
Consistent Query Answering: Five Easy Pieces

Jan Chomicki

University at Buffalo and Warsaw University

11th International Conference on Database Theory
Barcelona, January 11, 2007

Inconsistent Databases

Database instance D:

∙ a finite first-order structure

∙ the information about the world

Integrity constraints IC :

∙ first-order logic formulas

∙ the properties of the world

Satisfaction of constraints: D ∣= IC

Formula satisfaction in a first-order structure.

Inconsistent database: D ∕∣= IC Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Whence Inconsistency?

Sources of inconsistency:

∙ integration of independent data sources with overlapping data

∙ time lag of updates (eventual consistency)

∙ unenforced integrity constraints

∙ dataspace systems,...

Eliminating inconsistency?

∙ not enough information, time, or money

∙ difficult, impossible or undesirable

∙ unnecessary: queries may be insensitive to inconsistency

Ignoring Inconsistency

Query results not reliable.

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name

Gates

Grove

SELECT Name
FROM Employee
WHERE Salary ≤ 25M

Horizontal Decomposition

Decomposition into two relations:

∙ violators

∙ the rest

[Paredaens, De Bra: 1981–83]

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Grove Santa Clara 10M

Name → City Salary

Gates Redmond 20M

Gates Redmond 30M

Name → City Salary

Exceptions to Constraints

Weakening the contraints:

∙ functional dependencies → denial constraints

[Borgida: TODS’85]

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

except Name=’Gates’

The Impact of Inconsistency on Queries

Traditional view

∙ query results defined irrespective of integrity constraints

∙ query evaluation may be optimized in the presence of integrity constraints
(semantic query optimization)

“Post-modernist” view

∙ inconsistency reflects uncertainty

∙ query results may depend on integrity constraint satisfaction

∙ inconsistency may be eliminated or tolerated

Database Repairs

Restoring consistency:

∙ insertion, deletion, update

∙ minimal change?

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name City Salary

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name City Salary

Gates Redmond 20M

Grove Santa Clara 10M

Name → City Salary

Consistent Query Answering

Consistent query answer:

Query answer obtained in every
repair.

[Arenas,Bertossi,Ch.: PODS’99]

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name

Grove

SELECT Name
FROM Employee
WHERE Salary ≤ 25M

Name

Gates

Grove

SELECT Name
FROM Employee
WHERE Salary ≥ 10M

1 Motivation

2 Outline

3 Basics

4 Computing CQA
Methods
Complexity

5 Variants of CQA

6 Conclusions

Research Goals

Formal definition
What constitutes reliable (consistent) information in an inconsistent database.

Algorithms

How to compute consistent information.

Computational complexity analysis

∙ tractable vs. intractable classes of queries and integrity constraints

∙ tradeoffs: complexity vs. expressiveness.

Implementation

∙ preferably using DBMS technology.

Applications

???

Basic Notions

Repair D ′ of a database D w.r.t. the integrity constraints IC :

∙ D ′: over the same schema as D

∙ D ′ ∣= IC

∙ symmetric difference between D and D ′ is minimal.

Consistent query answer to a query Q in D w.r.t. IC :

∙ an element of the result of Q in every repair of D w.r.t. IC .

Another incarnation of the idea of sure query answers
[Lipski: TODS’79].

A Logical Aside

Belief revision

∙ semantically: repairing ≡ revising the database with integrity constraints

∙ consistent query answers ≡ counterfactual inference.

Logical inconsistency

∙ inconsistent database: database facts together with integrity constraints
form an inconsistent set of formulas

∙ trivialization of reasoning does not occur because constraints are not used
in relational query evaluation.

Exponentially many repairs

Example relation R(A,B)

∙ violates the dependency A→ B

∙ has 2n repairs.

A B

a1 b1

a1 c1

a2 b2

a2 c2

⋅ ⋅ ⋅
an bn

an cn

A→ B

It is impractical to apply the definition of CQA directly.

Computing Consistent Query Answers

Query Rewriting

Given a query Q and a set of integrity constraints IC , build a query Q IC such
that for every database instance D

the set of answers to Q IC in D = the set of consistent answers to Q
in D w.r.t. IC .

Representing all repairs

Given IC and D:

1 build a space-efficient representation of all repairs of D w.r.t. IC

2 use this representation to answer (many) queries.

Logic programs

Given IC , D and Q:

1 build a logic program PIC ,D whose models are the repairs of D w.r.t. IC

2 build a logic program PQ expressing Q

3 use a logic programming system that computes the query atoms present in
all models of PIC ,D ∪ PQ .

Constraint classes

Universal constraints
∀. ¬A1 ∨ ⋅ ⋅ ⋅ ∨ ¬An ∨ B1 ∨ ⋅ ⋅ ⋅ ∨ Bm

Example

∀. ¬Par(x) ∨Ma(x) ∨ Fa(x)

Denial constraints
∀. ¬A1 ∨ ⋅ ⋅ ⋅ ∨ ¬An

Example

∀. ¬M(n, s,m)∨¬M(m, t,w)∨s ≤ t

Functional dependencies

X → Y :

∙ a key dependency in F if X is a
key

∙ a primary-key dependency: only
one key exists

Example primary-key dependency

Name → Address Salary

Inclusion dependencies

R[X] ⊆ S [Y]:

∙ a foreign key constraint if Y is
a key of S

Example foreign key constraint

M[Manager] ⊆ M[Name]

Query Rewriting

Building queries that compute CQAs

∙ relational calculus (algebra) ⇝ relational calculus (algebra)

∙ SQL ⇝ SQL

∙ leads to PTIME data complexity

Query

Emp(x , y , z)

Query

Emp(x , y , z)

Integrity constraint

∀ x , y , z , y ′, z ′. ¬Emp(x , y , z) ∨ ¬Emp(x , y ′, z ′) ∨ z = z ′

Integrity constraint

∀ x , y , z , y ′, z ′. ¬Emp(x , y , z) ∨ ¬Emp(x , y ′, z ′) ∨ z = z ′

Rewritten query

Emp(x , y , z) ∧ ∀ y ′, z ′. ¬Emp(x , y ′, z ′) ∨ z = z ′

The Scope of Query Rewriting

[Arenas, Bertossi, Ch.: PODS’99]

∙ Queries: conjunctions of literals (relational algebra: �,×,−)

∙ Integrity constraints: binary universal

[Fuxman, Miller: ICDT’05]

∙ Queries: Cforest

∙ a class of conjunctive queries (�, �,×)
∙ no non-key or non-full joins
∙ no repeated relation symbols
∙ no built-ins

∙ Integrity constraints: primary key functional dependencies

SQL Rewriting

SQL query

SELECT Name FROM Emp

WHERE Salary ≥ 10K

SQL rewritten query

SELECT e1.Name FROM Emp e1

WHERE e1.Salary ≥ 10K AND NOT EXISTS

(SELECT * FROM EMPLOYEE e2

WHERE e2.Name = e1.Name AND e2.Salary < 10K)

[Fuxman, Fazli, Miller: SIGMOD’05]

∙ ConQuer: a system for computing CQAs

∙ conjunctive (Cforest) and aggregation SQL queries

∙ databases can be annotated with consistency indicators

∙ tested on TPC-H queries and medium-size databases

Conflict Hypergraph

Vertices
Tuples in the
database.

Edges

Minimal sets of tuples
violating a constraint.

Repairs

Maximal independent
sets in the conflict
graph.

(Gates, Redmond, 20M)(Gates, Redmond, 20M)

(Gates, Redmond, 30M)(Gates, Redmond, 30M)

(Grove, Santa Clara, 10M)(Grove, Santa Clara, 10M)

Computing CQAs Using Conflict Hypergraphs

Algorithm HProver

INPUT: query Φ a disjunction of ground atoms, conflict hypergraph G
OUTPUT: is Φ false in some repair of D w.r.t. IC?
ALGORITHM:

1 ¬Φ = P1(t1) ∧ ⋅ ⋅ ⋅ ∧ Pm(tm) ∧ ¬Pm+1(tm+1) ∧ ⋅ ⋅ ⋅ ∧ ¬Pn(tn)

2 find a consistent set of facts S such that
∙ S ⊇ {P1(t1), . . . ,Pm(tm)}
∙ for every fact A ∈ {Pm+1(tm+1), . . . ,Pn(tn)}: A ∕∈ D or there is an edge

E = {A,B1, . . . ,Bm} in G and S ⊇ {B1, . . . ,Bm}.

[Ch., Marcinkowski, Staworko: CIKM’04]

∙ Hippo: a system for computing CQAs in PTIME

∙ quantifier-free queries and denial constraints

∙ only edges of the conflict hypergraph are kept in main memory

∙ optimization can eliminate many (sometimes all) database accesses in
HProver

∙ tested for medium-size synthetic databases

Logic programs

Specifying repairs as answer sets of logic programs

∙ [Arenas, Bertossi, Ch.: FQAS’00, TPLP’03]

∙ [Greco, Greco, Zumpano: LPAR’00, TKDE’03]

∙ [Cal̀ı, Lembo, Rosati: IJCAI’03]

Example

emp(x , y , z)← empD(x , y , z), not dubious emp(x , y , z).
dubious emp(x , y , z)← empD(x , y , z), emp(x , y ′, z ′), y ∕= y ′.
dubious emp(x , y , z)← empD(x , y , z), emp(x , y ′, z ′), z ∕= z ′.

Answer sets

∙ {emp(Gates,Redmond , 20M), emp(Grove, SantaClara, 10M), . . .}
∙ {emp(Gates,Redmond , 30M), emp(Grove, SantaClara, 10M), . . .}

Logic Programs for computing CQAs

Logic Programs

∙ disjunction and classical negation

∙ checking whether an atom is in all answer sets is Πp
2-complete

∙ dlv, smodels, . . .

Scope

∙ arbitrary first-order queries

∙ universal constraints

∙ approach unlikely to yield tractable cases

INFOMIX [Eiter et al.: ICLP’03]

∙ combines CQA with data integration (GAV)

∙ uses dlv for repair computations

∙ optimization techniques: localization, factorization

∙ tested on small-to-medium-size legacy databases

Co-NP-completeness of CQA

Theorem (Ch., Marcinkowski: Inf. Comp.’05)

For primary-key functional dependencies and conjunctive queries, consistent
query answering is data-complete for co-NP.

Proof.
Membership: V is a repair iff V ∣= IC and W ∕∣= IC if W = V ∪M.
Co-NP-hardness: reduction from MONOTONE 3-SAT.

1 Positive clauses �1 = �1 ∧ ⋅ ⋅ ⋅ ∧ �m, negative clauses �2 = m+1 ∧ ⋅ ⋅ ⋅ ∧ l .

2 Database D contains two binary relations R(A,B) and S(A,B):
∙ R(i , p) if variable p occurs in �i , i = 1, . . . ,m.
∙ S(i , p) if variable p occurs in i , i = m + 1, . . . , l .

3 A is the primary key of both R and S .

4 Query Q ≡ ∃x , y , z .
(
R(x , y) ∧ S(z , y)

)
.

5 There is an assignment which satisfies �1 ∧ �2 iff there exists a repair in
which Q is false.

Q does not belong to Cforest .

Data complexity of CQA

Primary keys Arbitrary keys Denial Universal

�,×,− PTIME PTIME PTIME PTIME: binary

Πp
2-complete

�,×,−,∪ PTIME PTIME PTIME Πp
2-complete

�, � PTIME co-NPC co-NPC Πp
2-complete

�, �,× co-NPC co-NPC co-NPC Πp
2-complete

PTIME: Cforest

�, �,×,−,∪ co-NPC co-NPC co-NPC Πp
2-complete

∙ [Arenas, Bertossi, Ch.: PODS’99]

∙ [Ch., Marcinkowski: Inf.Comp.’05]

∙ [Fuxman, Miller: ICDT’05]

∙ [Staworko, Ph.D.]

The Semantic Explosion

Tuple-based repairs

∙ asymmetric treatment of insertion and deletion:
∙ repairs by minimal deletions only [Ch., Marcinkowski: Inf.Comp.’05]: data

possibly incorrect but complete
∙ repairs by minimal deletions and arbitrary insertions [Cal̀ı, Lembo, Rosati:

PODS’03]: data possibly incorrect and incomplete

∙ minimal cardinality changes [Lopatenko, Bertossi: ICDT’07]

Attribute-based repairs

∙ (A) ground and non-ground repairs [Wijsen: TODS’05]

∙ (B) project-join repairs [Wijsen: FQAS’06]

∙ (C) repairs minimizing Euclidean distance [Bertossi et al.: DBPL’05]

∙ (D) repairs of minimum cost [Bohannon et al.: SIGMOD’05].

Computational complexity

∙ (A) and (B): similar to tuple based repairs

∙ (C) and (D): checking existence of a repair of cost < K NP-complete.

The Need for Attribute-based Repairing

Tuple-based repairing leads to information loss.

EmpDept

Name Dept Location

John Sales Buffalo

Mary Sales Toronto

Name → Dept

Dept → City

Name Dept Location

John Sales Buffalo

Name → Dept

Dept → City

Name Dept Location

Mary Sales Toronto

Name → Dept

Dept → City

Attribute-based Repairs through Tuple-based Repairs
Repair a lossless join decomposition.

The decomposition:

�Name,Dept(EmpDept) ⋊⋉ �Dept,Location(EmpDept)

Name Dept Location

John Sales Buffalo

John Sales Toronto

Mary Sales Buffalo

Mary Sales Toronto

Name → Dept

Dept → City

Name Dept Location

John Sales Buffalo

Mary Sales Buffalo

Name → Dept

Dept → City

Name Dept Location

John Sales Toronto

Mary Sales Toronto

Name → Dept

Dept → City

Probabilistic framework for “dirty” databases

[Andritsos, Fuxman, Miller: ICDE’06]

∙ potential duplicates identified and grouped into clusters

∙ worlds ≈ repairs: one tuple from each cluster

∙ world probability: product of tuple probabilities

∙ clean answers: in the query result in some (supporting) world

∙ clean answer probability: sum of the probabilities of supporting worlds
∙ consistent answer: clean answer with probability 1

Salaries with probabilities

EmpProb

Name Salary Prob

Gates 20M 0.7

Gates 30M 0.3

Grove 10M 0.5

Grove 20M 0.5

Name → Salary

Computing Clean Answers

SQL query

SELECT Name

FROM EmpProb e

WHERE e.Salary > 15M

SQL rewritten query

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name

EmpProb

Name Salary Prob

Gates 20M 0.7

Gates 30M 0.3

Grove 10M 0.5

Grove 20M 0.5

Name → Salary

Name Prob

Gates 1

Grove 0.5

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name

Consistent Query Answering: Looking Back

PODS’99, June 1999

∙ Arenas, Bertossi, Ch.: “Consistent Query Answers in Inconsistent
Databases.”

Other concurrent events:

Taking Stock: Good News

Technology

∙ practical methods for CQA for a subset of SQL:
∙ restricted conjunctive/aggregation queries, primary/foreign-key constraints
∙ quantifier-free queries/denial constraints
∙ LP-based approaches for expressive query/constraint languages

∙ implemented in prototype systems

∙ tested on medium-size databases

The CQA Community

∙ over 30 active researchers

∙ up to 100 publications (since 1999)

∙ outreach to the AI community (qualified success)

Taking Stock: Initial Progress

“Blending in” CQA

∙ data integration: tension between repairing and satisfying source-to-target
dependencies

∙ peer-to-peer: how to isolate an inconsistent peer?

Extensions

∙ nulls:
∙ repairs with nulls?
∙ clean semantics vs. SQL conformance

∙ priorities:
∙ preferred repairs
∙ application: conflict resolution

∙ XML
∙ notions of integrity constraint and repair
∙ repair minimality based on tree edit distance?

∙ aggregate constraints

Taking Stock: Largely Open Issues

Applications

∙ no deployed applications

∙ repairing vs. CQA: data and query
characteristics

∙ heuristics for CQA and repairing

Consolidation

∙ taming the semantic explosion

∙ general first-order definability of CQA

∙ CQA and data cleaning

∙ CQA and schema matching/mapping

Foundations

∙ defining measures of consistency

∙ more refined complexity analysis

∙ dynamic aspects

Inconsistent elephant (by Oscar Reutersvärd)

Selected overview papers

L. Bertossi, J. Chomicki, Query Answering in Inconsistent Databases. In Logics
for Emerging Applications of Databases, J. Chomicki, R. van der Meyden, G.
Saake [eds.], Springer-Verlag, 2003.

J. Chomicki and J. Marcinkowski, On the Computational Complexity of
Minimal-Change Integrity Maintenance in Relational Databases. In
Inconsistency Tolerance, L. Bertossi, A. Hunter, T. Schaub, editors,
Springer-Verlag, 2004.

L. Bertossi, Consistent Query Answering in Databases. SIGMOD Record, June
2006.

	Motivation
	Outline
	Research Goals
	Basics
	Computing CQA
	Methods
	Complexity

	Variants of CQA
	Conclusions

