# Data Integration: Provenance 

Jan Chomicki

University at Buffalo

## Provenance

Annotations recording how a tuple in the query result was produced from the database.

## Different kinds

- Why-provenance (lineage): return a relevant part of the database
- How-provenance: keeping track of individual derivations
- Where-provenance: keeping track of individual attribute values


## Why-provenance

## Query language

Relational algebra:

- without set difference (positive RA)
- without renaming (for simplicity)
- with constant singleton relations: $\{u\}$


## Notation

- $Q$ : query
- $t$ : tuple
- $R_{1}, \ldots, R_{k}$ : relation names
- $D$ : database instance consisting of relation instances $r_{1}, \ldots, r_{k}$
- $\mathbf{S} \mathbb{T}=\{S \cup T \mid S \in \mathbf{S} \wedge T \in \mathbf{T}\}$


## Why-provenance: definition

Tuple annotations: sets of sets of facts.

## Definition

$$
\begin{aligned}
\text { Why }(\{u\}, D, t) & = \begin{cases}\{\varnothing\} & \text { if } t=u \\
\varnothing & \text { otherwise }\end{cases} \\
\text { Why }\left(R_{i}, D, t\right) & = \begin{cases}\left\{\left\{R_{i}(t)\right\}\right\} & \text { if } t \in r_{i} \\
\varnothing & \text { otherwise }\end{cases} \\
\text { Why }\left(\sigma_{C}(Q), D, t\right) & = \begin{cases}W h y(Q, D, t) & \text { if } t \text { satisfies } C \\
\varnothing & \text { otherwise }\end{cases} \\
\text { Why }\left(\pi_{X}(Q), D, t\right) & =\bigcup\{W h y(Q, D, u) \mid u \in Q(D) \wedge t=u[X]\} \\
W h y\left(Q_{1} \cup Q_{2}, D, t\right) & =W h y\left(Q_{1}, D, t\right) \cup W h y\left(Q_{2}, D, t\right) \\
W h y\left(Q_{1} \bowtie Q_{2}, D, t\right) & =W h y\left(Q_{1}, D, t\left[U_{1}\right]\right) \cup W h y\left(Q_{2}, D, t\left[U_{2}\right]\right)
\end{aligned}
$$

## Why-provenance: properties

Empty provenance

$$
\text { If Why }(Q, D, t)=\varnothing \text {, then } t \notin Q(D) \text {. }
$$

Nonempty provenance

If $J \in W h y(Q, D, t)$, then $J \subseteq D$ and $t \in Q(J)$.

## K-semirings

Tuple annotations: values from a special domain $\mathcal{K}$.

The properties of $\mathcal{K}$
$\mathcal{K}=(K, 0,1,+, \cdot)$ is a commutative semiring:

- addition (+) is associative, commutative and has identity 0
- multiplication $(\cdot)$ is associative, commutative and has identity 1
- for all $x$ : $x \cdot 0=0 \cdot x=0$
- multiplication distributes over addition.

Examples of $\mathcal{K}$

- Booleans: relations as sets
- natural numbers: relations as bags
- polynomials: how-provenance


## How-provenance

Tuple annotations

- tuples not in the database: 0
- tuples in the database: tuple identifiers
- tuples in a query result: polynomial expressions encoding tuple derivations


## Definition

$$
\begin{aligned}
\operatorname{How}(\{u\}, D, t) & = \begin{cases}1 & \text { if } t=u \\
0 & \text { otherwise }\end{cases} \\
\operatorname{How}\left(R_{i}, D, t\right) & = \begin{cases}V & \text { if } t \in r_{i} \text { with annotation } V \\
0 & \text { otherwise }\end{cases} \\
\operatorname{How}\left(\sigma_{C}(Q), D, t\right) & = \begin{cases}\operatorname{How}(Q, D, t) & \text { if } t \text { satisfies } C \\
0 & \text { otherwise }\end{cases} \\
\operatorname{How}\left(\pi_{X}(Q), D, t\right) & =\sum\{\operatorname{How}(Q, D, u) \mid \operatorname{How}(Q, D, u) \neq 0 \wedge t=u[X]\}
\end{aligned}
$$

## Union

$$
\operatorname{How}\left(Q_{1} \cup Q_{2}, D, t\right)=\operatorname{How}\left(Q_{1}, D, t\right)+\operatorname{How}\left(Q_{2}, D, t\right)
$$

Join

$$
\operatorname{How}\left(Q_{1} \bowtie Q_{2}, D, t\right)=\operatorname{How}\left(Q_{1}, D, t\left[U_{1}\right]\right) \cdot \operatorname{How}\left(Q_{2}, D, t\left[U_{2}\right]\right)
$$

Recovering Why-provenance

$$
\mathcal{K}=(\wp(\wp(\text { Facts })), \varnothing,\{\varnothing\}, \cup, \amalg)
$$

where $\wp$ is the powerset operator and Facts is the set of all facts.

