Foundations of Preference Queries

Jan Chomicki
University at Buffalo

Plan of the course

(1) Preference relations
(2) Preference queries
(3) Preference management
(4) Advanced topics

Part I

Preference relations

Outline of Part I

(1) Preference relations

- Preference
- Equivalence
- Preference specification
- Combining preferences
- Skylines

Preference relations

Universe of objects

- constants: uninterpreted, numbers,...
- individuals (entities)
- tuples
- sets

Preference relations

Universe of objects

- constants: uninterpreted, numbers,...
- individuals (entities)
- tuples
- sets

Preference relation \succ

- binary relation between objects
- $x \succ y \equiv x$ is_better_than $y \equiv x$ dominates y
- an abstract, uniform way of talking about desirability, worth, cost, timeliness,..., and their combinations
- preference relations used in queries

Buying a car

Buying a car

Salesman: What kind of car do you prefer?

Buying a car

Salesman: What kind of car do you prefer?
Customer: The newer the better, if it is the same make. And cheap, too.

Buying a car

Salesman: What kind of car do you prefer?
Customer: The newer the better, if it is the same make. And cheap, too. Salesman: Which is more important for you: the age or the price?

Buying a car

Salesman: What kind of car do you prefer?
Customer: The newer the better, if it is the same make. And cheap, too.
Salesman: Which is more important for you: the age or the price?
Customer: The age, definitely.

Buying a car

Salesman: What kind of car do you prefer?
Customer: The newer the better, if it is the same make. And cheap, too.
Salesman: Which is more important for you: the age or the price?
Customer: The age, definitely.
Salesman: Those are the best cars, according to your preferences, that we have in stock.

Buying a car

Salesman: What kind of car do you prefer?
Customer: The newer the better, if it is the same make. And cheap, too.
Salesman: Which is more important for you: the age or the price?
Customer: The age, definitely.
Salesman: Those are the best cars, according to your preferences, that we have in stock.
Customer: Wait...it better be a BMW.

Applications of preferences and preference queries

(1) decision making
(2) e-commerce
(3) digital libraries
(9) personalization

Properties of preference relations

Properties of preference relations

Properties of \succ

- irreflexivity: $\forall x, x \nsucc x$
- asymmetry: $\forall x, y, x \succ y \Rightarrow y \nsucc x$
- transitivity: $\forall x, y, z$. $(x \succ y \wedge y \succ z) \Rightarrow x \succ z$
- negative transitivity: $\forall x, y, z$. $(x \nsucc y \wedge y \nsucc z) \Rightarrow x \nsucc z$
- connectivity: $\forall x, y . x \succ y \vee y \succ x \vee x=y$

Properties of preference relations

Properties of \succ

- irreflexivity: $\forall x . x \nsucc x$
- asymmetry: $\forall x, y, x \succ y \Rightarrow y \nsucc x$
- transitivity: $\forall x, y, z .(x \succ y \wedge y \succ z) \Rightarrow x \succ z$
- negative transitivity: $\forall x, y, z .(x \nsucc y \wedge y \nsucc z) \Rightarrow x \nsucc z$
- connectivity: $\forall x, y . x \succ y \vee y \succ x \vee x=y$

Orders

- strict partial order (SPO): irreflexive and transitive
- weak order (WO): negatively transitive SPO
- total order: connected SPO

Weak and total orders

Total order

Order properties of preference relations

Order properties of preference relations

Irreflexivity, asymmetry: uncontroversial.

Order properties of preference relations

Irreflexivity, asymmetry: uncontroversial.

Transitivity:

- captures rationality of preference
- not always guaranteed: voting paradoxes
- helps with preference querying

Order properties of preference relations

Irreflexivity, asymmetry: uncontroversial.

Transitivity:

- captures rationality of preference
- not always guaranteed: voting paradoxes
- helps with preference querying

Negative transitivity:

- scoring functions represent weak orders

Order properties of preference relations

Irreflexivity, asymmetry: uncontroversial.

Transitivity:

- captures rationality of preference
- not always guaranteed: voting paradoxes
- helps with preference querying

Negative transitivity:

- scoring functions represent weak orders

We assume that preference relations are SPOs.

When are two objects equivalent?

When are two objects equivalent?

Relation ~

- binary relation between objects
- $x \sim y \equiv x$ "is equivalent to" y

When are two objects equivalent?

Relation ~

- binary relation between objects
- $x \sim y \equiv x$ "is equivalent to" y

Several notions of equivalence

- equality: $x \sim^{e q} y \equiv x=y$
- indifference: $x \sim^{i} y \equiv x \nsucc y \wedge y \nsucc x$
- restricted indifference:

$$
x \sim^{r} y \equiv \forall z .(x \prec z \Leftrightarrow y \prec z) \wedge(z \prec y \Leftrightarrow z \prec x)
$$

When are two objects equivalent?

Relation ~

- binary relation between objects
- $x \sim y \equiv x^{\prime \prime}$ is equivalent to" y

Several notions of equivalence

- equality: $x \sim^{e q} y \equiv x=y$
- indifference: $x \sim^{i} y \equiv x \nsucc y \wedge y \nsucc x$
- restricted indifference:

$$
x \sim^{r} y \equiv \forall z .(x \prec z \Leftrightarrow y \prec z) \wedge(z \prec y \Leftrightarrow z \prec x)
$$

Properties of equivalence

- equivalence relation: reflexive, symmetric, transitive
- equality and restricted indifference (if \succ is an SPO) are equivalence relations
- indifference is reflexive and symmetric; transitive for WO

Example

Example

Example

Preference:

$$
\begin{aligned}
& b m w \succ \text { ford, } b m w \succ v w \\
& b m w \succ \text { mazda, } b m w \succ k i a \\
& \text { mazda } \succ \text { kia }
\end{aligned}
$$

Indifference:
ford $\sim^{i} v w, v w \sim^{i}$ ford, ford \sim^{i} mazda, mazda \sim^{i} ford,
$v w \sim^{i}$ mazda, mazda \sim^{i}
vW,
ford $\sim^{i} k i a, k i a \sim^{i}$ ford, $v w \sim^{i}$ kia, kia $\sim^{i} v w$

Restricted indifference:

ford $\sim^{r} v w, v w \sim^{r}$ ford

Example

This is a strict partial order which is not a weak order.

Preference:

$$
\begin{aligned}
& b m w \succ \text { ford, } b m w \succ v w \\
& \text { bmw } \succ \text { mazda, bmw } \succ \text { kia } \\
& \text { mazda } \succ \text { kia }
\end{aligned}
$$

Indifference:

ford $\sim^{i} v w, v w \sim^{i}$ ford, ford \sim^{i} mazda, mazda \sim^{i} ford,
vw \sim^{i} mazda, mazda \sim^{i}
vW,
ford \sim^{i} kia, kia \sim^{i} ford, $v w \sim^{i} k i a, k i a \sim^{i} v w$

Restricted indifference:

ford $\sim^{r} v w, v w \sim^{r}$ ford

Not every SPO is a WO

Canonical example

$$
\text { mazda } \succ k i a, m a z d a \sim^{i} v w, k i a \sim^{i} v w
$$

Violation of negative transitivity

$$
\text { mazda } \nsucc v w, v w \nsucc k i a, m a z d a \succ k i a
$$

Preference specification

Preference specification

Explicit preference relations

Finite sets of pairs: bmw \succ mazda, mazda \succ kia,...

Preference specification

Explicit preference relations

Finite sets of pairs: bmw \succ mazda, mazda \succ kia,...

Implicit preference relations

- can be infinite but finitely representable
- defined using logic formulas in some constraint theory:

Preference specification

Explicit preference relations

Finite sets of pairs: bmw \succ mazda, mazda \succ kia,...

Implicit preference relations

- can be infinite but finitely representable
- defined using logic formulas in some constraint theory:

$$
\left(m_{1}, y_{1}, p_{1}\right) \succ_{1}\left(m_{2}, y_{2}, p_{2}\right) \equiv y_{1}>y_{2} \vee\left(y_{1}=y_{2} \wedge p_{1}<p_{2}\right)
$$

for relation Car(Make, Year, Price).

Preference specification

Explicit preference relations

Finite sets of pairs: bmw \succ mazda, mazda \succ kia,...

Implicit preference relations

- can be infinite but finitely representable
- defined using logic formulas in some constraint theory:

$$
\left(m_{1}, y_{1}, p_{1}\right) \succ_{1}\left(m_{2}, y_{2}, p_{2}\right) \equiv y_{1}>y_{2} \vee\left(y_{1}=y_{2} \wedge p_{1}<p_{2}\right)
$$

for relation Car(Make, Year, Price).

- defined using preference constructors (Preference SQL)

Preference specification

Explicit preference relations

Finite sets of pairs: bmw \succ mazda, mazda \succ kia,...

Implicit preference relations

- can be infinite but finitely representable
- defined using logic formulas in some constraint theory:

$$
\left(m_{1}, y_{1}, p_{1}\right) \succ_{1}\left(m_{2}, y_{2}, p_{2}\right) \equiv y_{1}>y_{2} \vee\left(y_{1}=y_{2} \wedge p_{1}<p_{2}\right)
$$

for relation Car(Make, Year, Price).

- defined using preference constructors (Preference SQL)
- defined using real-valued scoring functions:

Preference specification

Explicit preference relations

Finite sets of pairs: bmw \succ mazda, mazda \succ kia, ...

Implicit preference relations

- can be infinite but finitely representable
- defined using logic formulas in some constraint theory:

$$
\left(m_{1}, y_{1}, p_{1}\right) \succ_{1}\left(m_{2}, y_{2}, p_{2}\right) \equiv y_{1}>y_{2} \vee\left(y_{1}=y_{2} \wedge p_{1}<p_{2}\right)
$$

for relation Car(Make, Year, Price).

- defined using preference constructors (Preference SQL)
- defined using real-valued scoring functions: $F(m, y, p)=\alpha \cdot y+\beta \cdot p$

Preference specification

Explicit preference relations

Finite sets of pairs: bmw \succ mazda, mazda \succ kia, ...

Implicit preference relations

- can be infinite but finitely representable
- defined using logic formulas in some constraint theory:

$$
\left(m_{1}, y_{1}, p_{1}\right) \succ_{1}\left(m_{2}, y_{2}, p_{2}\right) \equiv y_{1}>y_{2} \vee\left(y_{1}=y_{2} \wedge p_{1}<p_{2}\right)
$$

for relation Car(Make, Year, Price).

- defined using preference constructors (Preference SQL)
- defined using real-valued scoring functions: $F(m, y, p)=\alpha \cdot y+\beta \cdot p$

$$
\left(m_{1}, y_{1}, p_{1}\right) \succ_{2}\left(m_{2}, y_{2}, p_{2}\right) \equiv F\left(m_{1}, y_{1}, p_{1}\right)>F\left(m_{2}, y_{2}, p_{2}\right)
$$

Logic formulas

Logic formulas

The language of logic formulas

- constants
- object (tuple) attributes
- comparison operators: $=, \neq,<,>, \ldots$
- arithmetic operators: $+, \cdot, \ldots$
- Boolean connectives: \neg, \wedge, \vee
- quantifiers:
- \forall, \exists
- usually can be eliminated (quantifier elimination)

Representability

Representability

Definition

A scoring function f represents a preference relation \succ if for all x, y

$$
x \succ y \equiv f(x)>f(y)
$$

Representability

Definition

A scoring function f represents a preference relation \succ if for all x, y

$$
x \succ y \equiv f(x)>f(y)
$$

Necessary condition for representability
The preference relation \succ is a weak order.

Representability

Definition

A scoring function f represents a preference relation \succ if for all x, y

$$
x \succ y \equiv f(x)>f(y)
$$

Necessary condition for representability
The preference relation \succ is a weak order.

Sufficient condition for representability

- \succ is a weak order
- the domain is countable or some continuity conditions are satisfied (studied in decision theory)

Not every WO can be represented using a scoring function

Not every WO can be represented using a scoring function

Lexicographic order in $R \times R$

$$
\left(x_{1}, y_{1}\right) \succ^{10}\left(x_{2}, y_{2}\right) \equiv x_{1}>x_{2} \vee\left(x_{1}=x_{2} \wedge y_{1}>y_{2}\right)
$$

Not every WO can be represented using a scoring function

Lexicographic order in $R \times R$

$$
\left(x_{1}, y_{1}\right) \succ^{l o}\left(x_{2}, y_{2}\right) \equiv x_{1}>x_{2} \vee\left(x_{1}=x_{2} \wedge y_{1}>y_{2}\right)
$$

Proof

Not every WO can be represented using a scoring function

Lexicographic order in $R \times R$

$$
\left(x_{1}, y_{1}\right) \succ^{10}\left(x_{2}, y_{2}\right) \equiv x_{1}>x_{2} \vee\left(x_{1}=x_{2} \wedge y_{1}>y_{2}\right)
$$

Proof

(1) Assume there is a real-valued function f such that

$$
x \succ^{10} y \equiv f(x)>f(y)
$$

Not every WO can be represented using a scoring function

Lexicographic order in $R \times R$

$$
\left(x_{1}, y_{1}\right) \succ^{10}\left(x_{2}, y_{2}\right) \equiv x_{1}>x_{2} \vee\left(x_{1}=x_{2} \wedge y_{1}>y_{2}\right)
$$

Proof

(1) Assume there is a real-valued function f such that $x \succ^{10} y \equiv f(x)>f(y)$.
(2) For every $x_{0},\left(x_{0}, 1\right) \succ^{10}\left(x_{0}, 0\right)$.

Not every WO can be represented using a scoring function

Lexicographic order in $R \times R$

$$
\left(x_{1}, y_{1}\right) \succ^{10}\left(x_{2}, y_{2}\right) \equiv x_{1}>x_{2} \vee\left(x_{1}=x_{2} \wedge y_{1}>y_{2}\right)
$$

Proof

(1) Assume there is a real-valued function f such that $x \succ^{10} y \equiv f(x)>f(y)$.
(2) For every $x_{0},\left(x_{0}, 1\right) \succ^{10}\left(x_{0}, 0\right)$.
(3) Thus $f\left(x_{0}, 1\right)>f\left(x_{0}, 0\right)$.

Not every WO can be represented using a scoring function

Lexicographic order in $R \times R$

$$
\left(x_{1}, y_{1}\right) \succ^{10}\left(x_{2}, y_{2}\right) \equiv x_{1}>x_{2} \vee\left(x_{1}=x_{2} \wedge y_{1}>y_{2}\right)
$$

Proof

(1) Assume there is a real-valued function f such that $x \succ^{10} y \equiv f(x)>f(y)$.
(2) For every $x_{0},\left(x_{0}, 1\right) \succ^{10}\left(x_{0}, 0\right)$.
(3) Thus $f\left(x_{0}, 1\right)>f\left(x_{0}, 0\right)$.
(9) Consider now $x_{1}>x_{0}$.

Not every WO can be represented using a scoring function

Lexicographic order in $R \times R$

$$
\left(x_{1}, y_{1}\right) \succ^{10}\left(x_{2}, y_{2}\right) \equiv x_{1}>x_{2} \vee\left(x_{1}=x_{2} \wedge y_{1}>y_{2}\right)
$$

Proof

(1) Assume there is a real-valued function f such that

$$
x \succ^{10} y \equiv f(x)>f(y)
$$

(2) For every $x_{0},\left(x_{0}, 1\right) \succ^{10}\left(x_{0}, 0\right)$.
(3) Thus $f\left(x_{0}, 1\right)>f\left(x_{0}, 0\right)$.
(9) Consider now $x_{1}>x_{0}$.
(5) Clearly $f\left(x_{1}, 1\right)>f\left(x_{1}, 0\right)>f\left(x_{0}, 1\right)>f\left(x_{0}, 0\right)$.

Not every WO can be represented using a scoring function

Lexicographic order in $R \times R$

$$
\left(x_{1}, y_{1}\right) \succ^{10}\left(x_{2}, y_{2}\right) \equiv x_{1}>x_{2} \vee\left(x_{1}=x_{2} \wedge y_{1}>y_{2}\right)
$$

Proof

(1) Assume there is a real-valued function f such that

$$
x \succ^{10} y \equiv f(x)>f(y)
$$

(2) For every $x_{0},\left(x_{0}, 1\right) \succ^{10}\left(x_{0}, 0\right)$.
(3) Thus $f\left(x_{0}, 1\right)>f\left(x_{0}, 0\right)$.
(9) Consider now $x_{1}>x_{0}$.
(5) Clearly $f\left(x_{1}, 1\right)>f\left(x_{1}, 0\right)>f\left(x_{0}, 1\right)>f\left(x_{0}, 0\right)$.
(0 So there are uncountably many nonempty disjoint intervals in R.

Not every WO can be represented using a scoring function

Lexicographic order in $R \times R$

$$
\left(x_{1}, y_{1}\right) \succ^{10}\left(x_{2}, y_{2}\right) \equiv x_{1}>x_{2} \vee\left(x_{1}=x_{2} \wedge y_{1}>y_{2}\right)
$$

Proof

(1) Assume there is a real-valued function f such that

$$
x \succ^{10} y \equiv f(x)>f(y)
$$

(2) For every $x_{0},\left(x_{0}, 1\right) \succ^{10}\left(x_{0}, 0\right)$.
(3) Thus $f\left(x_{0}, 1\right)>f\left(x_{0}, 0\right)$.
(9) Consider now $x_{1}>x_{0}$.
(5) Clearly $f\left(x_{1}, 1\right)>f\left(x_{1}, 0\right)>f\left(x_{0}, 1\right)>f\left(x_{0}, 0\right)$.
(6) So there are uncountably many nonempty disjoint intervals in R.
(0) Each such interval contains a rational number: contradiction with the countability of the set of rational numbers.

Preference constructors [Kie02, KK02]

Preference constructors [Kie02, KK02]

Good values
 Prefer $v \in S_{1}$ over $v \notin S_{1}$.

Preference constructors [Kie02, KK02]

Good values
 Prefer $v \in S_{1}$ over $v \notin S_{1}$.

POS (Make, \{mazda, vw\})

Preference constructors [Kie02, KK02]

Good values

Prefer $v \in S_{1}$ over $v \notin S_{1}$.

POS (Make, \{mazda, vw\})

Bad values
 Prefer $v \notin S_{1}$ over $v \in S_{1}$.

Preference constructors [Kie02, KK02]

Good values

Prefer $v \in S_{1}$ over $v \notin S_{1}$.

Bad values

Prefer $v \notin S_{1}$ over $v \in S_{1}$.

POS (Make, \{mazda, vw\})

NEG (Make, \{yugo\})

Preference constructors [Kie02, KK02]

Good values

Prefer $v \in S_{1}$ over $v \notin S_{1}$.

Bad values

Prefer $v \notin S_{1}$ over $v \in S_{1}$.
Explicit preference
Preference encoded by a finite directed graph.

POS(Make, \{mazda,vw\})

```
NEG(Make,{yugo})
```


Preference constructors [Kie02, KK02]

Good values

Prefer $v \in S_{1}$ over $v \notin S_{1}$.

Bad values

Prefer $v \notin S_{1}$ over $v \in S_{1}$.

Explicit preference

Preference encoded by a finite directed graph.

POS(Make, \{mazda, vw\})

```
NEG(Make,{yugo})
```

EXP (Make, \{(bmw,ford), ..., (mazda,kia) \})

Preference constructors [Kie02, KK02]

Good values

Prefer $v \in S_{1}$ over $v \notin S_{1}$.

Bad values

Prefer $v \notin S_{1}$ over $v \in S_{1}$.

Explicit preference

Preference encoded by a finite directed graph.

Value comparison

Prefer larger/smaller values.

POS(Make, \{mazda, vw\})

NEG (Make, \{yugo\})

EXP (Make, \{(bmw,ford), ..., (mazda,kia) \})

Preference constructors [Kie02, KK02]

Good values

Prefer $v \in S_{1}$ over $v \notin S_{1}$.

Bad values

Prefer $v \notin S_{1}$ over $v \in S_{1}$.

Explicit preference

Preference encoded by a finite directed graph.

Value comparison

Prefer larger/smaller values.

POS(Make, \{mazda, vw\})

NEG (Make, \{yugo\})

EXP (Make, \{(bmw,ford), ...,

$$
\text { (mazda,kia)\}) }
$$

HIGHEST (Year)
 LOWEST(Price)

Preference constructors [Kie02, KK02]

Good values

Prefer $v \in S_{1}$ over $v \notin S_{1}$.

Bad values

Prefer $v \notin S_{1}$ over $v \in S_{1}$.

Explicit preference

Preference encoded by a finite directed graph.

Value comparison

Prefer larger/smaller values.

POS (Make, \{mazda, vw\})

NEG (Make, \{yugo\})

EXP (Make, \{(bmw,ford), ..., (mazda,kia) \})

HIGHEST (Year)
 LOWEST (Price)

Distance

Prefer values closer to v_{0}.

Preference constructors [Kie02, KK02]

Good values

Prefer $v \in S_{1}$ over $v \notin S_{1}$.

Bad values

Prefer $v \notin S_{1}$ over $v \in S_{1}$.

Explicit preference

Preference encoded by a finite directed graph.

Value comparison

Prefer larger/smaller values.

Distance

Prefer values closer to v_{0}.

POS (Make, \{mazda, vw\})

NEG (Make, \{yugo\})

EXP (Make, \{(bmw,ford), ..., (mazda,kia) \})

HIGHEST (Year)
 LOWEST (Price)

AROUND (Price,12K)

Combining preferences

Combining preferences

Preference composition

- combining preferences about objects of the same kind
- dimensionality is not increased
- representing preference aggregation, revision, ...

Combining preferences

Preference composition

- combining preferences about objects of the same kind
- dimensionality is not increased
- representing preference aggregation, revision, ...

Preference accumulation

- defining preferences over objects in terms of preferences over simpler objects
- dimensionality is increased (preferences over Cartesian product).

Combining preferences: composition

Combining preferences: composition

Boolean composition

$$
x \succ^{\cup} y \equiv x \succ_{1} y \vee x \succ_{2} y
$$

and similarly for \cap.

Combining preferences: composition

Boolean composition

$$
x \succ^{\cup} y \equiv x \succ_{1} y \vee x \succ_{2} y
$$

and similarly for \cap.

Prioritized composition

$$
x \succ^{l e x} y \equiv x \succ_{1} y \vee\left(y \succ_{1} x \wedge x \succ_{2} y\right) .
$$

Combining preferences: composition

Boolean composition

$$
x \succ^{\cup} y \equiv x \succ_{1} y \vee x \succ_{2} y
$$

and similarly for \cap.

Prioritized composition

$$
x \succ^{l e x} y \equiv x \succ_{1} y \vee\left(y \succ_{1} x \wedge x \succ_{2} y\right) .
$$

Pareto composition

$$
x \succ^{\operatorname{Par}} y \equiv\left(x \succ_{1} y \wedge y \nsucc_{2} x\right) \vee\left(x \succ_{2} y \wedge y \succ_{1} x\right)
$$

Preference composition

Preference composition

Preference relation \succ_{1}

Preference composition

Preference relation \succ_{2}

Preference composition

Preference relation \succ_{2}

Prioritized composition

kia

Preference composition

Prioritized composition

Combining preferences: accumulation [Kie02]

Combining preferences: accumulation [Kie02]

Prioritized accumulation: $\succ^{p r}=\left(\succ_{1} \& \succ_{2}\right)$

$$
\left(x_{1}, x_{2}\right) \succ^{p r}\left(y_{1}, y_{2}\right) \equiv x_{1} \succ_{1} y_{1} \vee\left(x_{1}=y_{1} \wedge x_{2} \succ_{2} y_{2}\right) .
$$

Combining preferences: accumulation [Kie02]

Prioritized accumulation: $\succ^{p r}=\left(\succ_{1} \& \succ_{2}\right)$

$$
\left(x_{1}, x_{2}\right) \succ^{p r}\left(y_{1}, y_{2}\right) \equiv x_{1} \succ_{1} y_{1} \vee\left(x_{1}=y_{1} \wedge x_{2} \succ_{2} y_{2}\right)
$$

Pareto accumulation: $\succ^{p a}=\left(\succ_{1} \otimes \succ_{2}\right)$

$$
\left(x_{1}, x_{2}\right) \succ^{p a}\left(y_{1}, y_{2}\right) \equiv\left(x_{1} \succ_{1} y_{1} \wedge x_{2} \succeq_{2} y_{2}\right) \vee\left(x_{1} \succeq_{1} y_{1} \wedge x_{2} \succ_{2} y_{2}\right) .
$$

Combining preferences: accumulation [Kie02]

Prioritized accumulation: $\succ^{p r}=\left(\succ_{1} \& \succ_{2}\right)$

$$
\left(x_{1}, x_{2}\right) \succ^{p r}\left(y_{1}, y_{2}\right) \equiv x_{1} \succ_{1} y_{1} \vee\left(x_{1}=y_{1} \wedge x_{2} \succ_{2} y_{2}\right) .
$$

Pareto accumulation: $\succ^{p a}=\left(\succ_{1} \otimes \succ_{2}\right)$

$$
\left(x_{1}, x_{2}\right) \succ^{p a}\left(y_{1}, y_{2}\right) \equiv\left(x_{1} \succ_{1} y_{1} \wedge x_{2} \succeq_{2} y_{2}\right) \vee\left(x_{1} \succeq_{1} y_{1} \wedge x_{2} \succ_{2} y_{2}\right) .
$$

Properties

- closure
- associativity
- commutativity of Pareto accumulation

Skylines

Skylines

Skyline

Given single-attribute total preference relations $\succ_{A_{1}}, \ldots, \succ A_{n}$ for a relational schema $R\left(A_{1}, \ldots, A_{n}\right)$, the skyline preference relation $\succ^{\text {sky }}$ is defined as

$$
\succ^{s k y}=\succ_{A_{1}} \otimes \succ_{A_{2}} \otimes \cdots \otimes \succ_{A_{n}} .
$$

Unfolding the definition

$$
\left(x_{1}, \ldots, x_{n}\right) \succ^{s k y}\left(y_{1}, \ldots, y_{n}\right) \equiv \bigwedge_{i} x_{i} \succeq_{A_{i}} y_{i} \wedge \bigvee_{i} x_{i} \succ_{A_{i}} y_{i}
$$

Skyline in Euclidean space

Skyline in Euclidean space

Two-dimensional Euclidean space

$$
\left(x_{1}, x_{2}\right) \succ^{s k y}\left(y_{1}, y_{2}\right) \equiv x_{1} \geq y_{1} \wedge x_{2}>y_{2} \vee x_{1}>y_{1} \wedge x_{2} \geq y_{2}
$$

Skyline consists of $\succ_{\text {sky }}$-maximal vectors

Skyline in Euclidean space

Two-dimensional Euclidean space

$$
\left(x_{1}, x_{2}\right) \succ^{s k y}\left(y_{1}, y_{2}\right) \equiv x_{1} \geq y_{1} \wedge x_{2}>y_{2} \vee x_{1}>y_{1} \wedge x_{2} \geq y_{2}
$$

Skyline consists of $\succ_{\text {sky }}$-maximal vectors

Skyline properties

Skyline properties

Invariance
 A skyline preference relation is unaffacted by scaling or shifting in any dimension.

Skyline properties

Invariance

A skyline preference relation is unaffacted by scaling or shifting in any dimension.

Maxima

A skyline consists of the maxima of monotonic scoring functions.

Skyline properties

Invariance

A skyline preference relation is unaffacted by scaling or shifting in any dimension.

Maxima

A skyline consists of the maxima of monotonic scoring functions.

Skyline is not a weak order

$$
(2,0) \succ_{\text {sky }}(0,2),(0,2) \succ_{\text {sky }}(1,0),(2,0) \succ_{\text {sky }}(1,0)
$$

Skyline in SQL

Skyline in SQL

Grouping

Designating attributes not used in comparisons (DIFF).

```
Example
SELECT * FROM Car
SKYLINE Price MIN,
    Year MAX,
    Make DIFF
```


Skyline in SQL

Grouping

Designating attributes not used in comparisons (DIFF).

Example

SELECT * FROM Car
SKYLINE Price MIN,
Year MAX,
Make DIFF

Dynamic skylines

- dimensions defined using dimension functions g_{1}, \ldots, g_{n}
- variable query point.

Dynamic skylines

Dynamic skylines

Relation Hotel(XCoord, YCoord, Price)

- tuple $p=\left(p_{x}, p_{y}, p_{z}\right)$, query point $\left(u_{x}, u_{y}\right)$
- dimension functions based on 2D Euclidean distance:

$$
\begin{aligned}
& g_{1}\left(p_{x}, p_{y}\right)=\sqrt{\left(p_{x}-u_{x}\right)^{2}+\left(p_{y}-u_{y}\right)^{2}} \\
& g_{2}\left(p_{z}\right)=p_{z}
\end{aligned}
$$

Dynamic skylines

Relation Hotel (XCoord, YCoord, Price)

- tuple $p=\left(p_{x}, p_{y}, p_{z}\right)$, query point $\left(u_{x}, u_{y}\right)$
- dimension functions based on 2D Euclidean distance:

$$
\begin{aligned}
& g_{1}\left(p_{x}, p_{y}\right)=\sqrt{\left(p_{x}-u_{x}\right)^{2}+\left(p_{y}-u_{y}\right)^{2}} \\
& g_{2}\left(p_{z}\right)=p_{z}
\end{aligned}
$$

XCoord	YCoord	Price
0	5	80
2	6	100
5	3	120

Query point: $(3,4)$.

Dynamic skylines

Relation Hotel (XCoord, YCoord, Price)

- tuple $p=\left(p_{x}, p_{y}, p_{z}\right)$, query point $\left(u_{x}, u_{y}\right)$
- dimension functions based on 2D Euclidean distance:

$$
\begin{aligned}
& g_{1}\left(p_{x}, p_{y}\right)=\sqrt{\left(p_{x}-u_{x}\right)^{2}+\left(p_{y}-u_{y}\right)^{2}} \\
& g_{2}\left(p_{z}\right)=p_{z}
\end{aligned}
$$

XCoord	YCoord	Price
0	5	80
2	6	100
5	3	120

Query point: $(3,4)$.

Combining scoring functions

Combining scoring functions

Scoring functions can be combined using numerical operators.

Combining scoring functions

Scoring functions can be combined using numerical operators.

Common scenario

- scoring functions f_{1}, \ldots, f_{n}
- aggregate scoring function: $F(t)=E\left(f_{1}(t), \ldots, f_{n}(t)\right)$
- linear scoring function: $\sum_{i=1}^{n} \alpha_{i} f_{i}$

Combining scoring functions

Scoring functions can be combined using numerical operators.

Common scenario

- scoring functions f_{1}, \ldots, f_{n}
- aggregate scoring function: $F(t)=E\left(f_{1}(t), \ldots, f_{n}(t)\right)$
- linear scoring function: $\sum_{i=1}^{n} \alpha_{i} f_{i}$

Numerical vs. logical combination

- logical combination cannot be defined numerically
- numerical combination cannot be defined logically (unless arithmetic operators are available)

Part II

Preference Queries

Outline of Part II

(2) Preference queries

- Retrieving non-dominated elements
- Rewriting queries with winnow
- Retrieving Top-K elements
- Optimizing Top- K queries

Winnow[Cho03]

Winnow[Cho03]

Winnow

- new relational algebra operator ω (other names: Best, BMO [Kie02])
- retrieves the non-dominated (best) elements in a database relation
- can be expressed in terms of other operators

Winnow[Cho03]

Winnow

- new relational algebra operator ω (other names: Best, BMO [Kie02])
- retrieves the non-dominated (best) elements in a database relation
- can be expressed in terms of other operators

Definition

Given a preference relation \succ and a database relation r :

$$
\omega_{\succ}(r)=\left\{t \in r \mid \neg \exists t^{\prime} \in r . t^{\prime} \succ t\right\} .
$$

Winnow[Cho03]

Winnow

- new relational algebra operator ω (other names: Best, BMO [Kie02])
- retrieves the non-dominated (best) elements in a database relation
- can be expressed in terms of other operators

Definition

Given a preference relation \succ and a database relation r :

$$
\omega_{\succ}(r)=\left\{t \in r \mid \neg \exists t^{\prime} \in r . t^{\prime} \succ t\right\} .
$$

Notation: If a preference relation $\succ \mathrm{c}$ is defined using a formula C, then we write $\omega_{C}(r)$, instead of $\omega_{\succ C}(r)$.

Winnow[Cho03]

Winnow

- new relational algebra operator ω (other names: Best, BMO [Kie02])
- retrieves the non-dominated (best) elements in a database relation
- can be expressed in terms of other operators

Definition

Given a preference relation \succ and a database relation r :

$$
\omega_{\succ}(r)=\left\{t \in r \mid \neg \exists t^{\prime} \in r . t^{\prime} \succ t\right\} .
$$

Notation: If a preference relation $\succ \mathrm{c}$ is defined using a formula C, then we write $\omega_{C}(r)$, instead of $\omega_{\succ_{C}}(r)$.

Skyline query

$\omega_{\succ^{s k y}}(r)$ computes the set of maximal vectors in r (the skyline set).

Example of winnow

Example of winnow

Relation Car(Make, Year, Price)

Preference relation:

$$
(m, y, p) \succ_{1}\left(m^{\prime}, y^{\prime}, p^{\prime}\right) \equiv y>y^{\prime} \vee\left(y=y^{\prime} \wedge p<p^{\prime}\right)
$$

Example of winnow

Relation Car(Make, Year, Price)

Preference relation:

$$
(m, y, p) \succ_{1}\left(m^{\prime}, y^{\prime}, p^{\prime}\right) \equiv y>y^{\prime} \vee\left(y=y^{\prime} \wedge p<p^{\prime}\right)
$$

Make	Year	Price
mazda	2009	20 K
ford	2009	15 K
ford	2007	12 K

Example of winnow

Relation Car(Make, Year, Price)

Preference relation:

$$
(m, y, p) \succ_{1}\left(m^{\prime}, y^{\prime}, p^{\prime}\right) \equiv y>y^{\prime} \vee\left(y=y^{\prime} \wedge p<p^{\prime}\right)
$$

Make	Year	Price
mazda	2009	20 K
ford	2009	15 K
ford	2007	12 K

Computing winnow using BNL [BKS01]

Require: $\mathrm{SPO} \succ$, database relation r
1: initialize window W and temporary file F to empty
2: repeat
3: for every tuple t in the input do
4: \quad if t is dominated by a tuple in W then ignore t
else if t dominates some tuples in W then
eliminate them and insert t into W
else if there is room in W then
insert t into W
else
add t to F
end if
end for
output tuples from W that were added when F was empty
make F the input, clear F
16: until empty input

BNL in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

BNL in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

Temporary file

Window

Input

$$
c, e, d, a, b
$$

BNL in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

Temporary file

Window

> Input
> e,d,a,b

BNL in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

Temporary file

Window
\square
Input
d, a,b

BNL in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

Temporary file

d

Window

Input
a, b

BNL in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

Temporary file

Window

a
e

Input
b

BNL in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

Temporary file

```
d
```

Window

Input

a
b

BNL in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

Temporary file

Window

Input
d

b

BNL in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

Temporary file

Window

Input

a
b

Computing winnow with presorting

Computing winnow with presorting

SFS: adding presorting step to BNL [CGGL03]

- topologically sort the input:
- if x dominates y, then x precedes y in the sorted input
- window contains only winnow points and can be output after every pass
- for skylines: sort the input using a monotonic scoring function, for example $\prod_{i=1}^{k} x_{i}$.

Computing winnow with presorting

SFS: adding presorting step to BNL [CGGL03]

- topologically sort the input:
- if x dominates y, then x precedes y in the sorted input
- window contains only winnow points and can be output after every pass
- for skylines: sort the input using a monotonic scoring function, for example $\prod_{i=1}^{k} x_{i}$.

LESS: integrating different techniques [GSG07]

- adding an elimination filter to the first external sort pass
- combining the last external sort pass with the first SFS pass
- average running time: $O(k n)$

SFS in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

SFS in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

Temporary file

Window

Input

$$
a, b, c, d, e
$$

SFS in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

Temporary file

Window

Input
b, c, d,e

SFS in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

Temporary file

Window

> Input
> c,d,e

SFS in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

Temporary file

Window

Input
d,e

SFS in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

Temporary file

Window

Input
 e

a
b

SFS in action

Preference relation: $\mathrm{a} \succ \mathrm{c}, \mathrm{a} \succ \mathrm{d}, \mathrm{b} \succ \mathrm{e}$.

Temporary file

Window

Input

a
b

Generalizations of winnow

Generalizations of winnow

Iterating winnow

$$
\begin{aligned}
& \omega_{\succ}^{0}(r)=\omega_{\succ}(r) \\
& \omega_{\succ}^{n+1}(r)=\omega_{\succ}\left(r-\bigcup_{1 \leq i \leq n} \omega_{\succ}^{i}(r)\right)
\end{aligned}
$$

Generalizations of winnow

Iterating winnow

$$
\begin{aligned}
& \omega_{\succ}^{0}(r)=\omega_{\succ}(r) \\
& \omega_{\succ}^{n+1}(r)=\omega_{\succ}\left(r-\bigcup_{1 \leq i \leq n} \omega_{\succ}^{i}(r)\right)
\end{aligned}
$$

Ranking

Rank tuples by their minimum distance from a winnow tuple:

$$
\eta_{\succ}(r)=\left\{(t, i) \mid t \in \omega_{C}^{i}(r)\right\} .
$$

Generalizations of winnow

Iterating winnow

$$
\begin{aligned}
& \omega_{\succ}^{0}(r)=\omega_{\succ}(r) \\
& \omega_{\succ}^{n+1}(r)=\omega_{\succ}\left(r-\bigcup_{1 \leq i \leq n} \omega_{\succ}^{j}(r)\right)
\end{aligned}
$$

Ranking

Rank tuples by their minimum distance from a winnow tuple:

$$
\eta_{\succ}(r)=\left\{(t, i) \mid t \in \omega_{C}^{i}(r)\right\} .
$$

k-band

Return the tuples dominated by at most k tuples:

$$
\omega_{\succ}(r)=\left\{t \in r \mid \#\left\{t^{\prime} \in r \mid t^{\prime} \succ t\right\} \leq k\right\} .
$$

Preference SQL

Preference SQL

The language

- basic preference constructors
- Pareto/prioritized accumulation
- new SQL clause PREFERRING
- groupwise preferences
- implementation: translation to SQL

Preference SQL

The language

- basic preference constructors
- Pareto/prioritized accumulation
- new SQL clause PREFERRING
- groupwise preferences
- implementation: translation to SQL

Winnow in Preference SQL

SELECT * FROM Car
PREFERRING HIGHEST (Year)
CASCADE LOWEST(Price)

Algebraic laws [Cho03]

Algebraic laws [Cho03]

Commutativity of winnow with selection

If the formula

$$
\forall t_{1}, t_{2} \cdot\left[\alpha\left(t_{2}\right) \wedge \gamma\left(t_{1}, t_{2}\right)\right] \Rightarrow \alpha\left(t_{1}\right)
$$

is valid, then for every r

$$
\sigma_{\alpha}\left(\omega_{\gamma}(r)\right)=\omega_{\gamma}\left(\sigma_{\alpha}(r)\right)
$$

Algebraic laws [Cho03]

Commutativity of winnow with selection

If the formula

$$
\forall t_{1}, t_{2} \cdot\left[\alpha\left(t_{2}\right) \wedge \gamma\left(t_{1}, t_{2}\right)\right] \Rightarrow \alpha\left(t_{1}\right)
$$

is valid, then for every r

$$
\sigma_{\alpha}\left(\omega_{\gamma}(r)\right)=\omega_{\gamma}\left(\sigma_{\alpha}(r)\right)
$$

Under the preference relation

$$
(m, y, p) \succ c_{1}\left(m^{\prime}, y^{\prime}, p^{\prime}\right) \equiv y>y^{\prime} \wedge p \leq p^{\prime} \vee y \geq y^{\prime} \wedge p<p^{\prime}
$$

the selection $\sigma_{\text {Price<20K }}$ commutes with $\omega_{C_{1}}$ but $\sigma_{\text {Price }>20 K}$ does not.

Other algebraic laws

Other algebraic laws

Distributivity of winnow over Cartesian product

For every r_{1} and r_{2}

$$
\omega_{C}\left(r_{1} \times r_{2}\right)=\omega_{C}\left(r_{1}\right) \times r_{2}
$$

if C refers only to the attributes of r_{1}.

Commutativity of winnow

If $\forall t_{1}, t_{2}$. [$\left.C_{1}\left(t_{1}, t_{2}\right) \Rightarrow C_{2}\left(t_{1}, t_{2}\right)\right]$ is valid and $\succ C_{1}$ and $\succ C_{2}$ are SPOs, then for all finite instances r :

$$
\omega_{C_{1}}\left(\omega_{C_{2}}(r)\right)=\omega_{C_{2}}\left(\omega_{C_{1}}(r)\right)=\omega_{C_{2}}(r)
$$

Semantic query optimization [Cho07b]

Semantic query optimization [Cho07b]

Using information about integrity constraints to:

- eliminate redundant occurrences of winnow.
- make more efficient computation of winnow possible.

Eliminating redundancy

Given a set of integrity constraints F, ω_{C} is redundant w.r.t. F iff F implies the formula

$$
\forall t_{1}, t_{2} . R\left(t_{1}\right) \wedge R\left(t_{2}\right) \Rightarrow t_{1} \sim_{c} t_{2}
$$

Integrity constraints

Integrity constraints

Constraint-generating dependencies (CGD) [BCW99, ZO97]

$$
\forall t_{1} \ldots \forall t_{n} .\left[R\left(t_{1}\right) \wedge \cdots \wedge R\left(t_{n}\right) \wedge \gamma\left(t_{1}, \ldots t_{n}\right)\right] \Rightarrow \gamma^{\prime}\left(t_{1}, \ldots t_{n}\right) .
$$

Integrity constraints

Constraint-generating dependencies (CGD) [BCW99, ZO97]

$$
\forall t_{1} \ldots \forall t_{n} .\left[R\left(t_{1}\right) \wedge \cdots \wedge R\left(t_{n}\right) \wedge \gamma\left(t_{1}, \ldots t_{n}\right)\right] \Rightarrow \gamma^{\prime}\left(t_{1}, \ldots t_{n}\right) .
$$

CGD entailment

Decidable by reduction to the validity of \forall-formulas in the constraint theory (assuming the theory is decidable).

Top- K queries

Top-K queries

Scoring functions

- each tuple t in a relation has numeric scores $f_{1}(t), \ldots, f_{m}(t)$ assigned by numeric component scoring functions f_{1}, \ldots, f_{m}
- the aggregate score of t is $F(t)=E\left(f_{1}(t), \ldots, f_{m}(t)\right)$ where E is a numeric-valued expression
- F is monotone if $E\left(x_{1}, \ldots, x_{m}\right) \leq E\left(y_{1}, \ldots, y_{m}\right)$ whenever $x_{i} \leq y_{i}$ for all i

Top- K queries

Scoring functions

- each tuple t in a relation has numeric scores $f_{1}(t), \ldots, f_{m}(t)$ assigned by numeric component scoring functions f_{1}, \ldots, f_{m}
- the aggregate score of t is $F(t)=E\left(f_{1}(t), \ldots, f_{m}(t)\right)$ where E is a numeric-valued expression
- F is monotone if $E\left(x_{1}, \ldots, x_{m}\right) \leq E\left(y_{1}, \ldots, y_{m}\right)$ whenever $x_{i} \leq y_{i}$ for all i

Top- K queries

- return K elements having top F-values in a database relation R
- query expressed in an extension of SQL:

SELECT *
FROM R
ORDER BY F DESC
LIMIT K

Top-K sets

Top-K sets

Definition

Given a scoring function F and a database relation r, s is a Top- K set if:

- $s \subseteq r$
- $|s|=\min (K,|r|)$
- $\forall t \in s . \forall t^{\prime} \in r-s . F(t) \geq F\left(t^{\prime}\right)$

There may be more than one Top- K set: one is selected non-deterministically.

Example of Top-2

Example of Top-2

Relation Car(Make, Year, Price)

- component scoring functions:

$$
\begin{aligned}
& f_{1}(m, y, p)=(y-2005) \\
& f_{2}(m, y, p)=(20000-p)
\end{aligned}
$$

- aggregate scoring function:

$$
F(m, y, p)=1000 \cdot f_{1}(m, y, p)+f_{2}(m, y, p)
$$

Example of Top-2

Relation Car(Make, Year, Price)

- component scoring functions:

$$
\begin{aligned}
& f_{1}(m, y, p)=(y-2005) \\
& f_{2}(m, y, p)=(20000-p)
\end{aligned}
$$

- aggregate scoring function:

$$
F(m, y, p)=1000 \cdot f_{1}(m, y, p)+f_{2}(m, y, p)
$$

Make	Year	Price	Aggregate score
mazda	2009	20000	4000
ford	2009	15000	9000
ford	2007	12000	10000

Example of Top-2

Relation Car(Make, Year, Price)

- component scoring functions:

$$
\begin{aligned}
& f_{1}(m, y, p)=(y-2005) \\
& f_{2}(m, y, p)=(20000-p)
\end{aligned}
$$

- aggregate scoring function:

$$
F(m, y, p)=1000 \cdot f_{1}(m, y, p)+f_{2}(m, y, p)
$$

Make	Year	Price	Aggregate score
mazda	2009	20000	4000
ford	2009	15000	9000
ford	2007	12000	10000

Computing Top-K

Computing Top-K

Naive approaches

- sort, output the first K-tuples
- scan the input maintaining a priority queue of size K

Computing Top-K

Naive approaches

- sort, output the first K-tuples
- scan the input maintaining a priority queue of size K - ...

Better approaches

Computing Top-K

Naive approaches

- sort, output the first K-tuples
- scan the input maintaining a priority queue of size K
- ...

Better approaches

- the entire input does not need to be scanned...

Computing Top-K

Naive approaches

- sort, output the first K-tuples
- scan the input maintaining a priority queue of size K
- ...

Better approaches

- the entire input does not need to be scanned...
- ... provided additional data structures are available

Computing Top-K

Naive approaches

- sort, output the first K-tuples
- scan the input maintaining a priority queue of size K
- ...

Better approaches

- the entire input does not need to be scanned...
- ... provided additional data structures are available
- variants of the threshold algorithm

Threshold algorithm (TA)[FLN03]

Threshold algorithm (TA)[FLN03]

Inputs

- a monotone scoring function $F(t)=E\left(f_{1}(t), \ldots, f_{m}(t)\right)$
- lists $S_{i}, i=1, \ldots, m$, each sorted on f_{i} (descending) and representing a different ranking of the same set of objects
(1) For each list S_{i} in parallel, retrieve the current object w in sorted order:
- (random access) for every $j \neq i$, retrieve $v_{j}=f_{j}(w)$ from the list S_{j}
- if $d=E\left(v_{1}, \ldots, v_{m}\right)$ is among the highest K scores seen so far, remember w and d (ties broken arbitrarily)
(2) Thresholding:
- for each i, w_{i} is the last object seen under sorted access in S_{i}
- if there are already K top- K objects with score at least equal to the threshold $T=E\left(f_{1}\left(w_{1}\right), \ldots, f_{m}\left(w_{m}\right)\right)$, return collected objects sorted by F and terminate
- otherwise, go to step 1 .

TA in action

Aggregate score

$$
F(t)=P_{1}(t)+P_{2}(t)
$$

Priority queue

OID	P_{1}			
5	50			
1	35			
3	30			
2	20			
4	10	\quad	OID	P_{2}
:---:	:---:			
3	50			
2	40			
1	30			
4	20			
5	10			

TA in action

Aggregate score

$$
F(t)=P_{1}(t)+P_{2}(t)
$$

Priority queue

OID	P_{1}			
5	50			
1	35			
3	30			
2	20			
4	10	\quad	OID	P_{2}
:---:	:---:			
3	50	\quad	2	40
:---:	:---:			
1	30			
4	20			
5	10			

$\mathrm{T}=100$

TA in action

Aggregate score

$$
F(t)=P_{1}(t)+P_{2}(t)
$$

Priority queue

OID	P_{1}			
5	50			
1	35			
3	30			
2	20			
4	10	\quad	OID	P_{2}
:---:	:---:			
3	50			
2	40			
1	30			
4	20	\quad	5	
:---:				

$5: 60$
$=100$

TA in action

Aggregate score

$$
F(t)=P_{1}(t)+P_{2}(t)
$$

Priority queue

OID	P_{1}			
5	50			
1	35			
3	30			
2	20			
4	10	\quad	OID	P_{2}
:---:	:---:			
3	50			
2	40			
1	30			
4	20			
5	10			

$3: 80$
$5: 60$

$$
\mathrm{T}=100
$$

TA in action

Aggregate score

$$
F(t)=P_{1}(t)+P_{2}(t)
$$

Priority queue

OID	P_{1}			
5	50			
1	35			
3	30			
2	20			
4	10	\quad	OID	P_{2}
:---:	:---:			
3	50			
2	40			
1	30			
4	20			
5	10			

$3: 80$
$5: 60$
$=75$

TA in action

Aggregate score

$$
F(t)=P_{1}(t)+P_{2}(t)
$$

Priority queue

OID	P_{1}			
5	50			
1	35			
3	30			
2	20			
4	10	\quad	OID	P_{2}
:---:	:---:			
3	50			
2	40			
1	30			
4	20			
5	10			

$3: 80$
$1: 65$
$5: 60$
$=75$

TA in action

Aggregate score

$$
F(t)=P_{1}(t)+P_{2}(t)
$$

Priority queue

OID	P_{1}			
5	50			
1	35			
3	30			
2	20			
4	10	\quad	OID	P_{2}
:---:	:---:			
3	50			
2	40			
1	30			
4	20			
5	10			

$3: 80$
$1: 65$
$5: 60$
$2: 60$

$=75$

TA in databases

TA in databases

- objects: tuples of a single relation r
- single-attribute component scoring functions
- sorted list access implemented through indexes
- random access to all lists implemented by primary index access to r that retrieves entire tuples

Optimizing Top-K queries [LCIS05]

Optimizing Top-K queries [LCIS05]

Goals

- integrating Top-K with relational query evaluation and optimization
- replacing blocking by pipelining

Optimizing Top-K queries [LCIS05]

Goals

- integrating Top-K with relational query evaluation and optimization
- replacing blocking by pipelining

Example

SELECT *

FROM Hotel h, Restaurant r, Museum m
WHERE c_{1} AND c_{2} AND c_{3}
ORDER BY $f_{1}+f_{2}+f_{3}$
LIMIT K

Optimizing Top-K queries [LCIS05]

Goals

- integrating Top-K with relational query evaluation and optimization
- replacing blocking by pipelining

Example

SELECT *

FROM Hotel h, Restaurant r, Museum m
WHERE c_{1} AND c_{2} AND c_{3}
ORDER BY $f_{1}+f_{2}+f_{3}$
LIMIT K

Is there a better evaluation plan than materialize-then-sort?

Partial ranking of tuples

Partial ranking of tuples

Model

- set of component scoring functions $P=\left\{f_{1}, \ldots, f_{m}\right\}$ such that $f_{i}(t) \leq 1$ for all t
- aggregate scoring function $F(t)=E\left(f_{1}(t), \ldots, f_{m}(t)\right)$
- how to rank intermediate tuples?

Partial ranking of tuples

Model

- set of component scoring functions $P=\left\{f_{1}, \ldots, f_{m}\right\}$ such that $f_{i}(t) \leq 1$ for all t
- aggregate scoring function $F(t)=E\left(f_{1}(t), \ldots, f_{m}(t)\right)$
- how to rank intermediate tuples?

Ranking principle

Given $P_{0} \subseteq P$,

$$
\bar{F}_{P_{0}}(t)=E\left(g_{1}(t), \ldots, g_{m}(t)\right)
$$

where

$$
g_{i}(t)= \begin{cases}f_{i}(t) & \text { if } f_{i} \in P_{0} \\ 1 & \text { otherwise }\end{cases}
$$

Relations with rank

Relations with rank

Rank-relation $R_{P_{0}}$

- relation R
- monotone aggregate scoring function F (the same for all relations)
- set of component scoring functions $P_{0} \subseteq P$
- order:

$$
t_{1}>_{R_{P_{0}}} t_{2} \equiv \bar{F}_{P_{0}}\left(t_{1}\right)>\bar{F}_{P_{0}}\left(t_{2}\right)
$$

Ranking intermediate results

Ranking intermediate results

Operators

- rank operator μ_{f} : ranks tuples according to an additional component scoring function f
- standard relational algebra operators suitably extended to work on rank-relations

Ranking intermediate results

Operators

- rank operator μ_{f} : ranks tuples according to an additional component scoring function f
- standard relational algebra operators suitably extended to work on rank-relations

Operator	Order
$\mu_{f}\left(R_{P_{0}}\right)$	$t_{1}>_{\mu_{f}\left(R_{P_{0}}\right)} t_{2} \equiv \bar{F}_{P_{0} \cup\{f\}}\left(t_{1}\right)>\bar{F}_{P_{0} \cup\{f\}}\left(t_{2}\right)$
$R_{P_{1}} \cap S_{P_{2}}$	$t_{1}>_{R_{P_{1}} \cap S_{P_{2}}} t_{2} \equiv \bar{F}_{P_{1} \cup P_{2}}\left(t_{1}\right)>\bar{F}_{P_{1} \cup P_{2}}\left(t_{2}\right)$

Example

Example

```
Query
SELECT *
FROM S
ORDER BY f}\mp@subsup{f}{1}{}+\mp@subsup{f}{2}{}+\mp@subsup{f}{3}{
LIMIT 1
```


Example

```
Query
SELECT *
FROM S
ORDER BY f}\mp@subsup{f}{1}{}+\mp@subsup{f}{2}{}+\mp@subsup{f}{3}{
LIMIT 1
```


Unranked relation S

A	f_{1}	f_{2}	f_{3}
1	0.7	0.8	0.9
2	0.9	0.85	0.8
3	0.5	0.45	0.75

Example

Query

SELECT *
FROM S
ORDER BY $f_{1}+f_{2}+f_{3}$
LIMIT 1

Unranked relation S

A	f_{1}	f_{2}	f_{3}
1	0.7	0.8	0.9
2	0.9	0.85	0.8
3	0.5	0.45	0.75

Pipelined execution

Pipelined execution

A	f_{1}	f_{2}	f_{3}	$\left.\bar{F}_{\{f,}\right\}$
2	0.9	0.85	0.8	2.9
1	0.7	0.8	0.9	2.7
3	0.5	0.45	0.75	2.5

IndexScan $_{f_{1}}$

Pipelined execution

A	f_{1}	f_{2}	f_{3}	$\bar{F}_{\left\{f_{1}\right\}}$			
2	0.9	0.85	0.8	2.9			
1	0.7	0.8	0.9	2.7			
3	0.5	0.45	0.75	2.5	$\xrightarrow[\mu_{f_{2}}]{\mathrm{A}^{2}}$$\rightarrow$	2	2.75
:---	:---						
1	2.5						
3	1.95						

IndexScan $f_{f_{1}}$

Pipelined execution

| A | f_{1} | f_{2} | f_{3} | $\bar{F}_{\left\{f_{1}\right\}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0.9 | 0.85 | 0.8 | 2.9 |
| 1 | 0.7 | 0.8 | 0.9 | 2.7 |
| 3 | 0.5 | 0.45 | 0.75 | 2.5 |

Algebraic laws for rank-relation operators

Algebraic laws for rank-relation operators

Splitting for μ

$$
R_{\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}} \equiv \mu_{f_{1}}\left(\mu_{f_{2}}\left(\ldots\left(\mu_{f_{m}}(R)\right) \ldots\right)\right)
$$

Algebraic laws for rank-relation operators

Splitting for μ

$$
R_{\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}} \equiv \mu_{f_{1}}\left(\mu_{f_{2}}\left(\ldots\left(\mu_{f_{m}}(R)\right) \ldots\right)\right)
$$

Commutativity of μ

$$
\mu_{f_{1}}\left(\mu_{f_{2}}\left(R_{P_{0}}\right)\right) \equiv \mu_{f_{2}}\left(\mu_{f_{1}}\left(R_{P_{0}}\right)\right)
$$

Algebraic laws for rank-relation operators

Splitting for μ

$$
R_{\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}} \equiv \mu_{f_{1}}\left(\mu_{f_{2}}\left(\ldots\left(\mu_{f_{m}}(R)\right) \ldots\right)\right)
$$

Commutativity of μ

$$
\mu_{f_{1}}\left(\mu_{f_{2}}\left(R_{P_{0}}\right)\right) \equiv \mu_{f_{2}}\left(\mu_{\kappa_{1}}\left(R_{P_{0}}\right)\right)
$$

Commutativity of μ with selection

$$
\sigma_{C}\left(\mu_{f}\left(R_{P_{0}}\right)\right) \equiv \mu_{f}\left(\sigma_{C}\left(R_{P_{0}}\right)\right)
$$

Algebraic laws for rank-relation operators

Splitting for μ

$$
R_{\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}} \equiv \mu_{f_{1}}\left(\mu_{f_{2}}\left(\ldots\left(\mu_{f_{m}}(R)\right) \ldots\right)\right)
$$

Commutativity of μ

$$
\mu_{f_{1}}\left(\mu_{f_{2}}\left(R_{P_{0}}\right)\right) \equiv \mu_{f_{2}}\left(\mu_{f_{1}}\left(R_{P_{0}}\right)\right)
$$

Commutativity of μ with selection

$$
\sigma_{C}\left(\mu_{f}\left(R_{P_{0}}\right)\right) \equiv \mu_{f}\left(\sigma_{C}\left(R_{P_{0}}\right)\right)
$$

Distributivity of μ over Cartesian product $\mu_{f}\left(R_{P_{1}} \times S_{P_{2}}\right) \equiv \mu_{f}\left(R_{P_{1}}\right) \times S_{P_{2}}$ if f refers only to the attributes of R.

Part III

Preference management

Outline of Part III

(3) Preference management

- Preference modification

Preference modification

Preference modification

Goal

Given a preference relation \succ and additional preference or indifference information \mathcal{I}, construct a new preference relation \succ^{\prime} whose contents depend on \succ and \mathcal{I}.

Preference modification

Goal

Given a preference relation \succ and additional preference or indifference information \mathcal{I}, construct a new preference relation \succ^{\prime} whose contents depend on \succ and \mathcal{I}.

General postulates

- fulfillment: the new information \mathcal{I} should be completely incorporated into \succ^{\prime}
- minimal change: \succ should be changed as little as possible
- closure:
- order-theoretic properties of \succ should be preserved in \succ^{\prime} (SPO, WO)
- finiteness or finite representability of \succ should also be preserved in \succ^{\prime}

Preference revision [Cho07a]

Preference revision [Cho07a]

Setting

- new information: revising preference relation \succ_{0}
- composition operator θ : union, prioritized or Pareto composition
- composition eliminates (some) preference conflicts
- additional assumptions: interval orders
- $\succ^{\prime}=T C\left(\succ_{0} \theta \succ\right)$ to guarantee SPO

Preference revision [Cho07a]

Setting

- new information: revising preference relation \succ_{0}
- composition operator θ : union, prioritized or Pareto composition
- composition eliminates (some) preference conflicts
- additional assumptions: interval orders
- $\succ^{\prime}=T C\left(\succ_{0} \theta \succ\right)$ to guarantee SPO

Preference revision [Cho07a]

Setting

- new information: revising preference relation \succ_{0}
- composition operator θ : union, prioritized or Pareto composition
- composition eliminates (some) preference conflicts
- additional assumptions: interval orders
- $\succ^{\prime}=T C\left(\succ_{0} \theta \succ\right)$ to guarantee SPO

Preference revision [Cho07a]

Setting

- new information: revising preference relation \succ_{0}
- composition operator θ : union, prioritized or Pareto composition
- composition eliminates (some) preference conflicts
- additional assumptions: interval orders
- $\succ^{\prime}=T C\left(\succ_{0} \theta \succ\right)$ to guarantee SPO

Preference contraction [MC08]

Preference contraction [MC08]

Setting

- new information: contractor relation CON
- \succ^{\prime} : maximal subset of \succ disjoint with CON

Preference contraction [MC08]

Setting

- new information: contractor relation CON
- \succ^{\prime} : maximal subset of \succ disjoint with CON

Preference contraction [MC08]

Setting

- new information: contractor relation CON
- \succ^{\prime} : maximal subset of \succ disjoint with CON

Preference contraction [MC08]

Setting

- new information: contractor relation CON
- \succ^{\prime} : maximal subset of \succ disjoint with CON

Substitutability [BGS06]

Substitutability [BGS06]

Setting

- new information: set of indifference pairs
- additional preferences are added to convert indifference to restricted indifference
- achieving object substitutability

Substitutability [BGS06]

Setting

- new information: set of indifference pairs
- additional preferences are added to convert indifference to restricted indifference
- achieving object substitutability

Substitutability [BGS06]

Setting

- new information: set of indifference pairs
- additional preferences are added to convert indifference to restricted indifference
- achieving object substitutability

Substitutability [BGS06]

Setting

- new information: set of indifference pairs
- additional preferences are added to convert indifference to restricted indifference
- achieving object substitutability

Part IV

Advanced topics

Outline of Part IV

Prospective research topics

Prospective research topics

Definability

Given a preference relation $\succ c$, how to construct a definition of a scoring function F representing \succ_{C}, if such a function exists?

Prospective research topics

Definability

Given a preference relation \succ_{c}, how to construct a definition of a scoring function F representing \succ_{C}, if such a function exists?

Extrinsic preference relations

Preference relations that are not fully defined by tuple contents:

$$
x \succ y \equiv \exists n_{1}, n_{2} . \operatorname{Dissatisfied}\left(x, n_{1}\right) \wedge \operatorname{Dissatisfied}\left(y, n_{2}\right) \wedge n_{1}<n_{2}
$$

Prospective research topics

Definability

Given a preference relation $\succ c$, how to construct a definition of a scoring function F representing \succ_{C}, if such a function exists?

Extrinsic preference relations

Preference relations that are not fully defined by tuple contents:

$$
x \succ y \equiv \exists n_{1}, n_{2} . \operatorname{Dissatisfied}\left(x, n_{1}\right) \wedge \operatorname{Dissatisfied}\left(y, n_{2}\right) \wedge n_{1}<n_{2}
$$

Incomplete preferences

- tuple scores and probabilities [SIC08, ZC08]
- uncertain tuple scores
- disjunctive preferences: $a \succ b \vee a \succ c$

Preference modification

- beyond revision and contraction: merging, arbitration,...
- general parametric framework?
- conflict resolution

Preference modification

- beyond revision and contraction: merging, arbitration,...
- general parametric framework?
- conflict resolution

Variations

- preference and similarity: "find the objects similar to one of the best objects"

Preference modification

- beyond revision and contraction: merging, arbitration,...
- general parametric framework?
- conflict resolution

Variations

- preference and similarity: "find the objects similar to one of the best objects"

Applications

- preference queries as decision components: workflows, event systems
- personalization of query results
- preference negotiation: applying contraction

Acknowledgments

Denis Mindolin Sławek Staworko Xi Zhang

R. Baudinet, J. Chomicki, and P. Wolper.

Constraint-Generating Dependencies.
Journal of Computer and System Sciences, 59:94-115, 1999.
Preliminary version in ICDT'95.
W-T. Balke, U. Güntzer, and W. Siberski.
Exploiting Indifference for Customization of Partial Order Skylines.
In International Database Engineering and Applications Symposium (IDEAS), pages 80-88, 2006.

圊 S. Börzsönyi, D. Kossmann, and K. Stocker.
The Skyline Operator.
In IEEE International Conference on Data Engineering (ICDE), pages 421-430, 2001.
(in J. Chomicki, P. Godfrey, J. Gryz, and D. Liang.
Skyline with Presorting.
In IEEE International Conference on Data Engineering (ICDE), 2003.
Poster.
國 J. Chomicki.

Preference Formulas in Relational Queries．
ACM Transactions on Database Systems，28（4）：427－466，December 2003.

䍰 J．Chomicki．
Database Querying under Changing Preferences．
Annals of Mathematics and Artificial Intelligence，50（1－2）：79－109， 2007.

國 J．Chomicki．
Semantic optimization techniques for preference queries．
Information Systems，32（5）：660－674， 2007.
R．Fagin，A．Lotem，and M．Naor．
Optimal Aggregation Algorithms for Middleware．
Journal of Computer and System Sciences，66（4）：614－656， 2003.
围 P．Godfrey，R．Shipley，and J．Gryz．
Algorithms and Analyses for Maximal Vector Computation．
VLDB Journal，16：5－28， 2007.
固 W．Kießling．

Foundations of Preferences in Database Systems.
In International Conference on Very Large Data Bases (VLDB), pages 311-322, 2002.
固 W. Kießling and G. Köstler.
Preference SQL - Design, Implementation, Experience.
In International Conference on Very Large Data Bases (VLDB), pages 990-1001, 2002.
C. Li, K. C-C. Chang, I.F. Ilyas, and S. Song.

RankSQL: Query Algebra and Optimization for Relational Top-k
Queries.
In ACM SIGMOD International Conference on Management of Data, pages 131-142, 2005.
(1) D. Mindolin and J. Chomicki.

Maximal Contraction of Preference Relations.
In National Conference on Artificial Intelligence, pages 492-497, 2008.
國 M.A. Soliman, I.F. Ilyas, and K. C-C. Chang.
Probabilistic Top-k and Ranking-Aggregate Queries.
(X. Zhang and J. Chomicki.
On the Semantics and Evaluation of Top-k Queries in Probabilistic Databases.
In International Workshop on Database Ranking (DBRank). IEEE Computer Society (ICDE Workshops), 2008.
(X. Zhang and Z. M. Ozsoyoglu.
Implication and Referential Constraints: A New Formal Reasoning. IEEE Transactions on Knowledge and Data Engineering, 9(6):894-910, 1997.

