
Minimal Contraction of Preference Relations

Denis Mindolin and Jan Chomicki
Dept. of Computer Science and Engineering

University at Buffalo
Buffalo, NY 14260-2000

{mindolin,chomicki}@cse.buffalo.edu

Abstract

Changing preferences is very common in real life. The ex-
pressive power of the operations of preference change intro-
duced so far in the literature is limited to adding new informa-
tion about preference and equivalence. Here, we discuss the
operation of discarding preferences: preference contraction.
We argue that the property of minimality and the preservation
of strict partial orders are crucial for contractions. Contrac-
tions can be further constrained by specifying which prefer-
ences should not be contracted. We provide algorithms for
computing minimal and minimal preference-protecting con-
traction. We also show some preference query optimization
techniques which can be used in the presence of contraction.

Introduction
A large number of preference handling frameworks have
been developed (Fishburn 1970; Boutilier et al. 2004;
Hansson & Grüne-Yanoff 2006). In this paper, we work with
the binary relation preference framework (Chomicki 2003).
Preferences are represented here as binary relations over ob-
jects. They are required to be strict partial orders (SPO):
transitive and irreflexive binary relations. The SPO proper-
ties are known to capture the rationality of preferences (Fish-
burn 1970). This framework can deal with finite as well as
infinite preference relations, the latter represented using fi-
nite preference formulas.

Working with preferences in any framework, it is naive
to expect that they never change. Preferences can change
over time: if one likes something now, it does not mean
one will still like it in the future. Preference change
is an active topic of current research (Chomicki 2007a;
Freund 2004). It was shown in (Doyle 2004) that along with
the discovery of sources of preference change and elicitation
of the change itself, it is important to preserve the correct-
ness of preference model in the presence of change. In the
binary relation framework, a natural correctness criterion is
the preservation of SPO properties of preference relations.

Two SPO-preserving operations of preference change in
the binary relation framework have been proposed in the lit-
erature: preference revision (Chomicki 2007a) and equiva-
lence adding (Balke, Guntzer, & Siberski 2006). Informally,

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

preference revision is defined as follows. Let �0 be the ini-
tial preference relation which generally represents the user
preferences learned so far. Let �1 be a revising relation
consisting of new preferences generally corresponding to
the information learned from the user or provided by her di-
rectly. Then the revised preference relation is the least SPO
preference relation which contains a composition of �0 and
�1. The composition operators used in (Chomicki 2007a)
are union, prioritized, and Pareto composition.

The equivalence adding operation (Balke, Guntzer, &
Siberski 2006) is defined as follows. Let �0 be the user
preferences learned so far. Let eq be an equivalence relation
over objects. Then the preference relation �0 with added
equivalence eq is the least preference relation which con-
tains �0 and for which the pairs of objects eq are equiva-
lent. (Balke, Guntzer, & Siberski 2006) discusses several
definitions of equivalence.

The two operations above assume that changing prefer-
ences can be done only by adding new preference or equiv-
alence information. However, these are not the only ways
people change their preferences in real life. For instance, it
is common to discard some preferences one used to hold if
the reason for holding those preferences is no longer valid.
That is, given the initial preference relation � and a sub-
set CON of the initial preference relation, we want the new
preference relation not to contain the relation CON . None
of the operations above allow this kind of change.

Example 1 Assume that Mary wants to buy a car and she
prefers newer cars. Such a preference can be represented as
the relation �1 defined by the following formula

o1 �1 o2 ≡ o1.y > o2.y

where > denotes the standard ordering of rational numbers,
and the attribute y defines the year when cars are made.

The information about all cars which are in stock now is
shown in the table below:

id make (m) year (y) price (p)
t1 vw 2007 15000
t2 bmw 2007 20000
t3 kia 2006 15000
t4 kia 2007 12000

Then the set of the most preferred cars according to �1 is S1 =
{t1, t2, t4}.

Assume that having examined the set S1, Mary decides to re-
vise her preferences: among the cars made in the same year, she
prefers cheaper ones (this is prioritized composition). So the new
preference is represented as �2:
o1 �2 o2 ≡ o1.y > o2.y ∨ o1.y = o2.y ∧ o1.p < o2.p

and the set of the best cars according to �2 is S2 = {t4}.
Assume that having observed the set S2, Mary understands that

it is too small. She decides that the car t1 is not really worse
than t4. She generalizes that by stating that the cars made in 2007
which cost 12000 are not better than the cars made in 2007 costing
15000. So t4 is not preferred to t1 any more, and thus the set of
the best cars according to the new preference relation should be
S3 = {t1, t4}.

The problem which we face here is how to represent the change
to the preference relation �2. Namely, we want to find a prefer-
ence relation obtained from �2, in which certain preferences do
not hold. A naive solution is to represent the new preference as
�3 ≡ (�2 − CON), where CON(o1, o2) ≡ o1.y = o2.y =
2007 ∧ o1.p = 12000 ∧ o2.p = 15000, i.e., CON is the prefer-
ence we want to discard. So
o1 �3 o2 ≡ (o1.y > o2.y ∨ o1.y = o2.y ∧ o1.p < o2.p)∧
¬(o1.y = o2.y = 2007 ∧ o1.p = 12000 ∧ o2.p = 15000).
However, �3 is not transitive since if we take t5 =
(bmw, 2007, 12000), t6 = (bmw, 2007, 14000), and t7 =
(bmw, 2007, 15000), then t5 �3 t6 and t6 �3 t7 but t5 6�3 t7.
So this change does not preserve SPO. Thus, to make the changed
preference relation transitive, some other preferences have to be
discarded in addition to CON . At the same time, discarding too
many preferences is not a good solution since they may be impor-
tant. So we need to discard a minimal part of �2 which contains
CON and preserves SPO of the modified preference relation.

An SPO preference relation which is minimally different from
�2 and does not contain CON is shown below:
o1 �′3 o2 ≡ (o1.y > o2.y ∨ o1.y = o2.y ∧ o1.p < o2.p)∧

¬(o1.y = o2.y = 2007 ∧ o1.p = 12000∧
o2.p > 12000 ∧ o2.p ≤ 15000)

The set of the best cars according to �′3 is S′3 = {t1, t4}. As we
can see, the relation �′3 is different from the naive solution �3 in
the sense that �′3 implies that a car made in 2007 costing 12000 is
not better than a car made in 2007 costing from 12000 to 15000.

The operation of discarding preferences, preference con-
traction, is the topic of this paper. As we showed in
Example 1, when discarding preferences, it is important not
to discard more preferences than it is necessary to preserve
SPO.

However, the preference relation �′3 shown in Example 1
is not the only possible SPO minimally different from �2

which is disjoint with CON , and there exists an infinite
number of such preference relations. Each of them discards
different sets of preferences in addition to CON . At the
same time, some preferences discarded in addition to CON
may be important for the user, so she may want to keep them
in the contracted preference relation. This observation mo-
tivates the operation of preference-protecting minimal con-
traction which we introduce in the paper. That is, in addition
to providing the preferences to be discarded, one can also
provide the preferences to be protected from removal in the
modified preference relation.

The problem we tackle in the paper is contracting prefer-
ence relations minimally while preserving the SPO proper-
ties. The main results of the paper are as follows. First, we

present necessary and sufficient conditions for the minimal
and the minimal preference-protecting contractions. Sec-
ond, we provide algorithms to compute such contractions.
Finally, we show how to optimize preference query evalua-
tion in the presence of contraction.

Basic Notions
The preference relation framework we use in the paper is
based on (Chomicki 2003).

Let U be a universe of objects each of each having a fixed
set of attributes A = {A1, . . . , Am}. Let each attribute
Ai be associated with a domain Di. We consider here two
kinds of infinite domains: C (uninterpreted constants) and
Q (rational numbers).

Binary relationsR ⊆ U×U considered in the paper are fi-
nite or infinite. Finite binary relations are represented as sets
of pairs of objects. The infinite binary relations we consider
here are finitely representable as formulas. Given a binary
relation R, its formula representation is denoted FR.

We consider two kinds of atomic formulas here:
• equality constraints: o1.Ai = o2.Ai, o1.Ai 6= o2.Ai,
o1.Ai = c, or o1.Ai 6= c, where o1, o2 are object vari-
ables, Ai is a C -attribute, and c is an uninterpreted con-
stant;

• rational-order constraints: o1.Aiθo2.Ai or o1.Aiθc,
where θ ∈ {=, 6=, <,>,≤,≥}, o1, o2 are object vari-
ables, Ai is a Q -attribute, and c is a rational number.
An example of a relation represented using rational-order

constraints is �2 from Example 1.

Binary relations are commonly represented as directed
graphs.
Definition 1 Given a binary relation R ⊆ U × U and two
objects x and y such that xRy (xy ∈ R), xy is an R-edge
from x to y. Similarly, we define a finite R-path from x to y
and an infinite R-path from x. The length of a finite R-path
is the number of R-edges in the path.

Definition 2 A binary relation � ⊂ U × U is a preference
relation, if it is a strict partial order (SPO) relation, i.e.,
transitive and irreflexive. The formula representation F� of
� is called a preference formula.

An element of a preference relation is called a prefer-
ence. We use the symbol � with subscripts to refer to
preference relations. We write x � y as a shorthand for
(x � y ∨ x = y).

Preference contraction
We remind that preference contraction is an operation of dis-
carding preferences. The key notion of preference contrac-
tion is the base contractor relation which is the set of pairs
of objects such that in each pair the first object should not
be preferred to the second object. We require the base con-
tractor relation to be a subset of the preference relation to
be contracted. Apart from that, we do not impose any other
restrictions on base contractor relations (e.g., they can be
finite of infinite) unless stated otherwise. Throughout the
paper, all base contractor relations are denoted by CON .

Definition 3 A binary relation P− is a full contractor of a
preference relation � by CON if CON ⊆ P− ⊆�, and
(� − P−) is a preference relation (i.e., an SPO). The rela-
tion (� − P−) is called the contracted relation.

A relation P ∗ is a minimal full contractor of � by CON
if P ∗ is a full contractor of � by CON , and there is no
other full contractor P ′ of � by CON s.t. P ′ ⊂ P ∗.

A preference relation is minimally contracted if it is con-
tracted by a minimal full contractor.

The notion of minimal full contractor narrows the set of
full contractors. However, as we illustrate in Example 2,
minimal full contractor is generally not unique for given
preference and base contractor relations. In fact, the number
of minimal full contractors for infinite preference relations
can be infinite. This differs from minimal preference revi-
sion (Chomicki 2007a) which is uniquely defined for given
preference and revising relations.

Figure 1: Preference � .

Example 2 Take the preference relation � as shown in Fig-
ure 1 as the set of all edges, and the base contractor rela-
tion CON = {uv}. Then there are three possible mini-
mal full contractors of � by CON : P−1 = {ux, uy, uv},
P−2 = {yv, xv, uv}, and P3 = {ux, yv, uv}.

Contraction conditions
Definition 4 Given a base contractor relation CON of a
preference relation �, a �-path from x to y is a CON -
detour if xy ∈ CON .

First, let us consider the problem of finding any full con-
tractor, not necessary minimal. As we showed in Example 1,
the naive solution of computing the set difference of � and
CON does not preserve SPO. We formulate below a nec-
essary and sufficient condition for a subset of a preference
relation to be its full contractor.

Lemma 1 Given a preference relation (i.e., an SPO) � and
a relation P− ⊆�, (� − P−) is a preference relation
(i.e., an SPO) iff for every xy ∈ P−, (� − P−) contains
no paths from x to y.

Now let us consider minimal full contractors. For in-
stance, take the minimal full contractor from Example 2.
Note that adding any edge from a minimal full contractor
to the contracted relation creates a CON -detour in the con-
tracted relation. However, having CON -detours in the con-
tracted relation violates its transitivity by Lemma 1. This
property of minimal full contractors is formally stated in
Theorem 1.

Theorem 1 Let P− be a full contractor of � by CON .
Then P− is a minimal full contractor of � by CON iff for
every xy ∈ P−, there is a CON -detour T in � which con-
tains the edge xy and no other edge in T is in P−.

Or, in other words, for any edge in P−, there exists at
least one CON -detour which is disconnected only by that
edge.

In fact, the condition from Theorem 1 can be stated in
terms of paths of length three due to the transitivity of �.
Corollary 1 A full contractor P− of � byCON is minimal
iff the formula
∀x, y(FP−(x, y)→ F�(x, y) ∧ ∃u, v(FCON (u, v)∧

(F�(u, x) ∨ u = x) ∧ (F�(y, v) ∨ y = v)∧
¬FP−(u, x) ∧ ¬FP−(y, v)))

holds.

Thus, in the infinite case of �, checking minimality of a
full contractor can be done by performing quantifier elim-
ination on the above formula. To check minimality in the
finite case, one has to construct a relational algebra expres-
sion which corresponds to the negation of the formula above;
evaluating it over the finite relations �, CON , and P−; and
checking if the corresponding result set is empty.

Construction of minimal full contractor
In the algorithm computing a minimal full contractor intro-
duced in this section, we use the following idea. Take Exam-
ple 2 and the set P−1 . That set was constructed as follows:
we took the CON -edge uv and put in P−1 all the edges
which start some path from u to v. For the preference re-
lation � from Example 2, P−1 turned out to be a minimal
full contractor.

Generally, if CON contains more than one edge, the set
consisting of all edges starting CON -detours is a full con-
tractor by CON .
Lemma 2 Let � be a preference relation and CON be a
base contractor relation of �. Then

P− := { xy | ∃xv ∈ CON . x � y ∧ y � v}

is a full contractor of � by CON .

However, in the next example we show that such a full
contractor is not always minimal.

(a) Preference � (b) � −P−. (c) Minimally con-
tracted �.

Figure 2: Preference contraction

Example 3 Take the preference relation � as shown in Fig-
ure 2(a) as the set of all edges, and the base contractor re-
lation CON shown as the dashed edges.

Let P− be defined as in Lemma 2. Then (� − P−) is
shown in Figure 2(b) by the solid edges. P− is not mini-
mal because P− − {x1x2} is also a full contractor of � by
CON . In fact, P−−{x1x2} is a minimal full contractor of
� by CON .

As we can see, having the edge x1x2 in P− is not neces-
sary. First, it is not a CON -edge. Second, the CON -detour
x1 � x2 � x4 is already disconnected by x2x4 ∈ P−.

As we show in Example 3, a minimal full contractor can
be constructed by adding to it only the edges which start
someCON -detour if the detour is not already disconnected.
We follow this idea in Algorithm 1. The algorithm returns a
minimal full contractor by a base contractorCON under the
condition that CON is a k-layer relation defined as follows.
Definition 5 The layer index of an edge xy ∈ CON is the
maximum length of a �-path started by y and consisting
of the end nodes of CON -edges. A layer is the set of all
CON -edges with the same layer index.

Then CON is a k-layer relation if
maxxy∈CON (layer index of xy) ≤ k

We need the k-layer property in the algorithm to partition
CON into layers and then process the layers one by one.
Example 4 Let a preference relation � be defined as
o1 � o2 ≡ o1.p < o2.p, where p is a Q -attribute.

Let also the base contractor relations CON1 and CON2

be defined as
CON1(o1, o2) ≡ o1.p < 1 ∧ (o2.p = 2 ∨ o2.p = 3),
CON2(o1, o2) ≡ o1.p < 1 ∧ o2.p ≥ 2.

Then CON1 is a k-layer relation since there exists only one
chain o1 � o2 of the end nodes of CON1, where o1.p = 2
and o2.p = 3. The length of this chain is 1.

The relation CON2 is not k-layer since all �-paths
started by objects with the value of p equal to 2 are infinite.

Algorithm 1 constructs a full contractor P− of CON by
picking the layers of CON in the ascending order of their
layer index. For each layer, we add to P− a minimal set of
�-edges which contract � by the CON -edges of that layer.
Theorem 2 For a k-layer base contractor relation CON ,
Algorithm 1 returns a minimal full contractor of � byCON
and halts in k + 1 iterations.
Algorithm 1 minContr(�, CON)

1: i = −1, P−−1 = ∅, C−1 = CON
2: repeat
3: i := i + 1;
4: {Find the dest. nodes of the i-th layer CON -edges}

Li := { y | ∃x(xy ∈ Ci−1 ∧ ¬∃uv ∈ Ci−1.y � v)}
5: {Find the edges contracting the i-th layer of CON}

Ei := {xy | ∃v ∈ Li(xv ∈ CON ∧ x � y ∧
y � v ∧ yv 6∈ P−i−1 ∧ yv 6∈ CON)}

6: P−i := P−i−1 ∪ Ei {Add these edges to P−i−1}
7: Ci := Ci−1 − Ei

8: until Ci = ∅
9: return P−i

Example 5 Let a preference relation � be defined by the
solid edges in Figure 3(a). The transitive edges are omitted
for clarity. Let a base contractor CON be defined by the
dashed edges.

Then the value of C−1 is set to {x1x4, x2x5}. The result
of applying the first step of the algorithm is shown in Figure
3(b). Namely, L0 = {x5}, P−0 = {x2x3, x2x4, x2x5}, and
C0 = {x1x4}. At the second iteration (Figure 3(c)), L1 =
{x4}, P−1 = P−0 ∪ {x1x3, x1x4}, and C1 = ∅. After that,
the algoritm returns P−1 since C1 = ∅.

(a) Preference � (b) � after Step 1 (c) � after Step 2

Figure 3: Preference contraction

We note that the k-layer base contractor relations are
not necessary finite. For instance, the relations CON in
Example 1 and CON1 in Example 4 are infinite. We be-
lieve that the k-layer restriction is not too severe because in
many cases CON is provided as a finite set of object pairs.
Such relations are k-layer by definition.

The k-layer property of CON is crucial for the algorithm
since it guarantees its termination. If CON is not a k-layer
relation, then the algorithm is incomplete: it misses some
infinite descending paths, i.e., returns a minimal full con-
tractor by a subset of CON , or fails to terminate.

An important property of Algorithm 1 is that it works for
finite as well as finitely representable infinite preference re-
lations. Our implementation for finite relations (Mindolin &
Chomicki 2008) requires time O(|CON |2· |�| · log|�|).
In the case of finitely representable preference relations, the
sets Li, Ei, P−i , and Ci have to be replaced with the corre-
sponding formulas FLi

, FEi
, FP−

i
, and FCi

; all the set op-
erations have to be replaced with the corresponding boolean
connectives; and quantifier elimination should be used to
compute FLi

and FEi
.

We also note that any full contractor P− generated by
Algorithm 1 has the property that every edge in P− starts a
CON -detour in �. We call such full contractors prefix full
contractors.

Preference-protecting contraction
Generally, it is not always the case that all minimal full con-
tractors are equivalent from the point of view of users. For
instance, a full contractor may discard some preferences (in
addition to CON) which the user does not want to discard.
Thus, in addition to specifying a base contractor CON , a
subset P+ of the original preference relation to be protected
in the contracted preference relation may also be specified.
Such a relation is complementary w.r.t. the base contractor:
the relationCON defines the preferences to discard whereas
the relation P+ defines the preferences to protect.

Such a situation often arises in real life. For instance,
some preferences P+ may be more important than others,
so P+ should hold after contraction. Moreover, in many
iterative preference modification frameworks, P+ is the set
of the recently introduced preferences meaning that the old
preferences are less relevant and thus may be dropped.
Definition 6 Let P+ ⊆�. Then P ∗ is a minimal full con-
tractor of � by CON that protects P+ if 1) P ∗ is a minimal
full contractor of � by CON , and 2) P ∗ ∩ P+ = ∅.

Contraction conditions
Given any full contractor P− of � by CON , by Lemma 1,
P− must contain at least one edge from every CON -detour.

Thus, if P+ contains a whole CON -detour, protecting P+

while contracting � by CON is not possible.
Theorem 3 LetCON be a k-layer base contractor relation,
and P+ ⊂�. There exists a minimal full contractor of � by
CON that protects P+ iff P+

TC ∩ CON = ∅, where P+
TC is

the transitive closure of P+.

Minimal preference-protecting full contractor
A naive way of computing a minimal preference-protecting
full contractor is to find a minimal full contractor P− of
(� − P+) and then add P+ to P−. However, (� − P+)
is not an SPO in general, thus preserving SPO in (P−∪P+)
becomes problematic.

The algorithm we propose here is a reduction to the mini-
mal full contractor algorithm shown in the previous section.
First, we find a base contractor CON ′ such that contracting
� by CON ′ is equivalent to contracting � by CON with
protected P+. After that, we use Algorithm 1 to contract �
by CON ′.

The intuition beyond the algorithm is as follows. Take any
minimal prefix full contractor P− of � byCON . The prefix
property implies that if P+-edges do not startCON -detours
in �, then P− ∩ P+ = ∅ and thus P− is a minimal full
contractor which protects P+. If P+ contains edges starting
CON -detours, then any P+-protecting full contractor has
to contain the set Q defined in the next proposition.
Proposition 1 Given P+ ⊂�, every full contractor of �
by CON protecting P+ contains the set Q
Q = {xy | ∃u : u � x � y ∧ uy ∈ CON ∧ ux ∈ P+}

The reasoning beyond Proposition 1 is that if we want to
discard a preference uy but protect an edge ux starting its
two-edge detour, then we have no choice but discarding the
edge xy ending that detour. Otherwise, the transitivity of the
contracted preference relation is violated.

We show further that if P+ is transitive and P− is a min-
imal prefix full contractor of � by CON ∪ Q, then P−

protects P+. Finally, we show that such P− is also minimal
w.r.t. not only CON ∪Q but also CON .

Algorithm 2 minContrProt(�, CON , P+)
Require: P+ is transitive

1: Q = {xy | ∃u : u � x � y ∧ uy ∈ CON ∧ ux ∈ P+}
2: CON ′ = CON ∪Q
3: P− = minContr(�, CON ′)
4: return P−

Theorem 4 If CON is a k-layer base contractor, P+ is
transitive, and P+ ∩ CON = ∅, then Algorithm 2 termi-
nates and returns a full contractor of � by CON which 1)
is minimal w.r.t. CON , and 2) protects P+.

Note that we use the function minContr in Algorithm
2 because CON ′ is a k-layer relation. It is justified by the
fact that CON is a k-layer relation and the set of the end
nodes of CON ′ edges coincides with the corresponding set
for CON by the construction of Q.

As in the case of Algorithm 1, Algorithm 2 can be used to
find full contractors of finite and finitely representable pref-
erence relations.

Preference query evaluation
Dealing with preferences, the two common tasks are
1) given two objects, find the more preferred one, and 2) find
the most preferred objects in a set. The former problem is
solved easily given the preference relation. To solve the lat-
ter problem, the winnow operator is proposed in (Chomicki
2003). The winnow picks from a given set of objects the
most preferred objects according to a given preference rela-
tion. A number of optimization methods to evaluate queries
involving winnow have been introduced (Chomicki 2007b;
Hafenrichter & Kießling 2005).

Definition 7 Let U be a universe of objects each of each
having the set of attributesA. Let � be a preference relation
over U . Then the winnow operator is written as w�(U), and
for every finite subset r of U:

w�(r) = {t ∈ r | ¬∃t′ ∈ r.t′ � t}
In this section, we show some new techniques which can

be used to optimize evaluation of the winnow operator under
contracted preferences. The results below are represented in
terms of the standard relational algebra operator selection
denoted as σF (r). It picks from the object set r all the ob-
jects for which the condition F holds. The condition F is a
boolean expression involving comparisons between attribute
names and constants.

In user-guided preference modification frameworks
(Chomicki 2007a; Balke, Guntzer, & Siberski 2006), it is as-
sumed that users alter their preferences after examining sets
of the most preferred objects returned by winnow. Thus,
if preference contraction is incorporated into such frame-
works, there is a need to compute winnow under contracted
preference relations. Here we show how the evaluation of
winnow can be optimized in such cases.

Let � be a preference relation, CON be a base con-
tractor of �, P− be a full contractor of � by CON , and
�′= (� −P−). Denote the set of the starting and the end-
ing objects of R-edges for a binary relation R as S(R) and
E(R) correspondingly.

S(R) = {x | ∃y . xy ∈ R}
E(R) = {y | ∃x . xy ∈ R}

Let us also define the set M(CON) of the objects which
participate in CON -detours in �
M(CON) = {y | ∃x, z . x � y ∧ xz ∈ CON ∧ y � z}.

Assume we also know quantifier-free formulas FS(P−),
FE(P−), FM(CON), and FS(CON) representing these sets
for P− and CON . Then the following holds.

Proposition 2

1. w�(r) ⊆ w�′(r)
2. If σFS(P−)

(w�(r)) = ∅, then w�(r) = w�′(r).

3. w�′(r) = w�′(w�(r) ∪ σFE(P−)
(r))

4. If P− is a minimal full contractor, then
w�′(r) = w�′(w�(r) ∪ σFM(CON)(r))

5. If P− is a prefix full contractor, then
σFS(P−)

(r) = σFS(CON)(r)

According to Proposition 2, the result of winnow under
a contracted preference is always a superset of the result of
winnow under the original preference. This is caused by the
fact that if we reduce the set of preference edges, the set of
undominated objects can only grow.

In the second case, the contraction does not change the
result of winnow. Running the winnow query is generally
expensive, thus one can first evaluate the specified selection
query over the computed result of the original winnow. If
the result is empty, then computing the winnow under the
contracted preference relation is not needed. The reasoning
here is as follows. Take the preference relation �. Then for
any dominated object o ∈ r there is an object o′ ∈ w�(r)
dominating o. However, if o is in w�′(r) then o′ does not
dominate o in �′. Thus some �-edges going from w�(r)
are lost in �′.

The third statement of the proposition is useful when the
set r is large and thus running w�′ over the whole set r is
expensive. Instead, one can compute σFE(P−)

(r) and then
evaluate w�′ over (σFE(P−)

(r) ∪ w�(r)) (assuming that
w�(r) is already known). However, if the size of the for-
mula FE(P−) is too large, then running σFE(P−)

(r) may
be also expensive. In this case, one can use a superset of
σFE(P−)

(r), for example σFM(CON)(r).
It may be the case that the size of FS(P−) is large and

thus evaluation of σFS(P−)
(r) is expensive. Then, if P− is a

prefix contraction, one can use FS(CON) instead of FS(P−).

Related and future work
A general framework of preference change is proposed in
(Hansson 1995). Preference change is considered there from
the point of view of belief change theory. In addition to con-
traction, it introduces the operators of revision, domain ex-
pansion and reduction. Preference contraction is defined via
preference revision. Similarly to our definition, the prefer-
ence contraction from (Hansson 1995) preserves rationality
postulates (e.g., transitivity) and performs minimal change
of preferences. However, due to the generality of the frame-
work, the postulate set and the measure of minimality are not
fixed. (Hansson 1995) defines contraction only for finite do-
mains and does not provide any methods of computing con-
tractions. There is also no notion of preference-protecting
contraction.

(Dong et al. 1999) proposes algorithms of incremental
maintenance of the transitive closure of graphs using rela-
tional algebra. The graph modification operations are edge
insertion and deletion. Transitive graphs in (Dong et al.
1999) consist of two kinds of edges: the edges of the original
graph and the edges induced by its transitive closure. When
an edge xy of the original graph is contracted, the algorithm
also deletes all the transitive edges uv such that all the paths
from u to v in the original graph go through xy. As a result,
such contraction is not minimal according to our definition
of minimality. Moreover, (Dong et al. 1999) considers only
finite graphs, whereas our algorithms can work with infinite
relations.

Other preference modification operations are proposed in

(Chomicki 2007a) and (Balke, Guntzer, & Siberski 2006).
However, they do not address preference contraction.

In this paper, we consider only one kind of contraction
constraints - preference protection. However, other con-
straints are also feasible. For instance, one could require
that if a contraction protects a preference relation P+

1 then it
should protect P+

2 . Another direction is to design contrac-
tion algorithms which are not limited to k-layer base con-
tractor. Since other preference models (e.g., CP-nets) can be
represented in the binary relation framework, an interesting
direction is to apply our results in those frameworks.

Acknowledgments
The comments of the anonymous reviewers are greatly
acknowledged. Research supported by NSF grant IIS-
0307434.

References
Balke, W.-T.; Guntzer, U.; and Siberski, W. 2006. Exploit-
ing indifference for customization of partial order skylines.
In Proc. IDEAS ’06, 80–88.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004. CP-nets: a tool for representing and
reasoning with conditional ceteris paribus preference state-
ments. Journal of Artificial Intelligence Research (JAIR)
21:135–191.
Chomicki, J. 2003. Preference formulas in relational
queries. ACM Trans. Database Syst. 28(4):427–466.
Chomicki, J. 2007a. Database querying under changing
preferences. Annals of Mathematics and Artificial Intelli-
gence 50(1-2):79–109.
Chomicki, J. 2007b. Semantic optimization techniques for
preference queries. Inf.Syst.(IS) 32(5):670–684.
Dong, G.; Libkin, L.; Su, J.; and L.Wong. 1999. Maintain-
ing the transitive closure of graphs in SQL. Int. Journal of
Information Technology 5:46–78.
Doyle, J. 2004. Prospects for preferences. Computational
Intelligence 20(2):111–136.
Fishburn, P. C. 1970. Utility theory for decision making.
Wiley and Sons.
Freund, M. 2004. On the revision of preferences and ratio-
nal inference processes. Artif. Intell. 152(1):105–137.
Hafenrichter, B., and Kießling, W. 2005. Optimization of
relational preference queries. In ADC ’05: Proceedings of
the 16th Australasian database conference, 175–184.
Hansson, S. O., and Grüne-Yanoff, T. 2006. Preferences. In
Zalta, E. N., ed., The Stanford Encyclopedia of Philosophy.
http://plato.stanford.edu/archives/win2006/entries/preferences/.
Hansson, S. O. 1995. Changes in preference. Theory and
Decision 38(1):1–28.
Mindolin, D., and Chomicki, J. 2008. Minimal contrac-
tion of preference relations. Technical report 2008-05, CSE
Dept., University at Buffalo, SUNY.

