cse@buffalo

How to (repeatedly) change preferences *

Jan Chomicki University at Buffalo

* FOIKS'06, AMAI

Preference relations

- Binary relations between tuples
- Abstract way to capture a variety of criteria: desirability, relative value, quality, timeliness...
- More general than numeric scoring functions

within each make, prefer more recent cars

Preference queries

Winnow: In a given table, find the best elements according to a given preference relation.

Make	Year
VW	2002
VW	1998
Kia	1998

within each make, prefer a more recent car

Too many results...

Query modification via preference revision

Make	Year
VW	2002
VW	1998
Kia	1998

within each make, prefer a more recent car

among cars of the same production year, prefer VW

Objectives:

Preference composition operators

- Minimal change to preferences
- Preservation of order properties

Overview

- Preference representation
- Order axioms
- Preference revision
- Incremental evaluation of preference queries
- Related work
- Conclusions and future work

Preference relations

Preference relation

binary relation (possibly infinite)

represented by a quantifier-free first-order formula

within each make, prefer more recent cars: $(m,y) \succ (m',y') \equiv (m = m' \land y > y')$

Order axioms ORD

Strict Partial Order (SPO) = transitivity + irreflexivity

- Preference SQL
- winnow is nonempty
 - efficient algorithms for winnow (BNL,...)
 - incremental query evaluation

Weak Order (WO) = SPO + negative transitivity: ∀x,y,z. (x ≠ y ∧ y ≠ z) → x ≠ z

often representable with a utility function

single pass winnow evaluation

Composing preference relations

Transitive closure (t,s) \in TC(\succ) \Leftrightarrow t \succ ⁿ s for some n > 0

Preference revisions

Conflicts and SPO revisions

Is lack of conflict sufficient?

Interval Order (IO) = SPO + $\forall x, y, z, w. (x \succ y \land z \succ w) \rightarrow (x \succ w \lor z \succ y)$

WO revisions and utility functions

∽' may be **not** representable with a utility function

> represented with u(x) $>_0$ represented with u₀(x)

cse@buffalo

Incremental evaluation: preference revision

 \succ_0 : among cars produced in 1999, prefer VW

Incremental evaluation: tuple insertion

Preference vs. belief revision

Preference revision

- First-order
- Revising a single, finitely representable relation
- Preserving order axioms

Belief revision

- Propositional
- Revising a theory
- Axiomatic properties of BR operators

Related work

- S. O. Hansson. *Changes in Preferences*, Theory and Decision, 1995
 - □ preferences = sets of ground formulas
 - $\hfill\square$ preference revision \simeq belief revision
 - □ no focus on construction of revisions, SPO/WO preservation
 - preference contraction, domain expansion/shrinking
- M.-A. Williams. *Belief Revision via Database Update*, IIISC, 1997
 - □ revising finite ranking with new information
 - □ new ranking can be computed in a simple way
- S. T. C. Wong. Preference-Based Decision Making for Cooperative Knowledge-Based Systems. ACM TOIS, 1994
 - $\hfill\square$ revision and contraction of finite WO preferences with single pairs t \succ_0 s

Summary and future work

Summary:

- Preference query modification through preference revision
- Preference revision using composition
- Closure of SPO and WO under revisions
- Incremental evaluation of preference queries

Future work:

- Integrating with relational query evaluation and optimization
- General revision language
- Preference contraction (query result too small)
- Preference elicitation