
Data Integration: Schema Mapping

Jan Chomicki

University at Buffalo



Data integration

Data sources

• data in any format/data model

Wrappers

• typically: relational or XML

• data/query translation, data publishing

• using source query interfaces

Mediators

• restructuring, merging, reconciliation,...

• eager or lazy



Relational data integration

Data integration system

• target (integrated) schema, incl. integrity constraints

• one or more source schemas, incl. constraints

• assertions (or queries) relating the contents of the target to the contents
of the source(s)

Data integration

• source schema given

• target schema and/or assertions (queries) to be constructed

• target instance corresponding to the given source instance may or may not
be materialized

Data exchange

• source and target schemas given

• assertions to be constructed

• target instance needs to be materialized



Problems

Schema matching

Establishing correspondences between elements of the source and target
schemas.

Schema mapping

Generation of assertions (queries) from schema correspondences.

Data reconciliation

• underspecification: selecting the target instance (uniqueness, nulls)

• overspecification: what if target constraints cannot be satisfied?

• ambiguity: object identification (record linkage)

Schematic discrepancies

• correspondences mix schema/instance elements

• beyond SQL queries/first-order assertions



Schema matching

Finding a “best” match

• start with some initial match and try to improve it

• rank the results

Similarity Flooding

• matching schemas represented as labelled directed graphs

• relational, XML, ontologies,...

Pairwise connectivity graph PCG (A,B)

• A and B are graphs to be matched

• N(PCG(A,B)) = {(x , y) | x ∈ N(A), y ∈ N(B)}
• E(PCG(A,B)) = {((x , y), p, (x ′, y ′)) | (x , p, x ′) ∈ E(A), (y , p, y ′) ∈

E(B)}



Similarity Flooding algorithm

Induced propagation graph IPG (A,B)

• N(IPG(A,B)) = {(x , y) | x ∈ N(A), y ∈ N(B)}
• E(IPG(A,B)) = {((x , y), (x ′, y ′)) | ∃p ((x , y), p, (x ′, y ′)) ∈

E(PCG(A,B)) ∨ ((x ′, y ′), p, (x , y)) ∈ E(PCG(A,B))}
• propagation coefficients w((x , y), (x ′, y ′)) calculated and used to label

edges

Algorithm

1 construct an initial mapping (similarity measure) σ0, consisting of
weighted pairs of nodes in graphs A and B

2 construct the mapping σi based on neighborhood information

3 repeat Step 2 for i + 1 if necessary

4 filter the result



Adjustment step

σi+1(x , y) = σi (x , y) +
∑

(au ,p,x)∈E(A),(bu ,p,y)∈E(B)

σi (au, bu) · w((au, bu), (x , y))

+
∑

(x,p,av )∈E(A),(y,p,bv )∈E(B)

σi (av , bv ) · w((av , bv ), (x , y)).

The new values are normalized to [0, 1] after each iteration.

Termination

• when the changes to the mapping are below a threshold

• after a fixed number of iterations

• guaranteed for strongly connected graphs.



Schema mapping in CLIO

Setting

• source database S , target database T

• input:
• schema correspondences
• filters on attributes
• source and target constraints: keys, foreign keys

• output:
• schema mapping: query or assertions relating S and T
• query: union of conjunctive queries

Schema mapping

1 creating candidate sets of correspondences: each target attribute is
mentioned at most once

2 finding join paths in each candidate set

3 ranking join paths

4 covering all the correspondences



Finding join paths

• using foreign keys

• query history

• discovering joinable columns

Ranking join paths

1 prefer paths through foreign keys

2 if multiple such paths, prefer one with a filter

3 least number of dangling tuples

Computing covers

• cover:
• set of candidate sets
• every correspondence belongs to some candidate set
• minimal

• ranking covers:
• smaller number of candidate sets
• more target attributes



Creating mapping query

For each candidate set V of the selected cover

SELECT attributes in V
FROM source relations in the join paths for V
WHERE filters and join conditions from the join paths

For the entire selected cover
Compute the UNION of the SELECT blocks.


