Semantics and Evaluation of Top-k Queries in Probabilistic Databases ${ }^{\star}$

Xi Zhang and Jan Chomicki
Department of Computer Science and Engineering
University at Buffalo, SUNY, U.S.A.
\{xizhang, chomicki\}@cse.buffalo.edu

Abstract

We study here fundamental issues involved in top- k query evaluation in probabilistic databases. We consider simple probabilistic databases in which probabilities are associated with individual tuples, and general probabilistic databases in which, additionally, exclusivity relationships between tuples can be represented. In contrast to other recent research in this area, we do not limit ourselves to injective scoring functions. We formulate three intuitive postulates that the semantics of top- k queries in probabilistic databases should satisfy, and introduce a new semantics, Global-Top k, that satisfies those postulates to a large degree. We also show how to evaluate queries under the Global-Top k semantics. For simple databases we design dynamic-programming based algorithms, and for general databases we show polynomial-time reductions to the simple cases. For example, we demonstrate that for a fixed k the time complexity of top- k query evaluation is as low as linear, under the assumption that probabilistic databases are simple and scoring functions are injective.

1 Introduction

The study of incompleteness and uncertainty in databases has long been an interest of the database community [2-8]. Recently, this interest has been rekindled by an increasing demand for managing rich data, often incomplete and uncertain, emerging from scientific data management, sensor data management, data cleaning, information extraction etc. [9] focuses on query evaluation in traditional probabilistic databases; ULDB [10] supports uncertain data and data lineage in Trio [11]; MayBMS [12] uses the vertical World-Set representation of uncertain data [13]. The standard semantics adopted in most works is the possible worlds semantics [2, 6, 7, 10, 9, 13].

On the other hand, since the seminal papers of Fagin [14, 15], the top- k problem has been extensively studied in multimedia databases [16], middleware systems [17], data cleaning [18], core technology in relational databases [19, 20] etc. In the top- k problem, each tuple is given a score, and users are interested in k tuples with the highest scores.

More recently, the top- k problem has been studied in probabilistic databases [21, 22]. Those papers, however, are solving two essentially different top- k problems. Soliman et al. [21] assumes the existence of a scoring function to rank tuples. Probabilities

[^0]provide information on how likely tuples will appear in the database. In contrast, in [22], the ranking criterion for top- k is the probability associated with each query answer. In many applications, it is necessary to deal with tuple probabilities and scores at the same time. Thus, in this paper, we use the model of [21]. Even in this model, different semantics for top- k queries are possible, so a part of the challenge is to define a reasonable semantics.

As a motivating example, let us consider the following graduate admission example.
Example 1. A graduate admission committee need to select two winners of a fellowship. They narrow the candidates down to the following short list:

Name	Overall Score	Prob. of Coming
Aidan	0.65	0.3
Bob	0.55	0.9
Chris	0.45	0.4

where the overall score is the normalized score of each candidate based on their qualifications, and the probability of acceptance is derived from historical statistics on candidates with similar qualifications and background.

The committee want to make offers to the best two candidates who will take the offer. This decision problem can be formulated as a top- k query over the above probabilistic relation, where $k=2$.

In Example 1, each tuple is associated with an event, which is that the candidate will accept the offer. The probability of the event is shown next to each tuple. In this example, all the events of tuples are independent, and tuples are therefore said to be independent. Such a relation is said to be simple. In contrast, Example 2 illustrates a more general case.

Example 2. In a sensor network deployed in a habitat, each sensor reading comes with a confidence value Prob, which is the probability that the reading is valid. The following table shows the temperature sensor readings at a given sampling time. These data are from two sensors, Sensor 1 and Sensor 2, which correspond to two parts of the relation, marked C_{1} and C_{2} respectively. Each sensor has only one true reading at a given time, therefore tuples from the same part of the relation correspond to exclusive events.

C_{1}	Temp. ${ }^{\circ} \mathrm{F}$ (Score)	Prob
	22	0.6
	10	0.4
C_{2}	25	0.1
	15	0.6

Our question is:
"What's the temperature of the warmest spot?"
The question can be formulated as a top- k query, where $k=1$, over a probabilistic relation containing the above data. The scoring function is the temperature. However, we must take into consideration that the tuples in each part $C_{i}, i=1,2$, are exclusive.

Our contributions in this paper are the following:

- We formulate three intuitive semantic postulates and use them to analyze and compare different top- k semantics in probabilistic databases (Section 3.1);
- We propose a new semantics for top- k queries in probabilistic databases, called Global-Top k, which satisfies the above postulates to a large degree (Section 3.2);
- We exhibit efficient algorithms for evaluating top- k queries under the Global-Top k semantics in simple probabilistic databases (Section 4.1) and general probabilistic databases, under injective scoring functions (Section 4.3).
- We generalize Global-Top k semantics to general scoring functions, where ties are allowed, by introducing the notion of allocation policy. We propose dynamic programming based algorithms for query evaluation under the Equal allocation policy (Section 5).

2 Background

2.1 Probabilistic Relations

To simplify the discussion in this paper, we assume that a probabilistic database contains a single probabilistic relation. We refer to a traditional database relation as a deterministic relation. A deterministic relation R is a set of tuples. A partition \mathcal{C} of R is a collection of non-empty subsets of R such that every tuple belongs to one and only one of the subsets. That is, $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ such that $C_{1} \cup C_{2} \cup \ldots \cup C_{m}=R$ and $C_{i} \cap C_{j}=\emptyset, 1 \leq i \neq j \leq m$. Each subset $C_{i}, i=1,2, \ldots, m$ is a part of the partition \mathcal{C}. A probabilistic relation R^{p} has three components, a support (deterministic) relation R, a probability function p and a partition \mathcal{C} of the support relation R. The probability function p maps every tuple in R to a probability value in $(0,1]$. The partition \mathcal{C} divides R into subsets such that the tuples within each subset are exclusive and therefore their probabilities sum up to at most 1 . In the graphical presentation of R, we use horizontal lines to separate tuples from different parts.

Definition 1 (Probabilistic Relation). A probabilistic relation R^{p} is a triplet $\langle R, p, \mathcal{C}\rangle$, where R is a support deterministic relation, p is a probability function $p: R \mapsto(0,1]$ and \mathcal{C} is a partition of R such that $\forall C_{i} \in \mathcal{C}, \sum_{t \in C_{i}} p(t) \leq 1$.

In addition, we make the assumption that tuples from different parts of of \mathcal{C} are independent, and tuples within the same part are exclusive. Definition 1 is equivalent to the model used in Soliman et al. [21] with exclusive tuple generation rules. Ré et al. [22] proposes a more general model, however only a restricted model equivalent to Definition 1 is used in top- k query evaluation.

Example 2 shows an example of a probabilistic relation whose partition has two parts. Generally, each part corresponds to a real world entity, in this case, a sensor. Since there is only one true state of an entity, tuples from the same part are exclusive. Moreover, the probabilities of all possible states of an entity sum up to at most 1 . In Example 2, the sum of probabilities of tuples from Sensor 1 is 1, while that from Sensor 2 is 0.7 . This can happen for various reasons. In the above example, we might encounter a physical difficulty in collecting the sensor data, and end up with partial data.

Definition 2 (Simple Probabilistic Relation). A probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$ is simple iff the partition \mathcal{C} contains only singleton sets.

The probabilistic relation in Example 1 is simple (individual parts not illustrated). Note that in this case, $|R|=|\mathcal{C}|$.

We adopt the well-known possible worlds semantics for probabilistic relations [2, $6,7,10,9,13]$.

Definition 3 (Possible World). Given a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$, a deterministic relation W is a possible world of R^{p} iff

1. W is a subset of the support relation, i.e. $W \subseteq R$;
2. For every part C_{i} in the partition \mathcal{C}, at most one tuple from C_{i} is in W, i.e. $\forall C_{i} \in$ $\mathcal{C},\left|C_{i} \cap W\right| \leq 1$;
3. The probability of W (defined by Equation 1) is positive, i.e. $\operatorname{Pr}(W)>0$.

$$
\begin{equation*}
\operatorname{Pr}(W)=\prod_{t \in W} p(t) \prod_{C_{i} \in \mathcal{C}^{\prime}}\left(1-\sum_{t \in C_{i}} p(t)\right) \tag{1}
\end{equation*}
$$

where $\mathcal{C}^{\prime}=\left\{C_{i} \in \mathcal{C} \mid W \cap C_{i}=\emptyset\right\}$.
Denote by $p w d\left(R^{p}\right)$ the set of all possible worlds of R^{p}.

2.2 Total order v.s. Weak order

A binary relation \succ is

- irreflexive: $\forall x . x \nsucc x$,
- asymmetric: $\forall x, y . x \succ y \Rightarrow y \nsucc x$,
- transitive: $\forall x, y, z .(x \succ y \wedge y \succ z) \Rightarrow x \succ z$,
- negatively transitive: $\forall x, y, z .(x \nsucc y \wedge y \nsucc z) \Rightarrow x \nsucc z$,
- connected: $\forall x, y . x \succ y \vee y \succ x \vee x=y$.

A strict partial order is an irreflexive, transitive (and thus symmetric) binary relation. A weak order is a negatively transitive strict partial order. A total order is a connected strict partial order.

2.3 Scoring function

A scoring function over a deterministic relation R is a function from R to real numbers, i.e. $s: R \mapsto \mathbb{R}$. The function s induces a preference relation \succ_{s} and an indifference relation \sim_{s} on R. For any two distinct tuples t_{i} and t_{j} from R,

$$
\begin{aligned}
& t_{i} \succ_{s} t_{j} \text { iff } s\left(t_{i}\right)>s\left(t_{j}\right) \\
& t_{i} \sim_{s} t_{j} \text { iff } s\left(t_{i}\right)=s\left(t_{j}\right)
\end{aligned}
$$

A scoring function over a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$ is a scoring function s over its support relation R. In general, a scoring function establishes a weak order over R, where tuples from R can tie in score. However, when the scoring function s is injective,\succ_{s} is a total order. In such a case, no two tuples tie in score.

2.4 Top-k Queries

Definition 4 (Top- k Answer Set over Deterministic Relation). Given a deterministic relation R, a non-negative integer k and a scoring function sover R, a top- k answer in R under s is a set T of tuples such that

1. $T \subseteq R$;
s 2. If $|R|<k$, $T=R$, otherwise $|T|=k$;
2. $\forall t \in T \forall t^{\prime} \in R-T$. $t \succ_{s} t^{\prime}$ or $t \sim_{s} t^{\prime}$.

According to Definition 4, given k and s, there can be more than one top- k answer set in a deterministic relation R. The evaluation of a top- k query over R returns one of them nondeterministically, say S. However, if the scoring function s is injective, S is unique, denoted by $t o p_{k, s}(R)$.

3 Semantics of Top-k Queries

In the following two sections, we restrict our discussion to injective scoring functions. We will discuss the generalization to general scoring functions in Section 5.

3.1 Semantic Postulates for Top- \boldsymbol{k} Answers

Probability opens the gate for various possible semantics for top- k queries. As the semantics of a probabilistic relation involves a set of worlds, it is to be expected that there may be more than one top- k answer, even under an injective scoring function. The answer to a top- k query over a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$ should clearly be a set of tuples from its support relation R. We formulate below three desirable postulates, which serve as a benchmark to compare different semantics.

In the following discussion, denote by $A n s_{k, s}\left(R^{p}\right)$ the collection of all top- k answer sets of R^{p} under the function s.

Postulates

- Static Postulates

1. Exact k : When R^{p} is sufficiently large $(|\mathcal{C}| \geq k)$, the cardinality of every top- k set S is exactly k;

$$
|\mathcal{C}| \geq k \Rightarrow\left[\forall S \in A n s_{k, s}\left(R^{p}\right) .|S|=k\right] .
$$

2. Faithfulness: For every top- k set S and any two tuples $t_{1}, t_{2} \in R$, if both the score and the probability of t_{1} are higher than those of t_{2} and $t_{2} \in S$, then $t_{1} \in S$;

$$
\forall S \in A n s_{k, s}\left(R^{p}\right) \forall t_{1}, t_{2} \in R . s\left(t_{1}\right)>s\left(t_{2}\right) \wedge p\left(t_{1}\right)>p\left(t_{2}\right) \wedge t_{2} \in S \Rightarrow t_{1} \in S .
$$

- Dynamic Postulate
$\cup A n s_{k, s}\left(R^{p}\right)$ denotes the union of all top- k answer sets of $R^{p}=\langle R, p, \mathcal{C}\rangle$ under the function s. For any $t \in R$,
t is a winner iff $t \in \cup A n s_{k, s}\left(R^{p}\right)$
t is a loser iff $t \in R-\cup A n s_{k, s}\left(R^{p}\right)$

3. Stability:

- Raising the score/probability of a winner will not turn it into a loser;
(a) If a scoring function s^{\prime} is such that $s^{\prime}(t)>s(t)$ and for every $t^{\prime} \in$ $R-\{t\}, s^{\prime}(t)=s(t)$, then

$$
t \in \cup A n s_{k, s}\left(R^{p}\right) \Rightarrow t \in \cup A n s_{k, s^{\prime}}\left(R^{p}\right)
$$

(b) If a probability function p^{\prime} is such that $p^{\prime}(t)>p(t)$ and for every $t^{\prime} \in R-\{t\}, p^{\prime}(t)=p(t)$, then

$$
t \in \cup A n s_{k, s}\left(R^{p}\right) \Rightarrow t \in \cup A n s_{k, s}\left(\left(R^{p}\right)^{\prime}\right)
$$

where $\left(R^{p}\right)^{\prime}=\left\langle R, p^{\prime}, \mathcal{C}\right\rangle$.

- Lowering the score/probability of a loser will not turn it into a winner.
(a) If a scoring function s^{\prime} is such that $s^{\prime}(t)<s(t)$ and for every $t^{\prime} \in$ $R-\{t\}, s^{\prime}(t)=s(t)$, then

$$
t \in R-\cup A n s_{k, s}\left(R^{p}\right) \Rightarrow t \in R-\cup A n s_{k, s^{\prime}}\left(R^{p}\right)
$$

(b) If a probability function p^{\prime} is such that $p^{\prime}(t)<p(t)$ and for every $t^{\prime} \in R-\{t\}, p^{\prime}(t)=p(t)$, then

$$
t \in R-\cup A n s_{k, s}\left(R^{p}\right) \Rightarrow t \in R-\cup A n s_{k, s}\left(\left(R^{p}\right)^{\prime}\right)
$$

where $\left(R^{p}\right)^{\prime}=\left\langle R, p^{\prime}, \mathcal{C}\right\rangle$.
All of those postulates reflect basic intuitions about top- k answers.
Exact k expresses user expectations about the size of the result. Typically, a user issues a top- k query in order to restrict the size of the result and get a subset of cardinality k (cf. Example 1). Therefore, k is a crucial parameter specified by the user that should be complied with.

Faithfulness reflects the significance of score and probability in a static environment. It plays an important role in designing efficient query evalution algorithms. The satisfaction of Faithfulness allows the application of a set of pruning techniques based on monotonicity.

Stability reflects the significance of score and probability in a dynamic environment. In a dynamic world, it is common that user might update score/probability on-the-fly. Stability requires that the consequences of such changes should not be counterintuitive.

3.2 Global-Topk Semantics

We propose here a new top- k answer semantics in probabilistic relations, namely GlobalTop k, which satisfies the postulates formulated in Section 3.1 to a large degree:

- Global-Top k : return k highest-ranked tuples according to their probability of being in the top- k answers in possible worlds.

Considering a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$ under an injective scoring function s, any $W \in \operatorname{pwd}\left(R^{p}\right)$ has a unique top- k answer set $\operatorname{top}_{k, s}(W)$. Each tuple from the support relation R can be in the top- k answer (in the sense of Definition 4) in zero, one or more possible worlds of R^{p}. Therefore, the sum of the probabilities of those possible worlds provides a global ranking criterion.

Definition 5 (Global-Topk Probability).Assume a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$, a non-negative integer k and an injective scoring function sover R^{p}. For any tuple t in R, the Global-Topk probability of t, denoted by $P_{k, s}^{R_{s}^{p}}(t)$, is the sum of the probabilities of all possible worlds of R^{p} whose top- k answer contains t.

$$
\begin{equation*}
P_{k, s}^{R^{p}}(t)=\sum_{\substack{W \in p w d\left(R^{p}\right) \\ t \in t p_{p}, s \\ \hline}} \operatorname{Pr}(W) . \tag{2}
\end{equation*}
$$

For simplicity, we skip the superscript in $P_{k, s}^{R^{p}}(t)$, i.e. $P_{k, s}(t)$, when the context is unambiguous.

Definition 6 (Global-Topk Answer Set over Probabilistic Relation). Given a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$, a non-negative integer k and an injective scoring functions over R^{p}, a top-k answer in R^{p} under s is a set T of tuples such that

1. $T \subseteq R$;
2. If $|R|<k, T=R$, otherwise $|T|=k$;
3. $\forall t \in T, \forall t^{\prime} \in R-T, P_{k, s}(t) \geq P_{k, s}\left(t^{\prime}\right)$.

Notice the similarity between Definition 6 and Definition 4. In fact, the probabilistic version only changes the last condition, which restates the preferred relationship between two tuples by taking probability into account. This semantics preserves the nondeterministic nature of Definition 4. For example, if two tuples are of the same Global-Top k probability, and there are $k-1$ tuples with higher Global-Top k probability, Definition 4 allows one of the two tuples to be added to the top- k answer nondeterministically. Example 3 gives an example of the Global-Top k semantics.

Example 3. Consider the top-2 query in Example 1. Clearly, the scoring function here is the Overall Score function. The following table shows all the possible worlds and their probabilities. For each world, the names of the people in the top- 2 answer set of that world are underlined.

Possible World	Prob
$W_{1}=\emptyset$	0.042
$W_{2}=\{\underline{\text { Aidan }}\}$	0.018
$W_{3}=\{\underline{\text { Bob }}\}$	0.378
$W_{4}=\{\underline{\text { Chris }}\}$	0.028
$W_{5}=\{\underline{\text { Aidan }}, \underline{\text { Bob }}\}$	0.162
$W_{6}=\{\underline{\text { Aidan }}, \underline{\text { Chris }}\}$	0.012
$W_{7}=\{\underline{\text { Bob }}, \underline{\text { Cris }}\}$	0.252
$W_{8}=\{\underline{\text { Aidan }}, \underline{\text { Bob }}$, Chris $\}$	0.108

Chris is in the top-2 answer of W_{4}, W_{6}, W_{7}, so the top- 2 probability of Chris is $0.028+0.012+0.252=0.292$. Similarly, the top- 2 probability of Aidan and Bob are 0.9 and 0.3 respectively. $0.9>0.3>0.292$, therefore Global-Top k will return \{Aidan, Bob\}.

Note that top- k answer sets may be of cardinality less than k for some possible worlds. We refer to such possible worlds as small worlds. In Example 3, $W_{1 \ldots 4}$ are all small worlds.

3.3 Other Semantics

Soliman et al. [21] proposes two semantics for top- k queries in probabilistic relations.

- U-Topk: return the most probable top- k answer set that belongs to possible world(s);
- U-kRanks: for $i=1,2, \ldots, k$, return the most probable $i^{t h}$-ranked tuples across all possible worlds.

Hua et al. [23] independently proposes PT- k, a semantics based on Global-Top k probability as well. PT- k takes an additional parameter: probability threshold $p_{\tau} \in$ $(0,1]$.

- PT-k: return every tuple whose probability of being in the top- k answers in possible worlds is at least p_{τ}.

Example 4. Continuing Example 3, under U-Top k semantics, the probability of top2 answer set $\{B o b\}$ is 0.378 , and that of $\{$ Aidan, $B o b\}$ is $0.162+0.108=0.27$. Therefore, $\{B o b\}$ is more probable than $\{A i d a n, B o b\}$ under U-Topk. In fact, $\{B o b\}$ is the most probable top-2 answer set in this case, and will be returned by U-Top k.

Under U- k Ranks semantics, Aidan is in $1^{\text {st }}$ place in the top-2 answer of W_{2}, W_{5}, W_{6}, W_{8}, therefore the probability of Aidan being in $1^{\text {st }}$ place in the top-2 answers in possible worlds is $0.018+0.162+0.012+0.108=0.3$. However, Aidan is not in $2^{\text {nd }}$ place in the top-2 answer of any possible world, therefore the probability of Aidan being in $2^{\text {nd }}$ place is 0 . In fact, we can construct the following table.

	Aidan Bob Chris		
Rank 1	0.3	$\underline{0.63}$	0.028
Rank 2	0	$\underline{0.27}$	0.264

$\mathrm{U}-k$ Ranks selects the tuple with the highest probability at each rank (underlined) and takes the union of them. In this example, Bob wins at both Rank 1 and Rank 2. Thus, the top- 2 answer returned by U-kRanks is $\{B o b\}$.

PT- k returns every tuple with Global-Top k probability above the user specified threshold p_{τ}, therefore the answer depends on p_{τ}. Say $p_{\tau}=0.6$, then PT- k return $\{$ Aidan\}, as it is the only tuple with Global-Top k probability at least 0.6 .

The postulates introduced in Section 3.1 lay the ground for comparing different semantics. In Table 1, a single " \checkmark " (resp. " \times ") indicates that postulate is (resp. is not) satisfied under that semantics. " \checkmark / \times " indicates that, the postulate is satisfied by that semantics in simple probabilistic relations, but not in the general case.

Semantics	Exact k	Faithfulness	Stability
Global-Top k	\checkmark	\checkmark / \times	\checkmark
PT- k	\times	\checkmark / \times	\checkmark
U-Top k	\times	\checkmark / \times	\checkmark
U- k Ranks	\times	\times	\times

Table 1. Postulate Satisfaction for Different Semantics

For Exact k, Global-Top k is the only semantics that satisfies this postulate. Example 4 illustrates the case where U-Top k, U- k Ranks and PT- k violate this postulate. It is not satisfied by U-Topk because a small possible world with high probability could dominate other worlds. In that case, the dominating possible world might not have enough tuples. It is also violated by $\mathrm{U}-k$ Ranks because a single tuple can win at multiple ranks in U- k Ranks. In PT- k, if the threshold parameter p_{τ} is set too high, then less than k tuples will be returned (as in Example 4). As p_{τ} decreases, PT- k return more tuples. In the extreme case when p_{τ} approaches 0 , any tuple with a positive Global-Top k probability will be returned.

For Faithfulness, Global-Top k violates it when exclusion rules lead to a highly restricted distribution of possible worlds, and are combined with an unfavorable scoring function. PT- k violates Faithfulness for the same reason. U-Topk violates Faithfulness since it requires all tuples in a top- k answer set to be compatible, this postulate can be violated when a high-score/probability tuple could be dragged down arbitrarily by its compatible tuples if they are not very likely to appear. U- k Ranks violates both Faithfulness and Stability. Under U- k Ranks, instead of a set, a top- k answer is an ordered vector, where ranks are significant. A change in a tuple's probability/score might have unpredictable consequence on ranks, therefore those two postulates are not guaranteed to hold.

Faithfulness is a postulate which can lead to significant pruning in practice. Even though it is not fully satisfied by any of the four semantics, some degree of satisfaction is still desirable, as it will help us find pruning rules. For example, our optimization in Section 4.2 explores the Faithfulness of Global-Top k in simple probabilistic databases. Another example is that one of the pruning techniques in [23] explores the Faithfulness of exclusive tuples in general probabilistic databases as well.

Proofs of the results in Table 1 are in Appendix.

4 Query Evaluation under Global-Topk

4.1 Simple Probabilistic Relations

We first consider a simple probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$ under an injective scoring function s.

Proposition 1. Given a simple probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$ and an injective scoring function s over R^{p}, if $R=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ and $t_{1} \succ_{s} t_{2} \succ_{s} \ldots \succ_{s} t_{n}$, the following recursion on Global-Topk queries holds:

$$
q(k, i)=\left\{\begin{array}{lr}
0 & k=0 \tag{3}\\
p\left(t_{i}\right) & 1 \leq i \leq k \\
\left(q(k, i-1) \frac{\bar{p}\left(t_{i-1}\right)}{p\left(t_{i-1}\right)}+q(k-1, i-1)\right) p\left(t_{i}\right) & \text { otherwise }
\end{array}\right.
$$

where $q(k, i)=P_{k, s}\left(t_{i}\right)$ and $\bar{p}\left(t_{i-1}\right)=1-p\left(t_{i-1}\right)$.
Proof. See Appendix.
Notice that Equation 3 involves probabilities only, while the scores are used to determine the order of computation.

Example 5. Consider a simple probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$, where $R=\left\{t_{1}\right.$, $\left.t_{2}, t_{3}, t_{4}\right\}, p\left(t_{i}\right)=p_{i}, 1 \leq i \leq 4, \mathcal{C}=\left\{\left\{t_{1}\right\},\left\{t_{2}\right\},\left\{t_{3}\right\},\left\{t_{4}\right\}\right\}$ and an injective scoring function s such that $t_{1} \succ_{s} t_{2} \succ_{s} t_{3} \succ_{s} t_{4}$. The following table shows the Global-Top k probability of t_{i}, where $0 \leq k \leq 2$.

k	t_{1}	t_{2}	t_{3}	t_{4}
0	0	0	0	0
1	p_{1}	$\bar{p}_{1} p_{2}$	$\bar{p}_{1} \bar{p}_{2} p_{3}$	$\bar{p}_{1} \bar{p}_{2} \bar{p}_{3} p_{4}$
2	$\mathbf{p}_{\mathbf{1}}$	$\mathbf{p}_{\mathbf{2}}$	$\left(\overline{\mathbf{p}}_{\mathbf{2}}+\overline{\mathbf{p}}_{\mathbf{1}} \mathbf{p}_{\mathbf{2}}\right) \mathbf{p}_{\mathbf{3}}$	$\left(\left(\overline{\mathbf{p}}_{\mathbf{2}}+\overline{\mathbf{p}}_{\mathbf{1}} \mathbf{p}_{\mathbf{2}}\right) \overline{\mathbf{p}}_{\mathbf{3}}\right.$
				$\left.+\overline{\mathbf{p}}_{\mathbf{1}} \overline{\mathbf{p}}_{\mathbf{2}} \mathbf{p}_{\mathbf{3}}\right) \mathbf{p}_{\mathbf{4}}$

Row 2 (bold) is each t_{i} 's Global-Top2 probability. Now, if we are interested in top-2 answer in R^{p}, we only need to pick the two tuples with the highest value in Row 2.

Theorem 1 (Correctness of Algorithm 1). Given a simple probabilistic relation $R^{p}=$ $\langle R, p, \mathcal{C}\rangle$, a non-negative integer k and an injective scoring function s, Algorithm 1 correctly computes a Global-Topk answer set of R^{p} under the scoring function s.

Proof. Algorithm 1 maintains a priority queue to select the k tuples with the highest Global-Top k value. Notice that the nondeterminism is reflected in Line 6 as the algorithm for maintaining the priority queue in the presence of tying elements. As long as Line 2 in Algorithm 1 correctly computes the Global-Top k probability of each tuple in R, Algorithm 1 returns a valid Global-Top k answer set. By Proposition 1, Algorithm 2 correctly computes the Global-Top k probability of tuples in R.

Algorithm 1 is a one-pass computation on the probabilistic relation, which can be easily implemented even if secondary storage is used. The overhead is the initial sorting cost (not shown in Algorithm 1), which would be amortized by the workload of consecutive top- k queries.

Algorithm 2 takes $O(k n)$ to compute the DP table. In addition, Algorithm 1 uses a priority queue to maintain the k highest values, which takes $O(n \log k)$. Altogether, Algorithm 1 takes $O(k n)$.

4.2 Threshold Algorithm Optimization

Fagin [15] proposes Threshold Algorithm (TA) for processing top- k queries in a middleware scenario. In a middleware system, an object has m attributes. For each attribute,

```
Algorithm 1 (Ind_Topk) Evaluate Global-Topk Queries in a Simple Probabilistic Re-
lation under an Injective Scoring Function
Require: \(R^{p}=\langle R, p, \mathcal{C}\rangle, k\)
Ensure: tuples in \(R\) are sorted in the decreasing order based on the scoring function \(s\)
    Initialize a fixed cardinality \((k+1)\) priority queue \(A n s\) of \(\langle t, p r o b\rangle\) pairs, which compares
        pairs on \(p r o b\), i.e. the Global-Top \(k\) probability of \(t\);
    Calculate Global-Top \(k\) probabilities using Algorithm 2, i.e.
                                    \(q(0 \ldots k, 1 \ldots|R|)=\operatorname{Ind} \_\operatorname{Topk} \_\operatorname{Sub}\left(R^{p}, k\right) ;\)
    for \(i=1\) to \(|R|\) do
        Add \(\left\langle t_{i}, q(k, i)\right\rangle\) to \(A n s\);
        if \(|A n s|>k\) then
            remove the pair with the smallest prob value from Ans;
        end if
    end for
    return \(\left\{t_{i} \mid\left\langle t_{i}, q(k, i)\right\rangle \in A n s\right\} ;\)
```

```
Algorithm 2 (Ind_Topk_Sub) Compute Global-Top \(k\) Probabilities in a Simple Proba-
bilistic Relation under an Injective Scoring Function
Require: \(R^{p}=\langle R, p, \mathcal{C}\rangle, k\)
Ensure: tuples in \(R\) are sorted in the decreasing order based on \(s\)
    \(q(0,1)=0\);
    for \(k^{\prime}=1\) to \(k\) do
        \(q\left(k^{\prime}, 1\right)=p\left(t_{1}\right) ;\)
    end for
    for \(i=2\) to \(|R|\) do
        for \(k^{\prime}=0\) to \(k\) do
            if \(k^{\prime}=0\) then
                \(q\left(k^{\prime}, i\right)=0 ;\)
            else
                \(q\left(k^{\prime}, i\right)=p\left(t_{i}\right)\left(q\left(k^{\prime}, i-1\right) \frac{\bar{p}\left(t_{i-1}\right)}{p\left(t_{i-1}\right)}+q\left(k^{\prime}-1, i-1\right)\right) ;\)
            end if
        end for
    end for
    return \(q(0 \ldots k, 1 \ldots|R|)\);
```

there is a sorted list ranking objects in the decreasing order of its score on that attribute. An aggregation function f combines the individual attribute scores $x_{i}, i=1,2, \ldots, m$ to obtain the overall object score $f\left(x_{1}, x_{2}, \ldots, x_{m}\right)$. An aggregation function is monotonic iff $f\left(x_{1}, x_{2}, \ldots, x_{m}\right) \leq f\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}\right)$ whenever $x_{i} \leq x_{i}^{\prime}$ for every i. Fagin [15] shows that TA is cost-optimal in finding the top- k objects in such a system.

TA is guaranteed to work as long as the aggregation function is monotonic. For a simple probabilistic relation, if we regard score and probability as two special attributes, Global-Top k probability $P_{k, s}$ is an aggregation function of score and probability. The Faithfulness postulate in Section 3.1 implies the monotonicity of Global-Topk probability. Consequently, assuming that we have an index on probability as well, we can guide the dynamic programming (DP) in Algorithm 2 by TA. Now, instead of computing all $k n$ entries for DP, where $n=|R|$, the algorithm can be stopped as early as possible. A subtlety is that Global-Top k probability $P_{k, s}$ is only well-defined for $t \in R$, unlike in [15], where an aggregation function is well-defined over the domain of all possible attribute values. Therefore, compared to the original TA, we need to achieve the same behavior without referring to virtual tuples which are not in R.

U-Top k satisfies Faithfulness in simple probabilistic relations. An adaption of the TA algorithm in this case is available in [21]. TA is not applicable to U-kRanks. Even though we can define an aggregation function per rank, rank $=1,2, \ldots, k$, for tuples under U- k Ranks, the violation of Faithfulness in Table 1 suggests a violation of monotonicity of those k aggregation functions. PT- k computes Global-Top k probability as well, and is therefore a natural candidate for TA in simple probabilistic relations.

Denote T and P for the list of tuples in the decreasing order of score and probability respectively. Following the convention in [15], \underline{t} and \underline{p} are the last value seen in T and P respectively.

Algorithm 1' (TA_Ind_Topk)

(1) Go down T list, and fill in entries in the DP table. Specifically, for $\underline{t}=t_{j}$, compute the entries in the $j^{t h}$ column up to the $k^{t h}$ row. Add t_{j} to the top- k answer set Ans, if any of the following conditions holds:
(a) Ans has less than k tuples, i.e. $|A n s|<k$;
(b) The Global-Top k probability of t_{j}, i.e. $q(k, j)$, is greater than the lower bound of $A n s$, i.e. $L B_{A n s}$, where $L B_{A n s}=$ $\min _{t_{i} \in A n s} q(k, i)$.
In the second case, we also need to drop the tuple with the lowest GlobalTop k probability in order to preserve the cardinality of Ans.
(2) After we have seen at least k tuples in T, we go down P list to find the first p whose tuple t has not been seen. Let $p=p$, and we can use \underline{p} to estimate the threshold, i.e. upper bound $(\overline{U P})$ of the Global-Topk probability of any unseen tuple. Assume $\underline{t}=t_{i}$,

$$
U P=\left(q(k, i) \frac{\bar{p}\left(t_{i}\right)}{p\left(t_{i}\right)}+q(k-1, i)\right) \underline{p} .
$$

(3) If $U P>L B_{A n s}$, we can expect $A n s$ will be updated in the future, so go back to (1). Otherwise, we can safely stop and report Ans.

Theorem 2 (Correctness of Algorithm 1'). Given a simple probabilistic relation $R^{p}=$ $\langle R, p, \mathcal{C}\rangle$, a non-negative integer k and an injective scoring function sover R^{p}, the above TA-based algorithm correctly find a top- k answer under Global-Topk semantics.

Proof. See Appendix.
The optimization above aims at an early stop. Bruno et al. [24] carries out an extensive experimental study on the effectiveness of applying TA in RDMBS. They consider various aspects of query processing. One of their conclusions is that if at least one of the indices available for the attributes ${ }^{1}$ is a covering index, that is, it is defined over all other attributes and we can get the values of all other attributes directly without performing a primary index lookup, then the improvement by TA can be up to two orders of magnitude. The cost of building a useful set of indices once would be amortized by a large number of top- k queries that subsequently benefit form such indices. Even in the lack of covering indices, if the data is highly correlated, in our case, that means high-score tuples having high probabilities, TA would still be effective.

4.3 Arbitrary Probabilistic Relations

Induced Event Relation In the general case of probabilistic relation, each part of the partition \mathcal{C} can contain more than one tuple. The crucial independence assumption in Algorithm 1 no longer holds. However, even though tuples in one part of the partition \mathcal{C} are not independent, tuples in different parts are. In the following definition, we assume an identifier function $i d$. For any tuple t, $i d(t)$ identifies the part where t belongs.

Definition 7 (Induced Event Relation). Given a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$, an injective scoring function s over R^{p} and a tuple $t \in C_{i d(t)} \in \mathcal{C}$, the event relation induced by t, denoted by $E^{p}=\left\langle E, p^{E}, \mathcal{C}^{E}\right\rangle$, is a probabilistic relation whose support relation E has only one attribute, Event. The relation E and the probability function p^{E} are defined by the following two generation rules:

- Rule 1: $\quad t_{e_{t}} \in E$ and $p^{E}\left(t_{e_{t}}\right)=p(t) ;$
- Rule 2: $\quad \forall C_{i} \in \mathcal{C} \wedge C_{i} \neq C_{i d(t)}$.

$$
\left(\exists t^{\prime} \in C_{i} \wedge t^{\prime} \succ_{s} t\right) \Rightarrow\left(t_{e_{C_{i}}} \in E\right) \text { and } p^{E}\left(t_{e_{C_{i}}}\right)=\sum_{\substack{t^{\prime} \in C_{i} \\ t^{\prime} \succ_{s} t}} p\left(t^{\prime}\right) .
$$

No other tuples belong to E. The partition \mathcal{C}^{E} is defined as the collection of singleton subsets of E.

Except for one special tuple generated by Rule 1 , each tuple in the induced event relation (generated by Rule 2) represents an event $e_{C_{i}}$ associated with a part $C_{i} \in \mathcal{C}$. Given the tuple t, the event $e_{C_{i}}$ is defined as "some tuple from the part C_{i} has the score higher than the score of t ". The probability of this event, denoted by $p\left(t_{e_{C_{i}}}\right)$, is the probability that $e_{C_{i}}$ occurs.

The role of the special tuple $t_{e_{t}}$ and its probability $p(t)$ will become clear in Proposition 3. Let us first look at an example of an induced event relation.

[^1]Example 6. Given R^{p} as in Example 2, we would like to construct the induced event relation $E^{p}=\left\langle E, p^{E}, \mathcal{C}^{E}\right\rangle$ for tuple $t=\left(\right.$ Temp: 15) from C_{2}. By Rule 1, we have $t_{e_{t}} \in$ $E, p^{E}\left(t_{e_{t}}\right)=0.6$. By Rule 2, since $t \in C_{2}$, we have $t_{e_{C_{1}}} \in E$ and $p^{E}\left(t_{e_{C_{1}}}\right)=$ $\sum_{t^{\prime} \in C_{1}} p\left(t^{\prime}\right)=p(($ Temp: 22 $))=0.6$. Therefore,
$t^{\prime} \succ_{s} t$

$E:$	$p^{E}:$
Event	Prob
$t_{e_{t}}$	0.6
$t_{e_{C_{1}}}$	0.6

Proposition 2. An induced event relation in Definition 7 is a simple probabilistic relation.

Evaluating Global-Topk Queries With the help of induced event relation, we can reduce Global-Top k in the general case to Global-Top k in simple probabilistic relations.

Lemma 1. Let $R^{p}=\langle R, p, \mathcal{C}\rangle$ be a probabilistic relation, s an injective scoring function, $t \in R$, and $E^{p}=\left\langle E, p^{E}, \mathcal{C}^{E}\right\rangle$ the event relation induced by t. Define $Q^{p}=$ $\left\langle E-\left\{t_{e_{t}}\right\}, p^{E}, \mathcal{C}^{E}-\left\{\left\{t_{e_{t}}\right\}\right\}\right\rangle$. Then, the Global-Topk probability of t satisfies the following:

$$
P_{k, s}^{R^{p}}(t)=p(t) \sum_{\substack{W_{e} \in p w d\left(Q^{p}\right) \\\left|W_{e}\right|<k}} \operatorname{Pr}\left(W_{e}\right) .
$$

Proposition 3. Given a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$ and an injective scoring function s, for any $t \in R^{p}$, the Global-Topk probability of t equals the GlobalTopk probability of $t_{e_{t}}$ when evaluating top- k in the induced event relation $E^{p}=$ $\left\langle E, p^{E}, \mathcal{C}^{E}\right\rangle$ under the injective scoring function $s^{E}: E \rightarrow \mathbb{R}, s^{E}\left(t_{e_{t}}\right)=\frac{1}{2}$ and $s^{E}\left(t_{e_{C_{i}}}\right)=i$:

$$
P_{k, s}^{R^{p}}(t)=P_{k, s^{E}}^{E^{p}}\left(t_{e_{t}}\right)
$$

Proof. See Appendix.
In Proposition 3, the choice of the function s^{E} is rather arbitrary. In fact, any injective functioin giving $t_{e_{t}}$ the lowest score will do. Every tuple other than t in the induced event relation corresponds to the event that a tuple with a score higher than that of t occurs. We want to track the case that at most $k-1$ such events happen. Since any induced event relation is simple (Proposition 2), Proposition 3 illustrates how we can reduce the computation of $P_{k, s}^{R^{p}}(t)$ in the original probabilistic relation to a top- k computation in a simple probabilistic relation, where we can apply the DP technique described in Section 4.1. The complete algorithms are shown as Algorithm 3 and Algorithm 4.

In Algorithm 4, we first find the part $C_{i d(t)}$ where t belongs. In Line 4, we initialize the support relation E of the induced event relation by the tuple generated by Rule 1 in Definition 7. For any part C_{i} other than $C_{i d(t)}$, we compute the probability of the event $e_{C_{i}}$ according to Definition 7 (Line 4), and add it to E if its probability is nonzero (Line 5-7). Since all the tuples from the same part are exclusive, this probability is the sum of the probabilities of all tuples that qualify in that part. Note that if no tuple

```
Algorithm 3 (IndEx_Topk) Evaluate Global-Top \(k\) Queries in a General Probabilistic
Relation under an Injective Scoring Function
Require: \(R^{p}=\langle R, p, \mathcal{C}\rangle, k, s\)
    1: Initialize a fixed cardinality \(k+1\) priority queue \(A n s\) of \(\langle t, p r o b\rangle\) pairs, which compares
        pairs on \(p r o b\), i.e. the Global-Top \(k\) probability of \(t\);
    for \(t \in R\) do
        Calculate \(P_{k, s}^{R^{p}}(t)\) using Algorithm 4, i.e.
            \(P_{k, s}^{R^{p}}(t)=\) IndEx_Topk_Sub \(\left(R^{p}, k, s, t\right) ;\)
        \(\operatorname{Add}\left\langle t, P_{k, s}^{R^{p}}(t)\right\rangle\) to \(A n s\);
        if \(|A n s|>k\) then
            remove the pair with the smallest prob value from Ans;
        end if
    end for
    return \(\left\{t \mid\left\langle t, P_{k, s}^{R^{p}}(t)\right\rangle \in A n s\right\} ;\)
```

```
Algorithm 4 (IndEx_Topk_Sub) Calculate \(P_{k, s}^{R^{p}}(t)\) using an induced event relation
Require: \(R^{p}=\langle R, p, \mathcal{C}\rangle, k, s, t \in R\)
    Find the part \(C_{i d(t)} \in \mathcal{C}\) such that \(t \in C_{i d(t)}\);
    \(E=\left\{t_{e_{t}}\right\}\), where \(p^{E}\left(t_{e_{t}}\right)=p(t)\);
    for \(C_{i} \in \mathcal{C}\) and \(C_{i} \neq C_{i d(t)}\) do
        \(p\left(e_{C_{i}}\right)=\sum_{\substack{t^{\prime} \in C_{i} \\ t^{\prime} \succ_{s} t}} p\left(t^{\prime}\right) ;\)
        if \(p\left(e_{C_{i}}\right)>0\) then
            \(E=E \cup\left\{t_{e_{C_{i}}}\right\}\), where \(p^{E}\left(t_{e_{C_{i}}}\right)=p\left(e_{C_{i}}\right) ;\)
        end if
    end for
    Use Algorithm 2 to compute Global-Top \(k\) probabilities in \(E^{p}=\left\langle E, p^{E}, \mathcal{C}^{E}\right\rangle\), i.e.
        \(q(0 \ldots k, 1 \ldots|E|)=\operatorname{Ind} \_\operatorname{Topk} \_\operatorname{Sub}\left(E^{p}, k\right)\)
10: \(P_{k, s}^{R^{p}}(t)=P_{k, s}^{E^{p}}\left(t_{e_{t}}\right)=q(k,|E|)\);
    return \(P_{k, s}^{R^{p}}(t)\);
```

from C_{i} qualifies, this probability is zero. In this case, we do not care whether any tuple from C_{i} will be in the possible world or not, since it does not have any influence on whether t will be in top- k or not. The corresponding event tuple is therefore excluded from E. By default, any probabilistic database assumes that any tuple not in the support relation is with probability zero. Line 4 uses Algorithm 2 to compute $P_{k, s}^{E^{p}}\left(t_{e_{t}}\right)$. Note that Algorithm 2 requires all tuples be sorted on score, but this is not a problem for us. Since we already know the scoring function s^{E}, we simply need to organize tuples based on s^{E} when generating E. No extra sorting is necessary.

Theorem 3 (Correctness of Algorithm 3). Given a probabilistic relation $R^{p}=\langle R, p$, $\mathcal{C}\rangle$, a non-negative integer k and an injective scoring function s, Algorithm 3 correctly computes a Global-Topk answer set of R^{p} under the scoring function s.

Proof. The top-level structure with the priority queue in Algorithm 3 resemble those in Algorithm 1. Therefore, as long as Line 3 in Algorithm 3 correctly computes the Global-Top k probability of each tuple in R, Algorithm 3 returns a valid Global-Top k answer set. Line 1-8 in Algorithm 4 computes the event relation induced by tuple t. By Proposition 3, Line 9-10 in Algorithm 4 correctly computes the Global-Top k probability of tuple t.

In Algorithm 4, Line 4-4 takes $O(n)$ to build E (we need to scan all tuples within each part). The call to Algorithm 2 in Line 4 takes $O(k|E|)$, where $|E|$ is no more than the number of parts in partition \mathcal{C}, which is in turn no more than n. So Algorithm 4 takes $O(k n)$. Algorithm 3 make n calls to Algorithm 4 to compute $P_{k, s}^{R^{p}}(t)$ for every tuple $t \in R$. Again, Algorithm 3 uses a priority queue to select the final answer set, which takes $O(n \log k)$. The entire algorithm takes $O\left(k n^{2}+n \log k\right)=O\left(k n^{2}\right)$.

5 Global-Topk under General Scoring Functions

5.1 Semantics and Postulates

Global-Topk Semantics with Allocation Policy Under a general scoring function, the Global-Top k semantics remains the same. However, the definition of Global-Top k probability in Definition 5 needs to be generalized to handle ties.

Recall that under an injective scoring function s, there is a unique top- k answer set S in every possible world W. When the scoring function s is non-injective, there may be multiple top- k answer sets S_{1}, \ldots, S_{d}, each of which is returned nondeterministically. Therefore, for any tuple $t \in \cap S_{i}, i=1, \ldots, d$, the world W contributes $\operatorname{Pr}(W)$ to the Global-Top k probability of t. One the other hand, for any tuple $t \in\left(\cup S_{i}-\cap S_{i}\right), i=$ $1 \ldots, d$, the world W contributes only a fraction of $\operatorname{Pr}(W)$ to the Global-Topk probability of t. The allocation policy determines the value of this fraction, i.e. the allocation coefficient. Denote by $\alpha(t, W)$ the allocation coefficient of a tuple t in a world W. Let $\operatorname{all}_{k, s}(W)=\cup S_{i}, i=1, \ldots, d$.

Definition 8 (Global-Top k Probability under a General Scoring Function). Assume a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$, a non-negative integer k and a scoring function s over R^{p}. For any tuple t in R, the Global-Topk probability of t, denoted by $P_{k, s}^{R^{p}}(t)$, is
the sum of the (partial) probabilities of all possible worlds of R^{p} whose top- k answer may contain t.

$$
\begin{equation*}
P_{k, s}^{R^{p}}(t)=\sum_{\substack{W \in p w d\left(R^{p}\right) \\ t \in \operatorname{all}_{k, s}(W)}} \alpha(t, W) \operatorname{Pr}(W) . \tag{4}
\end{equation*}
$$

With no prior bias towards any tuple, it is natural to assume that each of S_{1}, \ldots, S_{d} is returned nondeterministically with equal probability. Notice that this probability has nothing to do with tuple probabilities. Rather, it is the determined by the number of equally qualified top- k answer sets. Hence, we have the following Equal allocation policy.

Definition 9 (Equal Allocation Policy). Assume a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$, a non-negative integer k and a scoring function sover R^{p}. For a possible world $W \in$ $p w d\left(R^{p}\right)$ and a tuple $t \in W$, let $a=\left|\left\{t^{\prime} \in W \mid t^{\prime} \succ_{s} t\right\}\right|$ and $b=\left|\left\{t^{\prime} \in W \mid t^{\prime} \sim_{s} t\right\}\right|$

$$
\alpha(t, W)= \begin{cases}1 & \text { if } a<k \text { and } a+b \leq k \\ \frac{k-a}{b} & \text { if } a<k \text { and } a+b>k\end{cases}
$$

Satisfaction of Postulates The semantic postulates in Section 3.1 are directly applicable to Global-Top k with allocation policy. In the Appendix, we show that the Equal allocation policy preserves the semantic postulates of Global-Top k.

5.2 Query Evaluation in Simple Probabilistic Relations

Definition 10. Let $R^{p}=\langle R, p, \mathcal{C}\rangle$ be a probabilistic relation, k a non-negative integer and s a general scoring function over R^{p}. Assume that $R=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}, t_{1} \succeq_{s}$ $t_{2} \succeq_{s} \ldots \succeq_{s} t_{n}$. Let $T_{k,[i]}^{R^{p}}, k \leq i$, be the sum of the probabilities of all possible worlds of exactly k tuples from $\left\{t_{1}, \ldots, t_{i}\right\}$:

$$
T_{k,[i]}^{R^{p}}=\sum_{\substack{W \in p w d\left(R^{p}\right) \\\left|W \cap\left\{t_{1}, \ldots, t_{i}\right\}\right|=k}} \operatorname{Pr}(W)
$$

As usual, we omit the superscript in $T_{k,[i]}^{R^{p}}$, i.e. $T_{k,[i]}$, when the context is unambiguous. Remark 1 shows that in a simple probabilistic relation $T_{k,[i]}$ can be computed efficiently.

Remark 1. Let $R^{p}=\langle R, p, \mathcal{C}\rangle$ be a simple probabilistic relation, k a non-negative integer and s a general scoring function over R^{p}. Assume that $R=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$, $t_{1} \succeq_{s} t_{2} \succeq_{s} \ldots \succeq_{s} t_{n}$. For any $i, 1 \leq i \leq n-1, T_{k,[i]}^{R^{p}}$ can be computed using the DP table for computing the Global-Top k probabilities in R^{p} under an order-preserving injective scoring function s^{\prime} such that $t_{1} \succ_{s^{\prime}} t_{2} \succ_{s^{\prime}} \ldots \succ_{s^{\prime}} t_{n}$.

Proof. We show by case study.

- Case 1: If $k=0,1 \leq i \leq n-1$, then

$$
T_{k,[i]}^{R^{p}}=\prod_{1 \leq j \leq i} \bar{p}\left(t_{j}\right)=\frac{P_{1, s^{\prime}}^{\left(R^{p}\right)}\left(t_{i+1}\right)}{p\left(t_{i+1}\right)}
$$

- Case 2: For every $1 \leq k \leq i \leq n-1$, by the definition of $T_{k,[i]}^{R^{p}}$, we have

$$
T_{k,[i]}^{R^{p}}=\sum_{\substack{W \in p w d\left(R^{p}\right) \\\left|W \cap\left\{t_{1}, \ldots, t_{i}\right\}\right| \leq k}} \operatorname{Pr}(W)-\sum_{\substack{W \in \operatorname{pwd}\left(R^{p}\right) \\\left|W \cap\left\{t_{1}, \ldots, t_{i}\right\}\right| \leq k-1}} \operatorname{Pr}(W)
$$

In the DP table computing the Global-Top k probabilities in R^{p} under function s^{\prime}, we have

$$
\begin{aligned}
P_{k+1, s^{\prime}}^{R^{p}}\left(t_{i+1}\right) & =\sum_{\substack{W \in p w d\left(R^{p}\right) \\
t_{i+1} \in t o p_{k+1, s^{\prime}}(W)}} \operatorname{Pr}(W) \quad\left(s^{\prime}\right. \text { is injective) } \\
& =\sum_{\substack{W \in p w d\left(R^{p}\right) \\
\left|W \cap\left\{t_{1}, \ldots, t_{i}\right\}\right| \leq k}} \operatorname{Pr}(W) \\
& =p\left(t_{i+1}\right) \sum_{\substack{W \in p w d\left(R^{p}\right) \\
t_{i+1} \in W \\
\left|W \cap\left\{t_{1}, \ldots, t_{i}\right\}\right| \leq k}} \operatorname{Pr}(W) \quad \quad \text { (tuples are independent) }
\end{aligned}
$$

Therefore,

$$
T_{k,[i]}^{R^{p}}=\frac{P_{k+1, s^{\prime}}^{R^{p}}\left(t_{i+1}\right)}{p\left(t_{i+1}\right)}-\frac{P_{k, s^{\prime}}^{R^{p}}\left(t_{i+1}\right)}{p\left(t_{i+1}\right)}
$$

Since $1 \leq k \leq i \leq n-1$, both $P_{k+1, s^{\prime}}^{R^{p}}\left(t_{i+1}\right)$ and $P_{k, s^{\prime}}^{R^{p}}\left(t_{i+1}\right)$ can be computed using the DP table used to compute the Global-Top k probabilities of tuples in R^{p} under the injective scoring function s^{\prime}.

Remark 2 shows that we can compute Global-Topk probability under a general scoring function in polynomial time for an extreme case, where the probabilistic relation is simple and all tuples tie in scores. As we will see shortly, this special case plays an important role in our major result Proposition 4.

Remark 2. Let $R^{p}=\langle R, p, \mathcal{C}\rangle$ be a simple probabilistic relation, k a non-negative integer and s a general scoring function over R^{p}. Assume that $R=\left\{t_{1}, \ldots, t_{m}\right\}$ and $t_{1} \sim_{s} t_{2} \sim_{s} \ldots \sim_{s} t_{m}$. For any tuple $t_{i}, 1 \leq i \leq m$, the Global-Top k probability of t_{i}, i.e. $P_{k, s}^{R^{p}}\left(t_{i}\right)$, can be computed using Remark 1 .

Proof. If $k>m$, it is trivial that $P_{k, s}^{R^{p}}\left(t_{i}\right)=p\left(t_{i}\right)$. Therefore, we only prove the case when $k \leq m$. According to Equation 4 , for any $i, 1 \leq i \leq m$,

$$
\begin{aligned}
P_{k, s}^{R^{p}}\left(t_{i}\right) & =\sum_{j=1}^{m} \sum_{\substack{W \in p w d\left(R^{p}\right) \\
t_{i} \in \operatorname{all} l_{k, s}(W),|W|=j}} \alpha\left(t_{i}, W\right) \operatorname{Pr}(W) \\
& =\sum_{j=1}^{m} \sum_{\substack{W \in p w d\left(R^{p}\right) \\
t_{i} \in W,|W|=j}} \alpha\left(t_{i}, W\right) \operatorname{Pr}(W) \quad\left(\text { Since all tuple tie }, \operatorname{all}_{k, s}(W)=W\right) \\
& =\sum_{j=1}^{k} \sum_{\substack{W \in p w d\left(R^{p}\right) \\
t_{i} \in W,|W|=j}} \alpha\left(t_{i}, W\right) \operatorname{Pr}(W)+\sum_{\substack{ \\
j=k+1}}^{m} \sum_{\substack{W \in p w d\left(R^{p}\right) \\
t_{i} \in W,|W|=j}} \alpha\left(t_{i}, W\right) \operatorname{Pr}(W) \\
& =\sum_{j=1}^{k} \sum_{\substack{W \in p w d\left(R^{p}\right) \\
t_{i} \in W, W \mid=j}} \operatorname{Pr}(W)+\sum_{j=k+1}^{m} \frac{k}{j} \sum_{\substack{W \in p w d\left(R^{p}\right) \\
t_{i} \in W,|W|=j}} \operatorname{Pr}(W)
\end{aligned}
$$

With out loss of generality, assume $i=m$, then the above equation becomes

$$
\begin{align*}
P_{k, s}^{R^{p}}\left(t_{m}\right) & =\sum_{j=1}^{k} \sum_{\substack{W \in p w d\left(R^{p}\right) \\
t_{m} \in W,|W|=j}} \operatorname{Pr}(W)+\sum_{j=k+1}^{m} \frac{k}{j} \sum_{\substack{W \in p w d\left(R^{p}\right) \\
t_{m} \in W,|W|=j}} \operatorname{Pr}(W) \\
& =p\left(t_{i}\right)\left(\sum_{j=1}^{k} T_{j-1,[m-1]}^{R^{p}}+\sum_{j=k+1}^{m} \frac{k}{j} T_{j-1,[m-1]}^{R^{p}}\right) \tag{5}
\end{align*}
$$

By Remark 1, every $T_{j-1,[m-1]}^{R^{p}}$ can be computed using the DP table computing Global-Top k probabilities in R^{p} under an order preserving injective scoring function s^{\prime}. Therefore, Equation 5 can be computed using Remark 1.

Based on Remark 1 and Remark 2, we design Algorithm 5 and prove its correctness in Theorem 4 using Proposition 4.

Assume $R^{p}=\langle R, p, \mathcal{C}\rangle$ where $R=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ and $t_{1} \succeq_{s} t_{2} \succeq_{s} \ldots \succeq_{s} t_{n}$. For any $t_{l} \in R, i_{l}$ is the largest index such that $t_{i_{l}} \succ_{s} t_{l}$, and j_{l} is the largest index such that $t_{j_{l}} \succeq_{s} t_{l}$.

Intuitively, Algorithm 5 and Proposition 4 convey the idea that, in a simple probabilistic relation, the computation of Global-Topk under the Equal allocation policy can be simulated by the following procedure:
(S1) Independently flip a biased coin with probability $p\left(t_{j}\right)$ for each tuple $t_{j} \in R=$ $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$, which gives us a possible world $W \in \operatorname{pwd}\left(R^{p}\right)$;
(S2) Return a top- k answer set S of W nondeterministically (with equal probability in the presence of multiple top- k sets). The Global-Top k probability of t_{l} is the probability that $t_{l} \in S$.

The above Step (S1) can be further refined into:
(S1.1) Independently flip a biased coin with probability $p\left(t_{j}\right)$ for each tuple $t_{j} \in R_{A}=$ $\left\{t_{1}, t_{2} \ldots, t_{i_{l}}\right\}$, which gives us a collection of tuples W_{A};
(S1.2) Independently flip a biased coin with probability $p\left(t_{j}\right)$ for each tuple $t_{j} \in R_{B}=$ $\left\{t_{i_{l}+1}, \ldots, t_{n}\right\}$, which gives us a collection of tuples $W_{B} . W=W_{A} \cup W_{B}$ is a possible world from $\operatorname{pwd}\left(R^{p}\right)$;

In order for t_{l} to be in S, W_{A} can have at most $k-1$ tuples. Let $\left|W_{A}\right|=k^{\prime}$, then $k^{\prime}<k$. Every top- k answer set S of W contains all k^{\prime} tuples from W_{A}, plus the top($k-k^{\prime}$) tuples from W_{B}. For t_{l} to be in S, it has to be in the top- $\left(k-k^{\prime}\right)$ set of W_{B}. Consequently, the probability of $t_{l} \in S$, i.e. the Global-Top k probability of t_{l}, is the joint probability that $\left|W_{A}\right|=k^{\prime}<k$ and t_{l} belongs to the top $-\left(k-k^{\prime}\right)$ set of W_{B}. The former is $T_{k^{\prime},\left[i_{l}\right]}$ and the latter is $P_{k-k^{\prime}, s}^{R_{B}^{p}}\left(t_{l}\right)$, where R_{B}^{p} is R^{p} restricted to R_{B}. Again, due to the independence among tuples, Step (S1.1) and Step (S1.2) are independent, and their joint probability is simply the product of the two.

Further notice that since t_{l} has the highest score in R_{B} and all tuples are independent in R_{B}, any tuple with score lower than that of t_{l} does not have influence on $P_{k-k^{\prime}, s}^{R_{B}^{p}}\left(t_{l}\right)$. In other words, $P_{k-k^{\prime}, s}^{R_{B}^{p}}\left(t_{l}\right)=P_{k-k^{\prime}, s}^{R_{s}^{p}\left(t_{l}\right)}\left(t_{l}\right)$, where $R_{s}^{p}\left(t_{l}\right)$ is R^{p} restricted to all tuples tying with t_{l} in R. Notice that the computation of $P_{k-k^{\prime}, s}^{R_{s}^{p}\left(t_{l}\right)}\left(t_{l}\right)$ is the extreme case addressed in Remark 2.

Algorithm 5 elaborates the algorithm based on the idea above, where $m=j_{l}-i_{l}$ is the number of tuples tying with t_{l} (including t_{l}).

Furthermore, Algorithm 5 exploits the overlapping among DP tables and makes the following two optimizations:

1. Use a single DP table to collect the information needed to compute all $T_{k^{\prime},\left[i_{l}\right]}$, $k^{\prime}=0, \ldots, k-1, l=1, \ldots, n$ and $k^{\prime} \leq i_{l}($ Line 2$)$.

Notice that for $1 \leq l \leq n, 1 \leq i_{l} \leq n-1$. It is easy to see that the DP table computing $T_{k-1,[n-1]}$ subsumes all other DP tables.
2. Use a single DP table to compute all $P_{k-k^{\prime}, s}^{R_{s}^{p}\left(t_{l}\right)}\left(t_{l}\right), k^{\prime}=0, \ldots, k-1$, for a tuple t_{l} (Line 8-18).
For different k^{\prime}, the computation of $P_{k-k^{\prime}, s}^{R_{s}^{p}\left(t_{l}\right)}\left(t_{l}\right)$ requires the computation of the same set of $T_{j,[m-1]}^{R_{s}^{p}\left(t_{l}\right)}$. In Line $8-18, P_{k-k^{\prime}, s}^{R_{s}^{p}\left(t_{l}\right)}\left(t_{l}\right)$ is abbreviated as $P_{l}\left(k-k^{\prime}\right)$ to emphasize the changing parameter k^{\prime}.

Each DP table computation uses a call to Algorithm 2 (Line 2 in Algorithm 5, Line 3 in Algorithm 6).

```
Algorithm 5 (Ind_Topk_Gen) Evaluate Global-Top \(k\) Queries in a Simple Probabilistic
Relation under a General Scoring Function
Require: \(R^{p}=\langle R, p, \mathcal{C}\rangle, k\)
Ensure: tuples in \(R\) are sorted in the non-increasing order based on \(s\)
    1: Initialize a fixed cardinality \((k+1)\) priority queue \(A n s\) of \(\langle t, p r o b\rangle\) pairs, which compares
    pairs on \(p r o b\), i.e. the Global-Top \(k\) probability of \(t\);
    2: Get the DP table for computing \(T_{k^{\prime},[i]}, k^{\prime}=0, \ldots k-1, i=1, \ldots, n-1, k^{\prime} \leq i\) using
    Algorithm 2, i.e.
        \(q(0 \ldots k, 1 \ldots|R|)=\operatorname{Ind} \_\operatorname{Topk} \_\operatorname{Sub}\left(R^{p}, k\right) ;\)
    for \(l=1\) to \(|R|\) do
        \(m=j_{l}-i_{l}\);
        if \(m==1\) then
            Add \(\left\langle t_{l}, q(k, l)\right\rangle\) to Ans;
        else
            Get the DP table for computing \(P_{k-k^{\prime}, s}^{R_{s}^{p}\left(t_{l}\right)}\left(t_{l}\right)\), i.e. \(P_{l}\left(k-k^{\prime}\right), k^{\prime}=0, \ldots, k-1\)
                \(q_{t i e}(0 \ldots m, 1 \ldots m)=\) Ind_Topk_Gen_Sub \(\left(R_{s}^{p}\left(t_{l}\right), t_{l}, m\right) ;\)
        \(P_{l}(0 \ldots \max (m, k))=0 ;\)
        for \(k^{\prime \prime}=1\) to \(\min (k, m)\) do
            \(P_{l}\left(k^{\prime \prime}\right)=P_{l}\left(k^{\prime \prime}-1\right)+q_{t i e}\left(k^{\prime \prime}, m\right) ;\)
        end for
        for \(k^{\prime \prime}=k+1\) to \(m\) do
            \(P_{l}\left(k^{\prime \prime}\right)=P_{l}\left(k^{\prime \prime}-1\right)+\frac{k}{k^{\prime \prime}} q_{t i e}\left(k^{\prime \prime}, m\right) ;\)
        end for
        for \(k^{\prime \prime}=m+1\) to \(k\) do
            \(P_{l}\left(k^{\prime \prime}\right)=p\left(t_{l}\right) ;\)
        end for
        \(P_{k, s}^{R^{p}}\left(t_{l}\right)=0 ;\)
        for \(k^{\prime}=0\) to \(k-1\) do
                        \(T_{k^{\prime},\left[i_{l}\right]}=\frac{q\left(k^{\prime}+1, i_{l}+1\right)-q\left(k^{\prime}, i_{l}+1\right)}{p\left(t_{i_{l}+1}\right)} ;\)
                \(P_{k, s}^{R^{p}}\left(t_{l}\right)=P_{k, s}^{R^{p}}\left(t_{l}\right)+T_{k^{\prime},\left[i_{l}\right]} \cdot P_{l}\left(k-k^{\prime}\right) ;\)
        end for
        Add \(\left\langle t_{l}, P_{k, s}^{R^{p}}\left(t_{l}\right)\right\rangle\) to \(A n s ;\)
        end if
        if \(|A n s|>k\) then
        remove the pair with the smallest prob value from Ans;
        end if
    end for
    return \(\left\{t_{i} \mid\left\langle t_{i}, p r o b\right\rangle \in A n s\right\}\);
```

```
Algorithm 6 (Ind_Topk_Gen_Sub) Compute the DP table for Global-Topk probabili-
ties in a Simple Probabilistic Relation under an All-Tie Scoring Function
Require: \(R_{s}^{p}\left(t_{\text {target }}\right)=\langle R, p, \mathcal{C}\rangle, t_{\text {target }}, m\)
Ensure: \(|R|=m, t_{\text {target }} \in R\)
    Rearrange tuples in \(R\) such that \(R=\left\{t_{1}, \ldots, t_{m-1}, t_{m}\right\}\) and \(t_{m}=t_{\text {target }} ;\)
    Assume the injective scoring function \(s^{\prime}\) is such that \(t_{1} \succ_{s^{\prime}} \ldots \succ_{s^{\prime}} t_{m-1} \succ_{s^{\prime}} t_{\text {target }}\);
    Get the DP table
                                    \(q_{t i e}(0 \ldots m, 1 \ldots m)=\) Ind_Topk_Sub \(\left(R_{s}^{p}\left(t_{\text {target }}\right), m\right) ;\)
    return \(q_{t i e}(0 \ldots m, 1 \ldots m)\);
```

Proposition 4. Let $R^{p}=\langle R, p, \mathcal{C}\rangle$ be a simple probabilistic relation where $R=$ $\left\{t_{1}, \ldots, t_{n}\right\}, t_{1} \succeq_{s} t_{2} \succeq_{s} \ldots \succeq_{s} t_{n}, k$ a non-negative integer and s a scoring function. For every $t_{l} \in R$, the Global-Topk probability of t_{l} can be computed by the following equation:

$$
\begin{equation*}
P_{k, s}^{R^{p}}\left(t_{l}\right)=\sum_{k^{\prime}=0}^{k-1} T_{k^{\prime},\left[i_{l}\right]} \cdot P_{k-k^{\prime}, s}^{R_{s}^{p}\left(t_{l}\right)}\left(t_{l}\right) \tag{6}
\end{equation*}
$$

where $R_{s}^{p}\left(t_{l}\right)$ is R^{p} restricted to $\left\{t \in R \mid t \sim_{s} t_{l}\right\}$.

Proof. See Appendix.

Theorem 4 (Correctness of Algorithm 5). Given a probabilistic relation $R^{p}=\langle R, p$, $\mathcal{C}\rangle$, a non-negative integer k and a general scoring function s, Algorithm 5 correctly computes a Global-Topk answer set of R^{p} under the scoring function s.

Proof. In Algorithm 5, by Remark 1, Line 2 and Line 9 correctly computes $T_{k^{\prime},[i]}$ for $0 \leq k^{\prime} \leq k-1,1 \leq i \leq n-1, k^{\prime} \leq i$. In Line 8 , each entry $q_{t i e}\left(k^{\prime \prime}, m\right)=$ $p\left(t_{l}\right) T_{k^{\prime \prime}-1,[m-1]}^{R_{s}^{p}, t_{l}}, 1 \leq k^{\prime \prime} \leq m$. By Remark 2, Line 8 collects the information for computing $P_{k-k^{\prime}, s}^{R_{s}^{p}\left(t_{l}\right)}\left(t_{l}\right), 1 \leq k-k^{\prime} \leq m$. Line $9-15$ correctly compute those cases based on the definition. If $m<k-k^{\prime} \leq k$, then it is trivial that $P_{k-k^{\prime}, s}^{R_{s}^{p}\left(t_{l}\right)}\left(t_{l}\right)=p\left(t_{l}\right)$ (Line 1618). By Proposition 4, Line 19-23 correctly computes the Global-Top k probability of t_{l}. Also notice that in Line 6, the Global-Top k probability of a tuple without tying tuples is retrieved directly. It is an optimization as the code handling the general case (i.e. $m>$ 1, Line 7-24) works for this special case as well. Again, the top-level structure with the priority queue in Algorithm 5 ensures that a Global-Topk answer set is correctly computed.

In Algorithm 5, Line 2 takes $O(k n)$, and for each tuple, there is one call to Algorithm 6 in Line 8 , which takes $O\left(m_{\max }^{2}\right)$, where $m_{\text {max }}$ is the maximal number of tying tuples. Therefore, Algorithm 5 takes $O\left(n \max \left(k, m_{\max }^{2}\right)\right)$ altogether.

5.3 Query Evaluation in General Probabilistic Relations

Recall that under an injective scoring function, every tuple t in a general probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$ induces a simple event relation E^{p}, and we reduce the computation of t 's Global-Top k probability in R^{p} to the computation of $t_{e_{t}}$'s Global-Top k probability in E^{p}.

In the case of general scoring functions, we use the same reduction idea. However, now for each part $C_{i} \in \mathcal{C}, C_{i} \neq C_{i d(t)}$, tuple t induces in E^{p} two exclusive tuples $t_{e_{C_{i}, \succ}}$ and $t_{e_{C_{i}, \sim}}$, corresponding to the event $e_{C_{i}, \succ}$ that "some tuple from the part C_{i} has the score higher than that of t " and the event $e_{C_{i}, \sim}$ that "some tuple from the part C_{i} has the score equal to that of t ", respectively. In addition, in Definition 11, we allow the existence of tuples with probability 0 , in order to simplify the description of query evaluation algorithms. This is an artifact whose purpose will become clear in Theorem 5.

Definition 11 (Induced Event Relation under General Scoring Functions). Given a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$, a scoring function s over R^{p} and a tuple $t \in C_{i d(t)} \in \mathcal{C}$, the event relation induced by t, denoted by $E^{p}=\left\langle E, p^{E}, \mathcal{C}^{E}\right\rangle$, is a probabilistic relation whose support relation E has only one attribute, Event. The relation E and the probability function p^{E} are defined by the following four generation rules and the postprocess step:

- Rule 1.1: $\quad t_{e_{t, \sim}} \in E$ and $p^{E}\left(t_{e_{t, \sim}}\right)=p(t) ;$
- Rule 1.2: $\quad t_{e_{t, \tau}} \in E$ and $p^{E}\left(t_{e_{t, \succ}}\right)=0$;
- Rule 2.1:

$$
\forall C_{i} \in \mathcal{C} \wedge C_{i} \neq C_{i d(t)} .\left(t_{e_{C_{i}, \succ}} \in E\right) \text { and } p^{E}\left(t_{e_{C_{i}}, \succ}\right)=\sum_{\substack{t^{\prime} \in C_{i} \\ t^{\prime} \succ_{s} t}} p\left(t^{\prime}\right)
$$

- Rule 2.2:

$$
\forall C_{i} \in \mathcal{C} \wedge C_{i} \neq C_{i d(t)} .\left(t_{e_{C_{i}, \sim}} \in E\right) \text { and } p^{E}\left(t_{e_{C_{i}}, \sim}\right)=\sum_{\substack{t^{\prime} \in C_{i} \\ t^{\prime} \sim_{s} t}} p\left(t^{\prime}\right)
$$

Postprocess step: only when $p^{E}\left(t_{e_{C_{i}}}, \succ\right)$ and $p^{E}\left(t_{e_{C_{i}}, \sim}\right)$ are both 0 , delete both tuple $t_{e_{C_{i}}, \succ}$ and $t_{e_{C_{i}}, \sim}$.
Proposition 5. Given a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$ and a scoring function s, for any $t \in R^{p}$, the Global-Topk probability of t equals the Global-Topk probability of $t_{e_{t}, \sim}$ when evaluating top- k in the induced event relation $E^{p}=\left\langle E, p^{E}, \mathcal{C}^{E}\right\rangle$ under the scoring function $s^{E}: E \rightarrow \mathbb{R}, s^{E}\left(t_{e_{t}}\right)=\frac{1}{2}, s^{E}\left(t_{e_{t}, \sim}\right)=\frac{1}{2}$ and $s^{E}\left(t_{e_{C_{i}, \succ}}\right)=i$:

$$
P_{k, s}^{R^{p}}(t)=P_{k, s^{E}}^{E^{p}}\left(t_{e_{t}, \sim}\right)
$$

Proof. See Appendix.
Notice that the induced event relation E^{p} in Definition 11, unlike its counterpart under an injective scoring function, is not simple. Therefore, we cannot utilize the algorithm in Proposition 4. Rather, the induced relation E^{p} is a special general probabilistic relation, where each part of the partition contains exactly two tuples. For this special general probabilistic relation, the recursion in Theorem 5 (Equation 7,8) collects enough information to compute the Global-Topk probability of $t_{e_{t}, \sim}$ in E^{p} (Equation $9)$.

Definition 12 (Secondary Induced Event Relations). Let $E^{p}=\left\langle E, p^{E}, \mathcal{C}^{E}\right\rangle$ be the event relation induced by tuple t under a general scoring function s. Without loss of generality, assume

$$
E=\left\{t_{e_{C_{1}, \succ}}, t_{e_{C_{1}, \sim}}, \ldots, t_{e_{C_{m-1}, \succ}}, t_{e_{C_{m-1}, \sim}}, t_{e_{t, \succ}}, t_{e_{t, \sim}}\right\}
$$

we can split E into two non-overlapping subsets E_{\succ} and E_{\sim} such that

$$
\begin{aligned}
& E_{\succ}=\left\{t_{e_{C_{1}, \succ}}, \ldots, t_{e_{C_{m-1}, \succ}}, t_{e_{t, \succ}}\right\} \\
& E_{\sim}=\left\{t_{e_{C_{1}, \sim}}, \ldots, t_{e_{C_{m-1}, \sim}}, t_{e_{t, \sim}}\right\}
\end{aligned}
$$

The two secondary induced event relation E_{\succ}^{p} and E_{\sim}^{p} are E^{p} restricted to E_{\succ}^{p} and E_{\sim}^{p} respectively. They are both mutually related and simple probabilistic relations. For every $1 \leq i \leq m-1$, tuple $t_{i, \succ}\left(t_{i, \sim}\right.$ resp.) refers to $t_{e_{C_{i}, \succ}}\left(t_{e_{C_{i}, \sim}}\right.$ resp.). The tuple $t_{m, \succ}\left(t_{m, \sim}\right.$ resp.) refers to $t_{e_{t, \succ}}\left(t_{e_{t, \sim}}\right.$ resp. $)$.

In spirit, the recursion in Theorem 5 is close to the recursion in Proposition 1, even though they are not computing the same measure. The following table does a comparison between the measure q in Proposition 1 and the measure u in Theorem 5:

Measure	$=\sum \operatorname{Pr}(W)$	$\mid\left\{t_{j} \mid t_{j} \in W\right.$, $\left.j \leq i, t_{j} \sim_{s} t\right\} \mid$
$q(k, i)$	(1) W contains t_{i} (2) W has no more than k tuples from $\left\{t_{1}, t_{2}, \ldots, t_{i}\right\}$	-
$u_{\succ / \sim(k, i, b)}$	(1) W contains t_{i} $(2) W$ has exactly k tuples from $\left\{t_{1}, t_{2}, \ldots, t_{i}\right\}$	b

Under the general scoring function s^{E}, a possible world of an induced relation E^{p} may partially contribute to tuple $t_{m, \sim}$'s Global-Top k probability. The allocation coefficient depends on the combination of two factors: the number of tuples that are strictly better than $t_{m, \sim}$ and the number of tuples tying with $t_{m, \sim}$. Therefore, in the new measure u, first, we add one more dimension to keep track of b, i.e. the number of tying tuples of a subscript no more than i in a world. Second, we keep track of distinct (k, b) pairs. Furthermore, the recursion on measure u differentiates between two cases: a nontying tuple (handled by u_{\succ}) and a tying tuple (handled by u_{\sim}), since those two types of tuples have different influence on the values of k and b.

Formally, let $u_{\succ}\left(k^{\prime}, i, b\right)\left(u_{\sim}\left(k^{\prime}, i, b\right)\right.$ resp.) be the sum of the probabilities of all the possible worlds W of E^{p} such that

1. $t_{i, \succ} \in W$ ($t_{i, \sim} \in W$ resp.)
2. i is the k^{\prime} th smallest tuple subscript in world W
3. the world W contains b tuples from E_{\sim}^{p} with subscript less than or equal to i.

Equation 7,8 resemble Equation 3, except that now, since we introduce tuples with probability 0 to ensure that each part of \mathcal{C}^{E} has exactly two tuples, we need to address the special cases when divisor can be zero. Notice that, for any $i, 1 \leq i \leq m$, at least one of $p^{E}\left(t_{i, \succ}\right)$ and $p^{E}\left(t_{i, \sim}\right)$ is non-zero, otherwise, they are not in E^{p} by definition.

Theorem 5. Given a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$, a scoring function $s, t \in$ R^{p}, and its induced event relation $E^{p}=\left\langle E, p^{E}, \mathcal{C}^{E}\right\rangle$, where $|E|=2 m$, the following recursion on $u_{\succ}\left(k^{\prime}, i, b\right)$ and $u_{\sim}\left(k^{\prime}, i, b\right)$ holds, where $b_{\max }$ is the number of tuples with positive probability in E_{\sim}^{p}.
When $i=1,0 \leq k^{\prime} \leq m$ and $0 \leq b \leq b_{\max }$,

$$
\begin{aligned}
& u_{\succ}\left(k^{\prime}, 1, b\right)=\left\{\begin{array}{lr}
p^{E}\left(t_{1, \succ}\right) & k^{\prime}=1, b=0 \\
0 & \text { otherwise }
\end{array}\right. \\
& u_{\sim}\left(k^{\prime}, 1, b\right)=\left\{\begin{array}{lr}
p^{E}\left(t_{1, \sim}\right) & k^{\prime}=1, b=1 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

For every $i, 2 \leq i<m, 0 \leq k^{\prime} \leq m$ and $0 \leq b \leq b_{\max }$,

$$
u_{\succ}\left(k^{\prime}, i, b\right)=\left\{\begin{array}{lr}
0 & k^{\prime}=0 \tag{7}\\
\left(u_{\succ}\left(k^{\prime}, i-1, b\right) \frac{1-p^{E}\left(t_{i-1, \succ}\right)-p^{E}\left(t_{i-1, \sim}\right)}{p^{E}\left(t_{i-1, \succ}\right)}\right. & 1 \leq k^{\prime} \leq m \\
+u_{\succ}\left(k^{\prime}-1, i-1, b\right) & \text { and } p^{E}\left(t_{i-1, \succ}\right)>0 \\
\left.+u_{\sim}\left(k^{\prime}-1, i-1, b\right)\right) p^{E}\left(t_{i, \succ}\right) & b<b_{\max } \\
\left(u_{\sim}\left(k^{\prime}, i-1, b+1\right) \frac{1-p^{E}\left(t_{i-1, \succ}\right)-p^{E}\left(t_{i-1, \sim}\right)}{p^{E}\left(t_{i-1, \sim}\right)}\right. & \text { and } 1 \leq k^{\prime} \leq m \\
+u_{\succ}\left(k^{\prime}-1, i-1, b\right) & \text { and } p^{E}\left(t_{i-1, \succ}\right)=0 \\
\left.+u_{\sim}\left(k^{\prime}-1, i-1, b\right)\right) p^{E}\left(t_{i, \succ}\right) & \text { otherwise } \\
\left(u_{\succ}\left(k^{\prime}-1, i-1, b\right)\right. &
\end{array}\right.
$$

$$
u_{\sim}\left(k^{\prime}, i, b\right)=\left\{\begin{array}{lr}
0 & k^{\prime}=0 \text { or } b=0 \\
\left(u_{\sim}\left(k^{\prime}, i-1, b\right) \frac{1-p^{E}\left(t_{i-1, \succ}\right)-p^{E}\left(t_{i-1, \sim}\right)}{p^{E}\left(t_{i-1, \sim}\right)}\right. & b>0 \\
+u_{\succ}\left(k^{\prime}-1, i-1, b-1\right) & \text { and } 1 \leq k^{\prime} \leq m \\
\left.+u_{\sim}\left(k^{\prime}-1, i-1, b-1\right)\right) p^{E}\left(t_{i, \sim}\right) & \text { and } p^{E}\left(t_{i-1, \sim}\right)>0 \\
\left(u_{\succ}\left(k^{\prime}, i-1, b-1\right) \frac{1-p^{E}\left(t_{i-1, \succ}\right)-p^{E}\left(t_{i-1, \sim}\right)}{p^{E}\left(t_{i-1, \succ}\right)}\right. & \text { otherwise } \\
+u_{\succ}\left(k^{\prime}-1, i-1, b-1\right) & \\
\left.+u_{\sim}\left(k^{\prime}-1, i-1, b-1\right)\right) p^{E}\left(t_{i, \sim}\right) &
\end{array}\right.
$$

The Global-Topk probability of $t_{e_{t}, \sim}$ in E^{p} under the scoring function s^{E} can be computed by the following equation:

$$
\begin{align*}
P_{k, s^{E}}^{E^{p}}\left(t_{e_{t}, \sim}\right) & =P_{k, s^{E}}^{E^{p}}\left(t_{m, \sim}\right) \\
& =\sum_{b=1}^{b_{\max }}\left(\sum_{k^{\prime}=1}^{k} u_{\sim}\left(k^{\prime}, m, b\right)+\sum_{k^{\prime}=k+1}^{k+b-1} \frac{k-\left(k^{\prime}-b\right)}{b} u_{\sim}\left(k^{\prime}, m, b\right)\right) \tag{9}
\end{align*}
$$

Proof. See Appendix.

Recall that we design Algorithm 1 based on the recursion in Proposition 1. Similarly, a DP algorithm based on the mutual recursion in Theorem 5 is available. We are going skip the details. Instead, we show how the algorithm works using the following example.

The complexity of the recursion in Theorem 5 determines the complexity of the algorithm. It takes $O\left(b_{\max } n^{2}\right)$ for one tuple, and $O\left(m_{\max } n^{3}\right)$ for computing all n tuples. Recall that $m_{\text {max }}$ is the maximal number of tying tuples in R. Again, the priority queue takes $O(n \log k)$. Altogether, the algorithm takes $O\left(m_{\max } n^{3}\right)$ time.

Example 7. When evaluating a top-2 query in $R^{p}=\langle R, p, \mathcal{C}\rangle$, consider a tuple $t \in R$ and its induced event relation $E^{p}=\left\langle E, p^{E}, \mathcal{C}^{E}\right\rangle$

E_{\succ}									
	$t_{e_{C_{1}}, \succ}$ $\left(t_{1}\right)$	$t_{e_{C_{2}, \succ}}$ $\left(t_{3}\right)$	$t_{e_{C_{3}, \succ}}$ $\left(t_{5}\right)$	$t_{e_{t, \succ}}$ $\left(t_{7}\right)$					
p^{E}	0.6	0.5	0.2	0	E_{\sim}	$t_{e_{C_{1}, \sim}}$ $\left(t_{2}\right)$	$t_{e_{C_{2}, \sim}}$ $\left(t_{4}\right)$	$t_{e_{C_{3}, \sim}}$ $\left(t_{6}\right)$	$t_{e_{t, \sim}}$ $\left(t_{8}\right)$

In order to compute the Global-Top k probability of t_{8} (i.e. $t_{e_{t}, \sim}$) in E^{p}, Theorem 5 leads to the following DP tables, each for a distinct combination of a b value and a secondary induced relation, where $b_{\max }=3$.

$$
\begin{aligned}
& \left(b=0, E_{\succ}^{p}\right) \begin{array}{|c||c|c|c|c|}
\hline k \backslash t & t_{1} & t_{3} & t_{5} & t_{7} \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0.6 & 0.2 & 0.02 & 0 \\
\hline 2 & 0 & 0.3 & 0.07 & 0 \\
\hline 2 & 0 & 0 & 0.06 & 0 \\
\hline 3 & \left(b=0, E_{\sim}^{p}\right)
\end{array} \begin{array}{|c|c||c|c|c|c|}
\hline k \backslash t & t_{2} & t_{4} & t_{6} & t_{8} \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 0 & 0 \\
\hline 3 & 0 & 0 & 0 & 0 \\
\hline 3 & 0 & 0 & 0 & 0 \\
\hline 4 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \left(b=1, E_{\succ}^{p}\right) \begin{array}{|c|c||c|c|c|}
\hline k \backslash t & t_{1} & t_{3} & t_{5} & t_{7} \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 0.02 & 0 \\
\hline 3 & 0 & 0 & 0.03 & 0 \\
\hline 4 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \quad\left(b=1, E_{\sim}^{p}\right) \begin{array}{|c||c|c|c|c|}
\hline k \backslash t & t_{2} & t_{4} & t_{6} & t_{8} \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0.1 & 0.06 & 0.008 \\
\hline 2 & 0 & 0.15 & 0.21 & 0.036 \\
\hline 3 & 0 & 0 & 0.18 & 0.052 \\
\hline 4 & 0 & 0 & 0 & 0.024 \\
\hline
\end{array} \\
& \left.\left(b=2, E_{\succ}^{p}\right) \begin{array}{|c||c|c|c|c|}
\hline k \backslash t & t_{1} & t_{3} & t_{5} & t_{7} \\
\hline 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \left(b=2, E_{\sim}^{p}\right) \\
& \begin{array}{|c||c|c|c|c|}
\hline k \backslash t & t_{2} & t_{4} & t_{6} & t_{8} \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 0.06 & 0.032 \\
\hline 3 & 0 & 0 & 0.09 & 0.104 \\
\hline 4 & 0 & 0 & 0 & 0.084 \\
\hline
\end{array}
\end{aligned}
$$

$$
\left(b=3, E_{\succ}^{p}\right) \stackrel{|c||c| c|c| c \mid}{\begin{array}{|c||c||c|c|c|c|c|c|}
\hline k \backslash t & t_{1} & t_{3} & t_{5} & t_{7} \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 0 & 0 \\
\hline 3 & 0 & 0 & 0 & 0 \\
\hline 4 & 0 & 0 & 0 & 0 \\
\hline
\end{array}\left(b=3, E_{\sim}^{p}\right)} \begin{array}{|c|c|c|c|c|}
\hline k \backslash t & t_{2} & t_{4} & t_{6} & t_{8} \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 0 & 0 \\
\hline 3 & 0 & 0 & 0 & 0.024 \\
\hline 4 & 0 & 0 & 0 & 0.036 \\
\hline
\end{array}
$$

The computation of each entry follows the mutual recursion in Theorem 5, for example,

$$
\begin{aligned}
u_{\succ}(2,5,0) & =\left(u_{\succ}(1,3,0)+u_{\sim}(1,4,0)+u_{\succ}(2,3,0) \frac{1-p^{E}\left(t_{3}\right)-p^{E}\left(t_{4}\right)}{p^{E}\left(t_{3}\right)}\right) p^{E}\left(t_{5}\right) \\
& =\left(0.2+0+0.3 \frac{1-0.5-0.25}{0.5}\right) 0.2 \\
& =0.07 \\
u_{\sim}(2,6,1) & =\left(u_{\succ}(1,3,0)+u_{\sim}(1,4,0)+u_{\sim}(2,4,1) \frac{1-p^{E}\left(t_{3}\right)-p^{E}\left(t_{4}\right)}{p^{E}\left(t_{3}\right)}\right) p^{E}\left(t_{6}\right) \\
& =\left(0.2+0+0.15 \frac{1-0.5-0.25}{0.25}\right) 0.6 \\
& =0.21
\end{aligned}
$$

Finally, under the scoring function s^{E} defined in Proposition 5

$$
\begin{aligned}
P_{k, s^{E}}^{E^{p}}\left(t_{e_{t}, \sim}\right)= & P_{2, s^{E}}^{E^{p}}\left(t_{8}\right) \\
= & \sum_{b=1}^{3}\left(\sum_{k^{\prime}=1}^{2} u_{\sim}\left(k^{\prime}, 8, b\right)+\sum_{k^{\prime}=2+1}^{2+b-1} \frac{2-\left(k^{\prime}-b\right)}{b} u_{\sim}\left(k^{\prime}, 8, b\right)\right) \\
= & u_{\sim}(1,8,1)+u_{\sim}(2,8,1) \\
& +u_{\sim}(1,8,2)+u_{\sim}(2,8,2)+\frac{1}{2} u_{\sim}(3,8,2) \\
& +u_{\sim}(2,8,3)+u_{\sim}(2,8,3)+\frac{2}{3} u_{\sim}(3,8,3)+\frac{1}{3} u_{\sim}(3,8,4) \\
= & 0.156
\end{aligned}
$$

6 Conclusion

We study the semantic and computational problems for top- k queries in probabilistic databases. We propose three desired postulates for a top- k semantics and discuss their satisfaction by all the semantics in the literature. Those postulates are our first step to benchmark different semantics. From the postulates, it is inconclusive that a single semantics is overwhelmingly better. We deem that the choice of the semantics should be guided by the application, which in turn, supports our efforts to explore postulates in order to create a profile of each semantics. Our Global-Top k semantics satisfies those postulates to a large degree. We study the computational problem of query evaluation under Global-Top k semantics for simple and general probabilistic relations when the
scoring function is injective. For the former, we propose a dynamic programming algorithm and effectively optimize it with Threshold Algorithm. For the latter, we show a polynomial reduction to the simple case. Furthermore, we extend our Global-Top k semantics to general scoring functions and introduce the concept of allocation policy to handle ties in score. To the best of our knowledge, this is the first attempt to address the tie problem rigorously. Previous work either does not consider ties or uses an arbitrary tie-breaking mechanism. Advanced dynamic programming algorithms are proposed for query evaluation under general scoring functions for both simple and general probabilistic relations.

For completeness, we list in Table 2 the complexity of the best known algorithm for each semantics in the literature. Since no other work address general scoring functions in a systematical way, those results are restricted to injective scoring functions.

Semantics	Simple Probabilistic DB	General Probabilistic DB
Global-Top k	$O(k n)$	$O\left(k n^{2}\right)$
PT- k	$O(k n)$	$O\left(k n^{2}\right)$
U-Top k	$O(n \log k)$	$O(n \log k)$
U- k Ranks	$O(k n)$	$O\left(k n^{2}\right)$

Table 2. Time Complexity of Different Semantics

7 Future Work

So far, almost unanimously, only independent and exclusive relationship among tuples are considered in the literature $[21,23,25]$. It will be interesting to investigate other complex relationships between tuples. Other possible directions include top- k evaluation in other uncertain database models proposed in the literature [13] and more general preference queries in probabilistic databases.

8 Acknowledgment

We acknowledge the input of Graham Cormode who showed that Faithfulness in general probabilistic relations is problematic. Jan Chomicki acknowledges the discussions with Sergio Flesca.

9 Appendix

9.1 Proofs of Semantic Postulates

Semantics	Exact k	Faithfulness	Stability
${ }^{\dagger}$ Global-Top k	$\checkmark(1)$	$\checkmark / \times(5)$	$\checkmark(9)$
PT- k	$\times(2)$	$\checkmark / \times(6)$	$\checkmark(10)$
U-Top k	$\times(3)$	$\checkmark / \times(7)$	$\checkmark(11)$
U- k Ranks	$\times(4)$	$\times(8)$	$\times(12)$

${ }^{\dagger}$ Postulates of Global-Topk semantics are proved under general scoring functions with Equal allocation policy.

Table 3. Postulate Satisfaction for Different Semantics in Table 1

Proof. The following proofs correspond to the numbers next to each entry in the above table.

Assume that we are given a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$, a non-negative integer k and an injective scoring function s.
(1) Global-Top k satisfies Exact k.

We compute the Global-Top k probability for each tuple in R. If there is at least k tuples in R, we are always able to pick the k tuples with the highest Global-Top k probability. In case when there are more than $k-r+1$ tuple(s) with the r th highest Global-Top k probability, where $r=1,2 \ldots, k$, only $k-r+1$ of them will be picked nondeterministically.
(2) PT- k violates Exact k

Example 4 illustrates a counterexample in a simple probabilistic relation.
(3) U-Top k violates Exact k.

Example 4 illustrates a counterexample in a simple probabilistic relation.
(4) U-kRanks violates Exact k.

Example 4 illustrates a counterexample in a simple probabilistic relation.
(5) Global-Top k satisfies Faithfulness in simple probabilistic relations while it violates

Faithfulness in general probabilistic relations.
Simple Probabilistic Relations
Proof. By the assumption, $t_{1} \succ_{s} t_{2}$ and $p\left(t_{1}\right)>p\left(t_{2}\right)$, so we need to show that $P_{k, s}\left(t_{1}\right)>P_{k, s}\left(t_{2}\right)$.
For every $W \in \operatorname{pwd}\left(R^{p}\right)$ such that $t_{2} \in \operatorname{all}_{k, s}(W)$ and $t_{1} \notin a l l_{k, s}(W)$, obviously $t_{1} \notin W$. Otherwise, since $t_{1} \succ_{s} t_{2}, t_{1}$ would be in $\operatorname{all}_{k, s}(W)$. Since all tuples are independent, there is always a world $W^{\prime} \in \operatorname{pwd}\left(R^{p}\right), W^{\prime}=\left(W \backslash\left\{t_{2}\right\}\right) \cup$ $\left\{t_{1}\right\}$ and $\operatorname{Pr}\left(W^{\prime}\right)=\operatorname{Pr}(W) \frac{p\left(t_{1}\right) \bar{p}\left(t_{2}\right)}{\bar{p}\left(t_{1}\right) p\left(t_{2}\right)}$. Since $p\left(t_{1}\right)>p\left(t_{2}\right), \operatorname{Pr}\left(W^{\prime}\right)>\operatorname{Pr}(W)$. Moreover, t_{1} will substitute for t_{2} in the top- k answer to W^{\prime}. It is easy to see that $\alpha\left(t_{1}, W^{\prime}\right)=1$ in W^{\prime} and also in any world W such that both t_{1} and t_{2} are in $a l l_{k, s}(W), \alpha\left(t_{1}, W\right)=1$.
Therefore, for the Global-Top k probability of t_{1} and t_{2}, we have

$$
\begin{aligned}
& P_{k, s}\left(t_{2}\right)=\sum_{\substack{W \in p w d\left(R^{p}\right) \\
t_{1} \in \operatorname{all_{k}s}(W) \\
t_{2} \in \operatorname{all} k_{k, s}(W)}} \alpha\left(t_{2}, W\right) \operatorname{Pr}(W)+\sum_{\substack{W \in \operatorname{pwd}\left(R^{p}\right) \\
t_{1} \notin \operatorname{all}_{k, s}(W) \\
t_{2} \in \operatorname{all}_{k, s}(W)}} \alpha\left(t_{2}, W\right) \operatorname{Pr}(W) \\
& <\sum_{\substack{W \in p w d\left(R^{p}\right) \\
t_{1} \in \operatorname{allk}_{k, s}(W) \\
t_{2} \in \operatorname{all}_{k, s}(W)}} \operatorname{Pr}(W)+\sum_{\substack{W^{\prime} \in \operatorname{pwd}\left(R^{p}\right) \\
t_{1} \in \operatorname{all} k_{k, s}\left(W^{\prime}\right) \\
t_{2} \notin W^{\prime}}} \operatorname{Pr}\left(W^{\prime}\right) \\
& =\sum_{\substack{W \in p w d\left(R^{p}\right) \\
t_{1} \in \operatorname{aulk}_{k, s}(W) \\
t_{2} \in \operatorname{all}_{k, s}(W)}} \alpha\left(t_{1}, W\right) \operatorname{Pr}(W)+\sum_{\substack{W^{\prime} \in p w d\left(R^{p}\right) \\
t_{1} \in \operatorname{all} l_{k, s}\left(W^{\prime}\right) \\
t_{2} \notin W^{\prime}}} \alpha\left(t_{1}, W^{\prime}\right) \operatorname{Pr}\left(W^{\prime}\right) \\
& \leq \sum_{\substack{W \in \operatorname{pwwd}^{2}\left(R^{p}\right) \\
t_{1} \in \operatorname{all}_{k, s}(W) \\
t_{2} \in \operatorname{all}_{k, s}(W)}} \alpha\left(t_{1}, W\right) \operatorname{Pr}(W)+\sum_{\substack{W^{\prime} \in p w d\left(R^{p}\right) \\
t_{1} \in \operatorname{call}_{k, s}\left(W^{\prime}\right) \\
t_{2} \notin W^{\prime}}} \alpha\left(t_{1}, W^{\prime}\right) \operatorname{Pr}\left(W^{\prime}\right) \\
& +\sum_{W^{\prime \prime} \in p w d\left(R^{p}\right)} \alpha\left(t_{1}, W^{\prime \prime}\right) \operatorname{Pr}\left(W^{\prime \prime}\right) \\
& t_{1} \in \operatorname{all}_{k, s}\left(W^{\prime \prime}\right) \\
& t_{2} \in W^{\prime \prime} \\
& t_{2} \notin \operatorname{all}_{k, s}\left(W^{\prime \prime}\right) \\
& =P_{k, s}\left(t_{1}\right) \text {. }
\end{aligned}
$$

The equality in \leq holds when $s\left(t_{2}\right)$ is among the k highest scores and there are at most k tuples (including t_{2}) with higher or equal scores. Since there is at least one inequality in the above equation, we have

$$
P_{k, s}\left(t_{1}\right)>P_{k, s}\left(t_{2}\right) .
$$

General Probabilistic Relations

The following is a counterexample.
Say $k=1, R=\left\{t_{1}, \ldots, t_{9}\right\}, t_{1} \succ_{s} \ldots \succ_{s} t_{9},\left\{t_{1}, \ldots, t_{7}, t_{9}\right\}$ are exclusive. $p\left(t_{i}\right)=0.1, i=1 \ldots 7, p\left(t_{8}\right)=0.4, p\left(t_{9}\right)=0.3$.
By Global-Top k, the top-1 answer is $\left\{t_{9}\right\}$, while $t_{8} \succ_{s} t_{9}$ and $p\left(t_{8}\right)>p\left(t_{9}\right)$, which violates Faithfulness.
(6) PT- k satisfies Faithfulness in simple probabilistic relations while it violates Faithfulness in general probabilistic relations.
For simple probabilistic relations, we can use the same proof in (5) to show that PTk satisfies Faithfulness. The only change would be that we need to show $P_{k, s}\left(t_{1}\right)>$ p_{τ} as well. Since $P_{k, s}\left(t_{2}\right)>p_{\tau}$ and $P_{k, s}\left(t_{1}\right)>P_{k, s}\left(t_{2}\right)$, this is obviously true. For general probabilistic relations, we can use the same counterexample in (5) and set threshold $p_{\tau}=0.15$.
(7) U-Top k satisfies Faithfulness in simple probabilistic relations while it violates Faithfulness in general probabilistic relations.
Simple Probabilistic Relations

Proof. By contradiction. If U-Topk violates Faithfulness in a simple probabilistic relation, there exists $R^{p}=\langle R, p, \mathcal{C}\rangle$ and exists $t_{i}, t_{j} \in R, t_{i} \succ_{s} t_{j}, p\left(t_{i}\right)>p\left(t_{j}\right)$, and by $\mathrm{U}-\mathrm{Top} k, t_{j}$ is in the top- k answer to R^{p} under the scoring function s while t_{i} is not.
S is a top- k answer to R^{p} under the function s by the U-Top k semantics, $t_{j} \in S$ and $t_{i} \notin S$. Denote by $Q_{k, s}(S)$ the probability of S under the U-Top k semantics. That is,

$$
Q_{k, s}(S)=\sum_{\substack{W \in p w d\left(R^{p}\right) \\ S=t o p_{k, s}(W)}} \operatorname{Pr}(W)
$$

For any world W contributing to $Q_{k, s}(S), t_{i} \notin W$. Otherwise, since $t_{i} \succ_{s} t_{j}$, t_{i} would be in $t o p_{k, s}(W)$, which is S. Define a world $W^{\prime}=\left(W \backslash\left\{t_{j}\right\}\right) \cup\left\{t_{i}\right\}$. Since t_{i} is independent of any other tuple in $R, W^{\prime} \in \operatorname{pwd}\left(R^{p}\right)$ and $\operatorname{Pr}\left(W^{\prime}\right)=$ $\operatorname{Pr}(W) \frac{p\left(t_{i}\right) \bar{p}\left(t_{j}\right)}{\bar{p}\left(t_{i}\right) p\left(t_{j}\right)}$. Moreover, top $_{k, s}\left(W^{\prime}\right)=\left(S \backslash\left\{t_{j}\right\}\right) \cup\left\{t_{i}\right\}$. Let $S^{\prime}=\left(S \backslash\left\{t_{j}\right\}\right) \cup$ $\left\{t_{i}\right\}$, then W^{\prime} contributes to $Q_{k, s}\left(S^{\prime}\right)$.

$$
\begin{aligned}
Q_{k, s}\left(S^{\prime}\right) & =\sum_{\substack{W \in p w d\left(R^{p}\right) \\
S^{\prime}=t o p_{k, s}(W)}} \operatorname{Pr}(W) \\
& \geq \sum_{\substack{W \in p w d\left(R^{p}\right) \\
S=t o p_{k, s}(W)}} \operatorname{Pr}\left(\left(W \backslash\left\{t_{j}\right\}\right) \cup\left\{t_{i}\right\}\right) \\
& =\sum_{\substack{W \in p w d\left(R^{p}\right) \\
S=t o p_{k, s}(W)}} \operatorname{Pr}(W) \frac{p\left(t_{i}\right) \bar{p}\left(t_{j}\right)}{\bar{p}\left(t_{i}\right) p\left(t_{j}\right)} \\
& =\frac{p\left(t_{i}\right) \bar{p}\left(t_{j}\right)}{\bar{p}\left(t_{i}\right) p\left(t_{j}\right)} \sum_{\substack{W \in p w d\left(R^{p}\right) \\
S=t o p_{k, s}(W)}} \operatorname{Pr}(W) \\
& =\frac{p\left(t_{i}\right) \bar{p}\left(t_{j}\right)}{\bar{p}\left(t_{i}\right) p\left(t_{j}\right)} Q_{k, s}(S) \\
& >Q_{k, s}(S),
\end{aligned}
$$

which is a contradiction.

General Probabilistic Relations

The following is a counterexample.
Say $k=2, R=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}, t_{1} \succ_{s} t_{2} \succ_{s} t_{3} \succ_{s} t_{4}, t_{1}$ and t_{2} are exclusive, t_{3} and t_{4} are exclusive. $p\left(t_{1}\right)=0.5, p\left(t_{2}\right)=0.45, p\left(t_{3}\right)=0.4, p\left(t_{4}\right)=0.3$.
By U-Top k, the top-2 answer is $\left\{t_{1}, t_{3}\right\}$, while $t_{2} \succ_{s} t_{3}$ and $p\left(t_{2}\right)>p\left(t_{3}\right)$, which violates Faithfulness.
(8) U- k Ranks violates Faithfulness.

The following is a counterexample.
Say $k=2, R^{p}$ is simple. $R=\left\{t_{1}, t_{2}, t_{3}\right\}, t_{1} \succ_{s} t_{2} \succ_{s} t_{3}, p\left(t_{1}\right)=0.48, p\left(t_{2}\right)=$ $0.8, p\left(t_{3}\right)=0.78$.
The probabilities of each tuple at each rank are as follows:

	t_{1}	t_{2}	t_{3}
rank 1	0.48	0.416	0.08112
rank 2	0	0.384	0.39936
rank 3	0	0	0.29952

By U- k Ranks, the top- 2 answer set is $\left\{t_{1}, t_{3}\right\}$ while $t_{2} \succ t_{3}$ and $p\left(t_{2}\right)>p\left(t_{3}\right)$, which contradicts Faithfulness.
(9) Global-Topk satisfies Stability.

Proof. In the rest of this proof, let A be the set of all winners under the GlobalTop k semantics.

Part I: Probability.
Case 1: Winners.
For any winner $t \in A$, if we only raise the probability of t, we have a new probabilistic relation $\left(R^{p}\right)^{\prime}=\left\langle R, p^{\prime}, \mathcal{C}\right\rangle$, where the new probability function p^{\prime} is such that $p^{\prime}(t)>p(t)$ and for any $t^{\prime} \in R, t^{\prime} \neq t, p^{\prime}\left(t^{\prime}\right)=p\left(t^{\prime}\right)$. Note that $p w d\left(R^{p}\right)=\operatorname{pwd}\left(\left(R^{p}\right)^{\prime}\right)$. In addition, assume $t \in C_{t}$, where $C_{t} \in \mathcal{C}$. By GlobalTopk,

$$
P_{k, s}^{R^{p}}(t)=\sum_{\substack{W \in p w d\left(R^{p}\right) \\ t \in \operatorname{all}_{k, s}(W)}} \alpha(t, W) \operatorname{Pr}(W)
$$

and

$$
\begin{aligned}
P_{k, s}^{\left(R^{p}\right)^{\prime}}(t) & =\sum_{\substack{W \in p w d\left(R^{p}\right) \\
t \in \operatorname{all}_{k, s}(W)}} \alpha(t, W) \operatorname{Pr}(W) \frac{p^{\prime}(t)}{p(t)} \\
& =\frac{p^{\prime}(t)}{p(t)} P_{k, s}^{R^{p}}(t) .
\end{aligned}
$$

For any other tuple $t^{\prime} \in R, t^{\prime} \neq t$, we have the following equation:

$$
\begin{aligned}
& P_{k, s}^{\left(R^{p}\right)^{\prime}}\left(t^{\prime}\right)=\sum_{\substack{W \in p w d\left(R^{p}\right) \\
t^{\prime} \in a l l l_{k, s}(W), t \in W}} \alpha\left(t^{\prime}, W\right) \operatorname{Pr}(W) \frac{p^{\prime}(t)}{p(t)} \\
& +\sum_{\substack{W \in p w d\left(R^{p}\right) \\
t^{\prime} \in a l l_{k}, s(W), t \notin W}} \alpha\left(t^{\prime}, W\right) \operatorname{Pr}(W) \frac{c-p^{\prime}(t)}{c-p(t)} \\
& \begin{array}{l}
t^{\prime} \in \operatorname{all} l_{k, s}(W), t \notin W \\
\left(C_{t} \backslash\{t\}\right) \cap W=\emptyset
\end{array} \\
& +\sum_{W \in p w d\left(R^{p}\right)} \alpha\left(t^{\prime}, W\right) \operatorname{Pr}(W) \\
& t^{\prime} \in \operatorname{all}_{k, s}(W), t \notin W \\
& \left(C_{t} \backslash\{t\}\right) \cap W \neq \emptyset \\
& \leq \frac{p^{\prime}(t)}{p(t)}\left(\sum_{\substack{W \in p w d\left(R^{p}\right) \\
t^{\prime} \in \operatorname{all} k_{k, s}(W) \\
t \in W}} \alpha\left(t^{\prime}, W\right) \operatorname{Pr}(W)\right. \\
& +\sum_{\substack{W \in p w d\left(R^{p}\right) \\
t^{\prime} \in a l l_{k}, s \\
(W), t \notin W}} \alpha\left(t^{\prime}, W\right) \operatorname{Pr}(W) \\
& \left(C_{t} \backslash\{t\}\right) \cap W=\emptyset \\
& \left.+\sum_{W \in p w d\left(R^{p}\right)} \alpha\left(t^{\prime}, W\right) \operatorname{Pr}(W)\right) \\
& t^{\prime} \in \operatorname{all}_{k, s}(W), t \notin W \\
& \left(C_{t} \backslash\{t\}\right) \cap W \neq \emptyset \\
& =\frac{p^{\prime}(t)}{p(t)} P_{k, s}^{R^{p}}\left(t^{\prime}\right),
\end{aligned}
$$

where $c=1-\sum_{t^{\prime \prime} \in C_{t} \backslash\{t\}} p\left(t^{\prime \prime}\right)$.
Now we can see that, t 's Global-Top k probability in $\left(R^{p}\right)^{\prime}$ will be raised to exactly $\frac{p^{\prime}(t)}{p(t)}$ times of that in R^{p} under the same weak order scoring function s, and for any tuple other than t, its Global-Top k probability in $\left(R^{p}\right)^{\prime}$ can be raised to as much as $\frac{p^{\prime}(t)}{p(t)}$ times of that in R^{p} under the same scoring function s. As a result, $P_{k, s}^{\left(R^{p}\right)^{\prime}}(t)$ is still among the highest k Global-Top k probabilities in $\left(R^{p}\right)^{\prime}$ under the function s, and therefore still a winner.
Case 2: Losers.
This case is similar to Case 1.
Part II: Score.
Case 1: Winners.
For any winner $t \in A$, we evaluate R^{p} under a new general scoring function s^{\prime}. Comparing to s, s^{\prime} only raises the score of t. That is, $s^{\prime}(t)>s(t)$ and for any $t^{\prime} \in R, t^{\prime} \neq t, s^{\prime}\left(t^{\prime}\right)=s\left(t^{\prime}\right)$. Then, in addition to all the worlds already totally (i.e. $\alpha(t, W)=1$) or partially (i.e. $\alpha(t, W)<1$) contributing to t 's Global-Top k probability when evaluating R^{p} under s, some other worlds may now totally or partially contribute to t 's Global-Top k probability. Because, under the function s^{\prime},
t might climb high enough to be in the top- k answer set of those worlds. Moreover, if a possible world W contributes paritally under scoring function s, it is easy to see that it contributes totally under scoring function s^{\prime}.
For any tuple $t^{\prime \prime}$ other than t in R,
(i) If $s\left(t^{\prime \prime}\right) \neq s(t)$, then its Global-Top k probability under the function s^{\prime} either stays the same (if the "climbing" of t does not knock that tuple out of the top- k answer in some possible world) or decreases (otherwise);
(ii) If $s\left(t^{\prime \prime}\right)=s(t)$, then for any possible world W contributing to $t^{\prime \prime}$'s GlobalTop k under scoring function $s, \alpha\left(t^{\prime \prime}, W\right)=\frac{k-a}{b}$, and now under scoring function $s^{\prime}, \alpha^{\prime}\left(t^{\prime \prime}, W\right)=\frac{k-a-1}{b-1}<\frac{k-a}{b}=\alpha\left(t^{\prime \prime}, W\right)$. Therefore the Global-Top k of $t^{\prime \prime}$ under scoring function s^{\prime} is less than that under scoring function s.
Consequently, t is still a winner when evaluating R^{p} under the function s^{\prime}.
Case 2: Losers.
This case is similar to Case 1.
(10) PT- k satisfies Stability.

Proof. In the rest of this proof, let A be the set of all winners under the PT- k semantics.
Part I: Probability.
Case 1: Winners.
For any winner $t \in A$, if we only raise the probability of t, we have a new probabilistic relation $\left(R^{p}\right)^{\prime}=\left\langle R, p^{\prime}, \mathcal{C}\right\rangle$, where the new probability function p^{\prime} is such that $p^{\prime}(t)>p(t)$ and for any $t^{\prime} \in R, t^{\prime} \neq t, p^{\prime}\left(t^{\prime}\right)=p\left(t^{\prime}\right)$. Note that $p w d\left(R^{p}\right)=\operatorname{pwd}\left(\left(R^{p}\right)^{\prime}\right)$. In addition, assume $t \in C_{t}$, where $C_{t} \in \mathcal{C}$. The GlobalTop k probability of t is such that

$$
P_{k, s}^{R^{p}}(t)=\sum_{\substack{W \in p w d\left(R^{p}\right) \\ t \in \operatorname{top}_{k, s}(W)}} \operatorname{Pr}(W) \geq p_{\tau}
$$

and

$$
\begin{aligned}
P_{k, s}^{\left(R^{p}\right)^{\prime}}(t) & =\sum_{\substack{W \in p w d\left(R^{p}\right) \\
t \in t o p_{k, s}(W)}} \operatorname{Pr}(W) \frac{p^{\prime}(t)}{p(t)} \\
& =\frac{p^{\prime}(t)}{p(t)} P_{k, s}^{R^{p}}(t)>P_{k, s}^{R^{p}}(t) \geq p_{\tau} .
\end{aligned}
$$

Therefore, $P_{k, s}^{\left(R^{p}\right)^{\prime}}(t)$ is still above the threshold p_{τ}, and t still belongs to the top- k answer of $\left(R^{p}\right)^{\prime}$ under the function s.
Case 2: Losers.
This case is similar to Case 1.
Part II: Score.
Case 1: Winners.
For any winner $t \in A$, we evaluate R^{p} under a new scoring function s^{\prime}. Comparing to s, s^{\prime} only raises the score of t. Use a similar argument as that in (9) Part II

Case 1 but under injective scoring functions, we can show that the Global-Topk probability of t is non-decreasing and is still above the threshold p_{τ}. Therefore, tuple t still belongs to the top- k answer under the function s^{\prime}.
Case 2: Losers.
This case is similar to Case 1.
(11) U-Topk satisfies Stability.

Proof. In the rest of this proof, let A be the set of all winners under U-Topk semantics.
Part I: Probability.
Case 1: Winners.
For any winner $t \in A$, if we only raise the probability of t, we have a new probabilistic relation $\left(R^{p}\right)^{\prime}=\left\langle R, p^{\prime}, \mathcal{C}\right\rangle$, where the new probabilistic function p^{\prime} is such that $p^{\prime}(t)>p(t)$ and for any $t^{\prime} \in R, t^{\prime} \neq t, p^{\prime}\left(t^{\prime}\right)=p\left(t^{\prime}\right)$. In the following discussion, we use superscript to indicate the probability in the context of $\left(R^{p}\right)^{\prime}$. Note that $p w d\left(R^{p}\right)=p w d\left(\left(R^{p}\right)^{\prime}\right)$.
Recall that $Q_{k, s}\left(A_{t}\right)$ is the probability of a top- k answer set $A_{t} \subseteq A$ under U-Top k semantics, where $t \in A_{t}$. Since $t \in A_{t}, Q_{k, s}^{\prime}\left(A_{t}\right)=Q_{k, s}\left(A_{t}\right) \frac{p^{\prime}(t)}{p(t)}$.
For any candidate top- k set B other than A_{t}, i.e. $\exists W \in \operatorname{pwd}\left(R^{p}\right), t o p_{k, s}(W)=B$ and $B \neq A_{t}$. By definition,

$$
Q_{k, s}(B) \leq Q_{k, s}\left(A_{t}\right)
$$

For any world W contributing to $Q_{k, s}(B)$, its probability either increase $\frac{p^{\prime}(t)}{p(t)}$ times (if $t \in W$), or stays the same (if $t \notin W$ and $\exists t^{\prime} \in W, t^{\prime}$ and t are exclusive), or decreases (otherwise). Therefore,

$$
Q_{k, s}^{\prime}(B) \leq Q_{k, s}(B) \frac{p^{\prime}(t)}{p(t)}
$$

Altogether,

$$
Q_{k, s}^{\prime}(B) \leq Q_{k, s}(B) \frac{p^{\prime}(t)}{p(t)} \leq Q_{k, s}\left(A_{t}\right) \frac{p^{\prime}(t)}{p(t)}=Q_{k, s}^{\prime}\left(A_{t}\right)
$$

Therefore, A_{t} is still a top- k answer to $\left(R^{p}\right)^{\prime}$ under the function s and $t \in A_{t}$ is still a winner.
Case 2: Losers.
It is more complicated in the case of losers. We need to show that for any loser t, if we decrease its probability, no top- k candidate set B_{t} containing t will be a new top- k answer set under the $\mathrm{U}-\mathrm{Top} k$ semantics. The procedure is similar to that in Case 1, except that when we analyze the new probability of any original top- k answer set A_{i}, we need to differentiate between two cases:
(a) t is exclusive with some tuple in A_{i};
(b) t is independent of all the tuples in A_{i}.

It is easier with (a), where all the worlds contributing to the probability of A_{i} do not contain t. In (b), some worlds contributing to the probability of A_{i} contain t, while others do not. And we calculate the new probability for those two kinds of
worlds differently. As we will see shortly, the probability of A_{i} stays unchanged in either (a) or (b).
For any loser $t \in R, t \notin A$, by applying the technique used in Case 1 , we have a new probabilistic relation $\left(R^{p}\right)^{\prime}=\left\langle R, p^{\prime}, \mathcal{C}\right\rangle$, where the new probabilistic function p^{\prime} is such that $p^{\prime}(t)<p(t)$ and for any $t^{\prime} \in R, t^{\prime} \neq t, p^{\prime}\left(t^{\prime}\right)=p\left(t^{\prime}\right)$. Again, $\operatorname{pwd}\left(R^{p}\right)=\operatorname{pwd}\left(\left(R^{p}\right)^{\prime}\right)$.
For any top- k answer set A_{i} to R^{p} under the function $s, A_{i} \subseteq A$. Denote by $S_{A_{i}}$ all the possible worlds contributing to $Q_{k, s}\left(A_{i}\right)$. Based on the membership of $t, S_{A_{i}}$ can be partitioned into two subsets $S_{A_{i}}^{t}$ and $S_{A_{i}}^{\bar{t}}$.

$$
\begin{aligned}
& S_{A_{i}}=\left\{W \mid W \in \operatorname{pwd}\left(R^{p}\right), \operatorname{top}_{k, s}(W)=A_{i}\right\} \\
& S_{A_{i}}=S_{A_{i}}^{t} \cup S_{A_{i}}^{\bar{t}}, S_{A_{i}}^{t} \cap S_{A_{i}}^{\bar{t}}=\emptyset, \\
& \forall W \in S_{A_{i}}^{t}, t \in W \text { and } \forall W \in S_{A_{i}}^{\bar{t}}, t \notin W .
\end{aligned}
$$

If t is exclusive with some tuple in $A_{i}, S_{A_{i}}^{t}=\emptyset$. In this case, any world $W \in S_{A_{i}}^{\bar{t}}$ contains one of t 's exclusive tuples, therefore W^{\prime} 's probability will not be affected by the change in t 's probability. In this case,

$$
\begin{aligned}
Q_{k, s}^{\prime}\left(A_{i}\right) & =\sum_{\substack{W \in p w d\left(R^{p}\right) \\
W \in S_{A_{i}}^{t}}} \operatorname{Pr}^{\prime}(W)=\sum_{\substack{W \in p w d\left(R^{p}\right) \\
W \in S_{A_{i}}^{t}}} \operatorname{Pr}(W) \\
& =Q_{k, s}\left(A_{i}\right)
\end{aligned}
$$

Otherwise, t is independent of all the tuples in A_{i}. In this case,

$$
\frac{\sum_{\substack{W \in \operatorname{pwd}_{t}^{t}\left(R^{p}\right)}} \operatorname{Pr}(W)}{\sum_{\substack{W \in \operatorname{pwd}\left(R^{p}\right) \\ W \in S_{A_{i}}^{t}}} \operatorname{Pr}(W)}=\frac{p(t)}{1-p(t)}
$$

and

$$
\begin{aligned}
Q_{k, s}^{\prime}\left(A_{i}\right)= & \sum_{\substack{W \in p w d\left(R^{p}\right) \\
W \in S_{A_{A_{i}}}^{t}}} \operatorname{Pr}(W) \frac{p^{\prime}(t)}{p(t)} \\
& +\sum_{\substack{W \in p w d\left(R^{p}\right) \\
W \in S_{A_{i}}^{d}}} \operatorname{Pr}(W) \frac{1-p^{\prime}(t)}{1-p(t)} \\
= & \sum_{\substack{W \in p w d\left(R^{p}\right) \\
W \in S_{A_{i}}}} \operatorname{Pr}(W) \\
= & Q_{k, s}\left(A_{i}\right) .
\end{aligned}
$$

We can see that in both cases, $Q_{k, s}^{\prime}\left(A_{i}\right)=Q_{k, s}\left(A_{i}\right)$.

Now for any top- k candidate set containing t, say B_{t} such that $B_{t} \nsubseteq A$, by definition, $Q_{k, s}\left(B_{t}\right)<Q_{k, s}\left(A_{i}\right)$. Moreover,

$$
Q_{k, s}^{\prime}\left(B_{t}\right)=Q_{k, s}\left(B_{t}\right) \frac{p^{\prime}(t)}{p(t)}<Q_{k, s}\left(B_{t}\right)
$$

Therefore,

$$
Q_{k, s}^{\prime}\left(B_{t}\right)<Q_{k, s}\left(B_{t}\right)<Q_{k, s}\left(A_{i}\right)=Q_{k, s}^{\prime}\left(A_{i}\right)
$$

Consequently, B_{t} is still not a top- k answer to $\left(R^{p}\right)^{\prime}$ under the function s. Since no top- k candidate set containing t can be a top- k answer set to $\left(R^{p}\right)^{\prime}$ under the function s, t is still a loser.
Part II: Score.
Again, $A_{i} \subseteq A$ is a top- k answer set to R^{p} under the function s by U-Top k semantics.
Case 1: Winners.
For any winner $t \in A_{i}$, we evaluate R^{p} under a new scoring function s^{\prime}. Comparing to s, s^{\prime} only raises the score of t. That is, $s^{\prime}(t)>s(t)$ and for any $t^{\prime} \in R, t^{\prime} \neq$ $t, s^{\prime}\left(t^{\prime}\right)=s\left(t^{\prime}\right)$. In some possible world such that $W \in p w d\left(R^{p}\right)$ and $t o p_{k, s}(W) \neq$ A_{i}, t might climb high enough to be in $t o p_{k, s^{\prime}}(W)$. Define T to the set of such top- k candidate sets.

$$
T=\left\{t o p_{k, s^{\prime}}(W) \mid W \in \operatorname{pwd}\left(R^{p}\right), t \notin \operatorname{top}_{k, s}(W) \wedge t \in t_{o p}(W)\right\}
$$

Only a top- k candidate set $B_{j} \in T$ can possibly end up with a probability higher than that of A_{i} across all possible worlds, and thus substitute for A_{i} as a new top- k answer set to R^{p} under the function s^{\prime}. In that case, $t \in B_{j}$, so t is still a winner.
Case 2: Losers.
For any loser $t \in R, t \notin A$. Using a similar technique to Case 1 , the new scoring function s^{\prime} is such that $s^{\prime}(t)<s(t)$ and for any $t^{\prime} \in R, t^{\prime} \neq t, s^{\prime}\left(t^{\prime}\right)=$ $s\left(t^{\prime}\right)$. When evaluating R^{p} under the function s^{\prime}, for any world $W \in \operatorname{pwd}\left(R^{p}\right)$ such that $t \notin \operatorname{top}_{k, s}(W)$, the score decrease of t will not effect its top- k answer, i.e. $\operatorname{top}_{k, s^{\prime}}(W)=\operatorname{top}_{k, s}(W)$. For any world $W \in \operatorname{pwd}\left(R^{p}\right)$ such that $t \in \operatorname{top}_{k, s}(W), t$ might go down enough to drop out of $t o p_{k, s^{\prime}}(W)$. In this case, W will contribute its probability to a top- k candidate set without t, instead of the original one with t. In other words, under the function s^{\prime}, comparing to the evaluation under the function s, the probability of a top- k candidate set with t is non-increasing, while the probability of a top- k candidate set without t is nondecreasing ${ }^{2}$.
Since any top- k answer set to R^{p} under the function s does not contain t, it follows from the above analysis that any top- k candidate set containing t will not be a top- k answer set to R^{p} under the new function s^{\prime}, and thus t is still a loser.

[^2](12) U- k Ranks violates Stability.

The following is a counterexample.
Say $k=2, R^{p}$ is simple. $R=\left\{t_{1}, t_{2}, t_{3}\right\}, t_{1} \succ_{s} t_{2} \succ_{s} t_{3} . p\left(t_{1}\right)=0.3, p\left(t_{2}\right)=$ $0.4, p\left(t_{3}\right)=0.3$.

	t_{1}	t_{2}	t_{3}
rank 1	0.3	0.28	0.126
rank 2	0	0.12	0.138
rank 3	0	0	0.036

By U- k Ranks, the top-2 answer set is $\left\{t_{1}, t_{3}\right\}$.
Now raise the score of t_{3} such that $t_{1} \succ_{s^{\prime}} t_{3} \succ_{s^{\prime}} t_{2}$.

	t_{1}	t_{3}	t_{2}
rank 1	0.3	0.21	0.196
rank 2	0	0.09	0.168
rank 3	0	0	0.036

By U- k Ranks, the top- 2 answer set is $\left\{t_{1}, t_{2}\right\}$. By raising the score of t_{3}, we actually turn the winner t_{3} to a loser, which contradicts Stability.

9.2 Proof for Proposition 1

Proposition 1. Given a simple probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$ and an injective scoring function s over R^{p}, if $R=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ and $t_{1} \succ_{s} t_{2} \succ_{s} \ldots \succ_{s} t_{n}$, the following recursion on Global-Topk queries holds.

$$
q(k, i)=\left\{\begin{array}{lr}
0 & k=0 \\
p\left(t_{i}\right) & 1 \leq i \leq k \\
\left(q(k, i-1) \frac{\bar{p}\left(t_{i-1}\right)}{p\left(t_{i-1}\right)}+q(k-1, i-1)\right) p\left(t_{i}\right) & \text { otherwise }
\end{array}\right.
$$

where $q(k, i)=P_{k, s}\left(t_{i}\right)$ and $\bar{p}\left(t_{i-1}\right)=1-p\left(t_{i-1}\right)$.
Proof. By induction on k and i.

- Base case.
- $k=0$

For any $W \in \operatorname{pwd}\left(R^{p}\right)$, top $_{0, s}(W)=\emptyset$. Therefore, for any $t_{i} \in R$, the GlobalTop k probability of t_{i} is 0 .

- $k>0$ and $i=1$
t_{1} has the highest score among all tuples in R. As long as tuple t_{1} appears in a possible world W, it will be in the $\operatorname{top}_{k, s}(W)$. So the Global-Top k probability of t_{i} is the probability that t_{1} appears in possible worlds, i.e. $q(k, 1)=p\left(t_{1}\right)$.
- Inductive step.

Assume the theorem holds for $0 \leq k \leq k_{0}$ and $1 \leq i \leq i_{0}$. For any $W \in \operatorname{pwd}\left(R^{p}\right)$, $t_{i_{0}} \in \operatorname{top}_{k_{0}, s}(W)$ iff $t_{i_{0}} \in W$ and there are at most $k_{0}-1$ tuples with higher score in W. Note that any tuple with score lower than the score of $t_{i_{0}}$ does not have any
influence on $q\left(k_{0}, i_{0}\right)$, because its presence/absence in a possible world will not affect the presence of $t_{i_{0}}$ in the top- k answer of that world.
Since all the tuples are independent,

$$
q\left(k_{0}, i_{0}\right)=p\left(t_{i_{0}}\right) \sum_{\substack{W \in p w d\left(R^{p}\right) \\\left|\left\{t \mid t \in W \wedge t \succ_{s} t_{i_{0}}\right\}\right|<k_{0}}} \operatorname{Pr}(W)
$$

(1) $q\left(k_{0}, i_{0}+1\right)$ is the Global-Top k_{0} probability of tuple $t_{i_{0}+1}$.

$$
\begin{aligned}
& q\left(k_{0}, i_{0}+1\right)=\sum_{\substack{W \in p w d\left(R^{p}\right) \\
t_{i_{0}+1} \in t_{0} p_{k}(W)}} \operatorname{Pr}(W) \\
& t_{i_{0}+1} \in \operatorname{top}_{k_{0}, s}(W) \\
& t_{i_{0}} \in \text { top }_{k_{0}, s}(W) \\
& +\sum_{W \in \operatorname{pwd}\left(R^{p}\right)} \operatorname{Pr}(W) \\
& t_{i_{0}+1} \in \text { top }_{k_{0}, s}(W) \\
& t_{i_{0}} \in W, t_{i_{0}} \notin \text { top }_{k_{0}, s}(W) \\
& +\sum_{W \in \operatorname{pwd}\left(R^{p}\right)} \operatorname{Pr}(W) \text {. } \\
& t_{i_{0}+1} \in \text { top }_{k_{0}, s}(W) \\
& t_{i_{0}} \notin W
\end{aligned}
$$

For the first part of the left hand side,

$$
\sum_{\substack{W \in p w d\left(R^{p}\right) \\ t_{i_{0}+1} \in t o p_{k_{0}, s}(W) \\ t_{i_{0}} \in \operatorname{top}_{k_{0}-1, s}(W)}} \operatorname{Pr}(W)=p\left(t_{i_{0}+1}\right) q\left(k_{0}-1, i_{0}\right)
$$

The second part is zero. Since $t_{i_{0}} \succ_{s} t_{i_{0}+1}$, if $t_{i_{0}+1} \in t_{o p_{k_{0}, s}}(W)$ and $t_{i_{0}} \in$ W, then $t_{i_{0}} \in t o p_{k_{0}, s}(W)$.
The third part is the sum of the probabilities of all possible worlds such that $t_{i_{0}+1} \in W, t_{i_{0}} \notin W$ and there are at most $k_{0}-1$ tuples with score higher than the score of $t_{i_{0}}$ in W. So it is equivalent to

$$
\begin{aligned}
& p\left(t_{i_{0}+1}\right) \bar{p}\left(t_{i_{0}}\right) \sum_{\left|\left\{t \mid t \in W \wedge t \succ_{s} t_{i_{0}}\right\}\right|<k_{0}} \operatorname{Pr}(W) \\
= & p\left(t_{i_{0}+1}\right) \bar{p}\left(t_{i_{0}}\right) \frac{q\left(k_{0}, i_{0}\right)}{p\left(t_{i_{0}}\right)} .
\end{aligned}
$$

Altogehter, we have

$$
\begin{aligned}
& q\left(k_{0}, i_{0}+1\right) \\
= & p\left(t_{i_{0}+1}\right) q\left(k_{0}-1, i_{0}\right)+p\left(t_{i_{0}+1}\right) \bar{p}\left(t_{i_{0}}\right) \frac{q\left(k_{0}, i_{0}\right)}{p\left(t_{i_{0}}\right)} \\
= & \left(q\left(k_{0}-1, i_{0}\right)+q\left(k_{0}, i_{0}\right) \frac{\bar{p}\left(t_{i_{0}}\right)}{p\left(t_{i_{0}}\right)}\right) p\left(t_{i_{0}+1}\right) .
\end{aligned}
$$

(2) $q\left(k_{0}+1, i_{0}\right)$ is the $\operatorname{Global}-\operatorname{Top}\left(k_{0}+1\right)$ probability of tuple $t_{i_{0}}$. Use a similar argument as above, it can be shown that this case is correctly computed by Equation (3) as well.

9.3 Proof for Theorem 2

Theorem 2 (Correctness of Algorithm 1'). Given a simple probabilistic relation $R^{p}=$ $\langle R, p, \mathcal{C}\rangle$, a non-negative integer k and an injective scoring function s over R^{p}, the above TA-based algorithm correctly finds a top-k answer under Global-Topk semantics.

Proof. In every iteration of Step (2), say $\underline{t}=t_{i}$, for any unseen tuple t, s^{\prime} is an injective scoring function over R^{p}, which only differs from s in the score of t. Under the function $s^{\prime}, t_{i} \succ_{s^{\prime}} t \succ_{s^{\prime}} t_{i+1}$. If we evaluate the top- k query in R^{p} under s^{\prime} instead of s, $P_{k, s^{\prime}}(t)=\frac{p(t)}{\underline{p}} U P$. On the other hand, for any $W \in p w d\left(R^{p}\right), W$ contributing to $P_{k, s}(t)$ implies that W contributes to $P_{k, s^{\prime}}(t)$, while the reverse is not necessarily true. So, we have $P_{k, s^{\prime}}(t) \geq P_{k, s}(t)$. Recall that $\underline{p} \geq p(t)$, therefore $U P \geq \frac{p(t)}{\underline{p}} U P=$ $P_{k, s^{\prime}}(t) \geq P_{k, s}(t)$. The conclusion follows from the correctness of the original TA algorithm and Algorithm 1.

9.4 Proof for Lemma 1

Lemma 1. Let $R^{p}=\langle R, p, \mathcal{C}\rangle$ be a probabilistic relation, s an injective scoring function, $t \in R$, and $E^{p}=\left\langle E, p^{E}, \mathcal{C}^{E}\right\rangle$ the event relation induced by t. Define $Q^{p}=$ $\left\langle E-\left\{t_{e_{t}}\right\}, p^{E}, \mathcal{C}^{E}-\left\{\left\{t_{e_{t}}\right\}\right\}\right\rangle$. Then, the Global-Topk probability of t satisfies the following:

$$
P_{k, s}^{R^{p}}(t)=p(t) \sum_{\substack{W_{e} \in p w d\left(Q^{p}\right) \\\left|W_{e}\right|<k}} \operatorname{Pr}\left(W_{e}\right) .
$$

Proof. Given $t \in R, k$ and s, let A be a subset of $p w d\left(R^{p}\right)$ such that $W \in A \Leftrightarrow t \in$ $t_{o p}{ }_{k, s}(W)$. If we group all the possible worlds in A by the set of parts whose tuple in W has higher score than the score of t, then we will have the following partition:

$$
A=A_{1} \cup A_{2} \cup \ldots \cup A_{q}, A_{i} \cap A_{j}=\emptyset, i \neq j
$$

and

$$
\begin{aligned}
& \forall A_{i}, \forall W_{1}, W_{2} \in A_{i}, i=1,2, \ldots, q \\
& \left\{C_{j} \mid \exists t^{\prime} \in W_{1} \cap C_{j}, t^{\prime} \succ_{s} t\right\}=\left\{C_{j} \mid \exists t^{\prime} \in W_{2} \cap C_{j}, t^{\prime} \succ_{s} t\right\} .
\end{aligned}
$$

Moreover, denote $C h a r P a r t s\left(A_{i}\right)$ to A_{i} 's characteristic set of parts.
Now, let B be a subset of $\operatorname{pwd}\left(Q^{p}\right)$, such that $W_{e} \in B \Leftrightarrow\left|W_{e}\right|<k$. There is a bijection $g:\left\{A_{i} \mid A_{i} \in A\right\} \rightarrow B$, mapping each part A_{i} in A to a possible world in B which contains only tuples corresponding to the parts in A_{i} 's characteristic set.

$$
g\left(A_{i}\right)=\left\{t_{e_{C_{j}}} \mid C_{j} \in C h a r P a r t s\left(A_{i}\right)\right\} .
$$

The following equation holds from the definition of induced event relation and Proposition 2.

$$
\begin{aligned}
\sum_{W \in A_{i}} \operatorname{Pr}(W) & =p(t) \prod_{C_{i} \in \operatorname{CharParts}\left(A_{i}\right)} p\left(t_{e_{C_{i}}}\right) \prod_{\substack{C_{i} \in \mathcal{C}-\left\{C_{i d(t)}\right\} \\
C_{i} \notin \operatorname{CharParts}\left(A_{i}\right)}}\left(1-p\left(t_{e_{C_{i}}}\right)\right) \\
& =p(t) \operatorname{Pr}\left(g\left(A_{i}\right)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
P_{k, s}^{R^{p}}(t) & =\sum_{W \in A} \operatorname{Pr}(W)=\sum_{i=1}^{q}\left(\sum_{W \in A_{i}} \operatorname{Pr}(W)\right) \\
& =\sum_{i=1}^{q} p(t) \operatorname{Pr}\left(g\left(A_{i}\right)\right)=p(t) \sum_{i=1}^{q} \operatorname{Pr}\left(g\left(A_{i}\right)\right) \\
& =p(t) \sum_{W_{e} \in B} \operatorname{Pr}\left(W_{e}\right) \\
& =p(t)\left(\sum_{\substack{W_{e} \in \operatorname{pwd}\left(Q^{p}\right) \\
\left|W_{e}\right|<k}} \operatorname{Pr}\left(W_{e}\right)\right) .
\end{aligned}
$$

9.5 Proof for Proposition 3

Proposition 3 (Correctness of Algorithm 4). Given a probabilistic relation $R^{p}=$ $\langle R, p, \mathcal{C}\rangle$ and an injective scoring function s, for any $t \in R^{p}$, the Global-Topk probability of t equals the Global-Topk probability of $t_{e_{t}}$ when evaluating top- k in the induced event relation $E^{p}=\left\langle E, p^{E}, \mathcal{C}^{E}\right\rangle$ under the injective scoring function $s^{E}: E \rightarrow$ $\mathbb{R}, s^{E}\left(t_{e_{t}}\right)=\frac{1}{2}$ and $s^{E}\left(t_{e_{C_{i}}}\right)=i$:

$$
P_{k, s}^{R^{p}}(t)=P_{k, s^{E}}^{E^{p}}\left(t_{e_{t}}\right)
$$

Proof. Since $t_{e_{t}}$ has the lowest score under s^{E}, for any $W_{e} \in \operatorname{pwd}\left(E^{p}\right)$, the only chance $t_{e_{t}} \in \operatorname{top}_{k, s^{E}}\left(W_{e}\right)$ is when there are at most k tuples in W_{e}, including $t_{e_{t}}$.

$$
\begin{aligned}
& \forall W_{e} \in \operatorname{pwd}\left(E^{p}\right) \\
& t_{e_{t}} \in \operatorname{top}_{k, s}\left(W_{e}\right) \Leftrightarrow\left(t_{e_{t}} \in W_{e} \wedge\left|W_{e}\right| \leq k\right)
\end{aligned}
$$

Therefore,

$$
P_{k, s^{E}}^{E^{p}}\left(t_{e_{t}}\right)=\sum_{t_{e_{t}} \in W_{e} \wedge\left|W_{e}\right| \leq k} \operatorname{Pr}\left(W_{e}\right) .
$$

In the proof of Lemma $1, B$ contains all the possible worlds having at most $k-1$ tuples from $E-\left\{t_{e_{t}}\right\}$. By Proposition 2,

$$
\sum_{t_{e_{t}} \in W_{e} \wedge\left|W_{e}\right| \leq k} \operatorname{Pr}\left(W_{e}\right)=p(t) \sum_{W_{e}^{\prime} \in B} \operatorname{Pr}\left(W_{e}^{\prime}\right)
$$

By Lemma 1,

$$
p(t) \sum_{W_{e}^{\prime} \in B} \operatorname{Pr}\left(W_{e}^{\prime}\right)=P_{k, s}^{R^{p}}(t) .
$$

Consequently,

$$
P_{k, s}^{R^{p}}(t)=P_{k, s^{E}}^{E^{p}}\left(t_{e_{t}}\right)
$$

9.6 Proof for Proposition 4

Proposition 4 (Correctness of Algorithm 5). Let $R^{p}=\langle R, p, \mathcal{C}\rangle$ be a simple probabilistic relation where $R=\left\{t_{1}, \ldots, t_{n}\right\}, t_{1} \succeq_{s} t_{2} \succeq_{s} \ldots \succeq_{s} t_{n}, k$ a non-negative integer and s a scoring function. For every $t_{l} \in R$, the Global-Topk probability of t_{l} can be computed by the following equation:

$$
P_{k, s}^{R^{p}}\left(t_{l}\right)=\sum_{k^{\prime}=0}^{k-1} T_{k^{\prime},\left[i_{l}\right]} \cdot P_{k-k^{\prime}, s}^{R_{s}^{p}\left(t_{l}\right)}\left(t_{l}\right)
$$

where $R_{s}^{p}\left(t_{l}\right)$ is R^{p} restricted to $\left\{t \in R \mid t \sim_{s} t_{l}\right\}$.

Proof. Given a tuple $t_{l} \in R$, let R_{θ} be the support relation R restricted to $\left\{t \in R \mid t \theta t_{l}\right\}$, and R_{θ}^{p} be R^{p} restricted to R_{θ}. Similarly, for each possible world $W \in \operatorname{pwd}\left(R^{p}\right)$, $W_{\theta}=W \cap R_{\theta}$.

Each possible world $W \in \operatorname{pwd}\left(R^{p}\right)$ such that $t_{l} \in \operatorname{all}_{k, s}(W)$ contributes $\min \left(1, \frac{k-a}{b}\right) \operatorname{Pr}(W)$ to $P_{k, s}^{R^{p}}\left(t_{l}\right)$, where $a=\left|W_{\succ}\right|$ and $b=\left|W_{\sim}\right|$.

$$
\begin{aligned}
& P_{k, s}^{R^{p}}\left(t_{l}\right)=\sum_{\substack{W \in p w d\left(R^{p}\right), t_{l} \in W \\
\left|W_{\succ}\right| a, 0 \leq a \leq k-1 \\
\left|W_{\sim}\right|=b, 1 \leq b \leq m}} \min \left(1, \frac{k-a}{b}\right) \operatorname{Pr}(W) \\
& =\sum_{a=0}^{k-1} \sum_{b=1}^{m} \min \left(1, \frac{k-a}{b}\right)\left(\sum_{\substack{W \in \operatorname{wd}\left(R^{p}\right), t_{l} \in W \\
\left|W_{\succ}\right|=a \wedge\left|W_{\sim}\right|=b}} \operatorname{Pr}(W)\right) \\
& =\sum_{a=0}^{k-1} \sum_{b=1}^{m} \min \left(1, \frac{k-a}{b}\right)\left(\sum_{\substack{W_{\succ} \in p w d\left(R_{\succ}^{p}\right) \\
\left|W_{\succ}\right|=a}} \operatorname{Pr}\left(W_{\succ}\right) \sum_{\substack{W_{\preceq} \in p w d\left(R_{\preceq}^{p}\right), t_{l} \in W_{\preceq} \\
\left|W_{\sim}\right|=b}} \operatorname{Pr}\left(W_{\preceq}\right)\right) \\
& =\sum_{a=0}^{k-1}\left(\sum_{\substack{W_{\succ} \in p w d\left(R_{\succ}^{p}\right) \\
\left|W_{\succ}\right|=a}} \operatorname{Pr}\left(W_{\succ}\right) \sum_{b=1}^{m} \min \left(1, \frac{k-a}{b}\right)\left(\sum_{\substack{W_{\preceq} \in p w d\left(R_{\preceq}^{p}\right), t_{l} \in W_{\preceq} \\
\left|W_{\sim}\right|=b}} \operatorname{} \operatorname{Pr}\left(W_{\preceq}\right)\right)\right) \\
& =\sum_{a=0}^{k-1}\left(T_{a,\left[i_{l}\right]} \sum_{b=1}^{m} \min \left(1, \frac{k-a}{b}\right)\left(\sum_{\substack{W_{\sim} \in p w d\left(R_{\sim}^{p}\right), t_{l} \in W_{\sim} \\
\left|W_{\sim}\right|=b}} \operatorname{Pr}\left(W_{\sim}\right) \sum_{W_{\prec} \in \operatorname{pwd}\left(R_{\prec}^{p}\right)} \operatorname{Pr}\left(W_{\prec}\right)\right)\right) \\
& =\sum_{a=0}^{k-1}\left(T_{a,\left[i_{l}\right]} \sum_{b=1}^{m} \min \left(1, \frac{k-a}{b}\right)\left(\sum_{\substack{W_{\sim} \in p w d\left(R_{\sim}^{p}\right), t_{l} \in W_{\sim} \\
\left|W_{\sim}\right|=b}} \operatorname{Pr}\left(W_{\sim}\right)\right)\right) \\
& =\sum_{a=0}^{k-1} T_{a,\left[i_{l}\right]} \cdot P_{k-a, s}^{R_{s}^{p}\left(t_{l}\right)}\left(t_{l}\right)
\end{aligned}
$$

where m is the number of tying tuples with t_{l} (including), i.e. $m=\left|R_{s}^{p}\left(t_{l}\right)\right|$.

9.7 Proof for Proposition 5

Proposition 5. Given a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$ and a scoring function s, for any $t \in R^{p}$, the Global-Topk probability of t equals the Global-Topk probability of $t_{e_{t}, \sim}$ when evaluating top- k in the induced event relation $E^{p}=\left\langle E, p^{E}, \mathcal{C}^{E}\right\rangle$ under the scoring function $s^{E}: E \rightarrow \mathbb{R}, s^{E}\left(t_{e_{t}}\right)=\frac{1}{2}, s^{E}\left(t_{e_{t}, \sim}\right)=\frac{1}{2}$ and $s^{E}\left(t_{e_{C_{i}, \succ}}\right)=i$.

$$
P_{k, s}^{R^{p}}(t)=P_{k, s^{E}}^{E^{p}}\left(t_{e_{t}, \sim}\right)
$$

Proof. Similar to what we did in the Proof for Lemma 1. We are trying to create a bijection.

Given $t \in R, k$ and s, let A be a subset of $\operatorname{pwd}\left(R^{p}\right)$ such that $W \in A \Leftrightarrow t \in$ $a l l_{k, s}(W)$. If we group all the possible worlds in A by the set of parts whose tuple in W has score higher than or equal to that of t, then we will have the following partition:

$$
A=A_{1} \cup A_{2} \cup \ldots \cup A_{q}, A_{i} \cap A_{j}=\emptyset, i \neq j
$$

and

$$
\begin{aligned}
& \forall A_{i}, \forall W_{1}, W_{2} \in A_{i}, i=1,2, \ldots, q, \\
& \left\{C_{j, \succ} \mid \exists t^{\prime} \in W_{1} \cap C_{j}, t^{\prime} \succ_{s} t\right\}=\left\{C_{j, \succ} \mid \exists t^{\prime} \in W_{2} \cap C_{j}, t^{\prime} \succ_{s} t\right\} \\
& \text { and } \\
& \left\{C_{j, \sim} \mid \exists t^{\prime} \in W_{1} \cap C_{j}, t^{\prime} \sim_{s} t\right\}=\left\{C_{j, \sim} \mid \exists t^{\prime} \in W_{2} \cap C_{j}, t^{\prime} \sim_{s} t\right\} .
\end{aligned}
$$

Moreover, denote CharParts $\left(A_{i}\right)$ to A_{i} 's characteristic set of parts. Note that all $W \in$ A_{i} have the same allocation coefficient $\alpha(t, W)$, denoted by α_{i}.

Now, let B be a subset of $p w d\left(E^{p}\right)$, such that $W_{e} \in B \Leftrightarrow t_{e_{t}, \sim} \in \operatorname{all}_{k, s}\left(W_{e}\right)$. There is a bijection $g:\left\{A_{i} \mid A_{i} \in A\right\} \rightarrow B$, mapping each part A_{i} in A to the a possible world in B which contains only tuples corresponding to parts in A_{i} 's characteristic set.

$$
g\left(A_{i}\right)=\left\{t_{e_{C_{j}}, \succ} \mid C_{j, \succ} \in C h a r P a r t s\left(A_{i}\right)\right\} \cup\left\{t_{e_{C_{j}}, \sim} \mid C_{j, \sim} \in \operatorname{CharParts}\left(A_{i}\right)\right\}
$$

Furthermore, the allocation coefficient α_{i} of A_{i} equals to the allocation coefficient $\alpha\left(t_{e_{t}, \sim}, g\left(A_{i}\right)\right)$ under the function s^{E}.

The following equation holds from the definition of induced event relation under general scoring functions.

$$
\begin{aligned}
& \sum_{W \in A_{i}} \operatorname{Pr}(W)= \prod_{C_{i, \succ} \in \operatorname{CharParts}\left(A_{i}\right)} p\left(t_{e_{C_{i}}, \succ}\right) \prod_{C_{i, \sim} \in \operatorname{CharParts}\left(A_{i}\right)} p\left(t_{e_{C_{i}}, \sim}\right) \\
& \prod_{\substack{C_{i} \in \mathcal{C} \\
C_{i, \sim} \neq \operatorname{CharParts}\left(A_{i}\right) \\
C_{i, \succ \notin \operatorname{CharParts}\left(A_{i}\right)}\\
}}\left(1-p\left(t_{e_{C_{i}}, \succ}\right)-p\left(t_{e_{C_{i}}, \sim}\right)\right) \\
& \operatorname{Pr}\left(g\left(A_{i}\right)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
P_{k, s}^{R^{p}}(t) & =\sum_{W \in A} \alpha(t, W) \operatorname{Pr}(W)=\sum_{i=1}^{q}\left(\alpha_{i} \sum_{W \in A_{i}} \operatorname{Pr}(W)\right) \\
& =\sum_{i=1}^{q} \alpha_{i} \operatorname{Pr}\left(g\left(A_{i}\right)\right)=\sum_{i=1}^{q} \alpha\left(t_{e_{t}, \sim}, g\left(A_{i}\right)\right) \operatorname{Pr}\left(g\left(A_{i}\right)\right) \\
& =\sum_{W_{e} \in B} \alpha\left(t_{e_{t}, \sim}, W_{e}\right) \operatorname{Pr}\left(W_{e}\right) \quad(g \text { is a bijection }) \\
& =P_{k, s^{E}}^{E^{p}}\left(t_{e_{t}, \sim}\right) .
\end{aligned}
$$

9.8 Proof for Theorem 5

Theorem 5. Given a probabilistic relation $R^{p}=\langle R, p, \mathcal{C}\rangle$, a scoring function $s, t \in R^{p}$, and its induced event relation $E^{p}=\left\langle E, p^{E}, \mathcal{C}^{E}\right\rangle$, where $|E|=2 m$, the following recursion on $u_{\succ}\left(k^{\prime}, i, b\right)$ and $u_{\sim}\left(k^{\prime}, i, b\right)$ holds, where $b_{\max }$ is the number of tuples with positive probability in E_{\sim}^{p}.

When $i=1,0 \leq k^{\prime} \leq m$ and $0 \leq b \leq b_{\max }$,

$$
\begin{aligned}
& \left\{\begin{array}{l}
0 \\
\left(u_{\succ}\left(k^{\prime}, i-1, b\right) \frac{1-p^{E}\left(t_{i-1, \succ}\right)-p^{E}\left(t_{i-1, \sim}\right)}{p^{E}\left(t_{i-1, \succ}\right)}\right.
\end{array}\right. \\
& u_{\succ}\left(k^{\prime}, i, b\right)=\left\{\begin{array}{c}
\quad+u_{\succ}\left(k^{\prime}-1, i-1, b\right) p^{E}\left(t_{i-1, \succ}\right) \\
\left.+u_{\sim}\left(k^{\prime}-1, i-1, b\right)\right) p^{E}\left(t_{i, \succ}\right) \\
\left(u_{\sim}\left(k^{\prime}, i-1, b+1\right) \frac{1-p^{E}\left(t_{i-1, \succ}\right)-p^{E}\left(t_{i-1, \sim}\right)}{p^{E}\left(t_{i-1, \sim}\right)}\right. \\
+u_{\succ}\left(k^{\prime}-1, i-1, b\right)
\end{array}\right. \\
& k^{\prime}=0 \\
& \text { and } p^{E}\left(t_{i-1, \succ}\right)>0 \\
& \left.+u_{\sim}\left(k^{\prime}-1, i-1, b\right)\right) p^{E}\left(t_{i, \succ}\right) \\
& u_{\succ}\left(k^{\prime}, i, b\right)=\left\{\begin{array}{c}
\quad+u_{\sim}\left(k^{\prime}-1, i-1, b\right) p^{E}\left(t_{i, \succ}\right) \\
\left(u_{\sim}\left(k^{\prime}, i-1, b+1\right) \frac{1-p^{E}\left(t_{i-1, \succ}\right)-p^{E}\left(t_{i-1, \sim}\right)}{p^{E}\left(t_{i-1, \sim}\right)}\right. \\
\quad+u_{\succ}\left(k^{\prime}-1, i-1, b\right) \\
\\
\left.+u_{\sim}\left(k^{\prime}-1, i-1, b\right)\right) p^{E}\left(t_{i \succ \succ}\right)
\end{array}\right. \\
& \left.+u_{\sim}\left(k^{\prime}-1, i-1, b\right)\right) p^{E}\left(t_{i, \succ}\right) \\
& \left(u_{\succ}\left(k^{\prime}-1, i-1, b\right)\right. \\
& \left.+u_{\sim}\left(k^{\prime}-1, i-1, b\right)\right) p^{E}\left(t_{i, \succ}\right) \\
& 1 \leq k^{\prime} \leq m \\
& b<b_{\text {max }} \\
& \text { and } 1 \leq k^{\prime} \leq m \\
& \text { and } p^{E}\left(t_{i-1, \succ}\right)=0 \\
& \text { otherwise } \\
& u_{\sim}\left(k^{\prime}, i, b\right)=\left\{\begin{array}{lr}
0 & k^{\prime}=0 \text { or } b=0 \\
\left(u_{\sim}\left(k^{\prime}, i-1, b\right) \frac{1-p^{E}\left(t_{i-1, \succ}\right)-p^{E}\left(t_{i-1, \sim}\right)}{p^{E}\left(t_{i-1, \sim}\right)}\right. & b>0 \\
+u_{\succ}\left(k^{\prime}-1, i-1, b-1\right) & \text { and } 1 \leq k^{\prime} \leq m \\
\left.+u_{\sim}\left(k^{\prime}-1, i-1, b-1\right)\right) p^{E}\left(t_{i, \sim}\right) & \text { and } p^{E}\left(t_{i-1, \sim}\right)>0 \\
\left(u_{\succ}\left(k^{\prime}, i-1, b-1\right) \frac{1-p^{E}\left(t_{i-1, \succ}\right)-p^{E}\left(t_{i-1, \sim}\right)}{p^{E}\left(t_{i-1, \succ}\right)}\right. & \text { otherwise } \\
+u_{\succ}\left(k^{\prime}-1, i-1, b-1\right) & \\
\left.+u_{\sim}\left(k^{\prime}-1, i-1, b-1\right)\right) p^{E}\left(t_{i, \sim}\right) &
\end{array}\right.
\end{aligned}
$$

The Global-Topk probability of $t_{e_{t}, \sim}$ in E^{p} under the scoring function s^{E} can be computed by the following equation:

$$
\begin{aligned}
P_{k, s^{E}}^{E^{p}}\left(t_{e_{t}, \sim}\right) & =P_{k, s^{E}}^{E^{p}}\left(t_{m, \sim}\right) \\
& =\sum_{b=1}^{b_{\max }}\left(\sum_{k^{\prime}=1}^{k} u_{\sim}\left(k^{\prime}, m, b\right)+\sum_{k^{\prime}=k+1}^{k+b-1} \frac{k-\left(k^{\prime}-b\right)}{b} u_{\sim}\left(k^{\prime}, m, b\right)\right)
\end{aligned}
$$

Proof. Equation 9 follows Equation 7 and Equation 8 as it is a simple enumeration based on Definition 8. We are going to prove Equation 7 and Equation 8 by an induction on i.

- Base case: $i=1,0 \leq k^{\prime} \leq m$ and $0 \leq b \leq b_{\text {max }}$

When $i=1$, based on the definition of u, the only non-zero entries are $u_{\succ}(1,1,0)$ and $u_{\sim}(1,1,1)$. The former is the probability sum of all possible worlds which contain $t_{1, \succ}$ and do not contain $t_{1, \sim}$. The second requirement is redundant since those two tuples are exclusive. Therefore, it is simply the probability of $t_{1, \succ}$. Similarly, the latter is the probability sum of all possible worlds which contain $t_{1, \sim}$ and do not contain $t_{1, \succ}$. Again, it is simply the probability of $t_{1, \sim}$. It is easy to check that no possible worlds satisfy other combinations of k^{\prime} and b when $i=1$, therefore their probabilities are 0 .

- Inductive step.

Assume the theorem holds for $i \leq i_{0}, 0 \leq k^{\prime} \leq m$ and $0 \leq b \leq b_{\text {max }}$.
Denote $E_{\succ,[i]}$ and $E_{\sim,[i]}$ to the set of the first i tuples in E_{\succ} and E_{\sim} respectively.
For any $W \in \operatorname{pwd}\left(E^{p}\right)$, by definition, W contributes to $u_{\succ / \sim}\left(k^{\prime}, i_{0}, b\right)$ iff $t_{i_{0}, \succ / \sim} \in$
W and $\left|W \cap\left(E_{\succ,\left[i_{0}\right]} \cup E_{\sim,\left[i_{0}\right]}\right)\right|=k^{\prime}$ and $\left|W \cap E_{\sim,\left[i_{0}\right]}\right|=b$. Since $E_{\succ,\left[i_{0}\right]} \cap$
$E_{\sim,\left[i_{0}\right]}=\emptyset$, we have:
W contributes to $u_{\succ / \sim}\left(k^{\prime}, i_{0}, b\right) \Leftrightarrow t_{i_{0}, \succ / \sim} \in W$ and $\left|W \cap E_{\succ,\left[i_{0}\right]}\right|=k^{\prime}-b$ and $\mid W \cap$
$E_{\sim,\left[i_{0}\right]} \mid=b$.
(1) $u_{\succ}\left(k^{\prime}, i_{0}+1, b\right)$ is the probability sum of all possible world W such that
$t_{i_{0}+1, \succ} \in W,\left|W \cap E_{\succ,\left[i_{0}+1\right]}\right|=k^{\prime}-b$ and $\left|W \cap E_{\sim,\left[i_{0}+1\right]}\right|=b$.

$$
\begin{aligned}
& u_{\succ}\left(k^{\prime}, i_{0}+1, b\right)=\sum_{\substack{W \in \operatorname{pwd}\left(E^{p}\right), t_{i_{0}+1, \succ} \in W \\
\left|W \cap E_{\succ,\left[i_{0}+1\right]}\right| k^{\prime}-b \\
\left|W \cap E_{\sim,\left[i_{0}+1\right]}\right|=b}} \operatorname{Pr}(W) \\
& =\sum_{\substack{\left.W \in \operatorname{pwd}\left(E^{p}\right), t_{i_{0}+1, \succ} \in W \\
\left|W \cap E_{\succ},\left[i_{i}\right]=k^{\prime}-1-b\\
\right| W \cap E_{\sim,\left[i_{0}\right]}\right]=b}} \operatorname{Pr}(W) \begin{array}{l}
\left(\text { Since } t_{i_{0}+1, \succ} \in W,\right. \\
\left.t_{\left.i_{0}+1, \sim \neq W\right)} \notin W\right)
\end{array} \\
& =\sum_{W \in p w d\left(E^{p}\right)} \operatorname{Pr}(W) \\
& t_{i_{0}+1, \succ} \in W, t_{i_{0}, \succ} \in W \\
& \left|W \cap E_{\succ,\left[i_{0}\right]}\right|=k^{\prime}-1-b \\
& +\sum_{W \in \operatorname{pwd}\left(E^{p}\right)} \operatorname{Pr}(W) \\
& t_{i_{0}+1, \succ} \in W, t_{i_{0}, \sim \in W} \\
& \left|W \cap E_{\succ,\left[i_{0}\right]}\right|=k^{\prime}-1-b \\
& \left|W \cap E_{\sim,\left[i_{0}\right]}\right|=b \\
& +\sum_{W \in p w d\left(E^{p}\right)} \operatorname{Pr}(W) \\
& t_{i_{0}+1, \succ} \in W, t_{i_{0}, \succ} \notin W, t_{i_{0}, \sim} \notin W \\
& \left|W \cap E_{\succ,\left[i_{0}\right]}\right|=k^{\prime}-1-b \\
& \left|W \cap E_{\sim,\left[i_{0}\right]}\right|=b
\end{aligned}
$$

For the first part of the left hand side,

$$
\sum_{\substack{W \in p w d\left(E^{p}\right) \\ t_{i_{0}+1, \succ \in \in W, t_{i_{0}}, \succ} \in W \\\left|W \cap E_{\succ,\left[i_{0}\right]}\right|=k^{\prime}-1-b}} \operatorname{Pr}(W)=p\left(t_{i_{0}+1}\right) \sum_{\substack{W \in \operatorname{pwd}\left(E^{p}\right), t_{i_{0}, \succ} \in W \\\left|W \cap E_{\sim,\left[i_{0}\right]}\right|=b}} \operatorname{Pr}(W)=p\left(t_{i_{0}+1}\right) u_{\succ}\left(k^{\prime}-1, i_{0}, b\right) .
$$

For the second part of the left hand side,

For the third part of the left hand side, if $p\left(t_{i_{0}, \succ}\right)+p\left(t_{i_{0}, \sim}\right)=1$, then there is no possible world satisfying this condition, therefore it is zero. Otherwise,

Equation 10 can be computed either by Equation 11 when $p\left(t_{i_{0}}, \succ\right)>0$ or by Equation 12 when $p\left(t_{i_{0}}, \sim\right)>0$. Notice that at least one of $p\left(t_{i_{0}}, \succ\right)$ and $p\left(t_{i_{0}}, \sim\right)$ is positive, otherwise neither tuple is in the induced event relation E^{p} according to Definition 11.

$$
\begin{align*}
& \sum_{\substack{W \in p w d\left(E^{p}\right) \\
t_{i_{0}}, \succ \notin W, t_{i_{0}}, \sim \neq W \\
\left|W \cap E_{\succ},\left\{i_{0}\right]\\
\right| W k^{\prime}-1-b}} \operatorname{Pr}(W)=\frac{1-p\left(t_{i_{0}, \succ}\right)-p\left(t_{i_{0}, \sim}\right)}{p\left(t_{i_{0}, \succ}\right)} \sum_{\substack{W \in p w d\left(E^{p}\right), t_{i_{0}, \succ} \in W \\
\left|W \cap E_{\sim,\left[i_{0}\right]}\right|=b}} \operatorname{Pr}(W) \\
& =\frac{1-p\left(t_{i_{0}, \succ}\right)-p\left(t_{i_{0}, \sim}\right)}{p\left(t_{i_{0}, \succ}\right)} u_{\succ}\left(k^{\prime}, i_{0}, b\right) . \tag{11}\\
& \sum_{\begin{array}{l}
W \in p w d\left(E^{p}\right) \\
t_{i_{0}, \succ} \neq W, t_{i_{0}}, \sim \notin W \\
\left.\mid W \cap E_{\succ,\left[i_{0}\right]}\right]=k^{\prime}-1-b
\end{array}} \operatorname{Pr}(W)=\frac{1-p\left(t_{i_{0}, \succ}\right)-p\left(t_{i_{0}, \sim}\right)}{p\left(t_{i_{0}, \sim}\right)} \sum_{\substack{\left.W \in p w d\left(E^{p}\right), t_{i_{0}, \sim} \in W \\
\mid W \cap E_{\sim,\left[i_{0}\right]}\right]=b}} \operatorname{Pr}(W) \\
& =\frac{1-p\left(t_{i_{0}, \succ}\right)-p\left(t_{i_{0}, \sim}\right)}{p\left(t_{i_{0}, \sim}\right)} u_{\sim}\left(k^{\prime}, i_{0}, b+1\right) . \tag{12}
\end{align*}
$$

A subtlety is that when $p\left(t_{i_{0}}, \succ\right)=0$ and $b=b_{\max }$, simply no possible world satisfies the condition in Equation 10, and Equation 10 equals 0.
Altogether, we show that this case can be correctly computed by Equation 7
(2) $u_{\sim}\left(k^{\prime}, i_{0}+1, b\right)$ is the probability sum of all possible world W such that $t_{i_{0}+1, \sim} \in W,\left|W \cap E_{\succ,\left[i_{0}+1\right]}\right|=k^{\prime}-b$ and $\left|W \cap E_{\sim,\left[i_{0}+1\right]}\right|=b$. Use a similar argument as above, it can be shown that this case is correctly computed by Equation 8 as well.

References

1. Zhang, X., Chomicki, J.: On the semantics and evaluation of top-k queries in probabilistic databases. In: ICDE Workshops. (2008) 556-563
2. Imielinski, T., Lipski, W.: Incomplete information in relational databases. J. ACM 31(4) (1984) 761-791
3. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In: VLDB. (1987)
4. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3) (1990) 311-350
5. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases : The Logical Level. Addison Wesley (1994)
6. Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Trans. Inf. Syst. 15(1) (1997) 32-66
7. Zimányi, E.: Query evaluation in probabilistic relational databases. Theor. Comput. Sci. 171(1-2) (1997) 179-219
8. Lakshmanan, L.V.S., Leone, N., Ross, R.B., Subrahmanian, V.S.: Probview: A flexible probabilistic database system. ACM Trans. Database Syst. 22(3) (1997) 419-469
9. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB J. 16(4) (2007) 523-544
10. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: Uldbs: Databases with uncertainty and lineage. In: VLDB. (2006)
11. Widom, J.: Trio: A system for integrated management of data, accuracy, and lineage. In: CIDR. (2005)
12. http://www.infosys.uni-sb.de/projects/maybms/
13. Olteanu, D., Koch, C., Antova, L.: World-set decompositions: Expressiveness and efficient algorithms. Theor. Comput. Sci. 403(2-3) (2008) 265-284
14. Fagin, R.: Combining fuzzy information from multiple systems. J. Comput. Syst. Sci. 58(1) (1999) 83-99
15. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: PODS. (2001)
16. Natsev, A., Chang, Y.C., Smith, J.R., Li, C.S., Vitter, J.S.: Supporting incremental join queries on ranked inputs. In: VLDB. (2001)
17. Marian, A., Bruno, N., Gravano, L.: Evaluating top- queries over web-accessible databases. ACM Trans. Database Syst. 29(2) (2004) 319-362
18. Guha, S., Koudas, N., Marathe, A., Srivastava, D.: Merging the results of approximate match operations. In: VLDB. (2004) 636-647
19. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Joining ranked inputs in practice. In: VLDB. (2002)
20. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational databases. In: VLDB. (2003)
21. Soliman, M.A., Ilyas, I.F., Chang, K.C.C.: Probabilistic top- and ranking-aggregate queries. ACM Trans. Database Syst. 33(3) (2008)
22. Ré, C., Dalvi, N.N., Suciu, D.: Efficient top-k query evaluation on probabilistic data. In: ICDE. (2007)
23. Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain data: a probabilistic threshold approach. In: SIGMOD Conference. (2008) 673-686
24. Bruno, N., Wang, H.: The threshold algorithm: From middleware systems to the relational engine. IEEE Trans. Knowl. Data Eng. 19(4) (2007) 523-537
25. Yi, K., Li, F., Kollios, G., Srivastava, D.: Efficient processing of top-k queries in uncertain databases. In: ICDE. (2008) 1406-1408

[^0]: * Research partially supported by NSF grant IIS-0119186. An earlier version of some of the results in this paper was presented in [1].

[^1]: ${ }^{1}$ Probability is typically supported as a special attribute in DBMS.

[^2]: ${ }^{2}$ Here, any subset of R with cardinality at most k that is not a top- k candidate set under the function s is conceptually regarded as a top- k candidate set with probability zero under the function s.

