright and Liability Information
	PREFACE Preface
	CHAPTER 1 Getting Started with Mobility Robot Integration Software
	CHAPTER 2 A Tour of Mobility With the MOM Graphical Interface
	CHAPTER 3 Examples of Mobility Programs
	CHAPTER 4 MOM — The Mobility Graphical Interface
	CHAPTER 5 Mobility Programming With Class Frameworks (C++ and Java)
	CHAPTER 6 Mobility Robot Integration Software Overview
	CHAPTER 7 Mobility Building Blocks: Basic Robot Components and Interfaces
	CHAPTER 8 Sim: The Mobility Simulator
	CHAPTER 9 Advanced Issues And Common Questions
	APPENDIX A Installing Mobility
	APPENDIX B External Copyright Information
	GLOSSARY Glossary
	Contents
	Figures

	PREFACE Preface
	Welcome To the World of iRobot Research Mobile Robotics
	Technical Support From iRobot
	Email Support
	Web Page Support
	Mailing List Support
	Phone Calls

	Documentation
	Using This Guide
	Documentation Feedback

	CHAPTER 1 Getting Started with Mobility Robot Integration Software
	Welcome to Mobility Robot Integration Software
	What is Mobility Robot Integration Software?
	FIGURE 1 - 1. The Mobility Environment in Context
	Why did we develop Mobility?

	Getting Ready to Explore Mobility

	CHAPTER 2 A Tour of Mobility With the MOM Graphical Interface
	Running MOM
	1. Make sure the robot is turned on and enabled for software control. Check the User's Guide for ...
	2. Log in to the computer as user:mobility, password:mbyrwi
	3. Run the Naming Service with the command prompt> name -i
	4. Run the base server with the command prompt> base
	5. Open another window on the robot computer and run MOM with the command prompt> mom
	FIGURE 2 - 1. MOM’s Object Hierarchy View Window

	Viewing Sonar Sensor Output through MOM
	Driving your Robot with MOM
	FIGURE 2 - 2. MOM Drive View and Range View Windows
	1. Slide the mouse up to drive the robot forward
	2. Slide the mouse down to drive the robot in reverse.
	3. Move the mouse right on the screen to turn the robot to the right.
	4. Move the mouse left on the screen to tun the robot to the left.

	CHAPTER 3 Examples of Mobility Programs
	Robot Programming Tips and Tricks
	A Simple Mobility Program: simple_follow
	Simple Follow Program
	Notes On Simple Follow Program

	Getting More Sensor Readings: simple_follow_2
	Getting SICK-PLS Laser Scanner Readings
	Getting Base Sonar Readings
	A Note on Indexing on the B21r
	Getting Bump Panel Readings
	The Program simple_follow_2
	Makefile for simple_follow_2

	Mobility In Action – More Realistic Examples
	Square_and_Circle: A Mobility Sample Program
	Square_and_Circle’s System Configuration
	Filling Out Square_and_Circle’s Functionality
	Wander: A More Interesting Mobility sample program
	Wander’s System Configuration
	Filling Out Wander’s Functionality

	Designing a Mobility Program
	1. Derive some new component class(es) from the Mobility Class Framework, and add to or override ...
	2. Write a main program to create the SystemModule component for your new program. Add the new co...
	3. Write code to initialize your SystemModule, which will initialize any components you’ve insert...
	4. Write code to activate your SystemModule. This will initialize the ORB library and connect you...

	CHAPTER 4 MOM — The Mobility Graphical Interface
	MOM: An Overview
	Understanding MOM's Environment
	1. environment variables;
	2. the Naming Service; and
	3. some of the different ways Mobility programs can be distributed.

	iRobot Factory Pre-installed Configuration
	Invoking the Naming Service
	1. Start the aborted program again. It will register a new object with the same name, replacing t...
	2. Shut down all Mobility programs using the Naming Service and restart the Naming Service with t...
	3. Try running the nsclean Mobility utility. This utility is intended to remove invalid object re...

	The Base Server
	TABLE 4 - 1. Mobility Base Server Program For Type of Robot
	1. When the base server attempts to register with the Naming Service, if a previous run of the ba...
	2. When the base server starts communicating with the robot firmware (in most models, the rFLEX c...
	3. In some robot models, it is normal for there to be occasional communication errors.

	Starting Up MOM
	MOM's Graphical Interface
	FIGURE 4 - 1. MOM’s Object Hierarchy View Window

	Range (Sonar) View
	FIGURE 4 - 2. Selecting MOM’s Range View Window
	FIGURE 4 - 3. MOM’s Drive View Window and Range View Window

	The Object Hierarchy
	Properties
	Debug Output
	Coming Soon
	Creating and Running Objects
	Active Objects
	Hot-Pluggable Connections
	Adding a Viewer
	Loading Configurations
	Saving Configurations

	CHAPTER 5 Mobility Programming With Class Frameworks (C++ and Java)
	The Mobility Class Framework Model (Language Dependent C++/Java)
	1. Interface Methods
	2. Helper Methods
	3. Template Methods
	4. Hook Methods.
	Interface Methods
	Helper Methods
	Template Methods
	Hook Methods

	Building on the Mobility Class Framework
	1. Write a subclass of one of the framework objects; and
	2. Extend and/or override the built-in behavior of that class to implement the object for a new s...

	The Elements of Mobility Robot Integration Software
	FIGURE 5 - 1. Mobility in the Context of the C++ and Java Programming Environments

	Mobility Tools: Robot Tools and User Interfaces
	The Basics: Robot Components and Interfaces
	Interface Definitions
	Object Request Broker (ORB)
	O/S Abstraction Layers

	CHAPTER 6 Mobility Robot Integration Software Overview
	Mobility Robot Object Model (Language Independent)
	Robot Object Model Overview
	FIGURE 6 - 1. An Example Mobility Robot Software Setup

	An Example Mobility Robot Control System
	FIGURE 6 - 2. Mobility Class Diagram: Core and Components
	The Mobility Core Interfaces
	Contained Objects Interface
	1. have explicit identity;
	2. can be located in containers; and
	3. know that they are part of a container structure.
	1. An object is created in the Uninitialized. state
	2. An object's creator must initialize an object before use, causing the object to enter the Init...
	3. An initialized object may become an Active object, that is, may receive its own thread control.
	4. When an Active object is stopped or waiting for synchronization, it is in the ActiveWaiting st...
	5. When an Active object has been alerted of a particular condition, but has not yet synchronized...
	FIGURE 6 - 3. Mobility Object States

	Object Container Interface
	Property Container Interface
	ActiveObject Interface
	Object Factory Interface
	Mobility Externalization Interfaces
	1. The I/O Stream, an abstraction of a serial medium that supports read and write operations like...
	2. The externalizable object, which can write its persistent state to an IOStream when requested

	MobilityComponents Module
	StateChangeHandler Interface
	SystemComponent
	SystemComponentStatus
	1. Disabled state: a component may simply do nothing in response to certain updates
	2. Reactive state: a component will respond fully to updates
	3. Active state: a component will take actions based on internal threads of control

	CompositeSystemComponent
	ActiveSystemComponent
	SystemModuleComponent
	StateObserver
	MobilityData Module
	DynamicObject Interface
	Mobility StateComponents
	Managing System Configuration
	Property Container Interface
	Putting the Components Together
	FIGURE 6 - 4. Anatomy of a Mobility Base Server
	FIGURE 6 - 5. Data Flow in a Mobility Base Server

	CHAPTER 7 Mobility Building Blocks: Basic Robot Components and Interfaces
	The Robot as a Hierarchy
	Robot Abstractions, Objects and Interfaces
	1. Sensor state
	2. Actuator state
	3. Physical robot shape

	Sensor Systems
	Sonar Sensing
	How the Sonar Sensors Work
	How The Sonar Sensors Can be Fooled
	FIGURE 7 - 1. How the Sonar Sensor Can Be Fooled: Ranging Errors
	FIGURE 7 - 2. How the Sonar Sensor Can Be Fooled: Angular Errors

	Infrared Sensing
	Robotic Tactile Sensing
	Odometry and Position Control: the RobotDrive Object
	How Mobility Processes Encoder Data
	1. Translate axis
	2. Rotate axis

	Actuator System Abstractions
	Robot Shape Abstractions
	Behavioral Abstractions
	Parallel Behaviors
	Layers of Control
	Mobility Building Blocks for Extensiblity
	Keeping Track of Obstacles: Local Map
	The GUI Tools
	The Programming Interface
	Playing Nice: Guarded Motion
	The Programming Interface
	Getting to the Point: Pose Control

	CHAPTER 8 Sim: The Mobility Simulator
	The Mobility Simulator
	Sim’s World Simulator Core
	The GUI Tools
	The Programming Interfaces
	Sim’s Robot Hardware Simulator Modules
	The Robot Simulator Visualization Interface
	Web-Based Visualization Interface
	RML 2.0 Interface
	Running Other Objects with Sim

	CHAPTER 9 Advanced Issues And Common Questions
	How Do I...?
	Work with a multi-robot team?
	Write modules that handle multiple robots?
	Deal with multiple threads in my modules?
	Make my own interfaces and extend the robot object model?
	Use my old BeeSoft programs with Mobility?
	Use my old Saphira programs with Mobility?
	Program Mobility from my LISP system?
	Change a Mobility-defined interface?

	Why Did You...?
	Use CORBA 2.x as an interface standard?
	Change from BeeSoft?
	Support only C++ and Java?

	APPENDIX A Installing Mobility
	Install Linux on the Robot’s On-board PC and Prepare it for Mobility.
	For Red Hat Linux 5.1 only:

	Set Up a mobility Account.
	Download Mobility software.
	TABLE A - 1. Mobility Files and Their Contents

	Install Mobility
	For Red Hat Linux 5.1 only:

	Configure an Off-board PC for Radio RS-232 Link
	Magellan.
	1. Determine the Linux device of the off-board PC to which the radio RS-232 link is attached. (It...
	2. Edit the file ~mobility/.bashrc. Change the ‘base’ alias in ~mobility/.bashrc so that it speci...

	Install MOM Only on a Desktop PC
	MOM-only on Linux
	1. Select an installation directory. In these instructions we will call it MOBILITY_ROOT.
	2. Copy the four file sets so as to mirror the Java portion of a full Mobility installation.
	3. Obtain the Java development kit or runtime environment and install it.
	4. Copy over MOBILITY_ROOT/etc/mom to be the basis for your launch script. Either by editing the ...

	MOM-only on Windows
	1. Select an installation directory. In these instructions we will call it MOBILITY_ROOT.
	2. Copy the four file sets so as to mirror the Java portion of a full Mobility installation.
	3. Obtain the Java development kit or runtime environment and install it.
	4. Write a batch file to set the necessary environment variables and launch MOM. Something like t...

	Install Base Server Only on a Robot PC.

	APPENDIX B External Copyright Information
	JaccORB and OmniORB2
	GNU Library General Public License
	Preamble
	Terms and Conditions for Copying, Distribution, and Modification
	Section 1. This License Agreement applies to any software library which contains a notice placed ...
	Section 2. You may copy and distribute verbatim copies of the Library's complete source code as y...
	Section 3. You may modify your copy or copies of the Library or any portion of it, thus forming a...
	i. The modified work must itself be a software library.
	ii. You must cause the files modified to carry prominent notices stating that you changed the fil...
	iii. You must cause the whole of the work to be licensed at no charge to all third parties under ...
	iv. If a facility in the modified Library refers to a function or a table of data to be supplied ...

	Section 4. You may opt to apply the terms of the ordinary GNU General Public License instead of t...
	Section 5. You may copy and distribute the Library (or a portion or derivative of it, under Secti...
	Section 6. A program that contains no derivative of any portion of the Library, but is designed t...
	Section 7. As an exception to the Sections above, you may also compile or link a “work that uses ...
	i. Accompany the work with the complete corresponding machine-readable source code for the Librar...
	ii. Accompany the work with a written offer, valid for at least three years, to give the same use...
	iii. If distribution of the work is made by offering access to copy from a designated place, offe...
	iv. Verify that the user has already received a copy of these materials or that you have already ...

	Section 8. You may place library facilities that are a work based on the Library side- by-side in...
	i. Accompany the combined library with a copy of the same work based on the Library, uncombined w...
	ii. Give prominent notice with the combined library of the fact that part of it is a work based o...

	Section 9. You may not copy, modify, sublicense, link with, or distribute the Library except as e...
	Section 10. You are not required to accept this License, since you have not signed it. However, n...
	Section 11. Each time you redistribute the Library (or any work based on the Library), the recipi...
	Section 12. If, as a consequence of a court judgment or allegation of patent infringement or for ...
	Section 13. If the distribution and/or use of the Library is restricted in certain countries eith...
	Section 14. The Free Software Foundation may publish revised and/or new versions of the Library G...
	Section 15. If you wish to incorporate parts of the Library into other free programs whose distri...

	No Warranty
	Section 16. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY,...
	Section 17. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRI...

	How to Apply These Terms to Your New Libraries
	GLOSSARY Glossary
	Angular reflection (sonar)
	BeeSoft
	ContainedObject
	Container
	CORBA (Common Object Request Broker Architecture)
	Dead reckoning
	Drift
	DynamicObject
	Emergency stop button
	Externalization Interface
	Externalization object
	Factory Object Interface
	GNU
	Grid cell
	Guarded motion
	Heading
	IDL (Interface Definition Language)
	Infrared sensor
	I/OStream
	Interface Definition Language
	JDK
	Joystick
	JRE
	Kill switch
	Laser rangefinder
	Linux
	MCF
	MROM
	Mobility Class Framework (MCF)
	Mobility Container
	Mobility Component
	Mobility Robot Object Model (MROM)
	Mobility robot integration software
	Mobility Object Manager (MOM)
	Mobility State Component
	MOM
	Motion controller
	Name server
	Object
	Object Request Broker
	Object Descriptor
	ObjectContainer
	ObjectStatus
	Odometry
	OMG (Object Management Group)
	ORB
	Orientation
	Property
	PropertyContainer
	Property Descriptor Structure
	Robot
	Rotation
	Sensor
	Sonar sensor
	Specular reflection
	State Change Handler
	System Components
	SystemModuleComponent
	Tactile sensors
	Tele-operation
	Translation
	Velocity
	Wheel encoders
	Wheel skid

