On the Semantics and Evaluation of Top-k Queries in Probabilistic Databases

Xi Zhang Jan Chomicki

SUNY at Buffalo

September 23, 2008

Motivating Examples

- Semantics of Top-k Queries in Probabilistic Databases
- 3 Efficient Algorithms for Global-Topk Semantics
 - Global-Topk under General Scoring Functions
- 5 Related Work
- 6 Conclusion and Future Work

Outline

1 Motivating Examples

- 2 Semantics of Top-k Queries in Probabilistic Databases
- 3 Efficient Algorithms for Global-Topk Semantics
- 4 Global-Topk under General Scoring Functions
- 5 Related Work
- Conclusion and Future Work

- Question "Who were the two visitors in the lab last Sat night?"
- Data
 - Biometric data from sensors
 - Historical statistics

Name	Biometric Score (Face, Voice,)	Prob. of Sat Nights
Aidan	0.65	0.3
Bob	0.55	0.9
Chris	0.45	0.4

Query

A top-k query, where k = 2, over the above probabilistic relation.

Example #2: Sensor Network in a Habitat

- Question "What is the temperature of the warmest spot?"
- Sensor reading data
 - At a given time, only one correct reading per sensor

Data from a habitat (snapshot)						
C_1 C_2	Temp.(°F) 22 10 25 15	Prob 0.6 0.4 0.1 0.6				

Query

A top-k query, where k = 1, over the above probabilistic relation.

A probabilistic relation is a triplet $R^p = \langle R, p, C \rangle$, where

- R is a support deterministic relation
- p is a probability function $p: R \mapsto (0, 1]$
- C is a *partition* of R, such that

$$\forall C_i \in \mathcal{C}, \sum_{t \in C_i} p(t) \le 1$$

Simple v.s. General probabilistic relation

 R^p is *simple* iff each *part* contains exactly one tuple, i.e. all tuples are **independent**.

Possible Worlds

A *probabilistic relation* represents a set of **possible worlds**, each of which is one possible state of the relation.

Possible Worlds

A *probabilistic relation* represents a set of **possible worlds**, each of which is one possible state of the relation.

Determinism

Each **possible world** of a probabilistic relation is a deterministic relation.

Motivating Examples

2 Semantics of Top-k Queries in Probabilistic Databases

3 Efficient Algorithms for Global-Topk Semantics

- 4 Global-Topk under General Scoring Functions
- 5 Related Work
- Conclusion and Future Work

Top-k Queries in Deterministic Databases

• R is a deterministic relation

Scoring Function s

$$s:R\mapsto \mathbb{R}$$

Ties

- Allow ties in general
- No ties if function s is *injective*

Induced Order over R

For any $t_1, t_2 \in R$

$$t_1 \succ t_2 \text{ iff } s(t_1) > s(t_2)$$

- A weak order in general
- A total order if function s is injective

Top-k Queries in Deterministic Databases - A Top-k Set

Nondeterministically return a set of k tuples with the highest scores

- Multiple such sets in general
- Unique if function s is injective

Winners v.s. Losers

- A tuple t is a *winner* iff it belongs to the union of all top-k sets
- Otherwise, it is a loser

In a probabilistic database...

Need to extend the semantics of deterministic databases

In a probabilistic database...

Need to extend the semantics of deterministic databases

Example

In a top-2 query, which two tuples to return?

Name	Biometric Score (Face, Voice,)	Prob. of Sat Nights
Aidan	0.65	0.3
Bob	0.55	0.9
Chris	0.45	0.4

11 / 41

- R^p is a probabilistic relation
- S is a top-k answer of \mathbb{R}^p

Property #1 - Exact k

When R^p is sufficiently large, |S| = k.

Property #2 - Faithfulness

For any t_1, t_2 in R, if

• both the score and the probability of t_1 are higher than those of t_2

•
$$t_2 \in S$$

then $t_1 \in S$.

Property #3 - Stability

- Raising the score/probability of a winner will not turn it into a loser
- Lowering the score/probability of a loser will not turn it into a winner

Possible Worlds

Smart Lab

	Name	Biometric Sc	ore (Face, V	Voice,)	Prob. o	f Sat Nights	
	Aidan		0.65			0.3	
	Bob		0.55			0.9	
	Chris		0.45			0.4	
Possible	Worlds:			Å			
()
W ₁	W ₂	W ₃	W ₄	W ₅	We	W ₇	Wa
Ø	Aidan	Bob	Chris	Aidan Bob	Aidan Chris	Bob Chris	Aidan Bob
							Chris
Pr 0.042	0.018	0.378	0.028	0.162	0.012	0.252	0.108
	(Sim	ple) Pr(W)	$= \prod_{t \in W} p$	$p(t) \prod_{t \notin W} (1 - t)$	-p(t))		

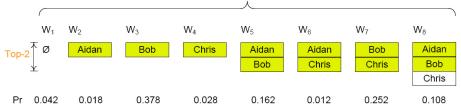
4

14 / 41

・ロン ・四 ・ ・ ヨン ・ ヨン

Possible Worlds

Smart Lab


	Name	Biometric Sc	ore (Face,	Voice,)	Prob. of	Sat Nights	
	Aidan		0.65			0.3	
	Bob		0.55			0.9	
	Chris		0.45			0.4	
Possible	• Worlds						
1 035101		•					
()
W ₁	W ₂	W3	W4	W ₅	We	W ₇	W ₈
Ø	Aidan	Bob	Chris	Aidan	Aidan	Bob	Aidan
				Bob	Chris	Chris	Bob
							Chris
Pr 0.042	2 0.018	0.378	0.028	0.162	0.012	0.252	0.108
	(Sin	nple) Pr(W)	= Π <i>x</i>	$p(t) \prod (1 - t)$	-p(t))		
			$t \in W$	$t \notin W$			
	(Gen	eral) $Pr(W)$	$= \Pi$	p(t)	(1 -	$\sum p(t)$	
	(0.00				$\cap W = \emptyset$ t		
			=	,			
Xi Zhang, Jan C	homicki (SUN	VY at Buffalo)	Topk Querie	es in Prob. DB		September 23, 2	008 14 / 43

Global-Topk Probability - Example

Smart Lab

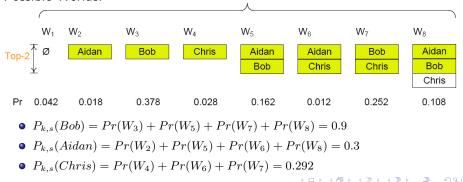
Name	Biometric Score (Face, Voice,)	Prob. of Sat Nights
Aidan	0.65	0.3
Bob	0.55	0.9
Chris	0.45	0.4

Possible Worlds:

• $P_{k,s}(Chris) = Pr(W_4) + Pr(W_6) + Pr(W_7) = 0.292$

-

15 / 41


< 🗇 🕨

Global-Topk Probability - Example

Smart Lab

Name	Biometric Score (Face, Voice,)	Prob. of Sat Nights
Aidan	0.65	0.3
Bob	0.55	0.9
Chris	0.45	0.4

Possible Worlds:

Given

- a probabilistic relation $R^p = \langle R, p, \mathcal{C} \rangle$
- an integer $k \ge 0$
- an *injective* scoring function s over \mathbb{R}^p

The **Global-Top**k **probability** of a tuple t in R, denoted by $P_{k,s}^{R^p}(t)$, is the sum of the probabilities of all possible worlds of R^p whose top-k answer contains t.

$$P_{k,s}^{R^p}(t) = \sum_{\substack{W \in pwd(R^p) \\ t \in top_{k,s}(W)}} Pr(W).$$

Global-Topk Semantics

Return a set of k tuples with the highest Global-Topk probability

Global-Topk Semantics

Return a set of k tuples with the highest Global-Topk probability

Example: Smart Lab

- $P_{k,s}(Bob) = 0.9$
- $P_{k,s}(Aidan) = 0.3$
- $P_{k,s}(Chris) = 0.292$

Answer $\{Bob, Aidan\}$

Global-Topk Semantics

Return a set of k tuples with the highest Global-Topk probability

Example: Smart Lab

- $P_{k,s}(Bob) = 0.9$
- $P_{k,s}(Aidan) = 0.3$

Answer $\{Bob, Aidan\}$

• $P_{k,s}(Chris) = 0.292$

Properties

Global-Topk satisfies *Exact*-k and *Stability* in *simple* and *general* probabilistic relations, and satisfies *Faithfulness* in *simple* probabilistic relations.

1 Motivating Examples

2 Semantics of Top-k Queries in Probabilistic Databases

3 Efficient Algorithms for Global-Topk Semantics

- 4 Global-Topk under General Scoring Functions
- 5 Related Work
- Conclusion and Future Work

Given

- a simple probabilistic relation $R^p = \langle R, p, \mathcal{C} \rangle$
- an integer $k \ge 0$
- an *injective* scoring function s over \mathbb{R}^p

Assume tuples in R are ordered in the decreasing order of their scores, i.e.

$$R = \{t_1, t_2, \dots, t_n\}, \text{ and } s(t_1) > s(t_2) > \dots > s(t_n)$$

Observation #1

For any possible world W, t_i is in the top-k answer of W \Leftrightarrow

- W contains t
- W contains at most k-1 tuples from $\{t_1, t_2, \ldots, t_{i-1}\}$

Basic Recurrence

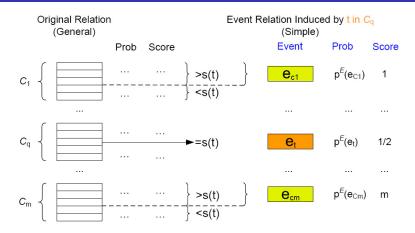
$$q(k,i) = \begin{cases} 0 & k = 0\\ p(t_i) & 1 \le i \le k\\ (q(k,i-1)\frac{\bar{p}(t_{i-1})}{p(t_{i-1})} + q(k-1,i-1))p(t_i)\\ & \text{otherwise} \end{cases}$$

where $q(k,i) = P_{k,s}(t_i)$ and $\bar{p}(t_{i-1}) = 1 - p(t_{i-1}).$

Xi Zhang, Jan Chomicki (SUNY at Buffalo)

• Basic recurrence no longer holds due to the fact that some tuples are *exclusive*.

Observation #1'


For any possible world W, t_i is in the top-k answer of $W \Leftrightarrow$

- W contains t_i
- W contains at most k-1 tuples with score higher than that of t_i
- those "better" tuples and t are all from different parts in the partition

Observation #2

All parts C_i in the partition C of R^p are independent.

A Reduction to Simple Probabilistic Relations

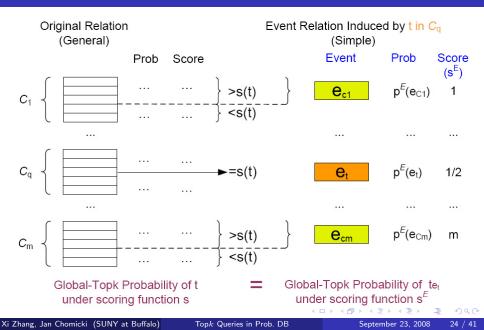
- Each tuple t in R induces an event relation
- event $e_t =$ "tuple t is present"
- event e_{C_i} = "a tuple from part C_i with score higher than that of t is present", where $C_i \neq C_q$

Xi Zhang, Jan Chomicki (SUNY at Buffalo)

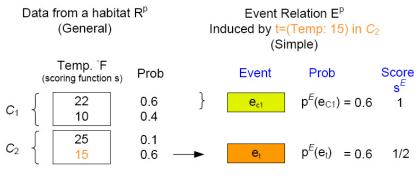
Topk Queries in Prob. DB

22 / 41

Probability p^E of event e_{C_i}


• Rule 1:

$$t \in C_i$$
 then $p^E(e_t) = p(t);$


Rule 2:

$$t \notin C_i$$
 then $p^E(e_{C_i}) = \sum_{\substack{t' \in C_i \\ s(t') > s(t)}} p(t')$

A Reduction to Simple Probabilistic Relations

Example - Sensor Network in a Habitat

Global-Topk Probability of t \blacksquare Global-Topk Probability of tetunder scoring function sunder scoring function s^E

•
$$p^{E}(e_{t}) = p(t) = 0.6$$

• $p^{E}(e_{C_{1}}) = \sum_{t' \in C_{1} \land s(t') > s(t)} p(t') = p((\text{Temp:22})) = 0.6$
• $P^{R^{p}}_{k,s}(t) = P^{E^{p}}_{k,s^{E}}(t_{e_{t}}) = 0.24$

Given

- a probabilistic relation $R^p = \langle R, p, \mathcal{C} \rangle$
- an injective scoring function s over R

For any $t \in R^p$, the Global-Topk probability of t equals the Global-Topk probability of t_{e_t}

$$P_{k,s}^{R^p}(t) = P_{k,s^E}^{E^p}(t_{e_t}).$$

where

- induced event relation $E^p = \langle E, p^E, \mathcal{C}^E \rangle$
- injective scoring function $s^E:E\to\mathbb{R}, s^E(t_{e_t})=\frac{1}{2}$ and $s^E(t_{e_{C_i}})=i$

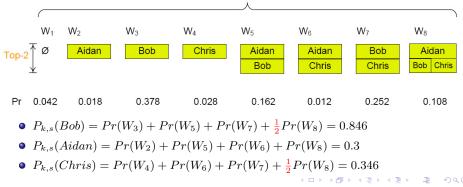
We have the following algorithm based on the Reduction Theorem

- For each tuple t in R, calculate the Global-Topk probability $P_{k,s}(t)$ via a polynomial reduction to its induced event relation
- Return a set of k tuples with the highest Global-Topk probability

Motivating Examples

- 2 Semantics of Top-k Queries in Probabilistic Databases
- 3 Efficient Algorithms for Global-Topk Semantics

Global-Topk under General Scoring Functions


- 5 Related Work
- Conclusion and Future Work

Global-Topk Probability in the Presence of Ties

Smart Lab

Name	Biometric Score (Face, Voice,)	Prob. of Sat Nights
Aidan	0.65	0.3
Bob	0.45	0.9
Chris	0.45	0.4

Possible Worlds:

Global-Topk Probability under General Scoring Functions

Given

- a probabilistic relation $R^p = \langle R, p, \mathcal{C} \rangle$
- an integer $k \ge 0$
- a (general) scoring function s over R^p

Global-Topk probability of a tuple t in R,

$$P^{R^p}_{k,s}(t) = \sum_{\substack{W \in pwd(R^p) \\ t \in top_{k,s}(W)}} \alpha(t, W) Pr(W).$$

Global-Topk Probability under General Scoring Functions

Given

- a probabilistic relation $R^p = \langle R, p, \mathcal{C} \rangle$
- an integer $k \ge 0$
- a (general) scoring function s over R^p

Global-Topk probability of a tuple t in R,

$$P^{R^p}_{k,s}(t) = \sum_{\substack{W \in pwd(R^p) \\ t \in top_{k,s}(W)}} \alpha(t, W) Pr(W).$$

Equal Allocation Policy for Ties Let $a = |\{t' \in W | s(t') > s(t)\}|$ and $b = |\{t' \in W | s(t') = s(t)\}|$ $\alpha(t, W) = \begin{cases} 1 & \text{if } a < k \text{ and } a + b \le k \\ \frac{k-a}{b} & \text{if } a < k \text{ and } a + b > k \end{cases}$

Challenge

- How to integrate the allocation policy with the Global-Topk algorithm?
- Dynamic Programming alone will not work

Challenge

- How to integrate the allocation policy with the Global-Topk algorithm?
- Dynamic Programming alone will not work

Simple Probabilistic Relations Algorithm = Dynamic Programming + Enumeration

Challenge

- How to integrate the allocation policy with the Global-Topk algorithm?
- Dynamic Programming alone will not work

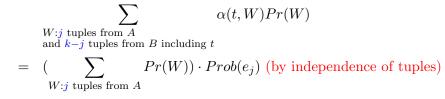
Simple Probabilistic Relations Algorithm = Dynamic Programming + Enumeration

General Probabilistic Relations Algorithm = Dynamic Programming + Enumeration + Reduction

- Let $A = |\{t'|t' \in R, s(t') > s(t)\}|, B = |\{t'|t' \in R, \land s(t') = s(t)\}|$
- \bullet Worlds contributing to $P^{R^p}_{k,s}(t) =$

Worlds with 0 tuples from A and $\leq k$ tuples from B including t

- + Worlds with 1 tuples from A and $\leq k-1$ tuples from B including t + \cdot
- +
- +
- + Worlds with k tuples from A and ≤ 0 tuples from B including t


• For every
$$0 \le j \le k$$

$$\sum_{\substack{W:j \text{ tuples from } A \\ \text{and } k-j \text{ tuples from } B \text{ including } t}} \alpha(t, W) Pr(W)$$

$$= \left(\sum_{\substack{W:j \text{ tuples from } A}} Pr(W)\right) \cdot Prob(e_j) \text{ (by independence of tuples)}$$

where event $e_j =$ "Global-Top(k - j) set from B includes t"

• For every
$$0 \le j \le k$$

where event $e_j = "Global-Top(k - j)$ set from B includes t"

• Optimization: sharing of dynamic programming tables

Prob. DB	Injective Scoring Fn	General Scoring Fn
Simple	O(kn)	$O(k \max(n, m_{max}^2))$
General	$O(kn^2)$	$O(kn^2)$

where m_{max} is the maximal number of tying tuples in R

3

Motivating Examples

- 2 Semantics of Top-k Queries in Probabilistic Databases
- 3 Efficient Algorithms for Global-Topk Semantics
- 4 Global-Topk under General Scoring Functions

5 Related Work

Conclusion and Future Work

Related Work

- Soliman, Ilyas & Chang, ICDE'07
 - Formulate the problem of top-k queries in probabilistic databases
 - Two semantics: U-Topk and U-kRanks
 - U-Topk: return the most probable top-k answer set that belongs to possible worlds
 - U-kRanks: for i = 1, 2, ..., k, return the most probable i^{th} -ranked tuples across all possible worlds
 - Scoring function: injective
- Yi, Li, Kollios & Srivastava, ICDE'08
 - Significantly improve time and space for U-Topk and U-kRanks
- Hua, Pei, Zhang & Lin, ICDE'08
 - Independently develop a semantics equivalent to Global-Top $\!k$ under injective scoring functions

Property Satisfaction

Semantics	$Exact{-}k$	Faithfulness	Stability
${\sf Global}{\operatorname{-Top}}k$	\checkmark	$\sqrt{/\times^*}$	
$U ext{-}Topk$	×	$\sqrt{/\times^*}$	
$U extsf{-}kRanks$	×	×	×

*" $\sqrt{}$ " if the database is *simple*, " \times " if the database is *general*.

Complexity (under injective scoring functions)

Semantics	Simple Prob. DB	General Prob. DB
${\sf Global}{\operatorname{-Top}}k$	O(kn)	$O(kn^2)$
$U ext{-}Topk$	$O(n \log k)$	$O(n \log k)$
$U extsf{-}kRanks$	O(kn)	$O(kn^2)$

- U-Topk and U-kRanks (Soliman et al. 2007)
 - Both based on possible worlds
 - Possible to be generalized based on *nondeterminism* and *allocation policy*
 - Current algorithms are not directly applicable
- PT-*k* (Hua et al. 2008)
 - Under general scoring functions, the semantics and the algorithm are not compatible

Motivating Examples

- 2 Semantics of Top-k Queries in Probabilistic Databases
- 3 Efficient Algorithms for Global-Topk Semantics
- 4 Global-Topk under General Scoring Functions
- 5 Related Work
- 6 Conclusion and Future Work

- Three intuitive semantic properties for top-k queries in probabilistic databases
- Global-Topk semantics, which satisfies all three properties in *simple* probabilistic databases and two properties in general ones
- Efficient algorithms for Global-Topk semantics in simple/general probabilistic databases under injective scoring functions
- Generalization of Global-Topk semantics and computation to general scoring functions

- More complete picture of properties of top-k semantics
- Asymmetry of *score* and *probability*
 - This work: ordinal score + cardinal probability
 - Open: cardinal score + cardinal probability
- Consider preference strength in the semantics
- Relationship among tuples
 - This work: independent/exclusive relationship
 - Open: more *complex* relationship
- Other uncertain database models