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Preface (2022)

This logic textbook was written almost 40 years ago, when 
personal computers were large, bulky items sold, among other 
places, in toy stores, and when Basic was the predominant 
programming language for them.

Now that my two co-authors have, sadly, passed away and the 
book is out of print, I have received permission from the 
publisher and copyright holder to make it available on the Web.  
(The permission letter is appended to this Preface.)

In addition, I have added a “missing chapter” on “The Logic of 
the Ternary Sentential Connective ‘If-Then-Else’ ”.  This 
appears at the end of Chapter 4.

— Bill Rapaport
     https://cse.buffalo.edu/~rapaport/
     rapaport@buffalo.edu

https://cse.buffalo.edu/~rapaport/


Subject: RE: Logic: A Computer Approach
From: MHE-Permissions <mhe-permissions@mheducation.com>
Date: 4/19/22, 11:54 AM
To: Bill Rapaport <rapaport@buffalo.edu>

Dear	William,

Thank	you	for	your	email.	Please	see	the	a7ached	le7er	in	response.

Unfortunately,	whilst	we	have	no	objec@on	to	your	request,	we	have	no	digital	copies	available	due	to	the	age	of	the	Title.

Please	do	not	hesitate	to	contact	me	if	you	have	any	further	ques@ons.

Kind	regards,
Karen

Karen Maxwell
Copyrights & Permissions
McGraw Hill
P: +44 28 9592 5865
Karen.Maxwell@mheducation.com
mheducation.com
From:	Bill	Rapaport	<rapaport@buffalo.edu>
Sent:	04	April	2022	15:05
To:	MHE-Permissions	<mhe-permissions@mheduca@on.com>
Subject:	Logic:	A	Computer	Approach

***	EXTERNAL	EMAIL:	If	sender	is	unknown,	use	cauAon	when	opening.	***

I am one of the co-authors of:

Schagrin, Morton L.; Rapaport, William J.; & Dipert, Randall R. (1985), Logic: A Computer Approach (NY: McGraw-Hill), ISBN
0-07-055131-6.

It is my understanding that the book is out of print and no longer sold by you.  Both of my co-authors, sadly, have passed away.

I would like to put a copy of the book on my website so as to make it accessible.

1.  May I?
2.  If so, is there a digital copy that could use?
3.  And would there be a fee for doing this, if it is possible?

Thank you.

-- 
William J. Rapaport
CSE Eminent Professor Emeritus;
Affiliated Faculty Emeritus, Philosophy and Linguistics;
Member Emeritus, Center for Cognitive Science;
Associate Director Emeritus, SNePS Research Group (SNeRG)

Dept. of Computer Science & Engineering       | home: 716-487-2668
University at Buffalo (SUNY)          | fax:  716-483-5392  
Buffalo, NY 14260-2500                 | rapaport@buffalo.edu
postal: Box 95, Greenhurst, NY 14742    | www.cse.buffalo.edu/~rapaport

------------------------------------------------------------------------
Computer Science/Engineering:  www.cse.buffalo.edu/
Cognitive Science:             www.cogsci.buffalo.edu/
SNePS Research Group:          www.cse.buffalo.edu/sneps/
Philosophy of Computer Science book: 

www.cse.buffalo.edu/~rapaport/Papers/phics.pdf
vocabulary research:        www.cse.buffalo.edu/~rapaport/CVA/
Buffalo Restaurant Guide:   www.cse.buffalo.edu/restaurant.guide/
Good Things about Buffalo:  www.cse.buffalo.edu/~rapaport/buffalo.html
How to Study:               www.cse.buffalo.edu/~rapaport/howtostudy.html
Buffalo buffalo buffalo buffalo buffalo:
www.cse.buffalo.edu//~rapaport/BuffaloBuffalo/buffalobuffalo.html
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TO THE STUDENT 

Learning by Learning to Explain 

One of the best tests of whether you really know something is whether you can explain 
it clearly to someone else. In other words, one of the best ways to learn is by learning 
to explain. Of course, relatively few of us ever have the chance to put this into practice. 

However, with the introduction of small, relatively inexpensive personal and home 
computers, almost anyone can now have a "student" on whom to practice "explaining" 
how to do certain things. Computers are ideal students for learning how to do certain 
things-at least, things that deal with the manipulation of symbols. They don't tolerate 
unclarities or contradictions, they have enormous and highly accurate memories, and 
they are patient. They don't ever embarrass or make fun of their "teacher," and-unlike 
cases in the real world of education-it is no great tragedy if they fail to "learn" to do 
what we hoped to teach them. 

The one disadvantage of present-day computers as "students" is that they are not 
as flexible as human students would be in understanding what we say to them. The 
"explanation" must be given as a program: a sequence of instructions written in a highly 
precise computer programming language (such as BASIC or Pascal). 

The teaching of symbolic logic is ideally suited for the use of computers as "ex- 
perimental students." This is so because all the elementary principles of logic (such as 
truth functions and ways of showing the validity and invalidity of arguments) and even 
many of its more advanced techniques (such as strategies for proving theorems) are 
admirably suited for the use of a computer. The learning of these techniques involves 
learning to handle information and symbols in certain ways-exactly what computers 
are best at doing. 

Using Computers When Reading This Text 

Since you, the reader of this text, are to play an active role in a real or imaginary interaction 
with an ideal student (the computer), you must learn something about how computers, xiii 
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TO THE STUDENT 

these ideal students, "think." Understanding how to "talk" to computers is a topic that is 
explicitly discussed in Chapter 2 and is dealt with in numerous examples. 

The chief tool in understanding how to "talk" to computers is what we call a "program 
design language." This is not an actual computer language; rather, it is a language that 
has many features in common with actual computer languages (such as BASIC and 
Pascal) and that has some features which promote clear thinking about instructions to 
be given to computers. Any instructions written in our program design language could 
easily be translated into an actual computer language. It is a "program design" language 
in the sense that we can use it to give a sketch of what the actual program would 
eventually look like. 

Thus if a computer is available-a large one, or even a very small one-and if you 
know a real computer programming language, you will be able to apply the instructions 
we state in our program design language. All that has to be done is to translate the 
instructions into whatever actual instructions your computer will accept. 

Actually running programs on a computer would make reading this text fun and 
would probably also make you more aware of some of the finer points in the theory of 
logic and the applications of these principles. But using a computer is by no means 
necessary for understanding the content of this book-or even for having fun with it. 
Thus if you do not have a computer to use, you need not feel left out. One very easy 
way to test some instructions, to see if they work, is to pretend that you (or a friend) are 
the computer and then do exactly what your instructions say to do. 

What You Will Know about Computers 
after Reading This Text 

If you complete this text, you will know a great deal about computers and their appli- 
cations. Even if you consider yourself an "expert" on computers, you will find a new field 
for the application of what you know: the field of symbolic logic. For the novice who 
knows little or nothing about computers or logic, the text is self-sufficient. You should 
be able to learn all you need to know about computers for completing this book by 
carefully reading Chapter 2 and by thinking about what has been said. Actively thinking 
is part of reading with understanding that is often underestimated. To stimulate thinking, 
it is strongly recommended that you try one or more of the exercises at the end of each 
chapter. 

Of course, if you know nothing about computers when you begin reading this text 
and you understand every sentence and example in it, you still will not be fully prepared 
to walk up to any computer and begin operating it. But we venture to say that you will 
find it much easier to do so after having completed this book. You will also find it easier 
to understand the basic principles behind any programming language. And, most im- 
portant, you will have a sound knowledge of one of the key ideas of computer science: 
the idea of an algorithm-crystal-clear instructions for explaining how to do something. 

Morton L. Schagrin 
William J. Rapaport 
Randall R. Dipert 



TO THE TEACHER 

This text uses concepts from computer science to cover all the traditional topics in an 
introductory deductive logic course: the nature of logic, sentential logic;, truth tables, 
natural deduction, and predicate logic. Although there are many tineintroductory logic 
texts, none of them approaches the study of logic from a point of view arising out of the 

l . . 
insights of computer science,'nor do any texts easily relate to the widespread availability 
of computers. The use of this text should not present any difficulties for an instructor 
familiar with any of the usual introductory textbooks in symbolic logic. Nevertheless, 
several remarks are in order. 

Some of the more powerful techniques introduced in a traditional logic course, such 
as constructing truth tables, are, in fact, rather tedious procedures J~ carry out. They 
require many steps, usually use a lot of time and paper, and are very sensitive to small, 
easy-to-make errors. Many teachers of logic have probably wished to be able to teach 
and test the basic principles behind such methods rather than their time-consuming 
implementations. But teaching, learning, and testing in traditional logic courses have 
often centered on the details of applying such methods because, among other things, 
of the lack of a suitable framework for talking about exactly what one is doing when, 
say, one constructs a truth table. 

Computers, and the increasing sensitivity to specifying how information and symbols 
are manipulated by them, provide an escape from this dilemma and an opportunity to 
return to principles of logic. We can let the computer do the "dirty work" while we 
concentrate our attention on grasping the major ideas and learning how to "explain" 
these ideas to a computer in such a way that it can apply them. All that is necessary is 
to have some understanding of how computers work and how to "explain" to them what 
to do. (These topics are addressed in Chapter 2.) 

The use of computers proposed in this book is thus quite different from many 
educational uses to which computers have recently been put; e.g., in learning foreign 
languages or even in learning logic. In these applications, computers are used like 
electronic flash cards or like "programmed" texts-guiding us through the subject matter, 
tutoring us along the way, gently correcting our mistakes, and giving us useful information 
at appropriate times. xv 
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In these traditional uses of computers in education, the computer has the "active" 
role: It "explains" something to us. In the way we use computers and computer-inspired 
methods in this book, we "explain" to the computer what is to be done. It is, thus, the 
student who has the active role in the learning process, not the computer. (This is 
discussed at greater length in "To the Student.") 

For these reasons among others, the central computer science notion stressed 
throughout the text is that of an algorithm: the means by which "explanations" are given 
to the computer. While we do not cover every possible topic of interest in logic, we do 
cover those that lend themselves to the algorithmic approach. Many students in computer 
science have difficulty with this concept; here, it can be learned within the context of a 
logic course. Thus while our main purpose in writing the book is to teach logic, we also 
address some of the problems and issues of computer literacy, and so, in addition to 
its intended use in introductory logic courses in philosophy or mathematics, the text is 
also especially appropriate for a logic course that serves as a prerequisite for entry into 
a computer science program, or as a supplementary text in computer science courses. 

The algorithms in the text can be programmed on a small home computer (we have 
done so in BASIC on a VIC-20); yet access to a computer is not required. Furthermore, 
the algorithms in the text are not necessarily the most elegant that can be constructed. 
Our intention was to present easily understandable algorithms, not necessarily clever 
ones. We hope that readers will be motivated to construct simpler and faster algorithms, 
for this can be done only if the reader understands the logical issues that we are trying 
to teach. 

Chapter 1 is an introduction to the nature of logic and to the notions of argument, 
validity, and soundness, employing some of the techniques of informal logic. 

Chapter 2 contains a discussion of the nature and history of computers and the 
impact of logic on their development. It presents the notion of an algorithm and the top- 
down design-stepwise refinement method of constructing one, as well as a "program 
design language" that does not require the reader to know any specific programming 
language. The language of flowcharts is also introduced. 

Chapters 3 and 4 present algorithms for computing the truth functions for negation, 
coniunctlon, disjunction, material conditional, biconditional, exclusive disjunction, NOR, 
and NANO. The treatment of sentential connectives and their associated truth functions 
gives more explicit attention to the functional nature of these connectives than is cus- 
tomary in other introductory logic texts, thus broaching the relationship between (recur- 
sive) functions and algorithms. Our rules of formation do not allow the dropping of outer 
parentheses. E.g., a conjunction will always be expressed as (A & B) and never as A 
& 8. The reason for this is that certain later algorithms-such as the one for determining 
whether a formula is well-formed-would be considerably more complicated if outer 
parentheses could be dropped. 

Chapter 5 contains an algorithm, TRUTH-VALUE CALCULATOR, for computing the 
truth values of molecular sentences and an algorithm for determining the well-formedness 
of a sentence. 

Chapter 6 contains an algorithm, TRUTH-TABLE GENERATOR, that "nests" TRUTH- 
VALUE CALCULATOR in a count-loop in order to generate truth tables. The use of truth 
tables is quite standard, although it is unusual to clearly state an algorithm for generating 
them. The chapter also contains an algorithm, VALIDITY/INVALIDITY DETERMINER, 
that uses the output of TRUTH-TABLE GENERATOR to determine the validity or invalidity 
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of arguments in sentential logic. (Although each algorithm should be followed precisely, 
in the cases where one algorithm uses a previously introduced one as a "subroutine," 
the instructor can relax the requirement that the details of the subalgorithm be followed 
to the letter.) Most introductory logic textbooks usually include a "shorter truth-table 
method" by which an argument is shown to be valid or invalid without the need for the 
full truth table. Quite often, however, certain strategies and tricks are needed to employ 
the shortened methods with any success. We replace these usually incomplete methods 
with a version of WANG'S ALGORITHM, which is not only extremely clever but also 
useful in introducing the computer-science idea of a "stack." As part of this algorithm, 
there is also a "subroutine" for identifying the main connective of a sentence. 

Chapter 7 presents algorithms for transforming a sentence into conjunctive normal 
form and into Polish notation, as well as discussions of tautologies, logical equivalence, 
arguments and corresponding conditional sentences, consistency, and satisfiability. 

Chapters 8 and 9 present a new natural deduction system for sentential logic, one 
that relies on the similarities between, on the one hand, proofs and subproofs in logic 
and, on the other, programs and subprograms in computer science (including parameter 
passing and the scope of global and local variables). It should be noted that no prior 
knowledge of the computer science notions is needed to use or to understand the natural 
deduction system. Rather, it is our hope that a familiarity with the deduction system will 
make the computer science concepts clearer. 

In Chapters 8 and 9, and in other places where we manipulate sentences as strings, 
we always use single quotes. Elsewhere, sentence letters alone and (single) quoted 
molecular formulas denote sentences. 

The astute reader will notice that we go to extraordinary lengths in Chapters 8 and 
9, and again in Chapters 12 and 13, to control the information that may flow into and 
out of a subproof. These considerations arise in the context of our SEND and RETURN 
rules. To some, these measures might seem to lengthen derivations and to involve us 
in unnecessary complications. However, we believe that these techniques are, in fact, 
very well-justified. One reason for them is given in the text: They closely parallel the 
proper use of global and local variables in elegant computer programs. 

Another reason has a far more secure foundation in logical theory. The extension 
of a natural deduction system to deal with certain issues in modal logic, and with issues 
of relevance and entailment, requires exactly this degree of care with information flowing 
into and out of subproofs. The lack of care with which most natural deduction systems 
deal with this information makes their users insensitive to these issues, and renders the 
systems themselves incapable of being easily modified to deal with anything but the 
most well-trod paths in the philosophy of logic (namely, "standard" logics). Although we 
shall not extend our system in these directions, we wish to have a system that is, in 
principle, capable of being so extended. 

One of the first logicians to promote the use of natural deduction systems that 
carefully (and with full consciousness, import information into subproofs and export it 
out) was Frederic Fitch in his 1952 Symbolic Logic. It is his pioneering efforts that we 
follow. Sound logical practice thus mirrors-and predates-sound programming practice. 

Chapters 1 O and 11 present two of the most significant features of the text: the 
algorithm PROOF-CHECKER and the mechanical procedure PROOF-GIVER. The for- 
mer enables a student to check a proof in the text's natural deduction system for validity; 
the latter helps the student construct proofs in the text's system. Thus one of the hardest 
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topics for a student to learn in an introductory logic course is covered by purely me- 
chanical methods. 

Chapters 12 and 13 cover the syntax and semantics of predicate logic and extend 
the natural deduction system to cover the universal and existential quantifiers. 

Chapter 14 discusses the limitations on the algorithmic approach to predicate logic 
in the context of Church's theorem and Church's thesis, and it discusses mechanical 
methods of theorem proving. It presents an algorithm for using resolution (another tech- 
nique for determining validity, much used in computer science) and extends PROOF- 
GIVER to predicate logic. 

Appendix A covers the application of sentential logic to circuits and computer arith- 
metic, and Appendix B covers Turing machines. 

Exercises at the ends of the chapters test the students' comprehension of the basic 
material, as well as extend the material. There are frequent suggestions for computer 
implementation of the algorithms; these can be used by instructors who wish to em- 
phasize the computational aspects of logic or by students with access to hardware who 
are interested in doing independent work. 

Most of the material can be covered in a one-semester course. A typical course 
might consist of Chapters 1 through 12, with selections from Chapters 13 and 14 as 
time or preferences permit. Chapters 1 and 2 can be covered in the reverse order, or 
both could be covered together. In Chapter 6, WANG'S ALGORITHM is optional. Instead 
of covering all of Chapter 7, an instructor might prefer to use selections from among its 
topics; this can be done easily, since most of the sections are independent of each other. 
Chapter 8 contains a complete natural deduction system for sentential logic using only 
negation and conjunction. Thus Chapter 9, while strongly recommended, could be omit- 
ted in view of the completeness of the system in Chapter 8. Chapters 10 and 11 can 
be covered in any order, and it is quite possible to introduce the algorithms in these 
chapters during the presentation of the material in Chapters 8 and 9. The appendixes 
are independent of each other; Appendix A could be covered following Chapter 4, while 
Appendix B could be covered following Chapter 2 or Chapter 14. 

We are grateful to Dawn Beke, who encouraged us to begin; to Kaye Pace, Anne 
Murphy, and Jim Dodd, who encouraged us to continue; to Leslie Burkholder (Carnegie- 
Mellon University), who class-tested an earlier version and made many useful sugges- 
tions; to our reviewers, who caught several major errors and made many valuable 
comments. We also want to acknowledge our debts to our teachers of logic and computer 
science at the University of Michigan, Chicago, Rochester, California at Berkeley, at 
Indiana University, and the State University of New York at Buffalo. Finally, many thanks 
to our students (who gleefully caught typos) for their excitement (and surprise) at seeing 
connections between logic and computers. 

Most texts, like most computer programs, have undetected bugs. We urge readers 
who find them, or who have any suggestions for improvement, to contact us. 

Morton L. Schagrin 
William J. Rapaport 
Randall R. Dipert 



CHAPTER 1 

THE NATURE OF 
LOGIC 

Logic, in its broadest sense, is the study 
of correct reasoning. It produces and examines meth- 
ods for identifying good reasoning, as well as bad rea- 
soning, in all places: in our own thought, in the writings 
of others, and in the conversations of our friends. Logic 
provides rules for determining how we should move 
from one belief to another. Seen in this way, logic gives 
us the standards for determining which beliefs are ac- 
ceptable on the basis of other beliefs. Logic is thus 
sometimes described as the study of the "laws of thought." 
This is true if by it we mean a study of the laws of 
correct thought or reasoning. Logic is a study not of 
how people do reason but of an ideal way of reasoning. 

To produce the standards of "correct reasoning" in 
all fields-everyday life, psychology, history, physics, 
and mathematics-would obviously be a very tall order. 
In different areas, and in different circumstances, there 
are varying standards of "correct reasoning." In math- 
ematics, we often have very rigid rules for what counts 
as a correct calculation, proof, or demonstration. But 
determining whether to take our umbrella with us, on 
the basis of present weather conditions and current 
predictions, is necessarily a far less rigid procedure. 
Here, it might be acceptable to reason: "It is overcast, 
and the clouds are dark; therefore, it will rain, and I 
should take my umbrella." 
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Consider this sentence: 

1. Some apples are red. 

From this sentence, and the knowledge that (2) All apples are fruit, we might correctly 
reason: 

3. Some fruit is red. 

It would be erroneous, however, to conclude that: 

4. All fruit is red. 

To infer (3) from (1) and (2) is always correct reasoning-as we shall see-while to infer 
(4) from (1) and (2) is not. 

Deductive Logic 

There is a core of reasoning that is accepted by all sciences and disciplines under all 
circumstances. This core is given the name deductive logic. In deductive logic, we are 
interested in studying reasoning that never strays from true beliefs to false ones. 

If a piece of reasoning is acceptable according to the standards of deductive logic, 
then we can be sure that it is correct reasoning in all circumstances. On the other hand, 
if this reasoning does not come up to the standards of deductive logic, we cannot 
automatically dismiss it as bad reasoning. Such nondeductive reasoning might be ac- 
ceptable in some sciences or under some circumstances. 

Deductive logic-the standards of reasoning acceptable to all disciplines in all cir- 
cumstances-forms the topic of this book. As we shall explore in later chapters, the 
study of deductive logic has extensive connections with computers and with methods 
used in computer science. For example, elements of deductive logic are extensively 
used in the programming of computers, and computers can easily be used to solve 
problems in deductive logic. 

If there is any discipline that has historically used only deductive logic as a standard 
of correct reasoning, with no extensions or additions, it is mathematics. In other words, 
the standards of reasoning aimed for in mathematics closely resemble the standards of 
deductive logic. This is not to say that mathematics is "the same as" deductive logic: 
Logic is the study of how to identify correct reasoning, whereas mathematics rarely 
studies the methods it uses, and it is often more concerned with the products of math- 
ematical reasoning. 

The development of modern logic owes much to the various attempts to make 
mathematics rigorous. But what constitutes "rigor"? The history of modern attempts to 
characterize rigor can be traced to such seventeenth-century Rationalist philosophers 
as Descartes and Leibniz, who championed the notion of reasoning as a step-by-step 
process, with all the steps being made explicit, none being hidden: 
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We shall comply with it [the method for finding out the truth] exactly if we reduce 
involved and obscure propositions step by step to those that are simpler, and then 
starting with the intuitive apprehension of all those that are absolutely simple, attempt 
to ascend to the knowledge of all others by precisely similar steps. [Descartes, Rules 
for the Direction of the Mind, Rule V (1628).] 

Such a method was what mathematicians studying the foundations of their discipline 
required; since logic was precisely the study of such steps, logic and mathematics have 
become almost inseparable (in theory if not in practice). 

Arguments 

A notion fundamental to logic is that of an "argument"-not in the sense of fights or 
quarrels, but in the sense in which people speak of a lawyer "arguing" a case. Typically, 
a lawyer might try to convince a judge or jury that, say, the defendant is not guilty. The 
way the lawyer does this is by presenting evidence to support the claim of innocence, 
i.e., reasons why the judge or jury should believe in the defendant's innocence. Note 
carefully that we have distinguished between persuasion by reasons and persuasion by 
any means whatever. Some successful persuasion might take the form of jokes, emo- 
tional appeals, an appealing turn of phrase, or a friendly face. This more general form 
of persuasion is usually given the name rhetoric. Logic considers more narrow forms of 
persuasion-forms which would appeal only to an ideal rational person (or to a sophis- 
ticated computer). These forms include what we describe as reasons, evidence, and 
argument-and not smiles, jokes, or emotional appeals. Abstracting from a particular 
case, we can define an argument as a set of sentences, some of which are identified 
as reasons for one of the others. 

For example, a lawyer might try to convince the jury that the defendant could not 
have committed a murder in New York on the night of January 29, because the defendant 
was in Los Angeles from the 27th through the 31st. The lawyer could cite as evidence 
the testimony of two highly reputable witnesses who were with the defendant the entire 
time. The lawyer's case might consist of the following sentences: 

1. Witness A was with the defendant in Los Angeles from January 27 through 
January 30. 

2. Witness B was with the defendant in Los Angeles from January 28 through 
January 31. 

Therefore, 
3. The defendant was in Los Angeles from January 27 through January 31. 
Therefore, 

4. The defendant was not in New York on January 29--the night of the murder. 

In this example, sentences (1) to (3) are offered as reasons for believing sentence (4). 
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Actually, the lawyer's case consists of two distinct arguments: Sentences (1) and 
(2) are offered as reasons for sentence (3), and sentence (3) is offered as a reason for 
sentence (4). In each argument, there is a set of sentences, some of which are reasons 
for the remaining one. That remaining sentence is the claim that is being argued for; it 
is called the conclusion of the argument. (Do not confuse the conclusion of an argument 
with the conclusion of an essay; the latter is typically only a summary of what has been 
said in the main body of the essay.) Each of the reasons or bits of evidence for the 
conclusion is called a premise. 

Often, a number of premises are unstated. Sometimes they are so obvious that 
they need not be stated (for example, the lawyer's case did not state that Los Angeles 
is so far from New York that it would have been impossible for the defendant to have 
gotten there and back without the disappearance being discovered by the witnesses). 
When evaluating an argument, it is sometimes important to include all the unstated 
premises. In some cases, these missing premises might not be obvious (for example, 
suppose a foreign lawyer ignorant of U.S. geography were reading about our case), or 
they might even be false (the lawyer might be trying to mislead the jury). None of the 
examples in this book will have missing premises. 

Premise and Conclusion Indicators 

The very first step in evaluating an argument is to identify the conclusion and find all 
the premises. To identify the premises and conclusion, it often helps to look for certain 
key words that indicate whether a sentence is a premise or a conclusion. 

Premise indicators. The sentence following each one of these expressions is 
usually a premise: 

For 
Since 
Because 
In view of the fact that 
As is shown by the fact that 
Assuming that 
Granted that 
Given the fact that 
The reason is that 
Is implied by 
Is entailed by 
Follows from the fact that 

Conclusion Indicators. The sentence following each one of these expressions is 
usually a conclusion: 

Therefore 
Thus 
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Hence 
So 
Then 
Consequently 
Accordingly 
That's why 
It follows that 
Which implies that 
This entails that 
This proves that 
Which means that 
From which we can deduce that 
As a result, we may infer that 

Using these indicators as evidence of a sentence's being a premise or a conclusion, 
we can now apply them to an actual argument. Consider the following argument, in 
ordinary English: 

The reduction of the level of inflation can apparently be accomplished only by 
temporarily increasing the amount of unemployment. So, all possible options will 
be unpopular-since both inflation and unemployment are unpopular. 

In this argument, we can detect one conclusion indicator, 'so', and one premise indicator, 
'since'. The conclusion of this argument appears to be: 

All possible options will be unpopular. 

One of the premises is: 

Both inflation and unemployment are unpopular. 

The other premise-which does not contain a premise indicator-is the first sentence; 
it is fairly obviously given as evidence for the conclusion. 

The natural way to test these guesses (since our indicators only provide us with 
good first attempts) is to rewrite the argument in very clear premise-conclusion form. If 
the result seems to preserve the "intent" of the original argument, it is probably a correct 
analysis of the premises and conclusion. For example: 

1. Reducing the level of inflation increases the amount of unemployment. 
2. Both inflation and unemployment are unpopular. 
Therefore, 

3. All possible options are unpopular. 

This does seem to be a correct reconstruction of the intent of the original argument. 
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Validity and Soundness 

Suppose we have an argument. How do we know if it's a good argument? Should we 
believe the conclusion if we believe the premises? In other words, are the premises 
good reasons for the conclusion? 

One important test of a good argument is to determine whether the premises are 
true. False premises do not provide us with good reasons for accepting a conclusion. 
Often, however, it is difficult to know whether the premises are true or false. Yet regardless 
of whether the premises are true or false, there is another test that can always be 
performed: In deductive reasoning, the conclusion must necessarily follow from the 
premises. That is, the relationship between the premises and the conclusion must be 
such that if the premises were true, then the conclusion would be true also. 

Before this latter test is described more precisely, it might be helpful to consider 
another way of looking at arguments. Instead of asking when an argument is good, we 
could ask when it's bad. There are two ways an argument can go wrong: It can be 
logically incorrect, or it can be factually incorrect. An argument is logically incorrect if 
the conclusion does not necessarily follow from the premises, and an argument is 
factually incorrect if one or more of the premises are false. 

You might think that there's a third way: The conclusion could be false. But there 
are only two ways that could happen. Either the argument was logically incorrect, in 
which case the conclusion did not follow from the true premises, or the argument was 
factually incorrect. If the argument were both logically and factually correct, then the 
conclusion would necessarily follow from the premises, and so it could not have been 
false. 

Since we sometimes do not know whether the premises are true or false, the test 
for logical correctness often becomes the more useful test. The technical name for logical 
correctness is validity. We can define it as follows: 

To say that an argument is valid means that it is impossible for the conclusion to 
be false while the premises are all true. 

Notice that this definition does not say or imply that the premises of a valid argument 
are true-that's a matter of factual correctness, not logical correctness. Nor does it say 
that the conclusion is true. All that the definition says is that the conclusion would have 
to be true if the premises were true. We shall sometimes speak of a "valid conclusion," 
meaning a conclusion of a valid argument. 

An argument that is not valid is said to be invalid. Thus an argument is invalid if it 
is possible for the conclusion to be false while the premises are true. 

The best kind of argument, of course, is one that passes both tests-an argument 
that is both logically and factually correct. Such arguments are said to be "sound." Thus 
we define a sound argument as one that is valid and has all true premises. And, as we 
have seen, there are two ways for an argument to be unsound: either by being invalid 
or by having at least one false premise (or both!). 
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What follows are several arguments that demonstrate some of the possible com- 
binations of true or false premises and conclusions, described according to whether they 
are valid or invalid, sound or unsound. Try to see why each one is valid or invalid, as 
the case may be. 

1. VALID and SOUND 
All dogs are mammals. 
Lassie is a dog. 

Therefore, 
Lassie is a mammal. 

2. INVALID and UNSOUND 
All Volkswagens are vehicles. 
The President's limousine is a vehicle. 

Therefore, 
The President's limousine is a Volkswagen. 

3. VALID but UNSOUND 
All cats are dogs. 
All dogs are mammals. 

Therefore, 
All cats are mammals. 

4. INVALID and UNSOUND 
All recent Presidents have lived in the White House. 
Ronald Reagan has lived in the White House. 

Therefore, 
Ronald Reagan is a recent President. 

(true) 
(true) 

(true) 

(true) 
(true) 

(false) 

(false) 
(true) 

(true) 

(true) 
(true) 

(true) 

Truth Values 

Sentences, as well as propositions, statements, and assertions, are frequently described 
as being the kinds of things that are true or false. The truth or falsity of a sentence is 
called the truth value of the sentence. 

Determining the truth value of a sentence is equivalent to answering the question 
of whether the sentence is true or false. Some sentences have the interesting property 
of always being true, such as this sentence: 

1 = 1 

Some sentences are always false, such as 

1 "F 1 
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And the truth values of some sentences depend on the way things are, so to speak, 
such as: 

The President of the United States is over 60 years old. 

-which depends on who is President. 
Up to this point, we have talked rather nebulously about the "truth values" of sen- 

tences as being either true or false. These truth values are perhaps most intuitively 
thought of as properties of sentences, much as tallness is a property of the Empire State 
Building. We must be careful not to confuse the truth value of a sentence with the 
sentence itself. The truth value of the sentence The earth is flat' is identical to the truth 
value false, but the sentence itself is not identical to the truth value false. Falsity is a 
property of this sentence; it is not identical to it. 

Several important computer programming languages preserve the uniqueness of 
truth and falsity and have special words, usually simply 'TRUE' and 'FALSE', to indicate 
them. We shall also maintain this distinction and use these capitalized expressions to 
refer to the truth values of sentences. These two values, TRUE and FALSE, are often 
called "Boolean values," after the nineteenth-century British logician George Boole. 
Expressions having one of these values-usually, sentences-are often called "Boolean 
variables." 

One important logician, Gottlob Frege (1848-1925), went so far as to claim that the 
truth values of sentences are unique and abstract things called The True and The False. 
This level of abstraction is, however, not always necessary, and for a variety of reasons- 
primarily "technical" rather than philosophical ones-logicians and computer scientists 
often find it useful to treat the truth values of sentences (TRUE or FALSE) as if they 
were numbers. The most usual identification is of the number 1 with TRUE and O with 
FALSE. 

This identification is not to say that FALSE is really the same as O or that TRUE is 
really the same thing as the number 1. In fact, we could if we wished reverse this 
assignment and treat falsity as 1 and truth as O! But most logicians associate O with 
falsity and 1 with truth. Their reasons for doing so vary but are primarily connected with 
easily remembering which is which. Some might say that a false sentence is "worthless," 
that nothing is greater than the truth, that truth is greater than falsity, or that truth is 
unity. None of these sayings are very clear, nor are they worth pursuing; but perhaps 
ideas like these have helped logicians and students remember which is which. (There 
are also some deeper reasons for identifying O with falsity and 1 with truth. They have 
to do with the behavior of O and 1 in ordinary arithmetic, as we shall see.) 

It is increasingly common in computer science, and obviously useful in avoiding 
confusion, to use terms such as TRUE' and 'FALSE' rather than arithmetical substitutes 
such as '1' and 'O'. In this text, we shall use both TRUE' and 'FALSE' as well as 
arithmetical equivalents, depending on the circumstances. 

It is extremely useful to be able to distinguish clearly the truth value of a sentence 
from the sentence itself. To help ourselves do this, we shall introduce some notation. 
We shall use the capital letters (possibly with numerals): 
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A, B, C, ... , 0, A 1, B1, ... 01, A2, ... 

to designate particular sentences, and we shall use 

V( <some sentence>) 

to designate the truth value of a sentence. For example, 

C = 'The earth is flat.' 
V(C) = FALSE 

In other words, 'V(C)' designates the truth value of sentence C. When we discuss arbitrary 
or nonspecified sentences, we shall use boldface capital letters from later in the alphabet: 

P, Q, R, ... , Z 

Here are some concrete examples using this notation: 

A = 'Logic is fun.' 
B = 'All birds fly.' 
V('There exists an odd number.') = TRUE 
V('The earth is flat.') = FALSE 
V(B) = FALSE 
Consider a sentence P such that V(P) = TRUE. 
For every sentence Q either V(Q) = TRUE or V(Q) = FALSE. 

Summary 

Logic is the study of correct reasoning. One branch of logic, deductive logic, studies 
reasoning that never moves from TRUE sentences to FALSE ones. 

A basic unit in logic is an argument, which is a set of sentences, one of which (the 
conclusion) is claimed to follow from the others (the premises). There are two important 
attributes that a good deductive argument has. First, all its premises are TRUE. When 
this is so, we say that the argument is factually correct. Second, when an argument is 
such that if the premises were all TRUE then the conclusion would also be TRUE, we 
say that the argument is logically correct. Another word for logical correctness is validity. 
An argument that is both factually correct and logically correct is said to be sound. 

We shall use the capital letters A, B, C, ... , 0 to designate particular sentences, 
and we shall use the boldface capital letters P, Q, R, ... , Z to designate arbitrary 
sentences. Every sentence has one truth value, either TRUE or FALSE. We shall some- 
times represent TRUE and FALSE with the numbers 1 and 0, respectively. We shall 
indicate the truth value of a sentence, P, by writing V(P). 
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Exercises 

A. Identify the premise and conclusion indicator words, the premises, and the con- 
clusions in the following arguments. 
1. Computers cannot be intelligent, because they are not human. 
2. Robots could not be persons, since they don't have minds, and having a 

mind is a necessary condition for being a person. 
3. God does not exist. If he did exist, he would not allow suffering to exist. But 

there is suffering. 
4. Intelligent life might exist elsewhere in the universe. Yet we might never be 

sure of this fact, because this intelligent life might be too distant from us 
ever to be discovered. 

5. Deficit spending by a government always produces inflation. The reason for 
this is that deficits increase the money supply without increasing the number 
of goods. And this is just what inflation is-a money supply increasing more 
rapidly than the supply of goods. 

6. "Thinking is a function of man's immortal soul. God has given an immortal soul 
to every man and woman, but not to any other animal or to machines. Hence no 
animal or machine can think." (Turing, 1950, in Anderson, 1964, p. 14.) 

7. "There are a number of results of mathematical logic which can be used to 
show that there are limitations to the powers of discrete state machines [i.e., 
computers). The best known of these results is known as Godel's theorem, 
showing that, in any sufficiently powerful logical system, statements can be 
formulated which can neither be proved nor disproved within the system, 
unless possibly the system itself is inconsistent. (But humans can know 
whether these statements are true or false.] ... This is the mathematical 
result; it is argued that it proves a disability of machines to which the human 
intellect is not subject." (Turing, 1950, in Anderson, 1964, p. 16.) 

8. "The nervous system is certainly not a discrete state machine. A small error 
in the information about the size of a nervous impulse impinging on a neuron, 
may make a large difference to the size of the outgoing impulse. It may be, 
argued that, this being so, one cannot expect to be able to mimic the behavior 
of the nervous system with a discrete state machine." (Turing, 1950, in 
Anderson, 1964, p.22.) 

9. "Now the common philosophical argument is that minds and mental states 
are so extremely unlike bodies and bodily states that it is inconceivable that 
the two should be causally connected. It is certainly true that, if minds and 
mental events are just what they seem to be to introspection and nothing 
more, and if bodies and bodily events are just what enlightened common 
sense thinks them to be and nothing more, the two are extremely unlike. 
And this fact is supposed to show that, however closely correlated certain 
pairs of events in mind and body respectively may be, they cannot be 
causally connected." (Broad, 1962, p. 97.) 

B. Make up a simple argument in English that has: 
1. A TRUE conclusion but that you believe is invalid. 
2. A FALSE conclusion but that you believe is valid. 
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C. Fill in the blanks in the following chart using: 

T for TRUE I for "invalid" 
F for FALSE S for "sound" 
V for "valid" U for "unsound" 
? for "There is not enough information." 

For example: 

I " 
Premises are 

T = A" TRUE, 
F = At Least 

one FALSE 

1. T 
2. F 

Argument is 
Valid or 
Invalid 

Ill 
Argument is 

Sound or 
Unsound 

IV 
Conclusion is 

TRUE or 
FALSE 

V 
V 

s 
D 

D 
D 

Answers to Examples 

1. The conclusion of a valid argument with TRUE premises (i.e., a sound 
argument) must be TRUE, so the blank in column IV should be a T. 

2. A valid argument with a FALSE premise is unsound, so the blank in column 
Ill should be filled in with a U. Since such an argument could have either 
a TRUE conclusion or a FALSE one, the blank in column IV should be? 

Premises Argument Conclusion 

3. F D u D 
4. F I D D 
5. T I D D 
6. T D u D 
7. D V u F 
8. D V D F 
9. D V D T 

10. D D s T 
11. D I D T 
12. D D u T 
13. D I D F 
14. D D u F 
15. F D D F 
16. F D D T 
17. T D D T 
18. T V D D 
19. D D s D 
20. T D D D 
21. D V D D 
22. D D u D 
23. D D D F 
24. T D D F 

D. Some sections of prose, as we have already noted, contain several arguments. 
In the two sentence groups following the example, count the number of distinct 
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arguments, and use the sentence numbers to indicate the premises and con- 
clusions of the distinct arguments. Example: 
1 . Computers are made out of nonliving material. 
2. Only living material is capable of having feelings. 
3. So computers do not have feelings. 
4. But having feelings is necessary for thinking in the broad sense. 
5. Therefore, computers do not even think in the broad sense. 
Answer: 

Number of arguments: 2 
Structure of the first argument: 

Premises: 1, 2 
Conclusion: 3 

Structure of the second argument: 
Premises: 3, 4 
Conclusion: 5 

Group a 
1. Geometry is a branch of mathematics. 
2. Therefore, mathematics includes more subject matter than geometry. 
3. Mathematics is a branch of logic. 
4. So logic includes still more subject matter than mathematics. 
5. Furthermore, logic must therefore include far more subject matter than 

geometry. 

Group b 
1. All prime numbers are odd. 
2. So, no even numbers are prime. 
3. Some odd numbers are divisible by 3. 
4. So, not all odd numbers are prime. 
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LOGIC, COMPUTERS, 
AND ALGORITHMS 

The historical connections between logic 
and computers run long and deep. It is now easy to 
think of the history of computers only in terms of the 
increasing speed and efficiency they acquired at per- 
forming mathematical computations. Looking back, we 
tend to see only the progression of calculating tools 
such as the abacus, slide rules, adding machines, pocket 
calculators, and computers, all of which seem to have 
been designed primarily to perform mathematical cal- 
culations. 

But historically, this picture of computers as math- 
ematical calculators is not entirely complete. Some of 
the first designs for computing machines were intended 
not to perform mathematical calculations but to perform 
the essentially logical task of determining correct de- 
ductive reasoning. That is, a number of early computers 
were designed to generate the logically valid conclu- 
sions from premises, or to "test" reasoning to determine 
whether or not it was valid. 

13 
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Mechanical Reasoning 

The application of machines to the determination of correct reasoning was a very natural 
development. First, the evolution of symbolic methods of writing logical problems allowed 
the posing of such problems: Without having ways of clearly and concisely symbolizing 
reasoning, in the form of "symbolic" logic, the communication of such problems to ma- 
chines would have been impossible. Similarly, the development of mathematics and the 
communication of mathematical problems to computers would have been impossible 
without concise, systematic ways of symbolizing mathematical problems-using arabic 
numerals and such symbols as '+' and ' - ', for example. 

Second, the question of what constitutes sound reasoning is an age-old and vitally 
important question in philosophy and other disciplines. With a revival of the study of this 
question in the seventeenth century (by Descartes, Leibniz, and others) and some 
tentative speculations about what good reasoning consisted of, the question naturally 
arose as to whether machines could be constructed to "reason," or at least whether they 
could determine the validity of reasoning produced by humans. Machines that could 
evaluate the correctness of human reasoning-even if they could not creatively reason 
themselves-would be of considerable use in mathematics and other fields. They could 
check long or complicated reasoning for validity. Because of these two factors, the history 
of computers is full of attempts to build machines that could reason or that could test 
reasoning. 

One of the most fanciful and amazing attempts to make reasoning a "mechanical" 
matter is to be found in the work of the Spanish mystic and priest Ramon Lull, who lived 
in the thirteenth century. Nothing in the life of this fantastic figure was dull-except 
perhaps his numerous and voluminous books. (For more material on Lull's life and work, 
the reader is urged to read the first chapter of Martin Gardner's Logic Machines and 
Diagrams.) Lull is usually regarded as one of the earliest writers to attempt to construct 
a notation for solving logical problems-as well as perhaps the first to attempt to build 
a mechanical device to solve logical problems. The machines he constructed to perform 
the task were composed of concentric dials; by turning one of the dials, one obtained 
various combinations of symbols. (The dials perhaps most resembled what we see today, 
in "wheels" to combine soil, location, or other parameters in order to determine when 
best to plant certain seeds.) 

The German philosopher, mathematician, and diplomat Gottfried Wilhelm Leibniz 
(1646-1716) was very impressed by Lull's ideas. Leibniz was a thinker with grand plans 
for improving the way we reason. He proposed, for example, the use of a universal 
"logical" language. This language would be designed so that every sentence would show 
clearly its logical content, much as equations in mathematics are universally understood, 
and display logical relationships among sentences clearly and unambiguously. 

Coupled with Leibniz's pians for a universal logical language were proposals to 
discover the methods according to which good reasoning proceeds. These methods 
would be gathered together in what Leibniz called a calculus ratiocinator (a "calculus 
of reasoning"). Using this calculus of reasoning, thinkers could reason and come to the 
same conclusions in a virtually mechanical way, just as two accountants always even- 
tually agree on the result of an addition. Leibniz even suggested that machines could 
then be used to take some of the drudgery out of long or complicated chains of reasoning. 
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(Leibniz did not build this reasoning machine, but he did build, in 1673, a mechanical 
calculator for doing arithmetical computations.) Leibniz himself did not make much prog- 
ress with his twin goals of a universal logical language and a "calculus of reasoning." 
But his ambitious goals served for centuries as an inspiration to philosophers, mathe- 
maticians, and, more recently, computer scientists. 

The first working "logic machine" can perhaps be credited to the eighteenth-century 
British writer, politician, and tinkerer Charles Stanhope (1753-1816). Stanhope invented 
a mechanical contraption that he called a "Demonstrator." Like most early logic com- 
puters, it was operated by moving knobs or levers to set certain premises "true." One 
then read from indicators exactly which conclusions logically followed from these prem- 
ises. (One could also use the Demonstrator to determine conclusions made probable 
by the premises.) 

A far more complex logic machine was invented by the British economist and logician 
William Stanley Jevons (1835-1882). Jevons's computer was popularly known as the 
"logical piano" because of its input keyboard. Jevons, living almost a century after Stan- 
hope, had the advantage of being able to use a sophisticated system of logical notation 
created by George Boole in the 1830s and 1840s (now known, in its modified form, as 
"Boolean algebra"). Jevons's logical piano, although representing a considerable ad- 
vancement over Stanhope's Demonstrator, was nevertheless restricted in several key 
respects: it could handle so-called "particular" statements of the form 'Some A's are B's' 
(such as 'Some evergreens are pines') only with great difficulty and could not deal with 
arguments referring to more than four distinct classes. 

Our discussion up to this point has separated the idea of a logic machine-a machine 
to solve logical problems-from a calculating machine to perform additions, multiplica- 
tions, and so on. We have thus not considered some of the often quite sophisticated 
machines designed strictly for arithmetical calculations (such as an adding machine 
invented by the French philosopher Blaise Pascal). One machine, however, deserves 
mention in spite of the fact that it was designed primarily for solving arithmetical problems: 
the "analytical engine" of Charles Babbage, an Englishman who developed his ideas in 
the 1830s and 1840s. Babbage's analytical engine was never completed in his lifetime. 
(It was partially completed after his death by his son.) What is remarkable about Bab- 
bage's engine, however, is that its overall design had certain similarities to modern 
computers. Like modern computers, the analytical engine was to be an "all-purpose" 
computer, capable of performing whatever task its operator wished it to; it was "pro- 
grammable" by cards, it had a "memory," and it could make decisions about what 
operation to perform next. 

Babbage did not receive much support for his ideas from the British intellectual 
community, but he found a tireless defender in Lady Ada Lovelace-the beautiful and 
illegitimate daughter of the English Romantic poet Lord Byron. A recently developed 
computer language, Ada, has been named after this famous defender of the power and 
future of computers. 

The late nineteenth century saw the improvement of mechanical logic computers 
like Jevons's, as well as designs for the first electric logic machines. It also saw the 
entrance of American ingenuity, with machines and designs by the philosopher Charles 
S. Peirce (1839-1914) and by his student Allan Marquand (1853-1924). But the de- 
elopment of sophisticated computers to solve general logical problems awaited the 
apid evolution of electronic switching circuitry after World War II. The background of 
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this history is the well-known, and amazingly rapid, evolution of switches from mechanical 
devices to electric ones (such as relays), then to electronic ones (such as vacuum tubes), 
and finally to compact electronic devices (such as transistors and chips). 

While the forces behind all these modern developments were undoubtedly motivated 
by efforts to speed up arithmetical calculations and data processing (as opposed to the 
essentially logical goals of identifying correct reasoning), a deep interest has remained 
in "logical" uses of computers. Indeed, it rapidly became apparent that aspects of the 
design of electronic computers were virtually the same as certain types of logical analysis. 
Modern computers operate by controlling the flow of electric signals in various parts of 
their circuitry. The question of whether an electric signal is on or off parallels the question 
of whether a sentence is TRUE or FALSE-since here, too, there are only two possible 
values. The exploration of the close relationships between the on-off control of electric 
signals and the TRUE-FALSE operations of logic falls within a branch of engineering 
called "switching theory," which was extensively studied in 1937 and 1938 by Claude 
Shannon. (Appendix A treats this subject at greater length.) 

In the 1950s and after, computer scientists moved quickly into the area that had 
originally interested earlier philosophers and logicians: determining whether arguments 
were deductively valid and, if they were, giving proofs. In fact, one of the first programs 
in the field of artificial intelligence was the Logic Theorist, which was capable of proving 
theorems in sentential logic. (For more information on this and other recent programs, 
see Slagle, 1971, and Rich, 1983.) 

Any modern computer-a large, or mainframe, computer or even a microcomputer- 
can be programmed, in most cases, to determine whether an argument is valid. It can 
also be programmed to show why the conclusion validly follows from the premises. In 
addition, a computer can be programmed to check whether a proof you have produced 
obeys the accepted rules of inference. But for extremely interesting reasons (discussed 
in Chapter 14 and in Appendix B), it appears that computers cannot generally decide 
whether a given conclusion does or does not validly follow from given premises. At the 
end of many of the chapters of this book, we give some practical advice on how to go 
about transforming what we say into an actual computer program. 

Computers and Reasoning 

Do existing computers think? Is it possible for computers to think? These are difficult 
and inevitably asked questions to which we cannot do full justice here. They are dealt 
with in the area of computer science called Artificial Intelligence and in an overlapping 
area of philosophy, the philosophy of mind. 

A question related to-and some even say identical to-the question of whether 
computers can think is the question of whether they can imitate some of the behavior 
we typically identify as being the product of "thinking." The behavior that could tempt us 
to say that computers can think might be responding appropriately to ordinary questions 
("What time is it?" "How are you today?") or carrying on a conversation. 

Another type of behavior that might tempt us to say that a computer can think is 
. some evidence of "reasoning." Behavior we take as evidence of reasoning includes: 
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1. Deciding correctly whether an argument is, or is not, valid. 
2. Deducing from a sentence other sentences that follow validly from it. 
3. Producing a derivation showing that an argument is valid-if indeed it is. 

In this book, we shall address the question of how to instruct a computer to perform 
these activities and shall thus examine some respects in which computers might be said 
to be capable of reasoning. 

The question of whether computers are capable of thought (or of emotion) is a 
difficult and controversial one. But part of what we consider to be "thought" is reasoning, 
and reasoning might be just the kind of activity computers can do-as we shall see in 
coming chapters. 

For a more complete discussion of these fascinating questions, the reader is urged 
to consult any of the following books on Artificial Intelligence: 

Alan Ross Anderson (ed.}, Minds and Machines (Englewood Cliffs, N.J.: Prentice-Hall, 
1964). 

Margaret Boden, Artificial Intelligence and Natural Man (New York: Basic Books, 1977). 
Daniel C. Dennett, Brainstorms: Philosophical Essays on Mind and Psychology (Mont- 

gomery, Vt.: Bradford Books, 1978). 
Hubert Dreyfus, What Computers Can't Do: The Umits of Artificial Intelligence, rev. ed. 

(New York: Harper and Row, 1979). 
John Haugeland (ed.), Mind Design: Philosophy, Psychology, Artificial Intelligence 

(Cambridge, Mass.: M.I.T. Press, 1981). 
Douglas A. Hofstadter, Godel, Escher, Bach: An Eternal Golden Braid (New York: Basic 

Books, 1979). 
Pamela McCorduck, Machines Who Think: A Personal Inquiry into the History and 

Prospects of Artificial Intelligence (San Francisco: W. H. Freeman, 1979). 
Bertram Raphael, The Thinking Computer: Mind Inside Matter (San Francisco: W. H. 

Freeman, 1976). 
Elaine Rich, Artificial Intelligence (New York: McGraw-Hill, 1983). 
Joseph Weizenbaum, Computer Power and Human Reason: From Judgment to Cal- 

culation (San Francisco: W. H. Freeman, 1976). 
Patrick Henry Winston, Artificial Intelligence (Reading, Mass.: Addison-Wesley, 1977). 

How Computers Work 

The modern electronic digital computer (see Figure 2-1) was devised to perform cal- 
culations and process information with incredible speed. The calculations a computer 
can perform range from the simple addition of two numbers to a sequence of hundreds 
of operations, such as multiplication, taking square roots, and finding the sines of angles. 
As we are all aware from the bills and "personalized" notices we receive in the mail, 
computers are also adept at storing, manipulating, and selecting information contained 
in what may be millions of records. This second set of tasks computers perform is often 
called data processing, or information processing. 
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Computer Languages 

It is practically a cliche that computers have no "imagination"; without proper instructions, 
they cannot perform the calculations or operations we would like them to. Thus the main 
activity of human beings who work with computers is to provide these instructions. 

Once we are connected electronically to the computer, what do we say (or type)? 
This stage of communication with computers is fascinating, but complex. If we want the 
computer to perform some operation for us, we must tell it what to do in great detail. 
The computer would in most cases understand very little of what we mean when we 
talk to each other in ordinary English. - 

If we were to type "Add these numbers: 5 and 8," a computer would almost certainly 
not know what to do-unless it had been prepared for just this kind of sentence. It would 
probably respond with an "error" message or fail to do anything. So our next observation 
is that computers (at present) will not understand just any sentence of English, even if 
the sentence were clear to any human being who knew English. Instead, computers are 
prepared by their designers to understand only small, and frequently odd-sounding, 
portions of English. These are the so-called "computer languages." In many cases, they 
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resemble English to some degree but use only a small portion of the words and con- 
structions an English speaker would know. 

What a computer will do when instructed in a computer language is often surprising. 
It does exactly what the instruction tells it to do-nothing more and nothing less. A 
computer will not stop doing what you have told it to do because what you told it to do 
has no end or no point or couldn't reasonably have been what you meant it to do. But, 
as we all know, human beings sometimes ignore, correct, or change instructions they 
receive. 

Machine Languages 

The most cumbersome of the languages in which we can communicate with computers 
are called "machine languages." They direct the computer to perform exactly the elec- 
tronic operations it would actually have to perform to come up with a result. In particular, 
we must specify in maximum-and usually excruciating-detail exactly what has to be 
done to perform an operation. For example, consider the addition of decimal numbers. 
If we were communicating with the computer in machine language, we would not be 
able to say anything like "Add the integers 18 and 37." The computer would not recognize 
what "addition" is, it would not know what an "integer" is, and it would have no idea what 
to do with the symbols '18' and '37'. 

Preparing our instructions for a computer-what is usually called a "program"-in 
machine language, we would have to describe how to add two integers. This sounds 
simple enough. But remember, the computer knows nothing about addition. Some glim- 
mer of what we would have to tell the computer to do might arise if we begin to recall 
how we add. We put numbers in neat columns, like so: 

18 
37 

Then we begin at the right. ... Suddenly, our description of this "simple" operation would 
get complicated indeed. 

Higher-Level Computer Languages 

To explain in machine language how to add two numbers requires a very long expla- 
nation. You can perhaps begin to see that if we had to tell each other, or tell computers, 
exactly what to do in this kind of detail every time we wanted a calculation performed, 
life would be very unpleasant and all too short. We humans solved this problem long 
ago. We came up with a word that describes this procedure in a kind of shorthand. That 
word is "addition." Related to it is the command "Add ... !" which tells us to perform the 
procedure we just began to examine a moment ago. Rather than saying: 

__, 
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Put numbers n and m in columns, with the last digits of each number lined up with 
each other .... 

we instead say to one another: 

Add n and m. 

We all know what this means, and many of us are reasonably proficient at performing 
the procedure that is abbreviated by this incredibly useful shorthand. 

Computer scientists have developed ways of communicating with computers that 
avoid the intimidating detail we would otherwise have to use in order to communicate 
with computers in machine language. These are the higher-level languages. These 
higher-level languages perform a trick human beings long ago hit upon: certain words 
or symbols are used to abbreviate rather complicated but frequently used procedures. 
Almost all higher-level computer languages have abbreviations for the most commonly 
used arithmetical operations, such as addition, multiplication, and division, as well as 
for other operations. 

There are now a large number of computer languages available. (We shall use 
"computer language" from now on to refer to higher-level languages.) All perform the 
same function of abbreviating certain often-used procedures, which are cued by certain 
symbols (*, /, +, $, %, etc.) or words (called "reserved words") that resemble their 
ordinary-language counterparts (DIV, IF, NOT, etc.). These languages differ a great deal 
from one another, usually because each is designed for ease of writing certain types of 
programs. 

Algorithms 

The key to communicating with computers-whatever language one chooses-is the 
notion of an algorithm: a detailed, step-by-step description of a process a computer or 
a person would use to solve a problem or perform a task. To get a better idea of what 
an algorithm is, consider this seemingly simple instruction: 

Cook frozen peas. 

This general instruction can be refined into a sequence of more specific instructions: 
Boil some water in a pot, add the peas, cover the pot, and simmer for a few minutes. 
But how much water? How many peas? How hot is "simmer"? How many minutes? 
Different cooks will answer these questions differently. 

Similarly, different musicians following the same score will perform the same piece 
of music in different ways-often producing very different results. The missing precision 
and detail in the recipe or the score-the instructions-must be supplied by the cook or 
the performer. A sequence of instructions that is completely precise in all details would 
not allow the performer to deviate from the procedure. Such a sequence of instructions 
for performing a task is a mechanical procedure. 
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Mechanical Procedures 

A special type of mechanical procedure is an algorithm. An algorithm is a detailed, step- 
by-step, finite sequence of instructions for performing a task that satisfies the following 
two properties: (1) given any required irlformation, the task must be completable in a 
finite number of steps with finite resources, and (2) it must be completely mech_anical 
and unambiguous, in the sense that no creativity or extra information need be used by 
whoever or whatever carries out the instructions. 

Sometimes, problems that seem very complex or that seem to require some kind 
of interpretive judgment can be expressed in surprisingly simple algorithms. On the other 
hand, tasks that are so simple that we perform them every day without careful thought 
can be enormously difficult to express algorithmically. As we have seen, the single 
instruction "Add n and m" is an instruction that isn't explicit enough if the person or 
machine that is supposed to carry it out doesn't know what 'add' means. To produce a 
more explicit algorithm for adding, we need to provide instructions that are more precise 
and more detailed. Such an algorithm would consist of a detailed sequence of instructions 
that someone with no creativity and no understanding of "addition" could follow to produce 
the correct sum. Finding out what to tell the computer to do will often consist of first 
examining how we make such calculations. It will consist of making explicit what has 
long ago become second nature to most of us: the process by which we add numbers. 

One very useful way of creating an algorithm is called the "top-down" approach, 
and we shall use it often. To employ this method, one first sketches in broad strokes 
and in their proper order the steps that seem to be necessary for performing the task. 
One then returns to these steps and makes them sufficiently precise and detailed so 
that whoever (or whatever) is following the instructions will know what to do at each 
step. This phase of designing an algorithm is called "stepwise refinement." 

As a first step in a top-down analysis, we could refine the single instruction "Add n 
and m" into four instructions: 

1. Write down n. 
2. Write down m. 
3. Calculate their sum. 
4. Write down that sum. 

-..,s is our "broad" view of what needs to be done. Such a broad view of what needs 
be done is called the "main procedure." Each step of a main procedure frequently 

s to be made more explicit. Each of these main steps, when spelled out in detail, 
es a subprocedure. 

Instruction 1 is precise enough, but 2 can be further refined: 

2.1. Write the ones digit of m directly beneath the ones digit of n. 
2.2. Write the tens digit of m directly beneath the tens digit of n. 

on. 
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Instruction 3, of course, is the crucial one. It can be refined as follows: 

3.1 . Look up the sum of the ones digits in a table (which contains such facts as 
0 + 0 = 0, 0 + 1 = 1, ... , 2 + 3 = 5, ... , 9 + 9 = 18). 

3.2. Write down the ones digit of that sum beneath the ones digits of n and m. 
3.3. If there is a tens digit of that sum, then write it down above the tens digit of n. 
3.4. Find the sum of the digits in the next column to the left. 

and so on. Instruction 3.4 needs to be refined too, since the table referred to in 3.1 
presumably only gives sums of two numbers, and if step 3.3 must be performed, there 
will be three numbers in the tens column. 

Step 3.3 is an example of a decision that must be made in following the algorithm, 
but it is not the sort of decision that requires creativity or extra information-it is completely 
specified. 

Flowcharts 

The algorithm above was written in English. A program is a way to communicate an 
algorithm to whoever or whatever will carry it out. For humans, giving the instructions 
in English (or some other natural language) is probably best. But for a computer, a 
program in a computer language (such as BASIC or Pascal) must be used. 

Before a program is actually written, the algorithm can be presented in "flowchart 
language." A flowchart is a graphic presentation of an algorithm. A flowchart is a "graph" 
consisting of points connected by arrows. The points, or "nodes," represent steps of the 
algorithm, and the arrows represent the order in which the steps are to be performed. 
(This is sometimes called the "flow of control," whence the name "flowchart.") 

Two especially important nodes in a flowchart are a "start" point and-if the pro- 
cedure is ever to terminate=-a "stop" point. The most common portrayal of these points 
in a flowchart is with the words 'START' and 'STOP' enclosed in rounded shapes: 

C START ) 

Figure 2-2 ST ART and STOP nodes. 

Other important nodes in a flowchart are "operations": points at which we give 
instructions for something to be done, such as an addition. These instructions are sur- 
rounded by rectangles. Figure 2-3 shows examp!es of operation nodes. 
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INPUT the value 
of A 

Let k be the sum 
of m andn 

OUTPUT the value 
of B 

Figure 2-3 Operation nodes. 

(With some systems of drawing flowcharts, certain operations are contrasted through 
the use of different shapes-especially for "input" and "output" operations. We shall keep 
things simple, however, and use one shape for all operations.) 

Finally, there are "test," or "decision," nodes, which contain sentences that are either 
TRUE or FALSE (or, sometimes, questions that have yes or no answers). These tests 
are surrounded by diamonds and have two routes flowing out of them: their TRUE (or 
"yes") branch and their FALSE (or "no") branch. Figure 2-4 shows examples of test 
nodes. 

FALSE TRUE NO YES 

i 
YES NO TRUE FALSE 

Figure 2-4 Test nodes. 

use there are two routes leaving test nodes, the flow of control through the flowchart 
~ said to "branch" at these points. Such branches are important not because they make 
=-,J calculation or take any important observable action but because they determine 

of two alternative steps comes next. 
A flowchart consists of a ST ART node and STOP nodes and a number of operation 

gles and test diamonds in between, all connected with lines that have a direction 
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indicated by an arrow. The simplest possible such flowchart is one that does absolutely 
nothing other than start and stop: 

START 

STOP 

Figure 2-5 The simplest possible flowchart. 

Consider this slightly more glamorous flowchart: 

Letnbe2 

Letmbe3 

Letk=(n+m) 

OUTPUT k 

STOP 

Figure 2-6 A flowchart for adding 2 and 3. 

This procedure adds 2 to 3 and displays '5'. Note that the flowchart assumes that we 
have a procedure for adding two numbers; it does not describe how to do this. It is 
common in flowcharts, as it is in English and in computer languages, to assume that 
such simple arithmetical procedures are already available. 

Two very common operation rectangles contain 'INPUT .. .', where the instruction 
gets some information from the operate, or from a place where information is stored, 
and 'OUTPUT .. .', where the instruction communicates some information. 



25 

LOGIC, COMPUTERS, AND ALGORITHMS 

In the example just given, the procedure eventually communicates the value that 
is the result of adding 2 to 3. We could modify the previous procedure so that it takes 
any two numbers and communicates their sum. Consider: 

START 

IN PUT a value for n 

INPUT a value form 

Letk=(n+m) 

OUTPUT k 

STOP 

Figure 2-7 A flowchart for adding any two numbers. 

ow the procedure will "ask" the operator for information whenever we have an input 
peration. This procedure will do so twice. If we program a computer to follow this 

,wchart, the computer will stop at the first 'INPUT .. .', waiting for information about 
at value the variable n should receive. When given a value, it will then proceed to 

e third step, "asking" us what the value of m should be. It will then, without further 
• toring, compute the value of k-the sum of n and m-and communicate the result. 

There is a possible flaw in the procedure we have just given. Let us assume that 
e are at a computer terminal. The computer that is following this algorithm is connected 
cur terminal and pauses to ask us what the value of variable n should be. The entire 

edure is written to expect a number, of course. But our terminal has letters too, and 
decide to input the expression 'This is'. The computer then pauses to ask us what 
value of m should be. Still playing our pranks, we type 'fun'. Now the computer 

es the fourth step: it must calculate the sum of 'This is' and 'fun'. But what is the 
metical) sum of 'This is' and 'fun'? The question does not have a clear answer. If 

~ •• ere to try this on a real computer programmed to follow the flowchart, various things 
_ d happen. The computer might stop altogether, or it might give an "error" message, 
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or it might even output some unusual expression that it "thinks" is the sum of the two 
expressions. No damage would have been done to the computer, for it is almost im- 
possible to break computers by doing such things. 

To improve the procedure and to prevent pranksters from misusing it, we can modify 
it as follows: 

Figure 2-8 A flowchart for adding any two numbers, with error messages. 

START 

INPUT a value for n 

NO 

YES 

INPUT a value form 

NO 

YES 

Letk=(m+n) 

OUTPUT k 
OUTPUT" Not 

a number! " 

STOP 
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If n or m is not given a numerical value, a computer following the flowchart now informs 
us of this fact by outputting 'Not a number!' and halts. If both n and m are numbers, the 
appropriate sum is output. Note the way we used our tests (in diamonds) to handle 
undesired possibilities; tests can, of course, be used to handle differing desired possi- 
bilities as well. 

At this point, you should have some idea of what an algorithm is and of how a 
flowchart can be used to present one. The question of whether a flowchart does indeed 
present an algorithm is a difficult one. By intuition, we can say that a flowchart does not 
present an algorithm if there is a possible flow of control through the flowchart that does 
not ever reach a STOP node. 

Although we cannot here give all the rules for determining when a flowchart presents 
an algorithm, we can give four guidelines for proper flowcharts: 

1. Any operation rectangle must have one and only one path leading away from it. 
2. Every test diamond must have two and only two paths leading away from it, one 

labeled TRUE (or "yes") and the other labeled FALSE (or "no"). 
3. All nodes (with the exception of ST ART and STOP) must have at least two lines 

connecting them to other nodes. 
4. The paths connecting nodes are "one-way streets." The flow of control from one 

node to another can only go in in one direction. 

The language of flowcharts unfortunately has its limitations. When the task to be 
performed is complex, requiring a lengthy algorithm, the flowchart presentation of this 
algorithm might cover many pages and be nearly unreadable. Flowcharts are useful and 
enlightening only when they are relatively simple. Another problem with flowcharts is 
that they do not closely resemble what is often the "final product" of our work with 
algorithms, namely a computer program. A computer program is a sequence of instruc- 
tions without the boxes, branches, and arrows of flowcharts connecting them. 

A Program Design Language 

An alternative to using flowchart language to portray an algorithm is using a "program 
design language." An algorithm presented in program design language looks much more 
ike a computer program would. We shall, in fact, use this approach when an algorithm 
sat all complex or lengthy. Using a program design language (rather than a flowchart) 
o portray an algorithm will allow the reader easily to convert the algorithm into a computer 

ogram or into a perfectly understandable sequence of instructions in ordinary English. 
The program design language we shall use in this book has the following features: 

1. Every algorithm will be portrayed through the use of a numbered sequence of 
instructions. 
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2. The form of these instructions will be restricted to a handful of basic patterns. 
3. Subsidiary or dependent operations will be indented. 
4. Large sections of the algorithm for performing some clear but subsidiary task 

will be separated and labeled. 

This last feature is often called "modular design," and it is the essence of what is 
considered good programming style. In practice, modular design requires us first to 
perform a top-down analysis of the task and then to divide our algorithm into subpro- 
cedures, each of which singles out some distinct and clearly identified task. We shall 
use names in capital letters to label our algorithms in program design language, as well 
as to label the subprocedures that make them up. 

Our program design language will allow just two basic kinds of instructions: operation 
statements (or "operations" for short) and control statements. An operation statement 
indicates an operation or action the person or computer following the algorithm is to 
perform. Control statements are instructions concerning how often, under what condi- 
tions, or in what order operations are to be performed. They "control" the performance 
of operations. 

An important part of many control statements is the test, or condition. A condition 
is a sentence that is either TRUE or FALSE. It can never be an instruction itself. For 
instance, '4 > 2' is a TRUE sentence and thus could be a condition. One could not 
order, or direct, anyone to make 4 greater than 2, so it is not an operation. What follows 
the condition in a conditional control statement is an instruction (or a sequence of 
instructions). 

Consider the following example of a control statement: 

IF the amount in your checking account is less than $20.00, 
THEN pay a service fee of $1.00. 

The control portion of this instruction is the control pattern: IF <condition>. In this 
example, the condition is 'the amount in your checking account is less than $20.00'. The 
instruction portion contains a single operation: pay a service fee of $1.00. That is, the 
condition of an instruction tells us when to do something, and the operation portion tells 
us what to do. 

Operation Statements 

Ideally, the operations contained in an algorithm should be very simple ones. Certainly 
they should be ones that the person or computer following the algorithm could reasonably, 
and without further instruction, be expected to understand. More complex operations 
should be described by listing a sequence of several simpler operations. Because com- 
puters-other than robots-do not do much besides asking for, and giving, information 
to human users, two common operations are: 
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INPUT ... 

and 

OUTPUT ... 

The first instruction, INPUT ... , tells the person or computer following the algorithm to 
obtain some information from its environment; it looks in its own records or asks the 
user to give it some information. The second instruction, OUTPUT ... , tells the follower 
of the algorithm to write, or in some other way communicate, some information. Because 
these two operations require the user of the algorithm to react with some "outside" 
environment-that is, with a world outside the computer-they are often called "external" 
operations or, even more descriptively, "input-output" operations. 

There are operations, however, that the algorithm uses for its own purposes. These 
might be called "internal" operations. Chief among these is the operation of assigning 
certain information to a name. This information can then be recalled later in the algorithm 
by using that name. This operation is frequently called an "assignment," and the name 
given to the information is most frequently called a variable. Examples of assignment 
statements are: 

Let n be 5. 
Set n to the old value of n plus 1. 
Let THISSTRING be the string 'Logic is simple'. 

Each of these instructions "assigns" certain information to an expression (here, to the 
letter 'n' and to the word 'THISSTRING'). This information can be a number, a truth 
value, or a sequence of characters (called a "string"). It is common in computer pro- 
gramming languages to restrict the type of information that can be assigned to kinds of 
variables. The categories of information are called the "data type" of the information (and 
of the variable). We shall not worry in this book about the kind of information associated 
with names and shall instead let any name refer to any type of information. We shall 
also have no restrictions on what expression can serve as a variable, but we shall often 
pick a name, such as 'THISSTRING', that helps us to remember what information is 
stored there. The form of the assignment statement will be rather free, including such 
expressions as 'Let .. .', 'Set ... to .. .', and 'Call .. .'. 

Control Statements 

The control statements in an algorithm are just as important as the operation statements, 
'or knowing when to do something, and how often, is just as important as knowing what 
o do. 

One important feature of our program design language is this: Unless otherwise 
icated, instructions are to be performed in the order in which they occur. For example, 

• we had the algorithm 
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1. Let n have the value 5. 
2. Let the new value of n be 1 plus its old value. 
3. OUTPUT the value of n. 
4. STOP. 

its application would be as follows. After step 1, 'n' refers to this information: 5. After 
step 2, 'n' has the value of its former value, 5, plus 1-that is, 6. Finally, the value of n 
is output, and at this point in the algorithm, 'n' refers to this information: 6. So this 
algorithm has the final, observable result of simply outputting '6'. 

Another very useful control statement in an algorithm is (as we mentioned) the 
conditional instruction: 

IF <some condition> 
THEN <instruction> 

Here is an example of an algorithm that uses a conditional instruction: 

1. Let n have the value 7. 
2. Let m have the value 5 + 2. 
3. IF the value of n is the same as the value of m, 

THEN (a) OUTPUT "n and m have the same value." 
4. STOP. 

Since the condition in step 3 is in fact TRUE (once the first two operations have been 
performed), the operation indicated by step 3(a) would be performed. The sentence 'n 
and m have the same value' would be written or displayed. If the condition had been 
FALSE, the sentence would not be displayed. 

Other useful control statements are: 

FOR <some sequence of values> 
<instructions> 

WHILE <some condition> 
<instructions> 

GO TO <some step in the algorithm> 
STOP 

The first type of control statement, usually called a FOR-loop, says that the indicated 
instructions are to be repeated as many times as the sequence of values indicates. Here 
is an example of an application of the FOR-loop: 

1. INPUT a sentence. 
2. FOR every character in the sentence 

(a) IF the character is 'e' 
THEN OUTPUT "Letter 'e'." 

3. STOP. 
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If the sentence we had input to the algorithm at step 1 were 

This is a sentence. 

then in step 2 of the algorithm each character in this sentence would be examined 
(letters, spaces, and punctuation). Every time we encountered the letter 'e', step 2(a) 
would direct us to output the phrase "Letter 'e'." The procedure would move to the last 
step (3) only after every character in the sentence had been examined. In other words, 
step 2(a) is repeated as many times as there are characters in the input sentence. Only 
then does control move to step 3. 

A WHILE statement tells us to repeat the indented instructions as long as a certain 
condition remains TRUE. When the condition becomes FALSE, we move to the next 
nonindented instruction. Both the FOR statement and the WHILE statement tell us, in 
differing ways, how many times to repeat (indented) instructions. 

A GO TO statement tells us to go to some other step in the algorithm. Since it is 
reasonably common to have each step in an algorithm labeled in some way, a frequent 
form of the GO TO statement is, for example, 'GO TO step 4'. GO TO statements are 
widely frowned upon by enlightened algorithm writers because of the confusion they 
produce: when reading an algorithm, we must jump back and forth from one place to 
another. Consequently, we shall use them rarely. (Their use can be eliminated altogether, 
but in several of our informally described algorithms, it is simpler and clearer to use GO 
TO's than to avoid them.) 

The most obvious control statement is STOP, which tells us that we have completed 
the algorithm. 

Consider this algorithm presented in our program design language: 

1. INPUT the value n. 
2. INPUT the value m. 
3. IF n is not a number, or m is not a number, 

THEN (a) OUTPUT "Input values not both numbers." 
(b) STOP. 

4. IF mis O 
THEN (a) OUTPUT "Division by O is impossible." 

(b) STOP. 
5. Let k be nlm. 
6. OUTPUT k. 
7. STOP. 

is algorithm was designed for the task of simply dividing one number by another. It 
as also designed to avoid difficulties caused by not having numerical values assigned 

•n the names 'n' and 'm' (step 3) and by division by O (step 4). Several features about 
e algorithm are important to note. 

First, when the algorithm is applied, it must be followed step-by-step, jumping over 
ented steps if a condition is FALSE, until a STOP is encountered. One does exactly 
at each step says. If a statement is a conditional one and the condition is TRUE, one 
rforms the indicated (indented) instructions. If a statement is a conditional one and 
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the condition is FALSE, one does not perform the indicated instructions. Instead, one 
simply goes on to the next step that is not further indented. (In the jargon of algorithms, 
this is often called "falling through" to the next step.) 

Second, it often happens that if a condition is TRUE, several operations should be 
performed. When we have more than one operation dependent on a condition being 
TRUE, these operations will always be indented from the condition itself. We have this 
arrangement in steps 3 and 4. , 

Summary 

Computers can be used to solve "logical" questions (such as "Is this argument valid?"), 
or they can be used to give proofs that demonstrate why an argument is valid. A notion 
important for directing computers to answer these logical questions is the idea of an 
algorithm: a sequence of instructions for performing a task such that given any required 
information, the task can be completed in a finite number of steps; in addition, the 
instructions are completely mechanical and unambiguous, in the sense that no creativity 
or extra information needs to be used by whoever or whatever carries out the instructions. 
A computer program is the presentation of an algorithm in a way that allows a specific 
computer to follow it properly. 

We shall present algorithms in one of two ways: in a flowchart or in a program 
design language. An algorithm presented in our program design language will visually 
more closely resemble an actual computer program than does one presented in flowchart 
form. 

Either in flowchart form or in program design language, every instruction in an 
algorithm is of one of the following kinds: 

Operation Statements 
1. External 

a. INPUT 
b. OUTPUT 

2. Internal 
a. Assignments: Let <variable> be assigned <information> 

Control Statements 
1. Unconditional control 

a. STOP 
b. GO TO 

2. Conditional control 
a. IF <condition> 

THEN <instructions> 
b. FOR <sequence of values> 

<instructions> 
c. WHILE <condition> 

<instructions> 
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Exercises 

A. An important test for determining whether computers can "think" was proposed 
by the British mathematician and computer scientist Alan Turing and is known 
as the Turing test (see Turing, 1950 in Anderson, 1964). A simplified version of 
the test he proposed is as follows. Suppose you are seated at a terminal or 
some other communication device. You have no idea who or what is at the other 
end. You begin a "conversation" on the terminal, asking questions, receiving 
answers to these questions, receiving and answering questions about yourself, 
about your beliefs, and about the world. You might play games, ask for advice, 
and do all the other things we do when we communicate with other human 
beings. 

If you have every reason to believe that you are communicating with a 
human being, then whatever is at the other end-even if it's a computer-must 
be admitted to be thinking. In other words, we should count as having the ability 
to think whatever can converse as a thinking human being can. 

Answer the following questions concerning the Turing test: 
1. Is it possible that we could be communicating with another thinking human 

being yet not be able to determine that this human being was indeed thinking? 
One possibility: The person at the other end can't type. Yet this surely does 
not necessarily mean that he or she cannot think. What are other possible 
reasons why a thinking human being might not give us, or be able to give 
us, evidence of his or her thinking? 

2. In the light of the first question, consider these two statements: 
a. If a person or computer passes the Turing test, then he or she or it can 

think. 
b. If a person or computer fails the Turing test, then he or she or it cannot 

think. 
Are both statements reasonable? (The computer program ELIZA is supposed 
to be a counterexample to statement (a); see Weizenbaum, 1976.) 

3. Imagine yourself at a terminal administering the Turing test to someone (or 
something). Construct three questions (and their answers) that you think 
would be sufficient to determine if the test taker could think. Hint: At least 
one question should require reasoning and not just knowledge. 

8. The following algorithm written in our program design language is for adminis- 
tering and grading a short quiz on state capitals. 

1. LET A be 0. 
2. Answer TRUE or FALSE: "The capital of California is Sacramento." 
3. LET V(CA) be your response. 
4. Answer TRUE or FALSE: "The capital of Ohio is Toledo." 
5. LET V(OH) be your response. 
6. Answer TRUE or FALSE: "The capital of New York is Albany." 
7. LET V(NY) be your response. 
8. IF V(CA) = TRUE 

THEN LET A be the former value of A plus one. 



34 

CHAPTER 2 

9. IF V(OH) is not TRUE 
THEN LET A be the former value of A plus one. 

10. IF V(NY) is not FALSE 
THEN LET A be the former value of A plus one. 

11. IF A= 3 
THEN OUTPUT "Perfect Score." 

12. IF A= 2 
THEN OUTPUT "Better luck next time." 

13. IFA<2 
THEN OUTPUT "Terrible!" 

14. STOP. 
a. Take the quiz. What are your answers at steps 3, 5, and 7? What would 

the procedure do after step 1 0? 
b. If you had answered the questions perfectly, what would the procedure have 

output? 
c. Suppose your answers at steps 3, 5, and 7 had been: 

TRUE 
I DON'T KNOW 
FALSE 

What would be the value of A at step 4? after step 8? after step 9? after 
step 1 0? What evaluation of the answers would the procedure have output? 

d. Answer the same questions in (c), but suppose the input responses had 
been: 

FALSE 
I FORGET 
THIS IS A STUPID TEST 

e. Redesign steps 9 and 10 so that the test is always scored correctly. 
C. Consider the following algorithm for administering and grading a quiz on the 

planets. 
1. Answer: "What is the planet just beyond the earth?" 
2. LET P4 be your answer. 
3. Answer: "What is the closest planet to the sun?" 
4. LET P1 be your answer. 
5. Answer: "What is the farthest planet from the sun?" 
6. LET P9 be your answer. 
7. Answer: "What is the largest planet?" 
8. LET PS be your answer. 
9. LET A have the value 100. 

10. IF PS is not 'JUPITER' 
THEN LET A be 25 less than its former value. 

11. IF P9 is not 'PLUTO' 
THEN LET A be 25 less than its former value. 

12. IF P1 is 'MERCURY' 
THEN GO TO step 14. 

13. LET A be 25 less than its former value. 
14. IF P4 is 'MARS' 

THEN GO TO step 16. 
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15. LET A be 25 less than its former value. 
16. OUTPUT "Your grade is: 
17. OUTPUT A. 
18. STOP. 
a. If your answers at steps 2, 4, 6, and 8 were MERCURY, MERCURY, PLUTO, 

and JUPITER, respectively, what would your score be? 
b. If your answers at steps 2, 4, 6, and 8 were VENUS, SATURN, PLUTO, 

and JUPITER, respectively, what would the value of A be after step 1 0? 
after step 11 ? after step 13? 

D. The refinement of step 2 of the "algorithm" for adding given in the text on page 
21 is incomplete: it doesn't tell you when to stop. Revise this step so that someone 
following the algorithm will know when to stop. 

E. Write a brief algorithm for performing some simple task. Have another student 
attempt to follow the algorithm, and report back on whether he or she was able 
to follow your algorithm without using any creativity or imagination. 

F. Symbolic logic usually deals with expressions that are mixtures of letters ('A', 
'B', ... ) and other symbols, such as),(, v, and+-. Consider the following tasks 
for which an algorithm can be written. 

1. A question that sometimes arises is the question of how often a symbol 
occurs in a string of symbols. For example, it is easy to see that in the string 

ASFAHDA$%123 
the letter 'A' occurs three times. Write an algorithm for determining how 
often, in an input string, the letter 'A' occurs. 

2. Another question that arises about strings (and which we shall later use) is 
the question of how many distinct symbols occur in a string. For example, 
in the string 

ASDF%$121 AD$% 1 
there occur eight distinct symbols: A, S, D, F, %, $, 1, and 2. Write an 
algorithm for inputting a string and outputting the number of distinct symbols 
in that string. 

. Consider the following alleged algorithm for buying milk: 
1. Go to the supermarket. 
2. IF they have milk, 

THEN buy some. 
3. IF they do not have milk, 

THEN (a) Go to another supermarket. 
(b) GO TO step 2. 

4. Go home. 
5. STOP. 

Answer the following questions: 
a. Draw a flowchart for this "algorithm." 
b. What happens if there are an indefinite number of supermarkets, and none 

have milk? 
c. Revise the algorithm to deal with the contingency in (b). 
d. Draw a flowchart for your revised algorithm. 
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SENTENTIAL LOGIC: 
The Connectives 'Not', 

'And', and 'Or' 

One of the most important and basic 
branches of logic is the logic of sentences, also called 
sentential logic. Sentential logic examines arguments 
by looking at parts no finer or more detailed than dec- 
larative sentences. 

We shall regard a sentence as a linear sequence, 
or string, of symbols that expresses a proposition. Two 
or more distinct sentences can express the same prop- 
osition. Consider the following strings: 

The earth is round. 
Round is the earth. 
Die Erde ist rund. 

Each line contains a string of symbols (in this case, 
letters, spaces, and periods). The first sentence, for 
example, is composed of the sequence of symbols 'T', 
'h', 'e\ '' (space), 'e', and so forth. 

The three lines above are in fact three distinct strings: 
the symbols are arranged in a different order in each 
line, and the last line-in German-even lacks a letter 
that the other two have. They all, however, express 
roughly the same thought or proposition. Some strings 
are apparently not sentences: they do not clearly ex- 
press propositions in any language we know. Examples 
of strings that do not express propositions (and hence 
are not sentences) are: 

Egl%! Oglrn.% 
Glub af noc. 

37 
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As an example to work with, consider the proposition that Richard mailed Alison a 
book. We would normally express this proposition in English by the sentence: 

1. Richard mailed Alison a book. 

There are grammatical rules for transforming this sentence into other English sentences 
that express the same proposition. For example, the sentence 

2. Richard mailed a book to Alison. 

expresses the same proposition as sentence (1 ). Note that (1) and (2) are different 
sentences, since they are different strings of symbols. 

Negation 

Now, it could be false that Richard mailed Alison a book. There are many ways for this 
proposition to fail to be true: 

It may not have been Richard who mailed a book. 
He may not have mailed it yet. 
He may not have mailed it but rather delivered it personally. 
It may not have been Alison to whom Richard sent a book. 
And it may not have been a book that he mailed. 

Any combination of these facts would also make the original proposition false. Each of 
the examples in this list could be expressed with different phrasing. But since, for the 
purposes of sentential logic, we are only interested in the truth or falsity of propositions, 
we shall be satisfied with the very general and nonspecific proposition that it is not the 
case that Richard mailed Alison a book. This is called the "denial" of the original prop- 
osition, and it can be expressed in English by this sentence: It is not the case that Richard 
mailed Alison a book. 

We see, then, that if we wish to construct a sentence in English expressing a denial 
of a proposition, we can simply take a sentence expressing the original proposition and 
prefix that particular string of symbols with the string 'It is not the case that'. The resulting 
sentence is the negation of the original sentence. · 

To avoid writing sentences over and over again, and to simplify the visual presen- 
tation of what we have just discussed, we shall follow our convention from Chapter 1 
and use the boldface capital letters 'P', 'Q', 'R', ... ,'Z' to designate any possible strings 
that are sentences. So, we can now say that the standard way to form a negation of a 
sentence P is to write: 

It is not the case that P. 
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We can simplify matters further by letting the string 'It is not the case that' be replaced 
by a single symbol: -. Thus we represent a negation of a sentence Pas: 

-P 

Some concrete examples are shown in Table 3-1. 
Propositions are either true or false. A sentence has the truth value TRUE if the 

proposition it expresses is true, and a sentence has the truth value FALSE if the prop- 
osition it expresses is false. As we discussed in Chapter 1 , we shall use the capitalized 
words TRUE' and 'FALSE' to designate the two possible truth values of sentences. It 
is useful to have different, but related, symbols for sentences and for their truth values. 
We shall continue our practice of using upper-case letters to indicate sentences and of 
using the 'V( )' notation to represent the truth value of a sentence. For example: 

C = 'The earth is flat.' 
V(C) = FALSE 

How would we describe, in general, when the negation of a sentence is TRUE? 
When, for example, is the following sentence TRUE? 

It is not the case that Richard mailed Alison a book. 

This answer should come to mind: The negation of a sentence is TRUE just when the 
sentence itself is FALSE. In the present case, 

It is not the case that Richard mailed Alison a book. 

is TRUE just when 

Richard mailed Alison a book. 

is FALSE. In addition, the negation of a sentence is FALSE just when the original 
sentence is TRUE. We see, then, that the truth value of a negation depends just on the 
truth value of the original sentence. 

TABLE 3-1. Negations of Sentences. 

Sentence Colloquial Negation Standard Negation Symbolic Negation 

Fido barks. Fido doesn't bark. It is not the case that 
Fido barks. -(Fido barks.) 

John is singing. John isn't singing. It is not the case that 
John is singing. -(John is singing.) 

2+2=4 2 + 2 4' 4 It is not the case that 
2+2=4 -(2 + 2 = 4) 

7 < 10 7 is not less than 10. It is not the case that 
7 < 10. -(7 < 10) 
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The Truth Function FNEG 

The dependency relationship between a sentence and its negation can be expressed 
more precisely and clearly by saying that the truth value of the negation of a sentence 
is a "function" of the truth value of the original sentence. A function produces just one 
unique output for a given input (or inputs). Negation is called a "truth function" because 
it outputs a truth value (the truth value of the negation) from an input that is the truth 
value of the original sentence. 

As an example of a function, the distance covered by a moving object depends on 
its speed and the length of time it has been moving at that speed. We describe this 
situation by saying that distance is a function of speed and time. Similarly, the value of 
a simple arithmetic sum (m + n) depends on the values of the numbers-called "sum- 
mands"-being added. 

Mathematicians and scientists have developed a well-known notation for expressing 
these dependency, or functional, relationships. We might write, for example, 

Distance = FDIS(Speed, Time) 

to express that the distance covered by a moving object is a function of both its speed 
and the time it has been traveling at that speed. Similarly, we might write 

Sum = FSUM(Summand 1, Summand 2) 

to express the obvious fact that the value of a sum is a function of both of the numbers 
being added. 

We have used names for these functions that begin with 'F': FDIS and FSUM. This 
helps us to remember when something is a function. The remaining letters distinguish 
one function from another, but they should also be chosen to help us remember what 
the function is for. In these two cases, FDIS and FSUM seem to be obvious choices for 
the distance-covered function and the sum function. 

In describing truth functions, such as negation, we shall also follow these conven- 
tions. The names of truth functions will begin with 'F', and the letters that follow will be 
ones that help us remember what the function is for. We shall let FNEG be the name 
of the negation function. So when we write 

V(-P) = FNEG(V(P)) 

we are simply saying that the truth value of a negation, -P, is a function (FNEG) of the 
truth value of P. 

There are two ways of characterizing functions. First, we can list all the possible 
inputs and corresponding outputs of a function. When we do so, we are characterizing 
a function extensionally. For example, the following tables partly characterize the func- 
tions FDIS and FSUM extensionally: 
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Inputs 
Speed, mi/h Time, h 

Output 
FDIS (Speed, Time) 

10 
1 10 

20 3 
and so on 

10 
10 
60 

Inputs Output 
m n FSUM (m, n) 

0 0 0 
0 1 

3 2 5 
and so on 

It is easy to see that this way of characterizing a function is often very clumsy. In the 
above two examples, the lists would go on indefinitely before the functions were ever 
completely described. 

Another way of characterizing a function is intensionally: we give an algorithm for 
calculating the output of a function from its inputs. The algorithm gives us a method- 
a recipe-for generating the output of a function from its inputs. The algorithm is said 
to compute the function when its inputs and outputs agree with those of the function. 
(This is not to say that the algorithm is identical to the function.) For example, an algorithm 
for FSUM is 

1. INPUT m. 
2. INPUT n. 
3. OUTPUT m + n. 
4. STOP. 

and an algorithm for FDIS is 

1. INPUT speed. 
2. INPUT time. 
3. OUTPUT speed x time. 
4. STOP. 

The method of giving an algorithm that computes a function is often easier than listing 
all the possible inputs and outputs. In fact, giving an algorithm is often the only way to 

aracterize a function completely. A function is characterized when its output is specified 
or any of the possible inputs it might take. Naturally, there can be several different 
algorithms that compute the same function. 
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Truth Tables and Algorithms for FNEG 

We can in fact characterize the truth function FNEG with almost equal ease by making 
an input-output listing or by giving an algorithm. This is so because while numerical 
variables can take an indefinite number of values-1, 2, 3, ... -truth values can only 
be one of two values: TRUE and FALSE. 

The complete extensional characterization of the FNEG function is as follows: 

Input 

V(P) 
Output 
FNEG(V(P)) 

FALSE 
TRUE 

TRUE 
FALSE 

An extensional characterization of a truth function, like the one above, is a truth table. 
In writing truth tables, we shall always list the inputs on the left of the vertical line and 
the output on the right (though we shall not always use the labels "Input" and "Output"). 

We can also characterize the FNEG function by giving an algorithm that produces 
the same results displayed by the truth table. Informally, we can say that FNEG "reverses" 
the truth value of its input. But this is probably uselessly informal, because the idea of 
"reversing" a truth value, while intuitively clear, is not a concept rigorously employed by 
people or computers. 

We can, moreover, draw a flowchart that presents an algorithm for computing the 
FNEG function for some arbitrary truth value of a sentence P taken as input. 

START 

INPUT V(P) 

OUTPUT 
"TRUE" 

NO OUTPUT 
"FALSE" 

STOP 

YES 

Figure 3-1 Flowchart for computing FNEG. 
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Or we can use an algorithm written in our program design language to characterize the 
FNEG function: 

1. INPUT V(P). 
2. IF V(P) = TRUE 

THEN OUTPUT "FALSE." 
3. IF V(P) = FALSE 

THEN OUTPUT "TRUE." 
4. STOP. 

Up to this point, we have talked about the truth values of sentences as being either 
TRUE or FALSE. If we recall our earlier mention of associating the number 1 with TRUE 
and O with FALSE, we can see that a very compact algorithm for characterizing the 
FNEG function is possible. We should first note that if we use the numbers O and 1, the 
truth table for FNEG is 

V(P) FNEG(V(P)) 

0 1 
0 

Since we are working with numbers now, if we wish to find an algorithm for FNEG, we 
might look for simple arithmetical operations that behave like this. 

Here is one simple arithmetical algorithm that does the trick: 

1. INPUT V(P). 
2. OUTPUT 1 - V(P). 
3. STOP. 

We can show very simply that this arithmetical operation behaves exactly the way FNEG 
is supposed to behave. If V(P) = 1 (that is, if Pis TRUE), then 1 - V(P) = 0. If V(P) = 0 
(that is, if P is FALSE), then 1 - V(P) = 1. In other words, the algorithm consisting of 
only the simple operation 1 - V(P) does the job of "reversing" the truth values, exactly 
as FNEG is supposed to. 

Double Negation 

We have seen that there is a functional relationship between a negated sentence and 
the original sentence: the truth value of the neqatlon depends entirely on the truth value 
of the original sentence. That is: 

V(~P) = FNEG(V(P)) 

We might wonder about the relationship between a sentence that is twice negated and 
the original sentence. For example, consider this sentence: 

It is not the case that it isn't raining. 
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What is the relationship of the truth value of this sentence to the sentence 'It is raining'? 
If we let A = 'It is raining', then the symbolization of 'It is not the case that it isn't raining' 
is: 

~~A 

Since the truth value of a singly negated sentence is related to the truth value of the 
original sentence by FNEG, a double negation (like '~~A') must be related to the original 
by two applications of FNEG. In other words, 

V(~~A) = FNEG(FNEG(A)) 

It so happens that the truth value of '~~A' is the same as the truth value of A. In 
sentential logic, in other words, two "negatives" make a "positive." Informally, this is easy 
to see, since each application of FNEG reverses the truth value. Two applications of 
FNEG would reverse the truth value twice, bringing us back to the original truth value. 
We could obviously continue the pattern: 

V(~P) = FNEG(V(P)) 
V(~~P) = FNEG(FNEG(V(P))) = V(P) 
V(~~~P) = FNEG(FNEG(FNEG(V(P)))) = V(~P) 

and so on. 
We can make several observations about this process. First, the output of a truth 

function can be the input of another truth function. This possibility allows us to chain 
truth functions together, as in FNEG(FNEG(FNEG ... )). 

Second, no matter how complex a sentence is, the truth value of that sentence is 
a function of the truth values of the sentences that are its "truth-functional parts." Some- 
times, this functional relationship is expressed by a single truth function. For example, 
the relationship of V(~P) to V(P) is just: 

V(~P) = FNEG(V(P)) 

But other times, the functional relationship might be expressed by more than one use 
of a truth function. For example, the relationship of V(~~P) to V(P) is: 

V(~~P) = FNEG(FNEG(V(P))) 

That is, the truth value of a twice-negated sentence is obtained by applying FNEG twice 
to the truth value of the sentence, P. More generally, in expressing the functional re- 
lationship of the truth value of a complex sentence to the truth values of its parts, there 
will occur one application of a truth function for every occurrence of a sentence "con- 
nective." Besides negation, we shall consider two other sentence connectives in this 
chapter: conjunction and disjunction. 
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Atomic and Molecular Sentences 

Some sentences seem to be quite simple, sometimes containing only a single word for 
the subject and a second word for the verb (for example, 'Fido barks'). But merely 
counting the words in a sentence will not always reveal whether the sentence is simple 
or more complicated. A clue to one way of dealing with this question can be found by 
examining negated sentences. These sentences, for instance: 

It is not the case that Q. 
-Q 

are strings of symbols explicitly containing a simpler sentence within the whole string- 
in this case, Q. So, an initial characterization of a simple sentence is that it is a sentence 
that does not contain any simpler sentences. Molecular sentences, on the other hand, 
contain one or more simpler sentences. In sentential logic, we shall only consider com- 
pound sentences that are composed of sentences linked together by truth-functional 
connectives. 

To represent the simplest sentences, it is convenient to reserve the initial letters of 
the alphabet (possibly with numerals): 

A, B, C, ... , 0, A1, 81, ... , A2, ... 

We call these atomic sentences. Any sentences built up out of atomic sentences by 
means of truth-functional connectives will be called molecular sentences. 

With the distinction between atomic and molecular sentences in mind, let us begin 
to explore the many different ways in which molecular sentences can be formed from 
atomic ones or from simpler molecular ones. 

Conjunction 

We begin with one of the simplest and most common types of molecular sentences. 
The sentence 

Tom is happy and I'm in love. 

is a conjunction of two simpler sentences, each of which is called a conjunct. The first 
conjunct is the atomic sentence 

Tom is happy. 

and the second conjunct is 

I'm in love. 
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In this example, both conjuncts happen to be atomic sentences; we shall see later that 
this need not be the case. 

There are a few other ways in English to construct conjunctions. Instead of using 
the word 'and', we might have written: 

Tom is happy but I'm in love. 

This sentence is also a conjunction. In our standard representation of conjunctions, it 
will be represented by 'Tom is happy and I'm in love'. (The two English sentences do 
not mean exactly the same thing; the use of 'but' usually indicates that what follows is 
somehow the more important or contrasting conjunct. For example, I might say 'Tom is 
happy but I'm in love' if I thought that my condition-being in love-was a better or more 
important one that Tom's being happy.) 

Even a semicolon can be used to construct a conjunction: 

Tom is happy; I'm in love. 

(English teachers properly complain, by the way, when you use a comma here instead 
of a semicolon.) Finally, some other variants of conjunction in English are 

While Tom is merely happy, I'm in love. 

and 

Although Tom is happy, I'm in love. 

Just as we used a special symbol for negation, we shall also use a special symbol 
for conjunction. We have a great deal of freedom in this choice, although perhaps the 
symbol that is used most often is the ampersand, &, which occurs on all typewriters. 
Some logicians use a period, others use the symbol /\ and still others use different 
symbols for conjunction. For convenience we shall use only &. Our choice of letters for 
sentences is also quite free-so long as we assign distinct letters to distinct sentences. 

A proper symbolization of our initial example, 'Tom is happy and I'm in love', is: 

(A & B) 

Here 

A= 'Tom is happy.' 
B = 'I'm in love.' 

and the special symbol & stands for the 'and' that connects them. We shall say that & 
is a two-place connective because it connects two sentences to form a new, molecular 
sentence. 
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The Truth Function FCNJ 

How would we describe when the truth value of a conjunction is TRUE? When, for 
example, is the conjunction 

Tom is happy and I'm in love. 

TRUE? When is it FALSE? The general answer to this question is: 

A conjunction is TRUE just when both conjuncts are TRUE. 

In the case at hand, 'Tom is happy and I'm in love' is TRUE just when 'Tom is happy' 
is TRUE and 'I'm in love' is also TRUE. 

If both conjuncts are TRUE, then the conjunction is TRUE. If even one conjunct is 
FALSE, then the conjunction is FALSE. The truth value of a conjunction is a function of 
the truth values of its parts (its conjuncts). Since the relationship between the truth value 
of a conjunction and the truth values of its parts is again a functional one, we can talk 
about this new truth function exactly as we talked about the negation truth function 
before. 

Let us call this function FCNJ. The truth value of a conjunction of two sentences P 
and Q is the result of applying the function FCNJ to the truth values of the conjuncts. 
In symbols, 

V(P & Q) = FCNJ(V(P), V(Q)) 

But how does this conjunction function behave? We know that FCNJ(V(P), V(Q)) equals 
TRUE if P and Q both have the value TRUE. And it equals FALSE if either P or Q has 
the value FALSE, or if both P and Q have the value FALSE. In other words: 

FCNJ(FALSE, FALSE) = FALSE 
FCNJ(FALSE, TRUE) = FALSE 
FCNJ(TRUE, FALSE) = FALSE 
FCNJ(TRUE, TRUE) = TRUE 

This is a complete extensional characterization of the conjunction function. 
We can also display this information in a truth table: 

V(P) V(Q) V(P& Q) 

FALSE 
FALSE 
TRUE 
TRUE 

FALSE 
TRUE 
FALSE 
TRUE 

FALSE 
FALSE 
FALSE 
TRUE 
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The conjunction function, FCNJ, can also be computed by an algorithm, such as 
the one portrayed by the following flowchart. 

START 

INPUT V(P) 

INPUT V(Q) 

YES NO OUTPUT 
"FALSE " 

OUTPUT 
"TRUE" 

STOP 

Figure 3-2 Flowchart for computing FCNJ. 
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Many other algorithms also compute FCNJ, for instance: 

START 

INPUT V(P) 

INPUT V(Q) 

OUTPUT 
"TRUE" 

OUTPUT 
"FALSE" 

STOP 

Figure 3-3 Another flowchart for computing FCNJ. 

It is also possible to give an algorithm for FCNJ in our program design language: 

1. INPUT V(P). 
2. INPUT V(Q). 
3. IF V(P) = TRUE 

THEN IF V(Q) = TRUE 
THEN GO TO Step 6. 

4. OUTPUT "FALSE." 
5. STOP. 
6. OUTPUT "TRUE." 
7. STOP. 
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Many other correct algorithms for FCNJ can also be written in our program design 
language. For example, the following algorithm for FCNJ is also correct (note that it 
does not use a GO TO instruction): 

1. INPUT V(P). 
2. INPUT V(Q). 
3. IF V(P) = TRUE 

THEN IF V(Q) = TRUE 
THEN (a) OUTPUT "TRUE." 

(b) STOP. 
4. OUTPUT "FALSE." 
5. STOP. 

Another algorithm is possible if we return to associating 1 with TRUE and 0 with 
FALSE. To see this; we first rewrite the extensional characterization of FCNJ, using 1 
and 0. We obtain 

FCNJ(0, 0) = 0 
FCNJ(0, 1) = 0 
FCNJ(1, 0) = 0 
FCNJ(1, 1) = 1 

That is, FCNJ is 1 only when both of its inputs are 1, and it is 0 otherwise. Since we 
are working with numbers now, we might ask ourselves which arithmetical functions 
behave like this for values of 0 and 1. 

There are in fact many simple arithmetical functions that "mimic" FCNJ, given the 
values of the conjuncts as inputs. We are going to adopt a particular algorithm that may 
not be familiar to you but is easy to follow. We take the value of FCNJ(V(P), V(Q)) to 
be the lesser of the values V(P) and V(Q). This is usually written as the minimum function: 

MIN(V(P), V(Q)) 

For example, 

MIN(2, 5) = 2 
MIN(5, 2) = 2 
MIN(5, 5) = 5 

So the algorithm is: 

1. INPUT V(P). 
2. INPUT V(Q). 
3. OUTPUT MIN(V(P), V(Q)). 
4. STOP. 
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The relevant inputs for MIN are given below: 

MIN(0, 0) = 0 
MIN(0, 1) = 0 
MIN(1, 0) = 0 
MIN(1, 1) = 1 

Since the MIN function works exactly the way the FCNJ function should, we can con- 
veniently use the MIN function to compute the FCNJ function. 

When employing one of these procedures, we would probably want to generalize 
the initial steps slightly so that we could (1) determine that the compound sentence we 
are evaluating is a conjunction and (2) write a procedure that identifies and then asks 
for the truth values of the appropriate atomic sentences. We shall give the full procedure 
in a later chapter. 

If we are dealing with a conjunction of two atomic sentences, we can refer imme- 
diately to a characterization of FCNJ to find the value of the conjunction. But how do 
we deal with a conjunction of conjunctions? Or what if some of our sentences are 
negations? Take, for instance, a conjunction of the form 

((P & Q) & R) 

Its two conjuncts are (P & Q) and R. The first of these conjuncts is itself a conjunction, 
(P & Q), while the second conjunct appears to be atomic, R. An English sentence with 
this logical structure is: 

Both Tom and Mary will be coming to the party, as well as Bill. 

To evaluate the truth value of such a conjunction, we naturally need to know the truth 
values of the two conjuncts: (P & Q) and R. But to determine the truth value of (P & Q), 
we must first know the truth values both of P and of Q. So, to find the truth value of 
((P & Q) & R), we must first find the truth value of the conjunction (P & Q) and then find 
the truth value of the conjunction of that sentence with R. The relationship of the truth 
value of ((P & Q) & R) to the truth values of P, Q, and R, as described above, is: 

V(P & Q) = FCNJ(V(P), V(Q)) 

V((P & Q) & R) = FCNJ(V(P & Q) , V(R)) 
= FCNJ(FCNJ(V(P), V(Q)) , V(R)) 

Consider another example: 

(-P & Q) 

An English sentence with this logical structure is 'I'm not a Democrat, but Bill is'. To find 
the truth value of this sentence-which is also a conjunction-we first find the truth value 
of -P and then find the truth value of the conjunction of that with the truth value of Q 
[which is V(Q)]. The result is: 

V(-P & Q) = FCNJ(FNEG(V(P)), V(Q)) 
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Finally, look at this example: 

~(P & Q) 

This is the negation of the entire conjunction (P & Q). An English example is 'It is not 
the case that Napoleon was both a genius and mad'. To find the truth value of such a 
sentence, we first find the truth value of the conjunction and then the truth value of the 
negation of that: 

V{~{P & Q)) = FNEG(FCNJ(V(P), V(Q))) 

The previous two examples should alert us to the importance of parentheses and to the 
fact that we shall have to analyze the logical structure of sentences carefully. 

Let us state carefully some of the kinds of strings that are sentences, paying more 
attention to the use of parentheses. Here, we assume that sentences are not actual 
sentences in English but rather their representations by single letters and certain com- 
binations of single letters. 

Rules 

1. A string consisting of one of the single letters {possibly with a numeral), 
'A', 'B', ... , 'O', 'A1', 'A2', 'A3', ... is a sentence. 

2. If a string P is a sentence, 
then its negation, ~P, is a sentence. 

3. If strings P and Q are sentences, 
then their conjunction, (P & Q), is a sentence. 

So far, these are the only sentences we have. Rules 2 and 3 have clear parallels in 
English. The English parallel to rule 2 would say that given any sentence (for example, 
'All apples are fruit'), its negation ('It is not the case that all apples are fruit') is also a 
sentence. The English parallel to rule 3 would say that given any two sentences, we 
can form a new conjunctive sentence using them-for instance, by placing the word 
'and' between them. 

Disjunction 

We shall examine another common, two-place sentence connective in this chapter, the 
one usually expressed in English by the word 'or'. A sentence composed of two other 
sentences connected by 'or' is a disjunction. The two sentences which make up a 
disjunction are called its disjuncts. To create a disjunction in English, take any two 
sentences and write 'or' between them. 

As before, we shall employ a special symbol for this connective. For disjunction, 
we shall use a wedge (v). Thus if the sentences 
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1. Interest rates level off. 
2. The price of gold rises. 

are represented by 'A' and 'B', respectively, then 

(AV 8) 

represents 'Interest rates level off or the price of gold rises'. 
Disjunctions are FALSE just in those situations where both disjuncts are FALSE. 

They are TRUE if even one disjunct is TRUE. Disjunctions are thus relatively more 
generous than conjunctions: they are TRUE in comparatively more situations than con- 
junctions. To take a concrete example, the sentence 'Interest rates level off or the price 
of gold rises' is FALSE only when inflation fails to level off and when the price of gold 
does not rise. That is, the disjunction is FALSE only when both disjuncts are FALSE- 
and it is TRUE otherwise. Using our notation, 

V(A v B) = FALSE only if V(A) = FALSE and V(B) = FALSE 

In the cases where V(A) = TRUE or V(B) = TRUE or both, then V(A v B) = TRUE. 

The Truth Function FDSJ 

Associated with the sentence connective v is another truth function, which we shall call 
FDSJ. The function FDSJ takes as inputs the truth values of the two disjuncts and 
outputs the truth value of the entire disjunction. Its extensional characterization is: 

FDSJ(FALSE, FALSE) = FALSE 
FDSJ(FALSE, TRUE) = TRUE 
FDSJ(TRUE, FALSE) = TRUE 
FDSJ(TRUE, TRUE) = TRUE 

Or, displayed as a truth table: 

V(P) V(Q) FDSJ(V(P), V(Q)) 

FALSE 
FALSE 
TRUE 
TRUE 

FALSE 
TRUE 
FALSE 
TRUE 

FALSE 
TRUE 
TRUE 
TRUE 

Again, we can also compute this truth function by giving an algorithm. In flowchart 
language, an algorithm that computes FDSJ is: 
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START 

INPUT V(P) 

INPUT V(O) 

NO OUTPUT 
"TRUE" 

OUTPUT 
"FALSE" 

STOP 

Figure 3-4 Flowchart for computing FDSJ. 

In our program design language, an algorithm is: 

1. INPUT V(P). 
2. INPUT V(Q). 
3. IF V(P) = TRUE 

THEN (a) OUTPUT "TRUE." 
(b) STOP . 

. 4. IF V(Q) = TRUE 
THEN (a) OUTPUT "TRUE." 

(b) STOP. 
5. OUTPUT "FALSE." 
6. STOP. 
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be: 
Returning to the arithmetical associations, we see that the truth table for FDSJ would 

V(P) V(Q) FDSJ(V(P), V(Q)) 

0 
0 
1 

0 
1 
0 

0 

There are several arithmetical functions that would take these inputs and generate 
the same outputs as shown in this truth table. We are going to give an algorithm for 
computing FDSJ that uses an arithmetical function, the "maximum" function. The max- 
imum function selects the larger of the values it operates on. That is, 

MAX(2, 5) = 5 
MAX(S, 2) = 5 
MAX(S, 5) = 5 

Thus the algorithm is: 

1. INPUT V(P). 
2. INPUT V(Q). 
3. OUTPUT MAX (V(P), V(Q)). 
4. STOP. 

Applied to our truth values O and 1, this algorithm does exactly what FDSJ does. 

Inclusive and Exclusive Disjunction 

Frequently, disjunctions in English have to be rewritten so that their status as disjunctions 
of two sentences is revealed. Consider: 

Helen or Mary is the winner. 

This must be rewritten as 

Helen is the winner or Mary is the winner. 

so that we can see that it is a disjunction of two sentences. 
A sentence such as the one above is frequently, however, understood in the ex- 

clusive sense, namely, as asserting that either Mary or Helen is the winner but not both. 
Our discussion of disjunctions in this section has addressed only the inclusive sense, 
because ii includes the possibility of both disjuncts being TRUE. For instance, our use 
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of disjunction in the sentence above allows for the possibility that both Helen and Mary 
have won. In the next chapter, we shall consider a special connective for the exclusive 
sense of disjunction. 

Sentences with Several Connectives 

Now is the time to work a few examples to make sure that we understand how to deal 
with sentences that are mixtures of negation, conjunction, and disjunction. Before we 
do some examples, though, we need to add another rule to our rules for determining 
which strings are sentences: 

4. If strings P and Q are sentences, 
then their disjunction, (P v Q), is a sentence. 

According to this new rule (and also rules 2 and 1 from page 52) 

(-Av 8) 

is a sentence, because: 

'A' and 'B' are both sentences (by rule 1 ). 
So, '-A' is a sentence (by rule 2). 
Therefore, '(-Av B)' is a sentence (by rule 4). 

Its truth value can be calculated by this expression: 

FDSJ(FNEG(V(A)), V(B)) 

We have obtained this by reasoning as follows: For every sentence connective, there 
is a truth function uniquely associated with it. For - it is FNEG, for & it is FCNJ, and 
for v it is FDSJ. Working from the "inside" of the original sentence "out," we first find the 
truth value of '-A': 

V(-A) = FNEG(V(A)) 

Next, we see that 

V(-A v B) = FDSJ(V(-A), V(B)) 

Substituting our previous result, we get 

V(-A v B) = FDSJ(FNEG(V(A)), V(B)) 

Consider this sentence: ((A v B) & -C). (You should verify that this is indeed a 
sentence according to rules 1 to 4.) A step-by-step analysis of this sentence leads to 
the expression: 
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V((A v B) & -C) = FCNJ(FDSJ(V(A), V(B)), FNEG(V(C))) 

We arrived at this formula by reasoning as we did in the previous example, associating 
the appropriate truth functions with every sentence connective. You should evaluate this 
expression for various truth values of A, B, and C. 

For instance, when V(A) = TRUE, V(B) = FALSE, and V(C) = TRUE, the value 
is FALSE. We arrived at this answer in the following way. When V(A) = TRUE and 
V(B) = FALSE, the output of the function FDSJ(V(A), V(B)) is TRUE. So, replacing 
'FDSJ(V(A), V(B))' with 'TRUE', we would have 

FCNJ(TRUE, FNEG(V(C))) 

When V(C) = TRUE, then FNEG(V(C)) is FALSE. So, replacing 'FNEG(V(C))' with 'FALSE', 
we have: 

FCNJ(TRUE, FALSE) 

With these inputs (TRUE and FALSE), the output of the FCNJ function is FALSE. But 
when V(A) = TRUE, V(B) = FALSE, and V(C) = FALSE, the truth value of the sentence 
is TRUE. 

Another example is: 

(A & -(B v C)) 

The truth value of (B v C) is FDSJ(V(B), V(C)). And the truth value of -(B v C) is: 

FNEG(FDSJ(V(B), V(C))) 

Thus the whole sentence has the truth value 

FCNJ(V(A), FNEG(FDSJ(V(B), V(C)))) 

Other Connectives 

The three connectives we have examined are not the only possible ones. There are 
many other ways to form new sentences from old ones. Some of these ways use truth- 
functional connectives, but others don't. An example of a connective that is not truth- 
functional is the one-place connective 'My friend believes that. . .'. This may seem like 
a strange connective, but it behaves very much like the truth-functional, one-place con- 
nective 'It is not the case that'. To see why 'My friend believes that' is not truth-functional, 
consider the sentence A = 'My friend believes that our team will win the game'. Its truth 
value is not a function of the truth value of B = 'Our team will win the game', because 
V(A) might be TRUE whether V(B) = TRUE or V(B) = FALSE. That is, the truth value 
of A does not depend solely on the truth value of 8. More precisely, there is no algorithm 
that outputs V(A) when only V(B) is input. 
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However, there are many connectives besides those discussed in this chapter that 
can be associated with a truth function. Most important among these new connectives 
are 'if ... then .. .' and, especially for computer science, 'NAND' and 'NoR'. Just as with 
'not', 'and', and 'or', each of these connectives can be expressed in English by many 
different words. We have not sought to make the translation from English into symbolic 
notation, or from our symbolic notation back into English, a "mechanical" matter. Perhaps 
it would not be possible. Here is one province that seems, for now, best reserved for 
nonmechanical processes. (But for an attempt to make it mechanical, see Otto, 1978; 
and for a discussion of related research in "computational linguistics"-a branch of 
computer science dealing with natural-language understanding-see Winograd, 1983.) 

There is a sense, however, in which our discussion of the three connectives intro- 
duced in this chapter is complete. Namely, it can be shown that any proposition that 
one might wish to express can be expressed by a sentence that uses only negation, 
conjunction, and disjunction. In fact, only negation and one of the other two connectives 
are sufficient. Further discussion of this fact must await a later chapter, however. 

Summary 

In this chapter, we began our study of sentential logic. We viewed a sentence as a 
string of symbols that expresses a proposition, and we saw how to construct complex 
molecular sentences from simpler molecular ones or from atomic sentences by using 
three connectives: negation, conjunction, and disjunction. 

While there are many ways to negate English sentences, a standard way is by 
prefixing the phrase 'It is not the case that' to a sentence. If P is a sentence in our 
symbolic notation, then -P is its negation. The truth value of a negation is TRUE (or 
FALSE) if the truth value of the nonnegated sentence is FALSE (or TRUE). 

A function associates a single output with given inputs. Negation is a truth-functional 
connective, and FNEG is the function that outputs TRUE (FALSE) when its input is 
FALSE (TRUE). Functions can be characterized extensionally by listing all possible inputs 
and corresponding outputs. In the case of a truth function such as FNEG, the inputs 
and outputs can be displayed in a truth table. Functions can also be characterized 
intensionally by giving an algorithm for computing the output that corresponds to each 
set of inputs. In the case of FNEG, we looked at algorithms that use the arithmetical 
operation of subtracting the input (0 for FALSE, 1 for TRUE) from 1. 

Our standard way of forming a conjunction in English is to connect two sentences 
with the word 'and': symbolically, if P and Qare sentences, then (P & Q) is a sentence. 
The truth value of a conjunction of two sentences is TRUE if the truth values of both 
conjuncts are TRUE, and it is FALSE otherwise. FCNJ is the truth function that outputs 
TRUE when both of its inputs are TRUE and outputs FALSE otherwise. We looked at 
algorithms for FCNJ that use the arithmetical function MIN. 

If P and Q are sentences, then their disjunction is the sentence (P v Q)-in English, 
we would use the word 'or'. The truth value of a disjunction of two sentences is TRUE 
if at least one of the two disjuncts has the truth value TRUE, and it is FALSE otherwise. 
This is the inclusive sense of disjunction, since it allows for the possibility that both 
disjuncts are TRUE. The truth function FDSJ outputs FALSE when both of its inputs are 
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FALSE and outputs TRUE otherwise. Our algorithms for characterizing FDSJ inten- 
sionally used the arithmetical function MAX. 

Finally, we presented four rules to help us in determining whether a string is a 
sentence, and we discussed how to find the truth values of molecular sentences con- 
taining more than one connective. 

Exercises 

A. Using the following abbreviations, think of an English sentence that as clearly 
as possible says what each formula expresses. 

A = 'It is raining.' 
B = The sky is clear.' 
C = 'It is snowing.' 
D = 'It is cold.' 

Example: -(A & B) 
Answer: It is not the case both that it is raining and that the sky is clear. 

1. -c 
2. --D 
3. (A & C) 
4. (8 v D) 
5. (-B & D) 
6. (B & -D) 
7. -o.» C) 
8. -(B & C) 
9. (A & (8 v C)) 

10. (-8 v (C & D)) 
11. (C & (-D v A)) 
12. ((A v 8) & (C v D)) 
13. -(8 v D) 
14. (-8 & -D) 

B. For each of the formulas 1 to 14 above, state whether the sentence is TRUE 
or FALSE, assuming: 

V('lt is raining.') 
V('The sky is clear.') 
V('lt is snowing.') 
V('lt is cold.') 

= V(A) = TRUE 
= V(B) = FALSE 
= V(C) = TRUE 
= V(D) = FALSE 

Example: -(A & B) 
Answer: TRUE [The truth value of (A & B) is FALSE because B is FALSE. 
So the truth value of -(A & B) is the opposite value, which is to say, TRUE.] 

C. Symbolize the sentences below using the following abbreviations: 
A = 'Computers think.' 
B = 'Computers feel.' 



60 

CHAPTER 3 

C = 'Animals think.' 
D = 'Animals feel.' 

Example: Computers do not think. 
Answer: -A 

1. Computers both think and feel. 
2. Animals feel but computers don't. 
3. Either computers think or animals do. 
4. It is not the case that animals don't feel. 
5. Either computers both feel and think or animals do. 
6. Either animals think, or computers don't think but do feel. 
7. Neither animals nor computers think. 
8. Either animals feel or computers don't. 
9. Computers and animals both think and feel. 

10. Either computers think, animals do, or computers feel, or animals do. 
11. Neither animals nor computers think or feel. 
12. Neither animals nor computers both think and feel. 

D. Determine the truth value of each of the above sentences, assuming: 
V('Computers think.') = TRUE 
V('Computers feel.') = FALSE 
V('Animals think.') = FALSE 
V('Animals feel.') = TRUE 

Example: Computers do not think. 
-A 

Answer: FALSE, since the truth value of -A is the opposite of the truth value 
of A. 

E. Sometimes we do not know in advance the truth values of the atomic sentences 
in a molecular sentence. We can nevertheless give an algorithm for determining 
the truth value of a molecular sentence from inputs consisting of the truth values 
of the atomic sentences. 
Example: -(A & B) 
Answer: Using a flowchart and arithmetical functions, see Figure 3-5. 

Using our program design language, but without using arithmetical func- 
tions: 

1. INPUT V(A). 
2. IF V(A) = FALSE 

THEN (a) OUTPUT "TRUE." 
(b) STOP. 

3. INPUT V(B). 
4. IF V(B) = FALSE 

THEN (a) OUTPUT "TRUE." 
(b) STOP. 

5. OUTPUT "FALSE.'' 
6. STOP. 

Construct an algorithm for each of the following formulas. (Your instructor will 
tell you whether to use flowchart language or program design language.) 
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START 

INPUT V(A) 

INPUT V(B) 

Let V(C) = MAX ( V(A), V(B) ) 

Let V(D) = 1 - V(C) 

OUTPUT V(D) 

STOP 

Figure 3-5 Flowchart for Exercise E. 

1. --A 
2. (A & -8) 
3. (-Av8) 
4. ((A & 8) v C) 
5. (-A & (8 v C)) 
6. ((A & -8) v (-C v D)) 
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7. ~(Av B) 
8. (~AvA) 
9. (B & ~B) 

F. Given the molecular sentences below, determine the truth functions that would 
allow one to Calculate their truth values. 
Example: (A v. ~B) 
Answer: FDSJ(V(A), FNEG(V(B))) 
Explanation: Work from the "inside" out; that is, begin with the innermost subfor- 
mula. In this case, the innermost sentence is '~B'. The truth value of '~B' is 
given by: 

FNEG(V(B)) 
But '~B' is part of a disjunction, whose truth value is calculated by: 

FDSJ(V(A), V( ~B)) 
Since V(~B) = FNEG(V(B)), we have by substitution: 

FDSJ(V(A), FNEG(V(B))) 
1. ~(Av B) 
2. ~(~Av B) 
3. (A & B) 
4. (~A&B) 
5. ~(A & B) 
6. ~(~A & ~B) 
7. (A & (8 v C)) 
8. (~B v (C & ~D)) 
9. (~B & (~C & ~D)) 

10. ~(A & (~B v C)) 

G. Given the following truth-value assignments: 
V(A) = 1 
V(B) = 0 
V(C) = 0 
V(D) = 1 

calculate the output of each of the functions listed below. 
Example: MAX(V(A), 1 - (1 - V(B))) 
Answer: 1 (that is, TRUE) 
Explanation: The value of A is 1. So if we substitute 1 for V(A), the expression 
becomes: 

MAX(1, 1 - (1 - V(B))) 
But since we are looking for the maximum value of this expression, it must be 
1-we don't really have to go any further. If we did go further, we would substitute 
0 for V(B), and the result would be: 

MAX(1, 1 - (1 - 0)) 
This is: 

MAX(1, 1 - 1) 
which is nothing but 

MAX(1, 0) 
and the maximum of 1 and 0 is 

1 
just as we had earlier concluded. 
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1, 1 - (1 - V(B)) 
2. 1 - MAX(V(A), V(B)) 
3. FCNJ(V(A), V(B)) 
4. MIN(1 - V(A), V(B)) 
5. FCNJ(1 - V(B), 1 - V(C)) 
6. MAX(V(B), 1 - V(D)) 
7, FCNJ(V(A), FDSJ(V(B), V(C))) 
8. MAX(V(B), MAX(V(C), V(D))) 
9. FCNJ(1 - FDSJ(V(A), V(B)), V(A)) 

10, MIN(1 - MAX(V(B), V(C)), MIN(V(A), 1 - (V(D)) 
11. 1 - FDSJ(1 - V(B), FCNJ(FDSJ(V(B), V(C)), 1 - V(D)}) 
12. 1 - (1 - (1 - (FCNJ(V(A), V(B)))) 

H. For each of the expressions in the above problem, determine the sentence that 
corresponds to it. 
Example: 1 - MIN(V(A), V(B)) 
Answer: -(A & B) 
Explanation: Work from the outside in. A formula beginning with '1 - ' is certain 
to be a negation, so we can write a negation sign: 

The next function we encounter is 
MIN(V(A), V(B)) 

The sentence that corresponds to this is 
(A& B) 

So we can add this to our lonely negation sign, obtaining 
-(A & B) 

I. Negation, 
Write an algorithm for computing the truth value of a negation, using a different 
arithmetical function from the one given in the text [that is, a function other than 
1 - V(P)]. 

J. Conjunction. 
1, Write two algorithms for computing the truth value of a conjunction, using 

arithmetical functions other than the one given in the text. 
2. Rewrite either of the algorithms for FCNJ given on pages 49-50, with the 

first test being V(P) = FALSE. 

K. Disjunction. 
1. Write an algorithm for computing the truth value of a disjunction, using an 

arithmetical function other than the one given in the text. 
2, Rewrite the algorithm for FDSJ given on page 54, with the first test being 

V(P) = FALSE. 

L. We have defined the notions of conjunction and disjunction for only two sen- 
tences. Similarly, we have spoken of 'and' and 'or' as connecting just two English 
sentences. But we might sometimes wish to speak of a more general truth 
function or connective that can take as input two or more truth values or connect 
two or more sentences, Consider this sentence: 

Thomas Jefferson was an American, a Virginian, and a slaveholder. 
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When is it TRUE? What arithmetical function (other than the one given in the 
text) would be suitable for use in an algorithm for computing the truth value of 
such a sentence with more than two conjuncts? 

M. 1. Construct a sentence using just conjunction and negation that is FALSE in 
the single case where A, B, and C are all TRUE. 

2. Construct a sentence using only negation and conjunction that is TRUE 
whenever just one of A and B is TRUE and that otherwise is FALSE. 

3. Construct a sentence using only negation and conjunction that is FALSE 
whenever A and B are either both TRUE or both FALSE. 

4. Construct a sentence using just conjunction and negation that is TRUE when- 
ever exactly two of A, B, and C are FALSE and that is otherwise FALSE. 

Suggestions for Computer Implementation 

Although the creation of algorithms for computing FNEG, FCNJ, and FDSJ is neither 
especially complicated nor, at this point, especially useful, these algorithms will later be 
of great importance. Without them, we would not be able to determine the truth value 
of an arbitrary molecular sentence. 

Depending on the computer and programming language available, there are several 
ways to design a program to compute these truth functions. For instance, in Pascal and 
in dialects of BASIC in which definitions of functions are permitted to be spread over 
several lines (so-called "multistatement function definitions"), matters are at their sim- 
plest: FNEG, FCNJ, and FDSJ can be defined almost exactly as indicated by our program 
design language algorithms in the text. 

If multistatement function definitions are not permitted, then more careful planning 
must be employed. Perhaps the simplest way would then be to resort to the arithmetical 
association of 1 with TRUE and O with FALSE. This convention will usually allow the 
definition of a truth function to be placed on a single line. 

Sometimes, the Boolean operations, NOT, AND, and OR can be used directly. 
Otherwise, one can resort to the arithmetical functions we mentioned in the text. Let p 
and q be the arithmetic truth values of P and Q, respectively. Then: 

Let FNEG(p) be 1 - p. 
Let FCNJ(p, q) be MIN(p, q). 
Let FDSJ (p, q) be MAX(p, q). 

The MIN and MAX functions might in turn have to be defined, or we could use other 
arithmetical functions that behave in the appropriate manner for FCNJ and FDSJ. For 
example, two functions are: 

Let FCNJ(p, q) be (p * q). 
Let FDSJ (p, q) be (p + q) - (p * q). 

(As is usual in computer science, * is the multiplication operator.) This identification of 
a conjunction function with multiplication and of a disjunction function with a special kind 
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of addition was discovered by George Boole iri the 1830s and 1840s and is the heart 
of an area of mathematics known as Boolean algebra. 

Instead of a definition of functions, some sort of explicit subroutine can be used- 
such as GOSUB in BASIC or procedures in Pascal. Whenever we would want to apply 
a truth function, we would instead switch control to some other point in the program, 
which would then perform the necessary operations and return control to the original 
place in the program. For example, in a limited microcomputer BASIC, to calculate the 
truth value of a conjunction, (A$ & 8$)-where A$ and 8$ are the conjuncts and A and 
8 are their respective truth values-we might have: 

100 INPUT A 
200 INPUT 8 

300 LET P = A 
400 LET Q = 8 

500 GOSUB 1000 

[Inputting and storing truth values of A$ and 8$ in variables 
A and BJ 

["Passing off" the truth values of A and B to variables P 
and Q used in the subroutine] 
[Switching control to line 1000 if we encounter a conjunc- 
tion] 

1000 IF P = 0 THEN GOTO 1400 
1100 IF Q = 0 THEN GOTO 1400 
1200 LET R = 1 [Value of entire conjunction is TRUE, i.e., 1] 
1300 RETURN 
1400 LET R = 0 [Value of entire conjunction is FALSE, i.e., OJ 
1500 RETURN 

The value of the conjunction when the subroutine returns control is stored in the variable 
called R. Line 500 would actually be more involved in a real program, because we would 
want to know that we had encountered a conjunction, and only then would we apply the 
subroutine beginning at 1000. The variables P and Q are necessary if we wish to apply 
the subroutine to any two conjuncts-A$ and 8$, C$ and D$, and so on-anywhere in 
the program. So the information about the truth values of the two conjuncts-whatever 
they were originally called-is temporarily stored in P and Q. 



CHAPTER 4 

SENTENTIAL LOGIC: 
The Connective 

'If ... Then ... ' and 
Additional Connectives 

In the previous chapter, we looked at the 
one-place connective 'not' ( ~) and the two-place con- 
nectives 'and' (&) and 'or' (v). We now turn to an ex- 
amination of several other two-place connectives: 
'if ... then ... ' (-), 'if and only if' (-), exclusive dis- 
junction (xos), 'neither ... nor ... ' (NOR), and 'not 
both ... and .. .' (NAND). Finally, we shall present a 
complete listing of all possible two-place connectives. 

These additional connectives are not strictly 
speaking required. The two connectives ~ and & are 
sufficient to express any sentence in sentential logic. 
Yet these additional connectives we are about to dis- 
cuss correspond to phrases commonly used in English, 
and so the addition of special symbols for these con- 
nectives allows us to translate English sentences very 
smoothly into symbolized ones. We are, however, faced 
with a trade-off when we decide whether to introduce 
such additional connectives. When the number of con- 
nectives we are using is very small, the resulting ac- 
count of logic is compact, elegant, and easy for a com- 
puter to "understand"-but it is not always convenient 
for us human users, accustomed as we are to thinking 
in a natural language like English. On the other hand, 
when we introduce a full range of special symbols that 
correspond to commonly used English connectives, the 
resulting account makes us humans feels very "at 

67 



68 

CHAPTER 4 

home"-but the account is then repetitive, certain truth-functionally synonymous expres- 
sions are not easy to identify, and the amount of work that is required to program a 
computer to understand our notation will have multiplied. We shall in later chapters see 
similar decisions that will have to be made and that also involve trade-offs between 
human and computer convenience, and even between algorithmic convenience of one 
sort and algorithmic convenience of another. 

The Conditional 

In ordinary conversation, we sometimes wish to qualify our statements by using an "if" 
clause. Such qualified statements are called conditionals. Rather than promise you 
outright a bag of peanuts, I might say: 

If you go to the hockey game with me, then I'll give you a bag of peanuts. 

What is important about this example is that the only circumstance under which I have 
broken my promise is when you do go to the hockey game with me, but I do not give 
you a bag of peanuts. Suppose, on the other hand, that you do not go to the hockey 
game with me. In that case, I will not have broken my promise-whether or not I give 
you a bag of peanuts anyway-because my promise was a conditional one. Since the 
condition (your going to the hockey game with me) was not met, there is no way for me 
to break my promise. 

Sentences about future events are typically phrased in conditional form: 

If the Red Sox win the pennant, then the first play-off game is in Boston. 

When would this sentence be FALSE? Clearly, it would be FALSE when the Red Sox 
do win the pennant, but (it turns out) the first play-off game is not in Boston. What if the 
Red Sox do not win the pennant? Is the conditional TRUE, or is it FALSE, or have we 
found a kind of sentence that is neither TRUE nor FALSE? 

If the Red Sox do not win the pennant, there are several reasons for taking the 
whole conditional sentence to be TRUE. One reason involves making this conditional 
analogous to a conditional promise-which, as we have seen, is considered broken only 
when the "if" clause is TRUE (and the promised action is not done). 

Keeping things tidy, and insisting that all our sentences be TRUE or FALSE de- 
pending only on the truth or falsity of their components, we shall stipulate that all sen- 
tences of the form 

If P, then Q. 

will be FALSE whenever both P is TRUE and Q is FALSE. In any other case, the 
conditional will be TRUE. A conditional that obeys this stipulation is called a material 
conditional. A conditional sentence has two parts that are themselves sentences Oust 
like conjunctions and disjunctions, but unlike negations, which have only one component 
sentence). The sentence setting the condition, which usually follows immediately after 
the word 'if', is called the antecedent of the conditional. The second part of a conditional, 
often following the word 'then', is called the consequent of the conditional. 
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In logic, we are primarily concerned with those conditionals whose consequents are 
declarative sentences, rather than those whose consequents are promised actions, 
threats, or commands. In computer science, on the other hand, the most frequently 
encountered conditional is one whose consequent is an instruction: If <something is 
TRUE>, then do <some action>. 

We have already seen a conditional whose consequent is a promise. Other variations 
include conditionals with threats or commands as consequents: 

If you take my book, I will report you. 
If you cannot keep from laughing, leave the room. 

So there are at least three other kinds of conditionals besides material conditionals 
(which, remember, are composed entirely of declarative sentences): conditional prom- 
ises, conditional threats, and conditional commands. An examination of them can help 
us see more clearly when material conditional sentences are TRUE or FALSE. Consider 
the following claims about promises, threats, and commands: 

A conditional promise is broken exactly in those cases when the antecedent is 
TRUE, but the action described in the consequent is not done; otherwise, the 
promise is not broken. 

A conditional threat is not carried out exactly in those cases when the antecedent 
is TRUE, but the action described in the consequent is not performed; otherwise, 
the threat is still in force. 

A conditional command is disobeyed exactly in those cases when the antecedent 
is TRUE, but the action described in the consequent is not performed; otherwise, 
the command is not disobeyed. 

The truth conditions for a material conditional sentence follow this pattern exactly: 

A material conditional sentence is FALSE exactly when the antecedent is TRUE, 
but the consequent is FALSE; otherwise, the material conditional is not FALSE. 

Sentences, however, are either TRUE or FALSE. So, if a material conditional sentence 
is not FALSE, then it is TRUE. 

Besides the material conditional, there are several other types of conditional sen- 
tences in English. Conditional sentences can be used to express causal connections 
between two events, as in 'If the temperature of water reaches 100°C, then the water 
will boil.' They can also be used to express counterfactual situations: 'If the match had 
not been wet, then it would have lit when you struck it.' And they sometimes are used 
to express temporal connections: 'If it was 3 P.M. five minutes ago, then it is now 3:05 
P.M.' In material conditionals, there is not considered to be any such "connection" between 
the antecedent and the consequent. A good example of a "pure" material conditional 
might be 'If our team wins, then I'm a monkey's uncle'. From now on, the only conditional 
sentences we shall study will be material ones-even if they look like one of the other 
kinds. 

Perhaps the most important thing to keep in mind when evaluating a conditional is 
that one must differentiate between the truth value of the antecedent and the truth value 
of the whole conditional. In other words, one must distinguish between sentences such 
as 
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Horses have wings. 

and 

If horses have wings, then they fly. 

The first, atomic, sentence is FALSE: horses do not have wings. This is not to say, 
however, that the conditional ('If horses have wings, then they fly') is FALSE. The 
conditional is TRUE precisely because its antecedent is FALSE. The truth value of a 
material conditional depends not on any causal, counterfactual, or temporal "connection" 
between its antecedent and its consequent but only on their truth values. Whenever its 
antecedent is FALSE, a material conditional is TRUE. 

Conditional sentences can be expressed in English in a number of ways. We have 
already seen these patterns: 

If P, Q. 
If P, then Q. 

A few other forms for conditionals are: 

Q, if P. 
Q, provided that P. 
When P, Q. 

The special symbol we shall use for symbolizing conditional sentences is -- Thus, 
if we wanted to symbolize a sentence such as 'If the sunset tonight is especially pretty, 
then the weather will be bad tomorrow', where 

A = The sunset tonight is especially pretty.' 
B = The weather will be bad tomorrow.' 

we would write: 

(A-B) 

In general, for any sentences P and Q, 

(P-Q) 

is a conditional sentence. (Of course, '(Q - P)' is also a conditional sentence, but a 
different one.) 

The Truth Function FCND 

Corresponding to the sentence connective - is a truth function we shall call FCND. 
This function describes the way that the truth value of a conditional depends on the truth 
values of its antecedent and consequent. Its extensional characterization is as follows: 

FCND(FALSE, FALSE) = TRUE 
FCND(FALSE, TRUE) = TRUE 
FCND(TRUE, FALSE) = FALSE 
FCND(TRUE, TRUE) = TRUE 
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The first of the pair of truth values that FCND is applied to is the truth value of the 
antecedent, and the second member of the pair is the truth value of the consequent. 
Looking at this characterization of FCND, we notice that its output is TRUE if the truth 
value of the antecedent is FALSE or if the truth value of the consequent is TRUE (or 
both). Put another way, the output of FCND is FALSE if (and only if) the truth value of 
the antecedent is TRUE and the truth value of the consequent is FALSE. 

As we have done for the other sentence connectives, we present the truth conditions 
for a conditional in tabular form: 

V(P) V(Q) V (P- Q) 

FALSE 
FALSE 
TRUE 
TRUE 

FALSE 
TRUE 
FALSE 
TRUE 

TRUE 
TRUE 
FALSE 
TRUE 

With this information about the behavior of the FCND function, we can construct 
algorithms to compute it. A flowchart for computing FCND is: 

Figure 4-1 Flowchart for computing FCND. 

START 

INPUT V(P) 

INPUTV(Q) 

OUTPUT 
"FALSE" 

OUTPUT 
"TRUE" 

STOP 
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An algorithm in our program design language is: 

1. INPUT V(P). 
2. INPUT V(Q). 
3. IF V(P) = FALSE 

THEN (a) OUTPUT "TRUE." 
(b) STOP. 

4. IF V(Q) = TRUE 
THEN (a) OUTPUT ''TRUE." 

(b) STOP. 
5. OUTPUT "FALSE." 
6. STOP. 

Using our arithmetical associations, we find that one arithmetical expression for 
computing FCND is: 

MAX(1 - V(P), V(Q)) 

At this point, you should take the four possible pairs of truth values for P and Q and 
compute MAX(1 - V(P), V(Q)) to verify that this expression can indeed be used for 
computing FCND(V(P), V(Q)) as the truth table shows. 

Symbolizing Conditionals 

Working with conditionals requires a little more care than working with conjunctions or 
disjunctions. The examples of conditionals that we have examined so far have all had 
atomic antecedents and' atomic consequents. But this is not always the case. The 
antecedent or the consequent can itself be a molecular sentence. For example, consider: 

If yesterday was Tuesday or tomorrow is Thanksgiving, then today is Wednesday. 

Here, the antecedent of the conditional is itself a disjunction: 

Yesterday was Tuesday or tomorrow is Thanksgiving. 

If we had to call attention to this fact in print, we could write something like this: 

If (yesterday was Tuesday or tomorrow is Thanksgiving), then today is Wednesday. 

We shall similarly clarify this sentence in our notation by using parentheses. If we use 
the abbreviations 
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A = 'Yesterday was Tuesday.' 
B = 'Tomorrow is Thanksgiving.' 
C = 'Today is Wednesday.' 

then to express the above conditional, we write: 

((Av B)- C) 

The parentheses are absolutely necessary where they are, as the following remarks 
show. If we had written 

(Av (B- C)) 

we would be symbolizing a quite different sentence, namely: 

Either yesterday was Tuesday or (if tomorrow is Thanksgiving, then today is 
Wednesday). 

You should evaluate the truth values of 

((Av B)- C) 

and 

(Av (B- C)) 

for various truth values of A, B, and C to see that these different sentences sometimes 
have different truth values. You may use any method of evaluation you wish: truth tables 
with TRUE and FALSE, truth tables with O and 1, or any of the algorithms. 

Deciding where the parentheses are to be placed in a symbolization of an English 
sentence containing 'if ... then .. .' is a delicate and sometimes difficult matter. We can 
give only some general hints here. If the sentence begins with 'If' and what follows a 
'then' (or a comma) is said naturally in one breath, then-assuming that our sentence 
has the pattern 

If P, then Q. 

-its correct symbolization is probably 

(P-Q) 

Here are some examples: 

Sentence: 
If gold is valuable and portable, then it should be hidden or securely stored. 

Symbolization: 
((A & B) - (C v D)) 
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Sentence: 
If a nation's enemies have the means, then if they have the will to use those 
means, they may disrupt the balance of power. 

Symbolization: 
(E - (F - G)) 

However, when the sentence does not begin with 'If' or when the consequent- 
what follows the 'then'-is broken by a comma, or a natural pause, the conditional might 
actually be buried within another sentence. Here are some examples: 

Sentence: 
It's just not true that if I take a shortcut by walking through the grass, then everyone 
will do so. 

Symbolization: 
-(H- J) 

Sentence: 
If we pay our taxes, then we shall have less to spend, but if we don't pay our 
taxes, then we shall live in fear. 

Symbolization: 
((A- 8) & (-A- C)) 

Only if 

Another way to express a conditional uses the phrase 'only if'. The sentence 

1. Combustion occurs only if oxygen is present. 

is also a conditional sentence. But what is the antecedent? And what is the consequent? 
There are two possible candidates for this conditional sentence: 

2. Combustion occurs - oxygen is present. 
3. Oxygen is present - combustion occurs. 

With some thought, you should realize that the first representation is correct. So, the 
sentence following 'only if' is the consequent of (1 ). As a general rule, one should directly 
replace 'only if' with - in symbolizing English sentences. 

Another example is: 

I'll take the test only if my brother feels better. 

When someone who has said this comes for the test, I know that her brother feels better, 
because if her brother had not felt better, then she would not have taken the test. 
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· Necessary and Sufficient Conditions 

Another way to say that combustion occurs only if oxygen is present is to say: 

The presence of oxygen is a necessary condition for combustion to occur. 

That is, if combustion occurs, then oxygen is present, for if oxygen is not present, then 
combustion does not occur. Thus P is a necessary condition for Q when the absence 
of P guarantees the absence of Q. (Notice that 'the presence of oxygen' is not a sentence. 
However, such phrases can easily be converted into sentences, and vice versa. So, for 
convenience, we shall use the same notation for both.) 

A correlative notion is that of a "sufficient condition": P is a sufficient condition for 
Q when the presence of P guarantees the presence of Q. When P is a sufficient condition 
for Q, we write 'If P, then Q'. For example, 

Cessation of blood flow for an hour is a sufficient condition for death in a human 
being. 

can be translated into: 

If a person's blood ceases to flow for an hour, then he or she will die. 

When Pis a necessary condition for Q, we write 'If Q, then P'. For example, 

Breathing is a necessary condition for being alive. 

can be translated into: 

If something is alive, then it is breathing. 

Notice that 

P is a sufficient condition for Q. 

means the same as 

Q is a necessary condition for P. 

and that both of these are written in the form 

If P, then Q. 
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The Biconditional 

It sometimes happens that P is both a necessary and sufficient condition for Q. In this 
case, we would say: 

If Q then P, and if P then Q. 

This is the same as: 

If P then Q, and if Q then P. 

This expression could be symbolized as: 

((P- Q) & (Q- P)) 

and is frequently read as: 

P if and only if Q 

Now, in principle, we have nothing new here. We can symbolize the "if and only if" 
sentence as we did here, using & and-, and by careful use of FCND and FCNJ, we 
can evaluate the truth value of any such sentence. But because the expression 'if and 
only if' occurs so often in logical studies, we shall call it the biconditional connective 
and use a special symbol for it, namely, the double-headed arrowr-». So, 'P if and only 
if Q' will be written like this: 

(P-Q) 

There are other ways to express the biconditional in English. One common way 
that often appears in logical and mathematical writings is to abbreviate 'if and only if' 
with 'ift', Other phrases that are sometimes used are 'just when', 'just in the case that', 
and 'exactly when'. You should also pay special attention when you read a sentence of 
the form 'P, if Q' or 'P only if Q', because the author often means 'P if and only if Q', 
even though that is not what he or she wrote. (And when an author does write a sentence 
of the form 'P if and only if Q', make sure that both 'If P, then Q' and 'If Q, then P' are 
meant!) 

When '(P - Q)' is understood as '((P- Q) & (Q - P))', one algorithm for computing 
its truth value might be: 

1. INPUT V(P). 
2. INPUT V(Q). 
3. Let V1 = FCND (V(P), V(Q)). 

(That is, V1 = V(P - Q).) 
4. Let V2 = FCND(V(Q), V(P)). 

(That is, V2 = V(Q - P).) 
5. OUTPUT FCNJ(V1, V2). 
6. STOP. 
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If we follow this algorithm, we can produce the following extensional characterization of 
the truth function, which we shall call FBIC: 

FBIC(FALSE, FALSE) = TRUE 
FBIC(FALSE, TRUE) = FALSE 
FBIC(TRUE, FALSE) = FALSE 
FBIC(TRUE, TRUE) = TRUE 

If we now examine just how the truth value of '(P ~ Q)' is determined by the truth 
values of P and of Q, we see that V(P ~ Q) = TRUE if and only if V(P) = V(Q). That 
is, if V(P) = V(Q), then V(P ~ Q) = TRUE, and if V(P) icV(Q), then V(P ~ Q) = FALSE. 
We can use this fact, and the trivial arithmetical observation that subtracting a number 
from itself leaves a remainder of zero, to construct an arithmetical algorithm for computing 
FBIC. 

To do this, we shall use the absolute-value function, ABS, which can be defined as 
follows: 

ABS(n) = n, if n ;;a, 0 
ABS(n) = -n, if n < 0 

For example, ABS(5) = 5, ABS(0) = 0, and ABS( - 5) = 5. ABS will provide the infor- 
mation we need aboutwhetherV(P) = V(Q), since-using 1 for TRUE and 0forFALSE- 
V(P) ic V(Q) iff ABS(V(P) - V(Q)) = 1 and V(P) = (VQ) iff ABS(V(P) - V(Q) = 0. But 
since V(P ~ Q) = 1 iff V(P) = V(Q) and V(P ~ Q) = 0 iff V(P) ic V(Q), we need to 
"reverse" the output of ABS. Here, then, is the algorithm for computing FBIC: 

1. INPUT V(P). 
2. INPUT V(Q). 
3. OUTPUT 1 - ABS (V(P) - V(Q)). 
4. STOP. 

Exclusive Disjunction 

In Chapter 3, we said that disjunction could be understood in two senses: an inclusive 
sense and an exclusive sense. You should recall that the truth value of a sentence that 
is an inclusive disjunction can be calculated by means of the truth function FDSJ. In 
truth-table form, this was: 

V(P) V(Q) V(PvQ) 

FALSE 
FALSE 
TRUE 
TRUE 

FALSE 
TRUE 
FALSE 
TRUE 

FALSE 
TRUE 
TRUE 
TRUE 
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This sense of disjunction is said to be "inclusive" because it includes the possibility that 
both disjuncts are TRUE. For instance, suppose you are asked how you are doing in 
school and you reply by saying "I'll pass French or math." No one would accuse you of 
being incorrect if in fact you passed both French and math. It's certainly possible to pass 
both courses, and if you think you'll pass at least one of them, then your use of the word 
'or' in 'I'll pass French or math' is in the inclusive sense. 

Often, however, we want to exclude the possibility of both disjuncts being TRUE. 
Sometimes this possibility is excluded automatically: if you ask someone what today's 
date is and the reply is "It's either the 21st or the 22d," you know it can't be both. This 
is an example of an exclusive disjunction. 

At other times, however, it's not clear whether an English disjunction is exclusive 
or inclusive. For instance, if a college adviser says that you can major in the sciences 
or the humanities, this might mean that you must choose which one area to major in. 
But it might mean that you can have a double major. In the first case, the adviser's offer 
was an exclusive disjunction; in the second case, the offer was an inclusive disjunction. 
Given only the information in this example, there is no way to know which kind of 
disjunction is involved. In a real situation, if it is not immediately obvious which is meant, 
you will need more information to decide. Sometimes the phrase 'and/or' is used as the 
connective in English to specify the inclusive sense. Similarly, the phrase 'but not both' 
is often added to specify the exclusive sense. In other cases, the best strategy is to 
assume that the inclusive sense is intended, unless you have evidence to the contrary. 

There are several symbols that can be used to represent exclusive disjunction; we 
shall simply use the three-letter abbreviation xon. Thus 

(P XOR Q) 

will be our way of symbolizing a sentence of the form 

P or Q, but not both. 

When we connect two sentences by an exclusive disjunction, we mean that at least one 
of them is TRUE and at most one of them is TRUE. We shall use the truth function 
FXOR for exclusive disjunction: 

V(P XOR Q) = FXOR (V(P), V(Q)) 

This function can be extensionally characterized as follows: 

FXOR(FALSE, FALSE) = FALSE 
FXOR(FALSE, TRUE) = TRUE 
FXOR(TRUE, FALSE) = TRUE 
FXOR(TRUE, TRUE) = FALSE 

To make sure you understand this, consider the sentence 

Today is the 22d or the 23d. 
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If we let 

A = Today is the 22d.' B = Today is the 23d.' 

then our sentence can be symbolized as 

(A XOR B) 

Suppose both A and B are FALSE. Then surely '(A xos B)' must be FALSE. But if A is 
TRUE, then B can't be TRUE, so '(A XOR B)' is TRUE. Similarly, when B is TRUE and 
A isn't, then '(A XOR B)' is TRUE. In the case of this sentence, it really doesn't make 
much sense to suppose that both A and B are TRUE, but you should note that if they 
were, somehow, both TRUE, then '(A XOR B)' would indeed be FALSE! A more plausible 
example to illustrate the fourth possibility is this: Suppose your logic professor says at 
the beginning of the semester that you will have a final exam or a midterm, but not both. 
If you are then given both tests, your professor was not truthful. 

An algorithm for computing FXOR can be written using the arithmetical function 
ABS, which we also used in, the algorithm for FBIC. Once again, we can use the fact 
that V(P) = V(Q) if ABS(V(P) - V(Q)) = 0: 

1. INPUT V(P). 
2. INPUT V(Q). 
3. OUTPUT ABS (V(P) - V(Q)). 
4. STOP. 

XOR can be expressed in terms of conjunction and inclusive disjunction, as follows: 

(P XOR Q) 

just means: 

1. P or Q but not both. 

Remembering that 'but' is represented logically as conjunction, and noting that 'both' is 
short for 'both P and Q', we can symbolize (1) as 

((P v Q) & (P & Q)) 

Unless 

In ordinary English, we often express propositions with sentences containing the con- 
nective 'unless'. As we shall see in this section, 'unless' is not really a "new" connective, 
since it can be expressed in terms of the connectives that we are already familiar with. 
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Consider the sentence 

1. I'll take the test, unless my sister is sick. 

Sentence (1) means that if my sister is not sick, then I will take the test. Letting 

A = 'I'll take the test.' 
B = 'My sister is sick.' 

we can symbolize (1) as 

2. (-8----+ A) 

You should also notice that we could have paraphrased (1) as meaning that if I do not 
take the test, then my sister is sick, which would be symbolized as 

3. (-A-+ B) 

Fortunately, these two symbolizations can be shown to be TRUE in exactly the same 
situations and FALSE in exactly the same situations; so, both (2) and (3) are proper 
ways to symbolize (1 ). 

You may be wondering why we didn't symbolize (1) as 

4. (8----+ -A) 

that is, if my sister is sick, then I will not take the test. But very often a person who uses 
a sentence such as (1) is simply expressing what he or she will do if the sister is not 
sick, leaving open the options of what to do if the sister is sick. After all, one might take 
the test anyway. 

Let us call the interpretation of (1) in which we symbolize it as (2) the ''weak" 
interpretation. An "unless" sentence always means at least the weak interpretation. In 
some contexts, it also means (4). We call the interpretation in which (1) means both (2) 
and (4) the "strong" interpretation. Deciding which interpretation is meant is a matter of 
context, just as with dedding whether the English word 'or' should be symbolized by v 
or by XOR. In fact, the parallel is exact, as we'll shortly see. 

For another example, consider 

5. We'll eat dinner at 8, unless we go to a movie. 

Letting 

E = 'We'll eat dinner at 8.' 
F = 'We'll go to a movie.' 

the weak interpretation of (5) is 

6. (-F----+ E) 
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But suppose the context in which (5) was used made it clear that what was meant was: 

7. We'll eat dinner at 8, unless we go to a movie, in which case, we'll eat dinner 
at 6. 

The reasonable assumption is that if we eat dinner at 6, then we do not eat dinner at 
8. Thus (5) in this context is to be understood as meaning that if we don't go to a movie, 
then we'll eat dinner at 8, but if we do go to a movie, then we won't eat dinner at 8. In 
other words, we'll eat dinner at 8 iff we don't go to a movi~which is the strong inter- 
pretation: 

8. (E ~ -F) 

Simple calculations with truth tables reveal that on the weak interpretation, (5) could 
also be expressed by the inclusive disjunction 

9. (Ev F) 

and on the strong interpretation, it could be expressed by the exclusive disjunction 

10. (EXOR F) 

NOR 

Yet another common connective in English is expressed by the word 'nor', as in the 
sentence 

1. Neither Ann nor Bob was at the party. 

This simply means that Ann was not at the party and Bob was not at the party. Suppose 
that someone asks whether Ann or Bob was at the party. If (1) is true, then the answer 
is no: in other words, (1) is the negation of 

Ann or Bob was at the party. 

Thus a "neither ... nor ... " sentence is the negation of a disjunctive sentence. For this 
reason, one common symbol for 'nor' is the disjunction sign with a bar through it, often 
called a "dagger": J . But for convenience we shall just use the three-letter symbol NOR. 
Using obvious abbreviations, we can symbolize (1) as follows: 

(A NOR B) 

We can easily see that the truth value of a NOR sentence is calculated by the function 
FNOR, extensionally characterized as follows: 
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FNOR(FALSE, FALSE) = TRUE 
FNOR(FALSE, TRUE) = FALSE 
FNOR(TRUE, FALSE) = FALSE 
FNOR(TRUE, TRUE) = FALSE 

You should notice that V(P NOR Q) = V(-(P V Q)). 

NANO 

If NOR is the negation of an (inclusive) disjunction, then it seems reasonable to consider 
what the negation of a conjunction is. Unfortunately, there is no ordinary English word 
for this, but computer scientists have coined the word 'nand'. Thus 

(P NAND Q) 

means: 

-(P & Q) 

There is also a common logical symbol for this, the stroke: 1- But we shall use the four- 
letter symbol NAND both because it is more common in computer use and because the 
stroke has another meaning in some programming-language contexts-confusingly, it 
stands for disjunction! Because of the possibility of expressing NAND in terms of - and 
&, we shall leave the development of the truth function FNAND, together with its exten- 
sional characterization and appropriate algorithms, to the exercises (specifically, Exercise 
Fon page 86). 

The Two-Place Truth-Functional Connectives 

We should now add the following to our rules for sentences: 

5. If strings P and Q are sentences, 
then the conditional, (P- Q), is a sentence. 

6. If strings P and Q are sentences, 
then the biconditional, (P ~ Q), is a sentence. 

7. If strings P and Qare sentences, 
then their exclusive disjunction, (P xoa Q), is a sentence. 

8. If strings P and Q are sentences, 
then (P NOR Q) is a sentence. 

9. If strings P and Q are sentences, 
then (P NAND Q) is a sentence. 
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We have looked at seven two-place truth-functional connectives so far (not including 
'unless'):&, v, ~. ~, xoa, NOR, and NAND. Two reasonable questions to ask at this stage 
are: How many such connectives are there? Are they related to each other in any 
interesting ways? 

The best way to answer these questions is by finding a systematic way of listing 
all the connectives. To see how to do this, consider what any two-place truth function 
must be like: It must have as an output either O or 1 (that is, FALSE or TRUE) for all 
possible pairs of truth values as inputs. Since there are only four such pairs (namely 
00, 01, 10, 11 ), we can list all possible outputs as shown in Table 4-1. 

We have only discussed the seven functions to which we gave names beginning 
with 'F', but each of the sixteen functions whose extensional characterizations are given 
in the table can be dealt with in a similar fashion. That is, there are algorithms for 
computing them, arithmetical functions that can be used in such algorithms, and ways 
of expressing them in English (although some ingenuity may be needed to do this!). 

Summary 

In this chapter, we finished our introduction to the two-place truth-functional connectives. 
We looked at extensional characterizations of the corresponding truth functions, and we 
presented algorithms for computing each of them. 

We discussed conditionals, paying special attention to material conditional sen- 
tences-'lf P, then Q'-and the different ways they can be expressed in English, including 
the language of necessary and sufficient conditions. We then turned to the biconditional 
('P if and only if Q'), exclusive disjunction, xoa ('P or Q, but not both'), and the two 
connectives NOR and NAND. We also looked at the connective 'unless'. Finally, we gave 
a complete list of all sixteen two-place truth functions. 

Exercises 

A. Symbolize the following sentences using the indicated symbolic abbreviations: 
A = 'Arthur is innocent.' B = 'Barbara is innocent.' 
C = 'Charles is innocent.' D = 'Charles tells the truth.' 

1. If Arthur is innocent, then so is Barbara. 
2. Charles is innocent only if Arthur is too. 
3. If neither Arthur nor Barbara is innocent, then Charles is innocent. 
4. Only if Charles tells the truth is Arthur innocent. 
5. Unless Charles tells the truth, Barbara is not innocent. 
6. Arthur is innocent, unless Charles does not tell the truth. 
7. Barbara is innocent in case Charles tells the truth. 
8. If Barbara and Charles are innocent, then Arthur isn't. 
9. If, but only if, Charles tells the truth, then Arthur is innocent. 
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10. Barbara is innocent if and only if Arthur is innocent and Charles tells the 
truth. 

11. Charles is innocent if either Barbara or Arthur is. 
12. Charles tells the truth when, and only when, he is innocent. 
13. Charles tells the truth and is innocent if and only if Arthur is not innocent. 
14. Whenever Charles tells the truth, he is innocent. 
15. If Charles tells the truth, then Arthur and Barbara are innocent. 
16. Arthur is innocent if and only if it is not the case that both Barbara and 

Charles are innocent. 
B. Symbolize the following sentences, using your own abbreviations for the atomic 

sentences. 
1. If you want to get a good grade, you will be successful if you study hard. 
2. If you want to get a good grade, and if you study hard, you will be successful. 
3. If you want to get a good grade, you will be successful only if you study 

hard. 
4. Unless you have a credit card, you can rent the car if and only if you leave 

a deposit of $100. 
5. You are not responsible for damages unless, of course, the accident is your 

fault, in which case, the company will pay if and only if you pay the first 
$100. 

6. You cannot beat the stock market if you are not lucky, unless you have 
inside information. 

C. Calculate the truth value of each of the following sentences, using the given 
truth values of the atomic sentences: 

V(A) = TRUE 
V(B) = TRUE 
V(C) = FALSE 
V(D) = FALSE 

1. (A - (B v C)) 
2. (B - (A & D)) 
3. ((Av C)- D) 
4. ((C v D) - (Av C)) 
5. (A- (B- -C)) 
6. ((C & D) - -A) 
7. (B - -(Av C)) 
8. (A- (D- -(B & C))) 
9. ((8 - (Av C)) - (D & B)) 

10. ((B & D) - (C v (A & 8))) 
11. (A - (B v C)) 
12. (C - (A- D)) 
13. (8 - (C NORD)) 
14. (C - -(ANAND D)) 
15. (-(A & C) - (ANAND C)) 
16. ((Cv(A-D))-(A-C)) 
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17. (-A~(ANORA)) 
18. ((8 NANO 8) - (8 NOR 8)) 
19. ((C NOR C) ~ (C NANO C)) 
20. ((A NANO A)~ (-Av C)) 
21. ((A XOR 8) XOR C) 
22. ((A XOR C) XOR D) 
23. ((D XOR A) NANO C) 
24. (C NOR (A XOR 8)) 
25. -(A XOR 8) 
26. (-A XOR -8) 
27. (-A XOR 8) 
28. (A XOR -8) 
29. ((A XOR 8) & C) 
30. (A XOR (8 & C)) 
31. ((A XOR 8) & -(A XOR 8)) 
32. ((-A XOR 8) & (-8 XOR A)) 

D. Exclusive Disjunction 
1. Consider the following sentence: 

"If a college adviser says that you can major in the sciences or the human- 
ities, this might mean that you must choose which one area to major in, or 
it might mean that you can have a double major." 
Is the italicized occurrence of the word 'or' in this sentence inclusive or 
exclusive? Why? 

2. Write an algorithm for computing FXOR in terms of MAX and MIN. 
3. Write an algorithm for computing FXOR using F8IC. 
4. Write an algorithm for computing FBIC using FXOR. 
5. Use the fact that '(P xos Q)' can be expressed as '((P v Q) & -(P & Q))' to 

write an algorithm for computing FXOR. 

E. NOR 
1. Write an algorithm for computing FNOR in terms of FDSJ. 
2. Write algorithms to evaluate (P NOR Q) and -(P v Q) showing that the out- 

puts are identical for given inputs. 
F. NANO 

1. Give an extensional characterization of a truth function FNAND for the 
connective NANO. 

2. Write an algorithm for FNAND using an appropriate arithmetical function. 
3. Show how xos can be expressed in terms of - , &, and NANO. 

[Hint: '(P NANO Q)' is TRUE if at most one of P, Q is TRUE.] 
4. Write an algorithm for computing FXOR in terms of the arithmetical functions 

for - ' &, and NANO. 

G. Find appropriate English sample sentences using connectives O, 3, 5, 10, 12, 
and 15 in Table 4-1. 
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Abstract

This document was originally intended to be a section of Schagrin, Morton L.; Rapaport, William J.; & Dipert,
Randall R. (1985), Logic: A Computer Approach (New York: McGraw-Hill).

This document discusses the ternary (i.e., 3-place) if-then-else sentential connective, which is based on the if-then-else
instruction of computer programming languages.

Before we begin, however, we should look closely at an important difference between the use of if-then
(and of if-then-else) in programming languages and its use in sentential (i.e., propositional) logic. In most logic texts
(e.g., Shagrin et al. 1985) that are about the logic of declarative sentences—i.e., sentences, expressing propositions,
that can be either true or false—the antecedent and consequent of a conditional sentence are themselves declarative
sentences. But in an “imperative” programming language such as Basic or Pascal, an if-then statement is really a
conditional instruction or command whose antecedent is a delcarative sentence but whose consequent is an instruction
or command, i.e., an imperative sentence. Thus, whereas in sentential logic we are interested in conditional sentences
such as:

If Ann goes to the party, then Bob will go to the party

in many programming languages, we would be interested in conditional instructions such as:

IF a < b THEN print "yes"

Instructions, or commands, are neither true nor false. (It is possible to devise analogies to truth and falsity for
commands, but we won’t do that here. If you are interested, see Rescher 1966, Castañeda 1975.)

The if-then-else command is similar to the if-then command. In general, it has the form:

IF P, THEN X ELSE Y

where the antecedent, P, is some sentence that is either true or false (in the exclusive sense of “or”!) and where the
“then-consequent” (X) and the “else-consequent” (Y) are instructions. The meaning of the if-then-else command is
this:

If P is true, then do X, but if P is false, then do Y.

What we shall do here is study the logic of the if-then-else conditional sentence, where both consequents (as
well as the antecedent) are sentences that are either true or false, e.g.:

If Ann goes to the party, then Bob will, else Cal will.

(Actually, such a sentence would more likely be expressed in ordinary English using the word ‘otherwise’ rather than
‘else’.)

How would we decide whether such a sentence is true? We can compute its truth values by realizing that

1



if P then Q else R

is really a conjunction of two conditionals:

P Q P R

So we can construct the following truth table:1

V(P) V(Q) V(R) V( P) V(P Q) V( P R) V(if P then Q else R)
0 0 0 1 1 0 0
0 0 1 1 1 1 1
0 1 0 1 1 0 0
0 1 1 1 1 1 1
1 0 0 0 0 1 0
1 0 1 0 0 1 0
1 1 0 0 1 1 1
1 1 1 0 1 1 1

To see if this is a reasonable interpretation, we can try to find a sentence that expresses the result of performing
a conditional command. The command:

IF P THEN X

seems to correspond to the sentence

if P, then X will be done.

Similarly, the command:

IF P THEN X ELSE Y

seems to correspond to the sentence:

if P, then X will be done, else Y will be done.

The action is indicated by ‘X’, but ‘X will be done’ is a sentence. So we let:

Q = “X will be done”
R = “Y will be done”

where ‘Q’ and ‘R’ are sentences. Now, if you study our truth table carefully, you will see that it can be understood as
saying the following:

if P is true, then at least Q (i.e., Q and possibly R)
else at least R (i.e., R and possibly Q)

You may or may not find this a plausible interpretation of the corresponding command:

IF P THEN X ELSE Y

which suggests to some people that if P is true, then Y will definitely not be done (as a result of this command), and,
further, if P is false, then X will not be done (as a result of this command).

Of course, there is nothing wrong with the following program:

IF P THEN BEGIN X;Y END
ELSE BEGIN Y;X END

1The notation ‘V(P)’ means: “the truth value of P”; ‘0’ represents the truth value false; ‘1’ represents the truth value true.
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But this appears to be a redundant set of instructions: If both X and Y are going to be done anyway, why bother
testing if P is true? Well, one reason is that the programming-language “control structure” known as sequencing is not
commutative: The sequence X;Y does not necessarily compute the same function as the sequence Y;X, since the first
instruction might change the environment in such a way that the second instruction would not be using the same input
as it would in the other case.

Thus, in both cases, it seems more reasonable to use the if-then-else command when you want to perform X
or Y but not both (i.e., in the exclusive sense of “or”).

This suggests the following, “stronger” interpretation of the sentential connective if-then-else:

if P then Q else R (in the “strong” sense)

means:

if P, then Q but not R, and if not P, then R but not Q.

Note.
After this document was written, I learned of the following reference that deals with the logic of if-then-else: Manna
& Waldinger 1985: 12–13.
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Exercises.
1. Symbolize “if P then Q else R” in the strong sense using , , and .

2. Construct a truth table (using 0 and 1) for the strong sense of if-then-else. (If you do this correctly, you will see
that V(if P then Q else R) = 1 in only two situations: when either V(P) = V(Q) = 0 and V(R) = 1, or when V(P)
= V(Q) = 1 and V(R) = 0.)

3. (a) Construct an arithmetical truth-function for the weak sense of if-then-else (i.e., a function that
arithmetically computes the truth value of an if-then-else sentence; see Schagrin et al. 1985 for more
discussion of arithmetical truth functions).2

(b) Construct an arithmetical truth-function for the strong sense of if-then-else.

4. (a) Construct a flowchart for computing the truth value of if-then-else in the weak sense.
(b) Construct a flowchart for computing the truth value of if-then-else in the strong sense.

5. In programming languages, the sequence of instructions:

IF P THEN X;
Y

means:

if P is true, then do X and then do Y, else do Y but not X.

What would a “weak” interpretation of ‘if-then’ be? What would a “strong” interpretation of ‘if-then’ be?

6. (a) Using the weak sense of if-then-else, determine the truth values of the following sentences with the
indicated atomic truth-values.

(b) Using the strong sense of if-then-else, determine the truth values of the following sentences with the
indicated atomic truth-values.

V(A) = TRUE V(C) = TRUE
V(B) = FALSE V(D) = FALSE

i. (if (A D) then (A D) else D)
ii. (if (A D) then (A D) else D)
iii. (if (A D) then A else D)
iv. (if (A D) then D else A)
v. (if (A D) then A else D)
vi. (if A then A else A)
vii. ((if A then B else B) B)
viii. ((if B then A else B) A)
ix. ((if A then B else C) (if A then C else B))

References
1. Castañeda, Hector-Neri (1975), Thinking and Doing: The Philosophical Foundations of Institutions (Dordrecht:
D. Reidel).

2. Manna, Zohar, & Waldinger, Richard (1985), The Logical Basis for Computer Programming, Vol. I: Deductive
Reasoning (Reading, MA: Addison-Wesley).

3. Rescher, Nicholas (1966), The Logic of Commands (London: Routledge & Kegan Paul; New York: Dover).
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York: McGraw-Hill).

2E.g., the arithmetical truth function FNEG(V(P)) 1 V(P).
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CHAPTER 5 

SENTENTIAL LOGIC: 
Algorithms for 

Calculating Truth 
Values and 
Determining 

Well-Formedness 

Up to this point, we have not extensively 
considered how to calculate the truth values of relatively 
complex molecular sentences from the truth values of 
the atomic sentences that compose them. Instead, we 
have concentrated on rather simple molecular sen- 
tences, which demonstrated the behavior of our main 
sentence connectives:~,&, v, and-». 

There are, however, more complicated examples 
than these, and we must find an algorithm for calcu- 
lating their truth values. Having such a procedure, as 
we shall see later, will prove to be extremely useful in 
determining whether an argument in sentential logic is 
valid or invalid. 

Our method for discovering an algorithm for cal- 
culating the truth value of a molecular sentence will 
follow a familiar pattern. We shall first examine how we 
would do it Uust as we first considered how we add in 
order to discover an algorithm for addition). Then we 
shall refine the procedure so that anyone-even a com- 
puter-could follow it, knowing nothing about logic or 
truth values. 
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An Informal Method for Calculating Truth Values 

Consider these assignments of truth values to atomic sentences: 

V(A) = 1 
V(B) = 0 
V(C) = 1 
V(D) = 0 

Note that we shall assume for convenience in this and the next chapter that TRUE and 
FALSE are represented by the numbers 1 ang 0. Next, consider a molecular sentence 
composed of these atomic sentences, say: 

(A- (-8 & (C v 0))) 

What is the truth value of this molecular sentence, given the assignment of truth values 
to the atomic sentences? 

To calculate this truth value, we can begin by replacing the atomic-sentence letters 
('A', 'B', 'C', and 'D') with their truth values. Making these substitutions, we would have: 

(1 - (-0 & (1 V 0))) 

It is important to note that this is not itself a sentence according to our rules. It is a hybrid 
creation, which we shall call a "hybrid formula," formed by mixing truth values (1, 0) and 
sentence connectives. To say "If TRUE, then both not FALSE and either TRUE or FALSE" 
does not make any sense in English-but it is a useful creation, as we shall see. 

But now what do we do? We should look for something in this formula that we do 
know something about from our reading in the previous chapters, namely, simple com- 
binations of truth values and sentence connectives. Our eye should spot two such 
combinations in the above formula. They are: ' 

-o 

and 

(1 V 0) 

We shall call these subformu/as of the formula that we are considering, because they 
are parts of the whole formula and because they have the patterns of the simple molecular 
sentences that we saw in the last two chapters. 

The first subformula, ·-o·, can be replaced by the truth value 1, since the logical 
function (FNEG) associated with negation "reverses" the truth value of the sentence 
following it. That is, we can replace ·-o• in the formula with the output of FNEG(0), 
namely, 1. Similarly, '(0 v 1)', we should know, can be replaced by the truth value 1. To 
see this, we need only consult the truth table for v or apply FDSJ to the truth values 0 
and 1. Informally, we may recall, a disjunction is TRUE if even one of its disjuncts is 
TRUE. So we'can replace '(1 v 0)' with the truth value 1. 
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If we had been writing down these reflections, we would now have: 

(A- (-8 & (C v D))) 
(1 - (-0 & (1 V 0) )) 
(1 - (1 & (1 V 0))) 
(1 - (1 & 1 )) 

[Replacing ·-o· with '1'] 
[Replacing '(1 v O)' with '1 '] 

Our next step is again to apply what we know about truth values and sentence con- 
nectives to the simplest parts of this last formula. We see that '(1 & 1 )' is a subformula 
of it, and we should recognize from our study of conjunction that this can be replaced 
by the truth value 1. (We could determine this by examining the truth table for & or by 
applying the FCNJ function.) So our next steps would be: 

(1 - (1 & 1)) 
(1 - 1 ) 

1 

The last line, a single truth value, was arrived at by reasoning that the hybrid formula 
'(1 - 1 )' can be replaced by the truth value 1. (Again, we could consult our truth tables 
or apply FCND to determine this.) The last line tells us that the truth value of our original 
molecular sentence is 1 (that is, TRUE) given our original assignment of truth values to 
the atomic sentences. 

Observations about the Informal Method 

Several observations on what we just did are in order. Notice, first, that in order to 
determine the truth value of a molecular sentence, we need only look at the last line. 
That is, we don't need to look at the calculations that led up to it, unless we are checking 
the whole calculation for errors after we are done. Second, at each step after the 
replacement of atomic sentences by truth values, our eye looks for those parts of the 
formula to which we can directly apply the truth functions for-,&, v, and-. such as 
'-1', '(0 & 0)', '(1 v 0)', or '(1-1)'. Once we find such subformulas, we replace each 
one and its immediately surrounding parentheses (if any) with the single truth value as 
given by the appropriate truth function. Finally, we stop this process when we are left 
with only a single truth value. 

Let's look at another example. Consider the molecular sentence 

(-A & (A-((C v D)- D))) 

and the atomic truth-value assignments: 

V(A) = 0 
V(B) = 1 

V(C) = 1 
V(D) = 0 

To find the truth value of the molecular sentence, we would proceed as follows (omitting 
explanations): 
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(-A & {A- {{C v D) - D))) 
(-0 & (0 - ((1 V 0) - 0))) 
(1 & {0 - ((1 V 0) - 0))) 
(1 & (0 - ( 1 - 0 ))) 
(1 & (0 - 0 )) 
(1 & 1 ) 

1 

Let us look at one last example, carefully keeping the replacing truth value directly 
under the sentence connective of the replaced subformula. Consider: 

(8 v {C - ((D & -D) - A))) 

with the truth values 

V(A) = 1 
V(8) = 0 

V{C) = 1 
V{D) = 0 

Our calculation would proceed as follows: 

(8 v (C - ((D & -D) - A))) 
(0 V (1 - ((0 & -0) - 1 ))) 
(0 V (1 - ((0 & 1 ) - 1 ))) 
(0 V (1 - { 0 - 1))) 
(0 V (1 - 1 )) 
(0 V ) 

1 

Innermost Subformulas 

We are now almost in a position to give an algorithm for what we have just done. One 
important concept is necessary, namely, that of an "innermost subformula." This concept, 
when made precise, will allow us to state explicitly the procedure that we earlier described 
as looking for the subformula to which we could straightforwardly apply what we know 
about the simple truth functions. 

After replacing atomic-sentence letters with truth values, and after replacing '-0' 
with '1' and '-1' with '0', we obtain a formula having no negation signs in front of atomic 
parts. Suppose that we have such a formula that has no negated atomic parts. Then 
the innermost subformulas {there may be more than one) of this formula can be identified 
as those subformulas of the given formula that are surrounded by the most parentheses. 
For example, in 

(1 - ((0 & (1 V 0)) & 1 )) 
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the innermost subformula-here, there is only one- is '(1 v O)'. It is the part of the formula 
most deeply "buried" in parentheses. Four sets of parentheses surround it, including the 
set that is part of the subformula itself. In the formula 

((O- 1) v (1- 0)) 

the innermost subformulas are '(O - 1 )' and '(1 - O)', which are each enclosed by just 
two sets of parentheses. Note that the innermost subformula of '(1 v O)' is '(1 v O)' itself. 

The Algorithm: TRUTH-VALUE CALCULATOR 

Using this notion of the innermost subformula, we can give the full algorithm for calculating 
the truth value of a complex molecular sentence: 

ALGORITHM TRUTH-VALUE CALCULATOR 

1. INPUT a sentence P. 
2. INPUT the truth values of P's atomic sentences. 
3. Replace each atomic sentence in P with its assigned truth value to produce 

a hybrid formula. 
4. Reading the hybrid formula from left to right, delete all occurrences of~~ 

(that is, delete all double negation signs). 
5. WHILE the formula has more than 1 character, 

(a) Reading the formula from left to right, replace all occurrences of '~1' 
with 'O'. 

(b) Reading the formula from left to right, replace all occurrences of '~O' 
with '1'. 

(c) IF a single truth value remains, 
THEN 

(i) OUTPUT it. 
(ii) STOP. 

(d) Find the innermost subformulas. 
(e) FOR each innermost subformula: 

(i) IF the middle symbol in the subformula is &, 
THEN 

(1) Apply FCNJ to the two truth values in the subformula. 
(2) Replace the subformula with the output. 

(ii)-(iv) Do similarly for v, -, and -. 

6. OUTPUT the single truth value. 
7. STOP. 
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This algorithm has a "loop" in step 5 that allows us to whittle down our formula until 
only a single truth value remains. The algorithm describes in most respects what we 
were doing in our previous, informal evaluations of the truth value of a molecular sen- 
tence. Note the difficulties created by negation in TRUTH-VALUE CALCULATOR, since 
it is a one-place connective; it requires its own steps: 4, 5(a), and 5(b}. 

Steps 5(d) and 5(e) remain at a somewhat abstract level, so let us refine them. 

Refining Step 5(d): Finding the Innermost Subformulas 

The essential idea, as we have already observed, is simply to determine which parts of 
the formula are most deeply buried in parentheses. But how do we mechanically de- 
termine this? 

Suppose that we number the characters in our string (other than blanks). For ex- 
ample, numbering the (nonblank) characters in a sample formula, we would have: 

(( 1-0)-0) 
1234 567 89 

Now imagine a "counter" passing from left to right over the numbered characters 
in the string. The counter starts with a value of 0. When it encounters a left parenthesis, 
it adds 1 to its value. When it encounters a right parenthesis, it subtracts 1 from its 
value. Otherwise, it does not change its value. The counter has a value of O before it 
begins, and it should have a value of O after it ends. (If it does not, there are an unequal 
number of right and left parentheses. This indicates that the original string was not a 
sentence according to our rules.) 

Let us record the highest value that this counter achieves when passing from left 
to right. After the highest value of this counter has been recorded, let us start with a 
second counter, also set initially to O and passing from left to right with the same rules: 
'(' adds 1, ')' subtracts 1. 

1. The first innermost subformula begins at the position where the second counter 
first equals the highest value of the first counter. 

2. This innermost subformula ends at the first position where the second counter 
becomes less than this value. 

· Because there may be more than one such innermost subformula, the second counter 
should continue sweeping right through the string, recording the positions that mark the 
beginnings and endings of innermost subformulas. These recorded positions can then 
be used to "extract" the subformulas for the analysis and evaluation that the next step, 
step 5(e), requires. 

One example should suffice to demonstrate the workings of these two counters. 

Formula: 
Position: 

First Counter: 0 

1 - 
2 3 

1 1 

0 & 

4 5 6 

2 2 2 

0 V 

7 8 9 

3 3 3 

1 

10 
3 

11 

2 

12 13 

0 
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The highest value of the first counter is 3. So the second counter will record that the 
innermost subformula begins at position 7 and ends at position 11. (You should be aware 
that some of the extraordinary lengths that we had to go to with regard to parentheses 
can be avoided by adopting a notatlonat system without parentheses. We shall look at 
one such system, Polish notation, in Chapter 7.) 

Refining Step S(e): Replacing Innermost Subformulas 
with Truth Values 

Every innermost subformula should have the form 

( <truth value 1 > * <truth value ~>) 

where <truth value 1 > and <truth value 2> are either 0 or 1, and where * is the symbol 
for a two-place sentence connective (such as &, v, or-). Step S(e) will tell us what 
truth value to replace the entire subformula with, including its parentheses. A flowchart 
for the procedure of step S(e) is ·given in Figure 5-1. In other words, every innermost 
subformula is replaced by a truth value, according to the truth functions studied in the 
previous chapters. 

For example: 

(1 & 1) 

is replaced by the output of 

FCNJ(1, 1) 

which is just 

Similarly: 

(1 - 0) 

is replaced by the output of 

FCND(1, 0) 

which is just 

0 
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START 

Let S be an 
innermost subformula 

of the form 
( <truth value1 > * <truth value 2>) 

Let V1 = (truth value 1) 

Let V2 = ( truth value 2) 

Replace S by 
FCNJ (V1, V2) 

Replace S by 
FDSJ (V1, V2) 

Replace S by 
FCND (V1, V2) 

FALSE 

STOP 

Figure 5-1 Flowchart for replacing innermost subformulas with truth values. 
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Formulas and Sentences 

There is a topic that we have not yet dealt with in detail: the relationship between 
sentences and our hybrid formulas. A string, you should recall, is any sequence of 
characters. We have defined a sentence as any string satisfying our rules 1 to 9 from 
Chapters 3 and 4: 

1. A string consisting of one of the single letters 
'A', 'B', ... ,'O' (possibly with numerals) is a sentence. 

2. If P is a sentence, 
then ~Pis a sentence. 

3. If P and Q are sentences, 
then (P & Q) is a sentence. 

4. If P and Q are sentences, 
then (P v Q) is a sentence. 

5. If P and Q are sentences, 
then (P - Q) is a sentence. 

6. If P and Q are sentences, 
then (P ~ Q) is a sentence. 

7. If P and Q are sentences, 
then (P xos Q) is a sentence. 

8. If P and Q are sentences, 
then (P NOR Q) is a sentence. 

9. If P and Q are sentences, 
then (P NANO Q) is a sentence. 

10. Only strings constructed from rules 1 to 9 are sentences. 

Rule 1 O is called a "closure" clause. In the future, for convenience, we shall usually omit 
the last few connectives, and we shall usually not explicitly state the closure clause. 

We can then define a hybrid formula as a string obtained from a sentence by 
replacing all sentence letters with truth values. 

But how do we determine when a formula could not have arisen in this way, and 
hence was not originally a sentence? A string that is a sentence will be called "well- 
formed." 

One answer conveniently lies in what we have just been considering, namely, the 
algorithm for calculating the truth values of molecular sentences. Before we examine 
this, however, we should perhaps look at some of the ways strings can "go wrong" and 
ail to be sentences. Here are some examples of strings that are not sentences, along 

with their diagnoses: 

(((A & B) v C) 
((A- B)) & C) 
((AB) & C) 
)A&B( 
(A-- B) 
(A~ v B) 
A& 

Too many left parentheses. 
Too many right parentheses. 
Run-on: needs a connective between 'A' and 'B'. 
Left and right parentheses in wrong order. 
Two connectives together. 
Two connectives together. 
The & requires two sentences. 
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An Algorithm for Determining Well-Formedness 

With a little practice, it becomes possible to detect non-well-formed strings just by looking 
at them. But how can we be sure that a string we are looking at is well-formed? This 
question requires us to construct an algorithm that, when we apply it to a suspect string, 
correctly outputs-after a finite time-a message such as either "No, not well-formed" 
or "Yes, well-formed." Fortunately, we have already done most of the work and need 
only to insert some steps in our algorithm TRUTH-VALUE CALCULATOR. 

Problems with parentheses are easiest to detect. Recalling the first counter from 
our procedure for finding innermost subformulas [step 5(d)], we can observe: 

If the count after the final character is greater than 0, then there are too many left 
parentheses. 

If the count after the final character is less than O, then there are too many right 
parentheses. 

If the count is ever negative in the process of sweeping from left to right, then the 
parentheses are incorrectly matched. 

If any one of these conditions arose, then we could add a step in the original procedure 
that would output "Not well-formed" and bring the procedure to a halt immediately. 

But what about the many things that could go wrong in a string but that do not 
involve mistakes with parentheses? To answer this question, we must examine in still 
more detail what we said about step 5(e). When we were examining innermost subfor- 
mulas in a gradually dwindling formula, we mentioned that every innermost subformula 
should have the form 

( <truth value 1 > * <truth value 2>) 

where <truth value 1 > is O or 1, <truth value 2> is O or 1, and * is &, v, ~, or-. 
Examples are '(1 & O)' and '(0- 1 )'. If an innermost subformula ever does not have 
this form, then the original string was not well-formed. Furthermore, if the innermost 
subformulas always have this form down to the last, single truth value, then the origirial 
string was well-formed. 

In other words, at each stage in our analysis of the innermost subformula, the 
subformula under consideration must be such that: 

1. It has precisely five symbols. 
2. The first symbol is '(', 

the second symbol is a truth value ('0' or '1 '), 
the third symbol is a two-place connective(&, v, -, or~), 
the fourth symbol is a truth value ('0' or '1 '), and 
the fifth symbol is ')'. 

A procedure in our program design language for determining whether an innermost 
subformula satisfies these two criteria is as follows: 
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PROCEDURE CHECK-SUBFORMULA 

FOR each innermost subformula (from step 5(d), 

(a) IF the subformula does not contain exactly five symbols, 
THEN OUTPUT "Not well-formed" and STOP. 

(b) IF the first symbol is not'(', 
THEN OUTPUT "Not well-formed" and STOP. 

(c) IF the second symbol is not '0' or '1', 
THEN OUTPUT "Not well-formed" and STOP. 

(d) IF the third symbol is not a two-place connective (such as&, v, -, ~), 
THEN OUTPUT "Not well-formed" and STOP. 

(e) IF the fourth symbol is not '0' or '1 ', 
THEN OUTPUT "Not well-formed" and STOP. 

(f) If the fifth symbol is not ')', 
THEN OUTPUT "Not well-formed" and STOP. 

This procedure should be inserted between steps 5(d) and 5(e) of TRUTH-VALUE 
CALCULATOR. 

The idea behind the insertion of this procedure is actually quite simple. It will test 
each subformula, as identified by step 5(d), to see if it is of the proper form, and it will 
repeat this test as the formula is whittled down by the replacement and loop process. 
But the insertion of this procedure will detect only some features of a string that disqualify 
it from being well-formed. To modify TRUTH-VALUE CALCULATOR so that it can find 
all errors, we must modify TRUTH-VALUE CALCULATOR more drastically. We will call 
the resulting algorithm "SENTENCE-CHECKER." 

ALGORITHM SENTENCE-CHECKER 

1. INPUT a string, S. 
2. IF S contains other than sentence letters or connectives 

THEN OUTPUT "Not well-formed" and STOP. 
3. Replace all atomic sentence letters in the string with arbitrary truth values 

(all O's and 1 's, for example). 
4. Reading the string from left to right, delete all occurrences of - - (that is, 

delete all double negation signs). 
5. WHILE the string has more than one character, 

(a) Reading the string from left to right, replace all occurrences of '-1' 
with 'O'. 

(b) Reading the string from left to right, replace all occurrences of ' - 0' 
with '1'. 

(c) IF a single truth value remains 
THEN OUTPUT "Well-formed" and STOP. 
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(d) IF there are no innermost subformulas 
THEN OUTPUT "Not well-formed" and STOP. 

(e) FOR each innermost subformula: 
(i) CHECK-SUBFORMULA. 
(ii) Replace the subformula with 'O'. 

6. OUTPUT "Well-formed". 
7. STOP. 

Observe that to apply SENTENCE-CHECKER we do not need to input an assign- 
ment of truth values for atomic sentences. At step 3, absolutely any arbitrary assign- 
ment-such as O to each atomic sentence-would suffice for our purposes in SEN- 
TENCE-CHECKER. This is the case because in SENTENCE-CHECKER we are con- 
cerned only with whether the input string is well-formed and not with its truth value (if it 
is a sentence at all). 

Summary 

In this chapter, we presented algorithms for calculating the truth value of a molecular 
sentence, given truth values for its atomic parts. Informally, the method consists of 
replacing the sentence with a formula having truth values in place of atomic sentences 
and then applying our truth functions to the subformulas in order to reduce each of them 
to a single truth value. Repeating this until there are no subformulas left, we finally arrive 
at the truth value of the original sentence. The crucial notion needed to make this 
procedure precise is that of innermost subformulas-the subformulas surrounded by the 
most parentheses. 

The main algorithm is TRUTH-VALUE CALCULATOR. Two important procedures, 
for which we gave refinements, are a procedure for finding the innermost subformula of 
a string by counting parentheses and a procedure for replacing an innermost subformula 
with a truth value by using the truth functions from Chapters 2 and 3. 

We gave rules that characterize a sentence as a well-formed string: it must either 
be a single letter ('A', ... ,'0') or have the form ~P or the form (P * Q), where P and 
Qare themselves sentences and c- is any two-place connective. We also gave algorithms 
for testing these criteria. 

Exercises 

A. Consider the following task (which is a "miniature" version of the project in this 
chapter). 

A formula is given to you. It comes from either a conjunction or a disjunction, 
and each of its conjuncts (or disjuncts) has the truth value O or 1. Examples of 
such a formula are: 
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(1 & 0) 
(0 V 1) 
(0 & 1) 

In other words, you know beforehand that the given string is five symbols long, 
that the first symbol is'(', that the second is a truth value (0 or 1), that the third 
is a connective (& or v), that the fourth is a truth value (0 or 1 ), and that the fifth 
is')'. Write an algorithm to determine the truth value of the entire expression. 

For example, if the input is 
(1 & 0) 

then the output should be 
0 

Hint: One of your first instructions should be to INPUTthe formula. Your algorithm 
should then promptly decide whether the input formula comes from a conjunction 
or a disjunction (that is, whether the middle symbol is & or v) and branch ac- 
cordingly. 

Do not use the FCNJ and FDIS functions, but instead write a section of the 
algorithm to do what they would do. 

B. Consider the "first counter" described in the refinement of step 5(d) of TRUTH- 
VALUE CALCULATOR. 
1. With the string 

(A- (B v (-C & D))) 
what is the value of the first counter at the following positions? 
(a) 2 
(b) 4 
(c) 5 
(d) 7 
(e) 10 
(f) 11 

(g) 12 
2. With the string 

(((A & -8) - -C) v (C & (D & -E))) 
what is the value of the first counter at the following positions? 
(a) 3 
(b) 5 
(c) 7 
(d) 9 
(e) 12 
(f) 15 

(g) 23 
(h) 24 

C. Apply the "second counter" described in the refinement of step 5(d) to the fol- 
lowing strings. 
Example: (A & (B & C)) 
Answer: 4, 8 
since the innermost subformula begins at position 4 and ends at position 8. 
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1. (((A- B) & C) v -0) 
2. ((A & B) & C) 
3. ((A & B) & (C & 0)) 
4. ((A & (B v -C)) - (C & (D v E))) 
5. (-(Av -C)- (F - (F & F))) 
6. ((A- -(B & C)) - 0) 

0. Step 3 of TRUTH-VALUE CALCULATOR ("Replace each atomic sentence with 
its assigned truth value") was left at an intuitive level. Let us, however, consider 
the limited case of strings with only two distinct atomic-sentence letters, 'A' and 
'B' .. 

Write an algorithm for inputting a string and replacing each of the two 
sentence letters with its associated truth value, V(A) or V(B). 

E. Some of the following formulas do not come from well-formed strings. Apply 
SENTENCE-CHECKER, stopping when an error has been discovered. Explain 
what is wrong with the formula. 

1. (1-0) 
2. (1 & (0 V & 1 )) 
3. ((0 & 1)(1 - 1)) 
4. -(-0&1) 
5. ((0-1)v(0(0&1))) 
6. (((0 V 1) & 1) 
7. V (0) 
8. (& (1 V 0)) 
9. (1 - (0 V (1 & 1 ))) 

10. (((1 & -0) V -(0 & 0)- 1) 

F. Using TRUTH-VALUE CALCULATOR and the indicated truth values below, 
determine the truth value of each of the following sentences. Display the resulting 
truth value, and the calculation leading up to it, as on pages 89 and 90. 
1. Using the truth values 

V(A) = 0 V(C) = 1 
V(B) = 1 V(0) = 1 

determine the truth values of (a) to (r) below. 
2. Using the truth values 

V(A) = 1 V(C) = 0 
V(B) = 0 V(0) = 1 

determine the truth values of (a) to (r) below. 
a. -(A- (B & (C v 0))) 
b. (C & -(B & 0)) 
c. (--0 & (A- (8 V C))) 
d. (8 v (C v -0)) 
e. (A & (B & C)) 
f. ((A & B) & C) 
g. (A & (B v C)) 
h. ((A & B) v C) 
i. ((A & (B - A)) - B) 
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j. ((A & (A - B)) - B) 
k. (B-A) 
I. (-B- -A) 
m. (A- B) 
n. (-Av B) 
o. (A & -B) 
p. -(A & B) 
q. (-Av -B) 
r. (-A & -B) 

Suggestions for Computer Implementation 

The initial steps of any computer program implementing TRUTH-VALUE CALCULATOR 
would begin by inputting a string: the sentence to be tested. The program should then 
input for every distinct sentence letter contained in the initial input string, the truth values 
(either as TRUE and FALSE or as 1 and 0). Because of the later importance of having 
every significant symbol occupy just one position, and because of the necessity of using 
symbols on a standard keyboard, the conditional should be represented by a single 
symbol, such as >. That is, let - be >. Where there is a choice, it will often prove 
useful to use only capital letters for atomic sentences. 

The conversion of the algorithm described in this chapter into a computer program 
might require the extensive use of "string manipulation" functions. The available such 
functions vary widely from computer language to computer language. Consequently, 
very little of a specific nature can be said about how to write an actual program. 

But consider step 1 of TRUTH-VALUE CALCULATOR. Suppose the name of the 
input string is INPUTSTRING. Suppose also that we have already identified the atomic 
sentences in INPUTSTRING and determined that they are stored in an array ATOMIC(n). 
For instance, ATOMIC(1) == 'A', ATOMIC(2) = 'B', etc. The truth value of each of these 
atomic sentences can be stored in a parallel array, TRUTH(n). For example, TRUTH(1) = 1, 
TRUTH(2} = 0, etc. Naturally, ATOMIC(n) will have just as many elements as TRUTH(n). 
(If you are working in a language such as Pascal or PUI, such parallel arrays can be 
implemented as a single '.'record" with two "fields.") 

It will also be useful to have two string functions: 

LENGTH(STRING) 

will determine the length of the string STRING-that is, the number of symbols in it- 
and 

MID(STRING, n) 

will find the nth symbol in the string STRING. Thus if STRING = 'LOGIC', then 



102 

CHAPTER 5 

LENGTH(STRING) = 5 

because 

LENGTH('LOGIC') = 5 

And 

MID(STRING, 3) = 'G' 

since the third symbol in 'LOGIC' is 'G'. 
Here is a refinement of step 1 using these arrays and functions: 

1.1. INPUT INPUTSTRING. 
1.2. Let k = the number of atomic sentences in INPUTSTRING. 
1.3. FOR n = 1 to LENGTH(INPUTSTRING) 

(a) FOR m = 1 to k 
i. IF MID(INPUTSTRING, n) = ATOMIC(m) 

THEN OUTPUT TRUTH(m). 
ii. IF MID(INPUTSTRING, n) = ( 

or MID(INPUTSTRING, n) = ) 
or MID(INPUTSTRING, n) = & 
or MID(INPUTSTRING, n) = v 
or MID(INPUTSTRING, n) = > 

THEN OUTPUT MID(INPUTSTRING, n). 

The two OUTPUT statements in steps 1.3(a)i and 1.3(a)ii should be used to create a 
new string, NEWSTRING, which is exactly like INPUTSTRING, except that it contains 
truth values in the places of atomic-sentence letters. Where '+' indicates a "concaten- 
ation" operation of putting strings together to form longer strings (for example, 
'LO' + 'GIG' = 'LOGIC'), these OUTPUT steps can be refined as follows (NEWSTRING 
must first be initialized to a blank: ' '): 

1.3(a)i. IF MID(INPUTSTRING, n) = ATOMIC(m) 
THEN let NEWSTRING be NEWSTRING + TRUTH(m). 

1.3(a)ii. IF MID(INPUTSTRING, n) = ( 
or MID(INPUTSTRING, n) = ) 
or MID(INPUTSTRING, n) = & 
or MID(INPUTSTRING, n) = v 
or MID(INPUTSTRING, n) = > 

THEN let NEWSTRING be NEWSTRING + MID(INPUTSTRING, n). 

Although this program sketch might at first appear intimidating, the procedure it 
describes is not all that difficult. The "outer" FOR-loop in step 1.3 has the effect of looking, 
symbol-by-symbol, at INPUTSTRING. The "inner" FOR-loop in step 1.3(a) has the effect 
of checking every atomic-sentence letter, 'A', 'B', .... The test in step 1.3(a)i asks whether 
the symbol in INPUTSTRING currently under consideration is an atomic-sentence letter. 
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If it is, then its corresµonding truth value is concatenated to NEWSTRING. If it is not 
(step 1.3(a)ii), then that symbol is copied dutifully into NEWSTRING, unless it is a blank 
or some other irrelevant symbol. The entire procedure has the desired effect of converting 
INPUTSTRING into NEWSTRING by copying symbols into NEWSTRING-unless they 
are sentence letters, in which case their truth values are copied into NEWSTRING. 

The first counter described in the refinement of step 5(d) of TRUTH-VALUE CAL- 
CULATOR can be implemented as follows. Here, we use our LENGTH and MID functions 
from before, but now> and + have their normal arithmetical meanings: 

1. Let m initially be 0. 
2. FOR n = 1 to LENGTH(NEWSTRING) 

(a) IF MID(NEWSTRING, n) ~ ( 
THEN let m be m + 1. 

(b) IF MID(NEWSTRING, n) = ) 
THEN let m be m - 1. 

(c) IF m > r 
THEN let r be m. 

The FOR-loop sweeps through NEWSTRING from left to right, and step 2(c) stores the 
highest value of m in variable r. 

If we want the program also to decide whether parentheses are correctly used, we 
might add the following steps: 

2(b)ii. IF m < 0 
THEN OUTPUT "Error in parentheses." 

3(a). IF m > O 
THEN OUTPUT "Too many left parentheses." 

3(b). IF m < 0 
THEN OUTPUT ''Too many right parentheses." 



CHAPTER 6 

SENTENTIAL LOGIC: 
Algorithms for 

Truth Tables and 
Determining Validity 

In Chapters 3 and 4, we frequently used 
truth tables: extensional characterizations of truth func- 
tions. These were two-dimensional displays showing 
the functional relationship between the truth value of a 
molecular sentence and the truth values of its parts. In 
mathematics, such a table would be called a "matrix"; 
in computer science, it would be called a two-dimen- 
sional "array." 

For disjunction, we wrote: 

V(P) V(Q) V(Pv Q) 

0 
0 

0 
1 
0 

0 

The two columns on the left display the possible com- 
binations of truth (1) and falsity (0) that the sentences 
P and Q may take in various "situations." We might 
think of each row as describing a situation. Up until 
now, the right-most column has displayed the truth val- 
ues of a single molecular sentence in the situations 
described by the truth values of the sentences that are 
its parts. For example, in the above table, the first row 
describes the situation in which both P and Qare FALSE; 
in that situation, the disjunction (P v Q) is also FALSE. 
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The second row describes the situation in which the disjunction (P v Q) is TRUE; and 
so on for the other rows. 

Since we have already fully described in Chapter 5 how to calculate the truth value 
of a molecular sentence, no matter how complex, given the truth values of its atomic 
parts, we can now produce truth tables of more complexity, such as: 

V(P) V(Q) V(P - (P - (P & Q))) 

0 0 
0 1 

0 
1 
0 

We calculate each of the values in the last column by using the algorithm from Chapter 
5. To do so for the first row, we replace each occurrence of P with '0' and each occurrence 
of Q with ·o· and then calculate the value of the resulting hybrid: 

(0 - (0 - (0 & 0))) 

which will turn out to be 1. We could also have seen that this is the case by observing 
that V(0 - n) = 1 no matter what the value of n is. 

We can also use a truth table to show how several molecular sentences are de- 
pendent on the truth values of their atomic parts. This kind of truth table will turn out to 
be very useful in determining the validity or invalidity of arguments in the logic of sen- 
tences, as we shall soon see. 

Consider this truth table: 

V(P) V(Q) V(R) 

0 0 0 
0 0 1 
0 0 
0 1 

0 0 
0 

0 
1 

V(P-Q) V(Q-R) V(P-R) 

0 

0 
0 
1 

1 
0 

1 
0 
1 
0 

The first row shows that whenever Pis FALSE, Q is FALSE, and R is FALSE, then the 
truth value of (P- Q) is TRUE, the truth value of (Q - R) is TRUE, and the truth value 
of (P- R) is TRUE. In the whole truth table, we have a display of the truth values of 
(P- Q), (Q- R), and (P- R) as functions of all the combinations of truth values of 
their atomic parts. 
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General Truth Tables 

The previous large table suggests the following generalization of the format of a truth 
table. 

Truth Values of 
Atomic Sentences 

Truth Values of Sentences Dependent 
on These Atomic Sentences 

Situations: 
All Possible Combinations 
of Truth Values 
for the Atomic Sentences 

There are some general observations that can be made about truth tables: 

1. The atomic sentences in which we are interested-displayed in the left columns- 
are just those that are contained in the dependent sentences. Thus if the sen- 
tences we are considering are (P- Q), (Q- R), and (R- S), then the atomic 
sentences to be displayed are P, Q, R, and S. 

2. If there are n atomic sentences in which we are interested, then there are 2 ** n 
possible combinations of truth values for these atomic sentences. The reason 
for this is that there are only two possible values that each atomic sentence can 
have. So for two atomic sentences, there are 2 ** 2 = 2 x 2 = 4 combinations 
(00, 01, 10, 11 ); for three, there are 2 ** 3 = 2 x 2 x 2 = 8; and so on. (We 
use 'a ** n' for a raised to the nth power.) 

3. An orderly way to place truth values in the rows under each atomic sentence, 
so as to exhaust all 2 ** n combinations, is as follows. In row 1, place the binary 
numeral for 0, beginning at the far right. In row 2, place the binary numeral for 
1, also at the far right. In general, in row k, place the binary numeral for k - 1 
at the far right. The last row will be a string of n '1 's. Finally, fill in all remaining 
blanks under the atomic sentences with 'O's. 

As an example, suppose we have three atomic sentences, P, a, and R. We thus 
need 2 ** 3 = 8 rows for our truth table. The first row has 'O' squeezed as far right as 
possible, the second has '1 ', the third has '1 O', the fourth has '11 ', and so on. The result 
is: 

V (P) V(Q) V (R) 

0 
1 
0 

1 1 
0 0 
0 1 

0 
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We then complete the procedure by filling in the blanks with 'O's, obtaining: 

V(P) V(Q) V (R) 

0 0 0 
0 0 
0 1 0 
0 1 1 

0 0 
0 1 

0 

We finish the truth table by displaying the sentences whose truth values we are interested 
in at the top of other columns to the right. We then fill in the rows under these sentences 
with the results of our calculations of their truth values (using TRUTH-VALUE CAL- 
CULATOR), using the truth values of the atomic sentences indicated at the beginning 
of each row. 

The Algorithm: Truth-Table Generator 

Having just informally described the construction of a truth table, we can now give an 
algorithm for generating one. 

ALGORITHM TRUTH-TABLE GENERATOR 

1. INPUT the sentences whose truth-functional relationships we are investi- 
gating. 

2. Let m = the number of these sentences. (For an argument, m will be the 
number of premises plus one (for the conclusion).) 

3. Let n = the number of distinct atomic sentences occurring in these sen- 
tences. 

4. Create a table with n + m columns and 2 .. n rows. 
5. FOR each atomic sentence S 

(a) Write 'V(S)' at the top of the columns, beginning at the left. 

6. FOR each sentence S whose truth-functional relationships we are investi- 
gating 

(a) Write 'V(S)' at the top of the remaining columns, beginning with column 
n + 1. 
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7. (a) Count in the binary system from o to (2 ** n - 1 ). 
(b) Place these binary numerals, one to each row, squeezed right under 

the first n columns, one digit to a box. (That is, in the first row, the 
nth column will have ·o·. In the second row, the nth column will have 
'1'. In the third row, the (n - 1)th column will have '1' and the nth 
column will have 'O'-and so on.) 

(c) When the last row has been filled, return to earlier rows, placing 'O' 
in any of the spaces in the first n columns that were left blank. 

8. FOR each column c from n + 1 to n + m 
(a) FOR each row r from 1 to 2 ** n 

i. OUTPUT the truth value produced by TRUTH-VALUE CAL- 
CULATOR, using as input the sentence at c and the truth values 
at r. 

9. STOP. 

For example, if our three initial sentences are (P- Q), (Q- R), and (P- R), this 
algorithm will output the following truth table: 

V(P) V(Q) V(R) 
I V(P-Q) V (Q- R) V(P-R) 

0 0 0 
0 0 
0 1 0 1 0 
0 1 1 1 1 
1 0 0 0 1 0 

0 1 0 1 1 
0 1 0 0 

Determining Validity 

Truth tables can be used in the logic of sentences for determining the validity or invalidity 
of an argument. To see this, you should recall what an argument is and what a valid 
argument is. An argument is a set of sentences, one sentence of which is identified as 
the conclusion-which is claimed to follow from the other sentences (the premises). An 
argument is valid iff 

In every situation where the premises are all TRUE, the conclusion is also TRUE. 
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or, equivalently, 

There is no situation where the premises are all TRUE and the conclusion is FALSE. 

An argument is invalid iff 

There is some situation where the premises are all TRUE and the conclusion FALSE. 

The "situations" in the logic of sentences are just different combinations of the truth and 
falsity of atomic sentences (as described by the first n columns). Our truth tables have 
been constructed to exhaust all possible situations: Each row represents a different 
situation, and, all together, the different rows exhaust all possible situations. 

If we had reserved the right-most columns except for the last-that is, the (n + 1 )th 
through the (n + m - 1 )th columns-for the premises of an argument and the last, or 
(n + m)th, column tor the conclusion, then we could use this truth table to decide whether 
that argument is valid or invalid. Our reasoning would be as follows: 

If there is any row containing a '1' (TRUE) in every premise-column and a 'O' (FALSE) 
in the conclusion-column, then the argument is invalid. 

If there are no such rows, then the argument is valid. 

Consider the following argument: 

1. If the Soviet Union rejects the proposed treaty, then a final agreement will be 
postponed. 

2. The Soviet Union rejects the proposed treaty. 
So, 

3. A final agreement will be postponed. 

We could symbolize this argument as follows: 

1. (A-B) 
2. A 

:. 3. B 

We use :. as a sign for 'So' or 'Therefore', standard conclusion indicators. 
Is this argument valid? Using the truth-table method we have just proposed, we 

answer this question as follows. We construct a truth table, using some of the procedures 
described in TRUTH-TABLE GENERATOR. 

Step 1 : There are three sentences in the argument: two premises and a conclusion. 
So, m = 3. 

Step 2: These sentences contain just two atomic sentences (A, B). So, n = 2. 
Step 3: Thus our table will have n + m = 2 + 3 = 5 columns, and 

2 ** n = 2 .. 2 = 4 rows. 
Steps 4-7: Labeling the columns and filling in the rows, we have: 
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V (A) V (B) V (A-B) V(A) V (B) 

0 0 1 0 0 
0 1 1 0 1 

0 0 1 0 
1 1 1 1 

This display contains a great deal of information. The first row tells us that in the 
situation where the sentences The Soviet Union rejects the proposed treaty' and 'A final 
agreement will be postponed' are both FALSE, the sentence 'If the Soviet Union rejects 
the proposed treaty, then a final agreement will be postponed' is TRUE. In this situation, 
the first premise is TRUE, the second premise is FALSE, and the conclusion is FALSE. 
Each of the last three rows describes a different situation and indicates whether the 
premises and conclusion are TRUE or FALSE in that situation. 

We can use this information to determine whether the argument is valid or invalid. 
If there is a row where both premises are TRUE and the conclusion is FALSE, then the 
argument is invalid; if there is no such row, then the argument is valid. Inspection of the 
above truth table will show that there are no rows where the premises are TRUE and 
the conclusion is FALSE. Hence, the argument is valid. 

In fact, not only is this argument (involving a treaty and the Soviet Union) valid, but 
any argument of the same form is also valid. That is, any argument of the form 

If <Sentence 1 > then <Sentence 2> 
<Sentence 1 > 

:. <Sentence 2> 

is valid. Arguments of this form are said, in traditional Latin terminology going back to 
the Middle Ages, to have used the inference pattern modus ponens. Any instance of 
modus ponens is valid. 

Let us consider another argument: 

1. If Harry uses heroin, then Harry once smoked marijuana. 
2. Harry once smoked marijuana. 

Therefore, 
3. Harry uses heroin. 

Symbolized, the argument becomes: 

1. (H- M) 
2. M 

:. 3. H 

Before continuing, you should notice the difference between the pattern in this example 
and the pattern in the previous example. In this example, the second premise is the 
consequent of the conditional (the first premise). And the conclusion is the antecedent 
of that conditional. That is, the pattern of this new argument is: 
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If <Sentence 1 > then <Sentence 2> 
<Sentence 2> 

:. <Sentence 1 > 

Fallacies are patterns of invalid arguments that unfortunately are often used in everyday 
life. This particular fallacy is called "affirming the consequent." In the earlier example, 
the second ,premise was the antecedent of the conditional, and the conclusion was the 
consequent of the concittonat. 

Our truth table for this new argument would be: 

V(H) V(M) V (H--+ M) V(M) V(H) 

8 
0 

0 

0 

0 
1 
0 

0 
0 

0 
1 

Here, we can see that there is a row in which the premises are both TRUE but the 
conclusion FALSE: the second row. The second row describes the situation in which 
Harry does smoke marijuana but does not use heroin. In this situation, both premises 
are TRUE, but the conclusion is FALSE. Since there is such a row, the argument is 
invalid. In a valid argument, the truth of the premises "guarantees" the truth of the 
conclusion. However, as we have just seen, the truth of the premises of this argument 
does not guarantee the truth of the conclusion. 

The Algorithm: Validity/Invalidity Determiner 

The truth-table method we have just been exploring provides the basis for an algorithm 
for determining whether or not an already symbolized argument in the logic of sentences 
is valid. Applied properly, it will always yield the correct answer in a finite amount of 
time, and applying it requires no guesswork or special imagination. 

Described in full, our method for evaluating the validity of an argument in the logic 
of sentences would consist of the following steps: 

ALGORITHM VALIDITY /INVALIDITY DETERMINER 

1. INPUT a symbolized argument. 
2. Apply TRUTH-TABLE GENERATOR. 

(Note: In step 6 of TRUTH-TABLE GENERATOR, the (n + m)th column 
should contain the truth values of the conclusion.) 
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3. IF there is a row in which each box in a premise column (that is, the (n + 1 )th 
through (n + m - 1 )th columns) contains '1' and the box in the last column 
contains 'O' 

THEN OUTPUT "Argument invalid" and STOP. 
4. IF there is no such row 

THEN OUTPUT "Argument valid" and STOP. 

Step 3 is, of course, the critical step, since it is here that we actually obtain the 
result of whether the argument is, or is not, valid. It can be refined as follows: 

3.1. FOR each row 
(a) Let COLUMN = n + 1. 
(b) WHILE COLUMN ,;:; n + m - 1 and '1' occurs in this row and column 

Let COLUMN be COLUMN + 1. 
(c) IF COLUMN = n + m 

THEN IF 'O' occurs in this row and column 
THEN OUTPUT "Argument invalid" and STOP. 

This procedure begins by scanning across the first row (step 3.1 ), starting in the first 
premise-column, n + 1 (step 3.1 (a)). As long as there are still premises and each one 
is TRUE, the scanning continues (step 3.1 (b)). If a FALSE premise is found, then the 
next row is scanned from the first premise. If all premises are TRUE, then the conclusion 
(in column n + m) is examined (step 3.1.(c)). If the conclusion is FALSE, then the 
argument is invalid (step 3.1 (c)i) and the algorithm stops; otherwise, the next row is 
scanned from the first premise. If all rows are examined and a row with all TRUE premises 
and a FALSE conclusion is not found, then the argument is valid (step 4). 

Alternative Methods 

If the number of atomic sentences involved in our premises and conclusion is relatively 
large, the resulting truth table may approach awesome proportions. For the following 
straightforward-and invalid-argument: 

1. (A- B) 
2. (B- C) 
3. (C- D) 
4. (D- E) 
5. E 

:. 6. A 
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the truth table has 2 ** 5, or 32, rows, and 11 columns are required. Since the truth 
table has 32 x 11 boxes, there are 352 truth values to be written into them. In other 
cases, some molecular sentences may be quite complex, such as: 

((A- (-8 v (C & -D))) v -(-D- A)) 

The truth value of each such sentence must be recalculated for every row, using TRUTH- 
VALUE CALCULATOR. In short, the truth-table method may consume large amounts 
of paper, ink, and our valuable time. 

If we program a computer to perform this procedure, then TRUTH-VALUE CAL- 
CULATOR presents no serious difficulties. The computer will not use paper and ink in 
its calculations; instead it will use electrical states in memory locations as its "truth table." 
And even arguments containing many atomic sentences or having long, complicated 
sentences would not consume our time-although they would consume computer time. 

So, in principle, we could use a computer to apply the truth-table method of deter- 
mining validity to arguments of normally intimidating size or complexity. Of course, we 
may not always have a computer available, or we might not have the skill or patience 
to program it properly. Furthermore, the full truth-table method, with its maze of truth 
values, seldom resembles the way we actually reason. It is unlikely that a person pro- 
posing an argument used the truth-table method to devise it. And it is very unlikely that 
most people hearing the argument-even logicians-would think it to be valid (or invalid) 
because of a full truth table they were doing in their heads. Are there, we might ask, 
quicker, easier, or more natural ways of determining whether an argument is valid or 
invalid? 

There are indeed such ways, but they are not as powerful as we might desire. We 
can, in what is called a "formal deduction system," construct a "proof" of a valid argument. 
If we can find a correct proof, we then know that the argument is valid. Unfortunately, 
if we cannot find a proof, we cannot conclude that the argument is invalid. Our failure 
to find a proof might have been due to our own inability, or perhaps we didn't try hard 
enough. In this case, the argument might still be valid; we could then fall back on the 
full truth-table method to determine if it is valid or invalid. In Chapters 8 and 9, we shall 
discuss the method of showing an argument to be valid by giving a proof. 

WANG'S ALGORITHM 

Another algorithm to determine whether or not a symbolized argument is valid is WANG'S 
ALGORITHM, named after the logician Hao Wang (1921- ). WANG'S ALGORITHM, 
like the truth-table algorithm VALIDITY/INVALIDITY DETERMINER, will always deter- 
mine whether a symbolized argument in the logic of sentences is valid or invalid. But 
unlike the truth-table algorithm, it does not require us to create large tables. 

The idea behind WANG'S ALGORITHM is very simple. In constructing a truth table 
to determine the validity of an argument, we are searching for a sltuation.ln which the 
premises are all TRUE but the conclusion is FALSE. If there is such a situation, then 
the argument is invalid. If there is no such situation, then the argument is valid. In terms 
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of the truth table, we look for the row where the premises are all TRUE and the conclusion 
FALSE. WANG'S ALGORITHM is designed to find this situation (row) without having to 
examine all situations. The algorithm will also tell us if there exists no such situation. 

Before we introduce WANG'S ALGORITHM in full detail, we shall look at some 
examples showing the principles that lie behind it. Consider this argument: 

1. A 
2. B 

:. 3. A 

Let us consider an attempt to make the premises TRUE and the conclusion FALSE. To 
do so, we shall write the sentences of this argument in a new way. On the left, we shall 
write a list of the sentences we are trying to make TRUE, and on the right, we shall 
write a list of the sentences we are trying to make FALSE. We shall draw a vertical line 
to separate the two columns. In the case of this argument, we write: 

A I A 
B 

In other words, we are trying to make the sentences A and B TRUE and, in the same 
situation, make A FALSE. But it should be easy to see that we cannot make the same 
sentence both TRUE and FALSE in the same situation. Since sentence A appears on 
both the list of sentences we are trying to make TRUE and the list of sentences we are 
trying to make FALSE, it should be clear that this attempt will fail. This result leads us 
to our first observation about these lists: 

If the same sentence occurs on both the left and right lists of sentences, then we 
shall fail in the attempt to make the sentences in the left list TRUE and those in the 
right list FALSE. When this occurs, we shall say that this attempt has failed. 

Let us consider another, more unusual argument: 

1. C 
2. -c 

:. 3. D 

Using the technique of left and right lists of sentences, we would now write: 

C I D 
-c 

meaning that we are trying to make C and -C TRUE and D FALSE. But trying to make 
-C TRUE is the same as trying to make C FALSE. A situation in which -C is TRUE 
is the same situation as one in which C is FALSE. So, we could transform the lists in 
the following way. We could move -c from the left to the right list, removing its outer 
negation sign as we do so. The result would be: 
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C D 
C 

But this is a case we have seen before: The same sentence occurs on both lists. We 
have already seen that such an attempt fails. Seeing what occurred to the negation sign, 
we can make a second observation: 

If a negated sentence occurs on a list, move it to the other list and drop its outer 
negation sign. 

Now consider this argument: 

1. (A & 8) 
:. 2. 8 

Transformed into our pair of lists, the argument becomes: 

(A & 8) I 8 

But how could '(A & B)', the first sentence on the left list, be made TRUE? It is a 
conjunction, and there is only one way. The two conjuncts, A and 8, must both be TRUE. 
In other words, the above lists can be transformed into: 

A 8 
8 

We then see that this attempt, too, fails, because the same sentence occurs on both 
lists. What we just saw happen to a conjunction leads us to our third observation: 

If a conjunction appears on the left list, then remove that conjunction and add its 
two conjuncts separately to the left list. 

There is a similar operation that we may perform on a sentence on the right list: 

If a disjunction appears on the right list, then remove that disjunction and add its 
two disjuncts separately to the right list. 

The justification for this operation is not difficult to find. The right list contains the sen- 
tences we are trying to make FALSE. But how can we make a disjunction FALSE? 
There is only one way: both of its disjuncts must be made FALSE. 

We are accumulating rules for manipulating our pair of lists. We have three rules 
so far for creating new list-pairs from old ones. They are: 

1. If a negated sentence occurs on a list, then move it from that list to the other 
list and drop its outer negation sign. 

2. If a conjunction occurs on the left list, then replace that conjunction with its two 
conjuncts, listed separately. 
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3. If a disjunction occurs on the right list, then replace that disjunction with its two 
disjuncts, listed separately. 

We also have made a generalization that "passes judgment" on a pair of lists: 

If there is a sentence that occurs on both lists, then the attempt has failed. 

Before we go further, let's apply these principles to another argument: 

1. ~~(A & (B v C)) 
:. 2. (Av D) 

The first list-pair we form is: 

~~(A & (B V C)) I (AV D) 

Since '~~(A & (B v C))' on the left list is a negation, we move it to the right side, being 
careful to drop only its outer negation sign. The result is: 

I 
(AvD) 
~(A & (B v C)) 

The left list is temporarily empty. But '~(A & (B v C))' on the right list is also a negation, 
so applying rule 1 again, we have: 

(A & (B V C)) I (AV D) 

The sentence now on the left list is a conjunction, so we can apply rule 2, which deals 
with conjunctions on the left list. The result is: 

A 
(B v C) 

(Av D) 

The sentence on the right list, '(Av D)', is a disjunction. According to rule 3, we obtain: 

A I A 
(B v C) D 

At this point, we should see that one sentence, A, occurs on both lists. Employing our 
generalization that passes judgment on list-pairs, we see that our attempt to make the 
sentences on the left list TRUE and on the right list FALSE has failed. Because we 
began by trying to make the premises of the argument TRUE and the conclusion FALSE, 
and because making these successive list-pairs is the only way to do so, we can conclude 
that this argument must be valid. That is, there is no situation where the premises are 
each TRUE and the conclusion is FALSE. 

So far, we have looked only at valid arguments. Consider this argument: 
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1. (A & ~B) 
:. 2. (8 v C) 

Our first list-pair is: 

(A & ~B) I (B V C) 

Because '(A & ~B)' is a conjunction on the left list, we get: 

A (B v C) 
~B 

And because '(B v C)' on the right list is a disjunction, we obtain: 

A B 
~B C 

Finally, since '~B' on the left list is a negation, applying rule 1 produces: 

A B 
C 
B 

No sentence occurs on both lists. Furthermore, all the sentences on both lists are atomic 
sentences. 

When all the sentences on each list are atomic, and when no atomic sentence 
occurs on both lists, we shall say that we have succeeded in our attempt to make the 
sentences on the left list TRUE and on the right FALSE. Whenever this occurs, we know 
that the original argument is invalid. When each list is composed of only atomic sen- 
tences, and when no sentence occurs on both lists, we have found the situation in which 
the premises are TRUE but the conclusion FALSE. Looking at the last pair of lists for 
the preceding argument, we note that that situation is: 

V(A) = TRUE 
V(B) = FALSE 
V(C) = FALSE 

since A is on the "Make TRUE" list and Band Care on the "Make FALSE" list. 
Let us consider another argument: 

1. ~A 
2. (Av 8) 

:. 3. B 

The first list-pair based on the argument is: 

~A B 
(Av 8) 
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Applying rule 1, we obtain these lists: 

(AV B) I B 
A 

But now what do we do? Rule 2 applies only to conjunctions on the left list, and rule 3 
applies only to disjunctions on the right list. Here we have a disjunction on the left list. 

The occurrence of a sentence on the left list means that we are trying to make it 
TRUE. In order to make a disjunction TRUE, at least one of the disjuncts must be TRUE. 
But we have a choice of which one. In the above example, '(Av B)' must be made 
TRUE, and this can be accomplished in either of two ways: either one disjunct, 'A', is 
made TRUE, or the other disjunct, 'B', is made TRUE. 

In other words, there are at least two ways to make '(Av B)' TRUE. This means 
that we should now create two new pairs of lists. To do this, we duplicate the original 
pair and then replace each disjunction with a disjunct-a different one for each duplicate: 

1. (Av B) I B 
A 

2(a). (Av B) I B (Av B) B 
A A 

2(b). A B B I B 
A A 

Our attempt to make '(Av B)' TRUE "branches" into two new attempts. One of these 
new attempts makes '(Av B)' TRUE by making A TRUE, the other by making B TRUE. 

But notice that both of these two attempts have a sentence occurring on both lists. 
On the new left branch, the sentence letter 'A' occurs on both lists. On the new right 
branch, the sentence letter 'B' occurs on both lists. So both of these attempts fail, and 
the argument is therefore valid. 

We now add four new rules for transforming lists: 

4. If a disjunction occurs on the left list, create two new list-pairs by duplicating the 
original pair. On one of the new pairs, replace the disjunction with its first disjunct. 
On the other new pair, replace the disjunction with its second disjunct, 

5. If a conjunction occurs on the right list, create two new list-pairs by duplicating 
the original pair. On one of the new pairs, replace the conjunction with its first 
conjunct. On the other new pair, replace the conjunction with its second conjunct. 

6. If a conditional occurs on the left list, create two new list-pairs by duplicating the 
original pair. On one of the new pairs, replace the conditional with the negation 
of its antecedent. On the other new pair, replace the conditional with its con- 
sequent. 

7. If a conditional occurs on the right list, replace it with two sentences: the negation 
of its antecedent and also its consequent. 

Rule 6 is based on the idea that for a conditional to be made TRUE, either the antecedent 
must be made FALSE or the consequent made TRUE. On the other hand, if a conditional 
appears on the right list (rule 7), for it to be made FALSE, its antecedent must be made 
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TRUE and its consequent FALSE. To make its antecedent TRUE, we make the negation 
of that antecedent FALSE. 

Whenever we encounter a rule that requires us to "branch" into two attempts, we 
shall always continue working on the first attempt. We shall put the second attempt "on 
hold" and turn to it later. In the terminology of computer science, we place these other 
list-pairs resulting from branching onto a "stack." WANG'S ALGORITHM is now virtually 
complete. We need only to add two generalizations for evaluating these lists. These two 
ger:ieralizations are: 

If every attempt to make the sentences on the left lists TRUE and those on the right 
lists FALSE fails-including all branched attempts-then the argument is valid. 

If a single attempt succeeds, then the argument is invalid. 

We have already described what it is for fin attempt to "fail" or "succeed." An attempt 
has failed when a sentence occurs on both lists. An attempt has succeeded when only 
atomic sentences occur on each list and no sentence occurs on both lists. 

We are now in a position to give the full algorithm. 

WANG'S ALGORITHM 

1. INPUT a symbolized argument. 
2. Create two lists: Place the premises of the argument on the left list and the 

conclusion on the right list. 
3. FOR every sentence on both lists: 

(i) IF the sentence is a negation 
THEN 

(a) Move it from that list to the other list, and drop its outer negation 
sign. 

(b) TEST the lists. (TEST is a procedure described below.) 

(ii) IF the sentence is a conjunction on the left list 
THEN . 

(a) Replace that conjunction with its two conjuncts, listed sepa- 
rately. 

(b) TEST the lists. 

(iii) IF the sentence is a disjunction on the right list 
THEN 

(a) Replace that disjunction with its two disjuncts, listed separately. 
(b) TEST the lists. 

(iv) IF the sentence is a disjunction on the left list 
THEN 
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(a) Create two new list-pairs by duplicating the original pair. 
(b) On one of the new pairs, which will remain the current attempt, 

replace the disjunction with its first disjunct. 
(c) TEST the lists. 
(d) On the other new pair, to be put on the "stack" for later manip- 

ulation, replace the disjunction with its second disjunct. 
(e) TEST the lists. 

(v) IF the sentence is a conjunction on the right list 
THEN 

(a) Create two new list-pairs by duplicating the original pair. 
(b) On one of the new pairs, which will remain the current attempt, 

replace the conjunction with its first conjunct. 
(c) TEST the lists. 
(d) On the other new pair, to be "stacked," replace the conjunction 

with its second conjunct. 
(e) TEST the lists. 

(vi) IF the sentence is a conditional on the left list 
THEN 

(a) Create two new list-pairs by duplicating the original pair. 
(b) On one of the new pairs, which will remain the current attempt, 

replace the conditional with the negation of its antecedent. 
(c) TEST the lists. 
(d) On the other new pair, to be "stacked," replace the conditional 

with its consequent. 
(e) TEST the lists. 

(vii) IF the sentence is a conditional on the right list 
THEN 

(a) Replace it with two sentences: the negation of its antecedent 
and also its consequent. 

(b) TEST the lists. 

4. STOP. 

The output and the use of the stack are handled by the procedure TEST: 

PROCEDURE TEST 

1. IF the current attempt has a sentence on both lists 
THEN 

(a) Mark that attempt "failed." 
(b) IF there is a list-pair remaining in the stack 



122 

C HA PTER 6 

THEN 

(i) Consider the last such pair that was added to be the current 
attempt. 

(ii) Delete it from the stack. 
(iii) Proceed to the next step in the main procedure. 

(c) IF there is not such a list-pair remaining in the stack 
THEN OUTPUT "Argument valid" and STOP. 

2. IF an attempt does not have a sentence occurring on both lists 
THEN 

(a) IF the sentences on both lists are all atomic 
THEN OUTPUT "Argument invalid" and STOP. 

(b) IF the sentences on both lists are not all atomic 
THEN proceed with the next step in the main procedure. 

Main Connectives 

One idea used in step 3 of WANG'S ALGORITHM is the notion of a sentence being 
a negation, a disjunction, a conjunction, or a conditional. How can this be determined 
in a mechanical way? A sentence is a conditional if its "main connective" is - (and so 
on for the other connectives). 

The main connective of a sentence is the connective that is surrounded by the 
fewest parentheses. This makes the notion of a main connective almost the opposite 
of the notion of an "innermost subformula" (see Chapter 5). 

The following procedure can be used to find what the main connective of a sentence 
is: 

PROCEDURE MAIN-CONNECTIVE 

1. INPUT a sentence. 

2. IF the sentence consists of only one character 
THEN 
(a) The sentence is atomic and has no main connective. 
(b) STOP. 

3. IF the first character is - 
THEN 
(a) The main connective is - . 
(b) STOP. 

4. Let n = 0. 
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5. FOR every character in the sentence: 
(a) IF that character is '(' 

THEN let n be n + 1. 
(b) IF that character is ')' 

THEN let n be n - 1. 
(c) IF that character is v and n = 1 

THEN 
(i) The main connective is v. 
(ii) STOP. 

(d) IF that character is & and n = 1 
THEN 

(i) The main connective is &. 
(ii) STOP. 

(e) IF that character is - and n = 1 
THEN 

(i) The main connective is-». 
(ii) STOP. 

Observe that steps 5(a) and 5(b) of this procedure are just the "first counter" of TRUTH- 
VALUE CALCULATOR from Chapter 5. The "first counter" measures how deeply a 
character is buried in parentheses. If the sentence is neither atomic nor a negation, then 
the least deeply a character can be buried is 1. So the 'n = 1' clauses in step 5 tell us 
when a character is surrounded by the fewest parentheses. 

Some Examples 

Let's apply WANG'S ALGORITHM to several arguments. 
Consider this argument: 

1. A 
2. (A- (B & C)) 

:. 3. C 

Applying WANG'S ALGORITHM, after steps 1 and 2, we have: 

A I C 
(A- (B & C)) 

Note that step 3 does not modify atomic sentences, such as A and C, so the next step 
to take action is step 3(vi). The result is that we "branch" to two attempts. Here, and in 
later examples, we duplicate list pairs and replace in one step. 
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A 
-A 

C A 
{B & C) 

C 

We continue work on the first pair of lists, applying now step 3(i): 

A C 
A 

FAILED 

That is, applying TEST, we see that a sentence occurs on both lists. We then return to 
the other branch, which we had temporarily put aside: 

A C 
{B&C) 

Applying step 3(ii): 

A 
B 
C 

C 

FAILED 
ARGUMENT VALID 

That is, the test of this list-pair shows that the attempt has failed. Since there are no 
more attempts to consider (that is, no more list-pairs in the stack), the argument is shown 
to be valid. 

Consider another argument: 

1. -A 
2. {A-B) 

:. 3. -B 

We first have: 

-A -8 
{A-B) 

Then: 

-B 
{A- B) A 
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But now we branch to: 

-A -8 
A 

B -8 
A 

Continuing work on the first branch: 

-8 
A 
A 

Then: 

B I A 
A 

But since only atomic sentences occur on each list, and no sentence occurs on both 
lists, TEST tells us the argument is invalid. 

Summary 

This chapter began with a review of truth tables, showing how to construct them for any 
molecular sentence, no matter how complex. We gave an algorithm for doing this-- 
TRUTH-TABLE GENERATOR (which calls on TRUTH-VALUE CALCULATOR as one 
of its procedures). We then showed how to use a truth table to determine whether or 
not an argument is valid. The key ideas here are (1) to generate a truth table whose 
left-most columns are for the atomic sentences occurring in the argument and whose 
right-most columns are for the premises and conclusion, and (2) that the rows of this 
truth table provide the information needed to determine the situations, if any, in which 
the premises are TRUE and the conclusion FALSE. The algorithm VALID- 
ITY/INVALIDITY DETERMINER (which calls on TRUTH-TABLE GENERATOR as one 
of its procedures) does this. While efficient enough for computers, this latter algorithm 
can rapidly get out of hand (by growing quite large). WANG'S ALGORITHM is an elegant 
and more efficient procedure for determining validity. ' 

Exercises 

A. For each of the arguments given below: 
(a) State how many rows are required for a truth table for the argument. 
(b) State the truth values in the columns for each of the atomic sentences. 
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Example: 
(A- (8 & -C)) 
(-B & -C) 

:. -A 

Answer: 
(a) Eight rows are necessary. 

[There are three distinct atomic sentences, A, B, and C, and 2 ** 3 = 8.] 

{b) V(A) V(B) V(C) 

0 0 0 
0 0 1 
0 1 0 
0 1 1 

0 0 
0 1 
1 0 

1 1 
1. -(A-8) 

-8 
.-. A 

2. (CvD) 
(-C & (D- 8)) 

:. (D & 8) 
3. (A & -A) 

B 
,', -8 

4. A 
B 

:. (Cv-C) 
5. (A- (8 & C)) 

(8-D) 
A 

:. D 
6. (A-8) 

(-8 v C) 
-A 

,', -c 
7. {-D & (8 v -C)) 

(-D- 8) 
:. C 

8. (B- -(C & D)) 
(C&D) 

,', ---8 
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9. (A-B) 
(B-C) 

:. (A- C) 
10. (A-B) 

:. (-B- -A) 
11. (A-B) 

(A-C) 
:. (B- C) 

12. (Av B) 
-A 

:. B 

B. Examine the following right-hand fragments of truth tables. Answer these ques- 
tions: (1) Is the argument valid or invalid? (2) If the argument is invalid, which 
row(s) show it to be so? 
1. Prem. 1 Prem. 2 I Conclusion 

0 
1 
0 
1 
1 

2. Prem. 1 
--- 

1 
0 
1 
0 

3. Prem. 1 
- 
0 
1 
0 
0 
1 
0 
1 
0 

4. Prem. 1 
--- 

0 

1 1 
0 0 
1 0 
0 0 

Prem. 2 Prem. 3 Conclusion 

0 1 1 
0 0 0 

Prem. 2 Conclusion 

1 
0 

Prem. 2 

0 
1 
0 
1 
0 
0 
0 

Prem. 3 Prem. 4 Conclusion 

1 
0 

0 
0 
0 

C. Apply TRUTH-TABLE GENERATOR to the arguments given in Exercise A. 
Indicate whether each argument is valid or invalid. 
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D. Steps 2 and 3 of TRUTH-TABLE GENERATOR tell us that the size of the truth 
table needed to test an argument is a function of (1) the number of premises 
and (2) the number of distinct atomic sentences in the premises and conclusion. 
Calculate the size of the truth table, measured in rows and columns, needed for 
arguments that have: 

1. 3 premises, 2 atomic sentences 
2. 2 premises, 3 atomic sentences 
3. 4 premises, 3 atomic sentences 
4. 3 premises, 5 atomic sentences 

E. In the algorithm VALIDITY/INVALIDITY DETERMINER, we first filled in all the 
blanks in a truth table (as part of step 2) and only then examined each row to 
see if it showed the argument to be invalid (step 3). We might, however, consider 
an alternative that first fills in only the first row of truth values and then immediately 
examines this row to see' if it shows the argument to be invalid. If it does, the 
procedure outputs "Invalid" and stops. If it doesn't, the procedure goes to the 
next row and repeats the process. 

What are the advantages and disadvantages to this method? 

F. Apply WANG'S ALGORITHM to the following arguments to determine which are 
valid and which are invalid. 
1. (A&(CvD)) 

-c 
(D-E) 

:. E 
2. (B- -C) 

(Av (D & 8)) 
:.(DvA) 

3. (A & C) 
(D-A) 
(D-E) 

:. (D& E) 

4. -(A- -8) 
-(C v E) 

:. (C-A) 

5. (-A&(C-D)) 
(D-A) 
((F & E)- C) 

:. (-F v -E) 

G. Determine a formula for calculating how large the left and right lists might become 
for a given argument. (Hint: Consider the number of atomic sentences.) 

H. Determine a formula for calculating the maximum number of branches an ap- 
plication of WANG'S ALGORITHM might take. 
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I. Write a program to apply WANG'S ALGORITHM to a list-pair that contains & 
and - as main connectives on the left list and -'>, -, and v on the right list. 
(You will not have to consider branching and the resulting stacks.) 

J. Write a program that applies WANG'S ALGORITHM in its entirety to an input 
argument and prints out all the list-pairs, such that every branch of this "tree" 
ultimately ends with either "ATTEMPT FAILS" or "ATTEMPT SUCCEEDS, AR- 
GUMENT INVALID." 

Suggestions for Computer Implementation 

The design of a program to implement WANG'S ALGORITHM requires the following 
considerations. First, something must be created to store the main list-pair ("the current 
attempt"). Provisions must also be made for the list-pairs that are put "on hold"-that is, 
for the stack. Second, a procedure, or function, must be created to input a sentence 
and determine whether the sentence is atomic, a negation, a conditional, a conjunction, 
or a disjunction. We might call this procedure MAIN-CONNECTIVE, since its principal 
task is to determine the main connective in a sentence. And third, a procedure must be 
designed to test the list-pairs: the procedure TEST. 

In most programming languages, the list-pairs would be stored in string arrays. (In 
languages that accept genuine lists, such as LISP and LOGO, the list-pairs can be stored 
as lists.) LUST and RUST would be convenient names for the left and right lists currently 
under consideration. It might also prove convenient to have a variable that remembers 
how many sentences are stored in LUST and RUST at any given time: we might call 
these two variables LCOUNT and RCOUNT. 

The procedure MAIN-CONNECTIVE inputs a string and might output: 

A If the input sentence is atomic. 
If a negation. 

v If a disjunction. 
& If a conjunction. 
> If a conditional. 

For the manipulation of strings, we would also need to construct some functions or 
procedures to perform the following tasks: 

1. Remove the first character (usually a negation sign) from a string. We can call 
this 'NEGOFF' for "NEGation OFF." 

2. Generate from an input sentence the sentence to the left of the main connective. 
We might call this the 'LEFTSEN' function. 

3. Generate from an input sentence the sentence to the right of the main connective. 
We might call this the 'RIGHTSEN' function. 
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Here are some examples of the way these three functions work: 

NEGOFF [--(A & B)] 
LEFTSEN [((A & B) v (C v D))] 

= -(A & B) 
= (A & B) 

RIGHTSEN [((A & B) v (C v D))] = (C v D) 

Using these procedures, and using our program design language in a very detailed 
way, the program might begin: 

1. INPUT LUST [the premises]. 
2. INPUT RUST [the conclusion]. 
3. Let LCOUNT be the number of sentences on LUST. 
4. Let RCOUNT be 1 [since only the conclusion is initially on RUST]. 
5. FOR every sentence on LUST, from I = 1 to LCOUNT: 

(a) IF MAINCONNECTIVE(LUST(I)) = - 
THEN 

(i) Let RUST(RCOUNT + 1) be NEGOFF(LUST(I)). 
(ii) Let LUST(I) be " " [a space, which serves as a placeholder]. 

(iii) Let RCOUNT be RCOUNT + 1. 
(iv) TEST the list-pair. 

(b) IF MAINCONNECTIVE(LUST(I)) = & 
THEN 

(i) Let LUST(LCOUNT + 1) be LEFTSEN(LUST(I)). 
(ii) Let LUST(I) be RIGHTSEN(LUST(I)). 

(iii) Let LCOUNT be LCOUNT + 1. 
(iv) TEST the list-pair. 

and so on for the RUST as well. 
The branching that results from disjunctions or conditionals on LUST and conjunc- 

tions on RUST requires some special considerations. One list-pair at a time is put on 
a stack. Two stacks are needed; we can call them 'LSTACK' and 'RSTACK'. LSTACK 
will store the stacked left lists, and RSTACK will store the stacked right lists. It is extremely 
handy if both LSTACK and RSTACK are two-dimensional arrays whose first index in- 
dicates when a list was stacked (first, second, and so on) and whose second index 
indicates the sentence on the list. For example, LSTACK (2,3) would refer to the third 
sentence on the second left list that was previously stacked. We shall put the lists onto 
the stacks in the order of when we branch, and we shall take them off and make them 
the "main attempt" in reverse order. That is, we shall first take the last list-pair that was 
stacked. This is called the "last in, first out" method. A good reason for using stacks 
rather than, say, a "first in, first out" organization (a queue) is that the last list-pair put 
on the stack is probably more highly "digested"-that is, broken into simpler strings- 
than the first and so might allow us to reach a "failed" attempt with minimal manipulation. 
It is' also useful to have counters to keep track of how many sentences are in each 
"level" of each stack. 
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One advantage of WANG'S ALGORITHM is that its implementation does not require 
the sometimes huge arrays that VALIDITY/INVALIDITY DETERMINER does. If there 
are not too many premises (no more than, say, 6) and not too many atomic sentences 
(no more than, say, 10), then the arrays LUST and RUST need not be larger than 1 O, 
or LSTACK and RSTACK larger than 10 x 10. 
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SENTENTIAL LOGIC: 
Logical Equivalence, 
Normal Forms, and 

Polish Notation 

Having answered one major question in 
sentential logic, namely, how one can mechanically de- 
termine whether an argument is valid or invalid, we now 
turn to other topics of importance to logical theory. Some 
molecular sentences are so constructed that they al- 
ways have the truth value TRUE. These logically true 
sentences are important in their own right, but they also 
permit us to develop additional ways of determining 
when arguments are valid or invalid. 

We shall also in this chapter examine sen- 
tences that, from the point of view of sentential logic, 
have the same "meaning." Because of the huge range 
of patterns that even these truth-functionally synony- 
mous sentences can exhibit-especially when we per- 
mit so many different connectives-we might wonder if 
there are any "standard" ways to express a proposition 
with certain sentences. This question takes us to the 
topic of "normal forms," which are very useful for the 
computerized analysis of properties of sentences such 
as validity (as we shall see in Chapter 14). 

Finally, a very different system of notation 
from the one we have been using is examined. This 
notational system, Polish notation, cleverly avoids the 
use of all parentheses and has widespread use in com- 
puter applications. Moreover, it enormously simplifies 
some of the string-processing tasks we have consid- 
ered earlier (although it complicates others). 
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Tautologies and Arguments 

We have been assuming-and shall continue to assume-that sentences can have one 
of two truth values, either TRUE or FALSE; that is, if P is a sentence, then either 
V(P) = TRUE or V(P) = FALSE. To decide whether a molecular truth-functional sen- 
tence P is TRUE or FALSE, we usually need to find out the truth values of its atomic 
constituents. However, two kinds of truth-functional sentences are such that we can 
determine their truth value without knowing the actual truth values of their atomic con- 
stituents; they are called "tautologies" and "contradictions." 

A sentence Pis a tautology it and only it V(P) = TRUE tor all possible combinations 
of truth values of its atomic constituents. A sentence is a contradiction if and only if it 
is a conjunction of a sentence P and its negation, -P. It is evident that V(P & -P) = FALSE 
in all situations. So, a tautology is a sentence that is always TRUE, and a contradiction 
is a sentence that is always FALSE. 

The third kind of sentence-the kind whose truth value varies with the particular 
truth values of its atomic constituents-is called a contingent sentence. 

Since the truth value of a tautology is TRUE and the truth value of a contradiction 
is FALSE no matter what truth values their atomic constituents have, it follows that the 
truth value of a tautology or a contradiction does not vary with the truth values of its 
atomic constituents. 

For example, 'It is raining or it is not raining' is a tautology. It we symbolize it as 

(Av -A) 

and look at its truth table, 

V(A) V(-A) V(Av -A) 

FALSE 
TRUE 

TRUE 
FALSE 

TRUE 
TRUE 

we see that V(A v -A) = TRUE no matter what V(A) and V(-A) are. That is, 'It is raining 
or it is not raining' is TRUE whether or not it is, in tact, raining. It is always TRUE no 
matter what the weather is; hence, it gives us no information about the weather. 

Consider, next, the sentence 'It is raining and it is not raining'. This is a contradiction, 
and an examination of its truth table shows that it is always FALSE: 

V(A) V(-A) V(A & -A) 

FALSE 
TRUE 

TRUE 
FALSE 

FALSE 
FALSE 

This sentence is FALSE, whether or not it is raining. Thus it also gives us no information 
about the weather. 

In general, it is claimed that no tautologies or contradictions provide any information. 
Only contingent sentences do. The sentence 'It is raining and I have an umbrella' is 
contingent. It we symbolize it as 
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(A & H) 

its truth table is: 

V(A) V(H) V(A & H) 

FALSE 
FALSE 
TRUE 
TRUE 

FALSE 
TRUE 
FALSE 
TRUE 

FALSE 
FALSE 
FALSE 
TRUE 

Thus sometimes it is TRUE (when it is raining and I have an umbrella), and sometimes 
it is FALSE (when it is not raining or when I don't have an umbrella). 

Since whether a sentence is a tautology or a contradiction depends on its structure 
and the behavior of the logical truth functions, it is evident that no atomic sentence is 
either a tautology or a contradiction. In the logic of sentences all atomic sentences are 
contingent. 

Arguments and Corresponding Conditionals 

One important use of tautologies is in determining whether an argument is valid or 
invalid. Any argument has a set of premises and a conclusion. First, consider an argument 
with one premise, P, and a conclusion, Q: 

1. p 
2. Q 

This argument is valid iff it is impossible for Q to be FALSE while Pis TRUE. But those 
are precisely the circumstances under which the sentence 

(P-Q) 

is a tautology. 
Next, consider an argument with two premises, P and Q, and conclusion R: 

1. p 
2. Q 
3. R 

This argument is valid iff it is impossible for R to be FALSE while P and Q are both 
TRUE. In other words, this argument is valid iff the sentence 

((P & 0)- R) 

is a tautology. 
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In general, for every argument with n premises (P1, P2, ... ,Pn) and conclusion Q: 

n. Pn 
:. n + 1. Q 

there corresponds a conditional sentence, R, whose antecedent is the conjunction of 
the argument's premises and whose consequent is the argument's conclusion: 

(R) ((( ... ((P, & P2) & P3) & ... ) & Pn)- Q) 

An argument and its corresponding conditional sentence satisfy the following principle: 

An argument is valid iff its corresponding conditional is a tautology. 

Logical Equivalence 

Often, two different sentences will be TRUE or FALSE in precisely the same situations. 
That is, for any combination of truth values of their atomic constituents, both sentences 
will have the same truth value. As a simple example, consider an atomic sentence P 
and its double negation --P. They both have the same atomic constituent, P, and 
V{P) = TRUE if and only if V(--P) = TRUE. We say that P and --Pare "logically 
equivalent." 

As another example, consider a conditional, (P - Q), and its "contrapositive," 
(-Q- -P). Let us look at their truth tables (using 1 and O for TRUE and FALSE, 
respectively): 

V(P) V(Q) V(P-Q) 

0 
0 

0 
1 
0 

1 
0 

V(P) V(Q) V(-P) V(-Q) V(-Q- -P) 

0 0 1 
0 1 0 1 
1 0 0 1 0 

0 0 
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We see that V(P- Q) = V(-Q- -P) for all possible combinations of truth values of 
P and Q. So (P - Q) and (-Q - -P) are logically equivalent. 

In general, a sentence P is logically equivalent to a sentence Q if and only if 
V(P) = V(Q) for all possible combinations of truth values of their atomic constituents. 

What about '(Av -A)' and '(B v -B)'? Are they logically equivalent? They share 
no atomic constituents, so you might think that they couldn't be. Yet they are both 
tautologies, so they are both always TRUE. Hence V(A v -A) = V(B v -B) for all possible 
combinations of truth values of their atomic constituents. So they are logically equivalent. 
So are '(A & -A)' and '(B & -B)', since they are both contradictions, hence always 
FALSE. In fact, all tautologies are logically equivalent to each other, and all contradictions 
are logically equivalent to each other (but, of course, no tautology is logically equivalent 
to any contradiction). 

There is another important relationship between tautologies and logical equivalence. 
Consider a biconditional, (P - Q). According to its truth table, V(P - Q) = TRUE if and 
only if V(P) = V(Q). That is, a biconditional is TRUE if and only if its left-hand side has 
the same truth value as its right-hand side. This suggests the following principle: 

A sentence P is logically equivalent to a sentence Q 
if and only if (P ~ Q) is a tautology. 

As an example, consider (P- Q) and (-Q- -P)" again. Instead of constructing 
two separate truth tables to show that they are logically equivalent, we could, in effect, 
combine the tables by constructing a single truth table for their biconditional: 

((P- Q) - (-Q - -P)) 

and show that this sentence is a tautology. 
There are a number of important logical equivalences. We shall leave many of these 

as exercises, but three will be singled out for discussion here. 
The first two are known as De Morgan's laws: 

1. (-(P&Q)-(-Pv-Q)) 
2. (-(P v Q) - (-P & -Q)) 

Sentences (1) and (2) are tautologies, so their respective left- and right-hand sides are 
logically equivalent. It is important to see what this means. Consider De Morgan's law 
1 . It says that the negation of a conjunction is logically equivalent to a disjunction-in 
particular, the disjunction of the negations of the original conjuncts. Similarly, De Morgan's 
law 2 says that the negation of a disjunction is logically equivalent to a conjunction-in 
particular, the conjunction of the negations of the original disjuncts. 

The left-hand side of law 1 is also logically equivalent to (P NAND Q). Thus (P NAND 
Q) is logically equivalent to a disjunction. You should check each of these facts by 
constructing appropriate truth tables. 

Another important logical equivalence is called exportation. The sentence 

(((P & Q) - R) - (P - (Q - R))) 

is a tautology, so the two sides of the biconditional are logically equivalent. 
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When you are writing computer programs, these rules can be especially helpful in 
finding efficient ways of expressing conditions that need to be tested. For instance, some 
computers will not allow you to use a conditional instruction of the form 

IF P and Q 
THEN do X 

If P is FALSE and Q has not been assigned a value yet, it may give you a run-time 
error. This can be avoided by using the logically equivalent command 

IF P 
THEN IF Q 

THEN do X 

Since P is FALSE, the command is not executed, and so the illegal value for Q is never 
encountered. 

Normal Forms 

Suppose you wanted to prove some claim about all sentences. It would be helpful if 
there were some uniform way to express them. Such a uniform method of expressing 
sentences is called a normal form. In particular, we devise normal forms so that every 
sentence is logically equivalent to a sentence in a normal form. In this section, we shall 
describe one kind of normal form: conjunctive normal form. Another important kind, 
disjunctive normal form, is dealt with in Exercise G. 

To define conjunctive normal form, it will prove helpful first to define another kind 
of sentence called a basic disjunction: 

1. If P is an atomic sentence or the negation of an atomic sentence, 
then P is a basic disjunction. 

2. If P and Q are each basic disjunctions, 
then (P v Q) is a basic disjunction. 

3. Nothing else is a basic disjunction. 

So, for example, 

A 
-A 
-B 
(Av B) 
(Av -A) 
((Av B) v C) 
((Av B) v (D v -E)) 

are all basic disjunctions. 
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We can now define what it means for a sentence to be in conjunctive normal form 
(CNF): 

1. If P is a basic disjunction, 
then P is in CNF. 

2. If P and Q are each in CNF, 
then (P & Q) is in CNF. 

3. Nothing else is in CNF. 

So, for example, all the basic disjunctions listed above, as well as 

((Av B) & (-Av B)) 
(A & -A) 
(((Av B) & (Av C)) & -B) 

are in CNF. You will note that a sentence in CNF is always a multiple conjunction of 
disjunctions (if you include atomic sentences and their negations standing alone as trivial 
cases of conjunctions and disjunctions). 

There are several algorithms for turning any sentence P into an equivalent sentence 
Qin CNF. One requires the use of truth tables: 

ALGORITHM CNF-1 

1. INPUT sentence P. 
2. Apply TRUTH-TABLE GENERATOR to construct a truth table for P. 
3. IF P is a tautology 

THEN let Q = (R v -R), where R is the alphabetically first atomic sen- 
tence in P. 

4. IF P is not a tautology 
THEN 
(a) FOR each row ROW of the truth table such that V(P) = o 

(i) Form a set NEG-ATOM(ROW) of atomic sentences and their 
negations as follows: 

(1) FOR each atomic constituent R 
(a) IF V(R) = 1 

THEN put -R in the set. 
(b) IF V(R) = 0 

THEN put R in the set. 
(ii) Let BASIC-DISJ(ROW) = the disjunction of the members of 

NEG-ATOM(ROW). (Note that BASIC-OISJ(ROW) is a basic 
disjunction.) 

(b) Let Q = the conjunction of all the BASIC-DISJ(ROW)s. 
5. OUTPUT CNF sentence Q. 
6. STOP. 
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Another method for transforming a sentence into a CNF does not require the use 
of truth tables: 

ALGORITHM CNF-2 

1. INPUT sentence P. 
2. Replace all subformulas of the form (R - S) with sentences of the form 

((R-+ S) & (S-+ R)). ( Question: What principle allows you to do this?) 
3. Replace all subformulas of the form (R-+ S) with sentences of the form 

(~R v S). 
4. Repeat the following until the only negated sentences are atomic sentences: 

(a) Replace all subformulas of the form ~(R & S) with sentences of the 
form ( ~R v ~S). 

(b) Replace all subformulas of the form ~(R v S) with sentences of the 
form (~R & ~S). 

(c) Replace all subformulas of the form ~~R with sentences of the form 
R. 

5. Repeat the following until a sentence in CNF is reached: 
(a) Replace all subformulas of the form (R v (S & T)) with sentences of 

the form ((R VS) & (R VT)). 
(b) Replace all subformulas of the form ((R & S) v T) with sentences of 

the form ((R V T) & (S V T)). 
6. Call the result Q. 
7. OUTPUT CNF sentence Q. 
8. STOP. 

One useful feature of CNF is that it makes it easy to identify tautologies. In fact, if 
you use Algorithm CNF-2 to transform a sentence into a logically equivalent CNF sen- 
tence, you can decide whether it is a tautology without using truth tables. The principle 
is: 

A sentence in CNF is a tautology if and only if each conjunct contains both an 
atomic sentence and its negation. 

For example, consider the sentence 

((A & (A- B))- B) 

We shall find logically equivalent CNF sentences using both algorithms, and we shall 
also check for tautologousness. 

Algorithm CNF-1: First, we construct the truth table (you should be sure to do this!). 
You should see right away that the sentence is a tautology, so 
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(Av -A) 

is an equivalent CNF sentence. 
Algorithm CNF-2: 

Step 2 is inapplicable. 
Step 3: We transform the sentence first into 

((A & (-Av 8))- B) 
and then into 

(-(A & (-Av 8)) v 8) 
Step 4(a): ((-Av -(-Av B)) v B) 
Step 4(b): ((-Av (--A & -B)) v B) 
Step 4(c): ((-Av (A & -8)) v B) 
Step 5(a): (((-Av A) & (-Av -B)) v B) 
Step 5(b): (((-Av A) v 8)) & ((-Av -8) V 8)) 

This is in CNF, since it is a conjunction of basic disjunctions. (Each conjunct is a basic 
disjunction, since each is a disjunction of atomic sentences and negations of atomic 
sentences.) Moreover, since each conjunct contains both an atomic sentence and its 
negation, we see that our original sentence is a tautology. 

You might be puzzled about why the two algorithms produced different CNF sen- 
tences. In general, there are infinitely many CNF sentences equivalent to a given sen- 
tence. (Can you prove this?) All that matters is that the sentence be in CNF and be 
logically equivalent to the original sentence. 

Consistency and Satisfiability 

Let us say that a sentence whose truth value is TRUE in some situation (that is, for 
some values of its atomic constituents) is a satisfiable sentence. 

A contradiction is a sentence whose truth value is always FALSE, regardless of the 
truth values of its atomic components. Because of this, contradictions are not satisfiable. 
Because tautologies and contingent sentences can have the value TRUE, they are 
satisfiable. The notion of satisfiability enables us to investigate some important properties 
of sets of sentences, and it also gives us another powerful tool for determining the validity 
of arguments. 

Let us explore some simple examples before we discuss the general notion of 
satisfiability. Consider: 

(A) 1. The car starts only if it has gas in its tank. 
2. It has gas in its tank, but the car doesn't start. 

We can see this more clearly by symbolizing with obvious abbreviations: 

(A) 1. (C- G) 
2. (G & -C) 
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Now it is easy to show that (A1) is satisfiable [take V(C) = FALSE], and it is almost as 
easy to show that (A2) is also. We now raise a new question: Are they "simultaneously" 
satisfiable? By this we mean: Is there a single assignment of truth values to all the 
atomic components such that both molecular sentences have the truth value TRUE? In 
this case, V(C) = FALSE and V(G) = TRUE results in both (A 1) and (A2) having the 
truth value TRUE. 

Here is an example where the sentences are each satisfiable, but the two of them 
are not simultaneously satisfiable. 

(B) 1. If the fish are biting, then it's not the time to swim. 
2. It's time to swim, and the fish are biting. 

We can symbolize this as: 

(8) 1. (F- -H) 
2. (H & F) 

In this example, notice that 

V(F - -H) = TRUE when V(F) = FALSE, and 
V(H & F) = TRUE when V(H) = V(F) = TRUE 

so each sentence is satisfiable. But there is no single value for V(F) and for V(H) for 
which V(F - -H) and V(H & F) are both TRUE simultaneously. 

We can easily generalize this for any number of sentences. 

If there is a single assignment of truth values to all the atomic components of all 
the sentences in a set such that each of the sentences in the set has the truth value 
TRUE, then the set of sentences is simultaneously satisfiable. 

Here is how we can use this notion to investigate the validity of arguments. Re- 
member that if an argument is valid, then whenever all the premises are TRUE, the 
conclusion must be TRUE. Thus if we add the negation of the conclusion to the premises, 
we shall have a set of sentences that is not simultaneously satisfiable, if the argument 
is valid. And in some ways it is easier to show that a set of sentences (especially a finite 
one) is not simultaneously satisfiable than it is to show that an argument is valid. 

One simple way of showing that a set of sentences is not simultaneously satisfiable 
is to conjoin all the sentences in the set into a gigantic conjunction. Then transform this 
conjunction into disjunctive normal form (see Exercise G). If each of the disjuncts contains 
a contradiction, then the original set was not simultaneously satisfiable. 

So far, we have used the notion of simultaneous satisfiability (or its absence) to 
show the validity of arguments. Can we reverse this? That is, can we use the notion of 
a valid argument to show that a set of sentences is (or is not) simultaneously satisfiable? 
Again, we return to the notion of a valid argument: when the premises are TRUE, the 
conclusion must be TRUE. But what if the conclusion of a valid argument can't be TRUE? 
What if the conclusion of a valid argument is a contradiction? In this case, we can reason 
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"backward" and claim that not all the premises can be TRUE or, more precisely, that 
the set of premises is not simultaneously satisfiable. 

With a little more terminology, we can put all this together. 

If the sentences in a set are used as the premises of a valid argument whose 
conclusion is a contradiction, then that set of sentences is called inconsistent. 

If there is no such valid argument using the sentences in this set as premises, then 
the set is consistent. 

If we put the negation in different places, we can say that if no contradiction is a valid 
conclusion from a set of premises, then this set is consistent. 

The key notions we have used in this section are those of a (sentence that is a) 
contradiction, a consistent set of sentences, an inconsistent set of sentences, a set of 
sentences that is simultaneously satisfiable (or that is not simultaneously satisfiable), 
and a valid argument. Let us consider some ways in which these notions are related. 

1. A valid argument can have a conclusion that is a contradiction 
iff 

The premises are inconsistent 
iff 

The premises are not simultaneously satisfiable. 
2. The premises of an argument and the negation of the conclusion are 

not simultaneously satisfiable 
iff 

This enlarged set is inconsistent 
iff 

The original argument is valid. 
3. The set of premises of an argument is inconsistent 

iff 
The set of premises is not simultaneously satisfiable 

iff 
Any argument with these premises is valid. 

This last claim requires some comment. If a set of premises of an argument is not 
simultaneously satisfiable, there will be no occasion when the premises are each TRUE 
and the conclusion FALSE. Hence the argument is valid. 

For practical problem solving, the most important relation is 2 above. For instance, 
to show that 

1. (Av B) 
2. -A 
3. B 

is a valid argument, conjoin each of the premises and then the negation of the conclusion: 

(((Av B) & -A) & -B) 
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Transforming this to disjunctive normal form (using the techniques of Exercise G), we 
get: 

(((A & -A) v (8 & -A)) & -8) 

and then: 

(((A & -A) & -8) v ((13 & -A) & -8)) 

We now see that each disjunct contains a contradiction, and so the original argument 
was valid. 

Polish Notation 

The use of parentheses, while needed in order to avoid ambiguities, is cumbersome. 
Often, by the adoption of conventions about "precedence" of logical connectives, the 
number of parentheses can be reduced, making formulas more readable. A somewhat 
different system of notation avoids the use of parentheses altogether. 

The notation we have been using is sometimes called "infix" notation, since the two- 
place, truth-functional connectives(&, v, -, ~, NAND, NOR, xoa) are written "in" between 
the sentence letters. The negation sign, however, is "prefixed" to its sentence. If "prefix" 
notation is used for all the connectives, then parentheses are not needed, as we shall 
see. 

The most common kind of prefix notation for logic is called Polish notation. Instead 
of using the symbols we have been using for connectives, Polish notation uses certain 
capital italic letters, as shown below: 

N (for "Negation") 
v A (for "Alteration") 
& K (for "Konjunction") 
- C (for material "Conditional") ~ E (for "is Equivalent to") 

We can define a well-formed sentence in Polish notation as follows: 

1. Any atomic sentence is well-formed in Polish notation. 
2. If P and Q are each well-formed in Polish notation, then so are 

NP 
APQ 
KPQ 
CPQ 
EPQ 

3. Nothing else is well-formed in Polish notation. 
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The five sentence-forms in clause 2 of the definition correspond to 

-P 
(P V Q) 
(P & Q) 
(P-->Q) 
(P-Q) 

in infix notation. 
Let's look at some other sentences in both notations: 

Infix Polish 

(1) (P&(Q&R)) 
(2) ((P & Q) & R) 

KPKQR 
KKPQR 

In (1 ), the first and second occurrences of K correspond to the first and second 
occurrences of &, respectively. The string in Polish notation may be read as follows: 
The conjunction of P with (the conjunction of Q with R). 

In (2), the first occurrence of K corresponds to the second occurrence of &, and 
the second occurrence of K corresponds to the first occurrence of &. The Polish-notation 
string may be read as follows: The conjunction of (the conjunction of P with Q) with R. 

As you can see, parentheses are not needed in Polish notation (although they can 
sometimes be useful) because the Polish-notation strings are not ambiguous. Perhaps 
this can be made clearer with the following examples: 

Infix Polish 

(3) (P v (Q & R)) 
(4) ((P v Q) & R) 

APKQR 
KAPQR 

To test your understanding of Polish notation, make sure you can see why the following 
strings are equivalent: 

(P v (Q--> R)) 
(-(P & Q) - (-P v -Q)) 

APCQR 
ENKPQANPNQ 

A simple and elegant algorithm for determining if a string in Polish notation is well- 
formed illustrates the fact that to solve some problems you need not always pay attention 
to the usual meanings of symbols. 



146 

CHAPTER 7 

ALGORITHM WFP 

1.INPUT string Pin Polish notation. 
2.FOR each sentence letter Q in P 

(a) Let RANK(Q) = 1. 
3.Let RANK(N) = 0. 
4.Let RANK(A) = -1. 
5.Let RANK(K) = -1. 
6.Let RANK(C) = -1. 
7.Let RANK(E) == -1. 
8.Let SUM = 0. 
9.FOR each symbol Sin P, beginning at the right and moving to the left, 

(a) Let SUM = SUM + RANK(S). 
(b) IF SUM <i;; 0 

THEN OUTPUT "Not well-formed." 
10.IF SUM= 1 

THEN OUTPUT "Well-formed." 
11.IF SUM> 1 . 

THEN OUTPUT "Not well-formed." 
12.STOP. 

Two other useful algorithms would be the ones for translating from infix to Polish 
notation and from Polish to infix. Let us consider the former. As a rough beginning, we 
want to replace all occurrences of -P with NP, (P v Q) with APQ, etc. Consider ((P & 
Q) v (R & S)). Where do we begin? We could work from the inside out; that is, we could 
begin with the innermost subformulas, first getting the hybrid (KPQ v KRS), then getting 
AKPQKRS. 

Or we could proceed by identifying the main connective (in this case: v), forming, 
first, the hybrid A(P & Q)(R & S), and then taking each remaining molecular sentence 
and repeating the process: identifying the main connective and translating into Polish 
notation. The result is AKPQKRS. 

An algorithm for the second way proceeds as follows: 

ALGORITHM INFIX-TO-POLISH 

1. INPUT a sentence P in infix notation. 
2. IF P is atomic 

THEN OUTPUT P and STOP. 
3. IF P is not atomic 

THEN 
(a) Apply ALGORITHM MAIN-CONNECTIVE (from Chapter 6). 
(b) Let* be the main connective of P. 
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4. IF P has the form -Q (that is, IF * = -) 
THEN transform Pinto NQ. 

5. IF P has the form (Q * R) 
THEN transform P into AQR, KOR, CQR, or £QR, as appropriate. 

6. Repeat steps 3 to 5 for each subformula of the transformed sentence until 
there are no more occurrences of infix connectives. 

7. OUTPUT the result. 
8. STOP. 

One other advantage of Polish notation, besides the elimination of parentheses, is 
that it becomes extremely easy to identify the main connective of a sentence, hence 
extremely easy to apply WANG'S ALGORITHM. The ease with which the main connective 
can be identified also makes it easy to figure out the structure of a sentence in Polish 
notation. Consider, for instance, 

(5) CKNBCGBNG 

The main connective is always the first one, so sentence (5)'s main connective is C. 
Since C is a two-place connective, sentence (5) has the form CPQ. What are P and Q? 
Since P must immediately follow C, it must begin with K. Similarly, since K is a two- 
place connective, P must be of the form KRS, for some sentences R and S. Also, R 
must begin with N. But N is a one-place connective; hence R must be NB. Hence S 
must be CGB; hence Q must be NG. Using parentheses to clarify this, we get 

C(K(NB) (CGB)) (NG) 

or, in infix notation, 

((-8 & (G- 8))- -G) 

Summary 

We began this chapter by considering sentences that are TRUE in all situtations (tau- 
tologies), sentences that are FALSE in all situations (contradictions), and sentences 
whose truth values vary from one situation to another (contingent sentences). This 
enabled us to point out an interesting relationship between an argument and its corre- 
sponding conditional sentence (a conditional sentence whose antecedent is the con- 
junction of the premises of the argument and whose consequent is the conclusion of 
the argument): An argument is valid iff its corresponding conditional is a tautology. 

Many sentences have the same truth values as other sentences in the same situ- 
ations. Such pairs of sentences are logically equivalent. Thus any two tautologies are 
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logically equivalent, and any two contradictions are logically equivalent. Two other im- 
portant logical equivalences that we covered are De Morgan's laws and Exportation. 

A third important logical equivalence is the one between any sentence and its 
conjunctive normal form (CNF): a sentence whose form is a conjunction of disjunctions. 
We gave two algorithms for finding a CNF sentence that is logically equivalent to a given 
non-CNF sentence. 

We then used these concepts to explore sets of sentences. When there is a situation 
in which all the sentences in some set are TRUE, we say that they are simultaneously 
satisfiable. If the sentences in a set are taken as the premises of an argument, then the 
set is consistent if no contradiction can be validly concluded from it. 

Finally, we looked at Polish notation, which uses different symbols for the connec- 
tives and has a different way of representing molecular sentences. Polish notation com- 
pletely eliminates the need for parentheses, and it facilitates such procedures as iden- 
tifying the main connective of a sentence. 

Exercises 

A. Determine whether each of the following sentences is tautologous, inconsistent, 
or contingent: 
1. (((A- 8) & A)- 8) 
2. (((A- 8) & A)- -8) 
3. (((A- 8) & -8) - -A) 
4. (((A- 8) & -8) - A) 
5. (((A- 8) & -A) - -8) 
6. (((A- 8) & 8)-A) 
7. (((Av 8) & -A)- 8) 
8. (((Av 8) & -A)- -8) 
9. (((A- 8) & (8- C))- (A- C)) 

10. (((A- 8) & (A- en- (8- C)) 
11. ((A & -A) - 8) 
12. ((A & -A)- -8) 
13. (((A- 8) & A) & -8) 
14. ((Av 8) & (-A & -8)) 
15. (A&(-A&8)) 
16. (A & (-A & -8)) 
17. (A~A) 
18. (A~ -A) 
19. (((A~ 8) & A)~ 8) 
20. ((A NANO A) V A) 
21. ((A NANO 8) NANO (A NANO 8)) 
22. ((A NOR A) NOR (8 NOR 8)) 
23. (A NANO (8 NANO 8)) 
24. ((A NOR A) & A) 
25. ((A & (A NANO (8 NANO C)))- C) 
26. ((A & (A NANO (8 NANO 8))) - 8) 
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27. ((ANAND 8) NOR A) 
28. ((A NOR 8) NANDA) 
29. (A XOR A) 
30. ((A XOR 8) & -A) 
31. (((A XOR 8) & -A) - 8) 
32. -(A XOR -A) 

B. Construct the truth table for 
((A- B) ~ (-B- -A)) 

and show that it is a tautology. 
C. Corresponding Conditionals 

1. What are the conditional sentences corresponding to the following arguments? 
a. 1. A 

2. B 
3. C 
4. D 

:. 5. E 
b. 1. (Av 8) 

2. C 
:. 3. D 

c. 1. A 
2. B 
3. C 

:. 4. -(D & C) 
d. 1. (A & B) 

2. C 
:. 3. D 

2. Determine whether the following arguments are valid or invalid by determining 
whether their corresponding conditionals are tautologies. 
a. If Sally goes to the zoo, she will see an elephant. Sally saw an elephant 

today, so she must have gone to the zoo. 
b. If Sally goes to the zoo, she will see an elephant. Sally went to the zoo 

today, so she must have seen an elephant. 
3. What are the arqurnents that correspond to the following conditional sen- 

tences? 
a. (A- B) 
b. (((A & B) & C)- D) 
c. ((A & (B & C))- D) 
d. (((Av B) & C)- D) 
e. ((Av (8 & C))- D) 

D. Decide which of the following pairs of sentences are logically equivalent: 
1. (-Av 8), (A- 8) 
2. -(A & -8), (A - B) 
3. A, (A & A) 
4. A, (Av A) 
5. (A & (B & C)), ((A & B) & C) 
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6. (Av (B v C)), ((Av B) v C) 
7. -(A- B), (-A & -B) 
8. -(A & B), (-A & -B) 
9. -(Av 8), (-Av -B) 

10. (A- B), (B-A) 
11. (A - B), ((A---c> B) & (8---c> A)) 
12. (A - B), ((A & B) v (-A & -B)) 
13. (Av (B & C)), ((Av B) & (Av C)) 
14. (A & (B v C)), ((A & B) v (A & C)) 
15. --A, ----A 
16. ((Av -A) & C), ((B v -B) & C) 
17. ((Av -A) & C), C 
18. ((A & -A) v C), C 
19. (A XOR 8), -(A - 8) 
20. -(A - B), (A - -B) 
21. (A XOR 8), ((Av B) & -(A & 8)) 
22. (A NAND A), (A NOR A) 
23. ((A NANDA) NAND (8 NAND 8)), (A & 8) 
24. (A---c> 8), (((A NOR A) NOR 8) NOR ((A NOR A) NOR 8)) 
25. ((A NOR 8) NOR (A NOR 8)), (AV 8) 

E. Let P be a sentence. Construct another sentence Q as follows: 
1. Replace all occurrences of (S - T) in P by (-S v T), and all occurences of 

(S-T) by ((-S v T) & (-T v S)). 
2. Replace all atomic sentences in P with their negations. 
3. Interchange all occurrences of v and &. 
4. Negate the result. 
5. Eliminate double negations (that is, replace all occurrences of --R with R). 
For instance, if P = '-(-A & B)', then steps 1 to 4 yield '--(--Av -B)', and 
so, by step 5, Q = '(A v -B)'. For any sentence P, we call Q constructed as 
above the dual of P. 
1. Construct the dual of each of the following: 

a. -(A & B) 
b. (Av 8) 
c. ((Av B) ---c> C) 
d. (-A- (B & C)) 

2. Show that for any sentence P, Pis logically equivalent to its dual. 

F. Using either ALGORITHM CNF-1 or CNF-2, find sentences in conjunctive normal 
form (CNF) that are logically equivalent to: 
1. (Av A) 
2. (A & A) 
3. (A-B) 
4. ((A & B) v (A & C)) 
5. ((Av B) & (A & C)) 
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6. ((A & (A - B)) - B) 
7. ((A & B) v (A & C) v (A & B & -C)) 
8. ((A v B) & (A v C) & (A v B v -C)) 
9. ((A & B) & (-Av -B)) 

10. ((-A & B) & (Av -B)) 
11. ((-A & B) v (A & -B)) 

G. Disjunctive Normal Form 
1. Define disjunctive normal form (DNF). (Hint: Just as a sentence in CNF is a 

conjunction of disjunctions, so a sentence in DNF will be a disjunction of 
conjunctions.) 

2. Write an algorithm for finding an equivalent DNF sentence for any given 
sentence. 

3. Turn the following sentences into DNF: 
a. (A & A) 
b. (A- B) 
c. ((Av B)- C) 
d. (A & -(B v C)) 
e. (A- (B & C)) 

H. Polish Notation 
1. Translate these sentences from infix to Polish notation: 

a. (((D- B) & D)- B) 
b. (((D - B) & (B - E)) - (D - F)) 
c. ((D- B) ~ (-B- -0)) 
d. (D & (B & (F & G))) 
e. -(0 & (B v (-F & G))) 
f. (((0 & B) & F) & G) 

2. Translate each of the following from Polish into infix notation: 
a. ABCDEFG 
b. CKCBDBD 
c. CBABD 
d. CKBDKBD 
e. ENNBB 
f. EBNNB 

3. Write an algorithm for translating from Polish to infix notation. 
4. Postfix notation (also called reverse Polish notation, or RPN) can be defined 

as follows: 
I. Any atomic sentence is well-formed in RPN. 

II. If P and Q are each well-formed in RPN, 
then so are 
PN 
PQK 
PQA 
PQC 
PQE 
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Ill. Nothing else is well-formed in RPN. 
Here, PN = -P 

PQK = (P & Q) 
PQA = (P v Q) 
PQC = (P- Q) 
PQE = (P-Q) 

a. Write an algorithm for translating from infix to RPN. 
b. Write an algorithm for translating from RPN to infix notation. 
c. Apply your algorithm for translating from infix to RPN to the sentences in 

Exercise H-1 . 



SENTENTIAL LOGIC: 
A Natural Deduction 

System 

The methods and procedures for deciding 
whether an argument is valid are complete and work- 
able-as the algorithms show. They can be used to 
determine in a finite amount of time whether any sym- 
bolized argument in the logic of sentences is valid or 
invalid. 

However, we might have some reservations about 
these methods. First, they require us to busy ourselves 
with the truth or falsity of sentences in quite explicit 
terms. We must calculate when all the relevant sen- 
tences are TRUE in various situations. The result is a 
table showing when certain sentences are TRUE and 
when they are FALSE. Second, it is especially difficult 
by these methods to show that an argument is valid. 
That is, the truth-table method takes the longest time 
to apply when the argument is a valid one, and a shorter 
time if the argument is invalid. Finally, it is unlikely that 
anyone actually reasons explicitly using the compli- 
cated relationships between truth and falsity that we 
have investigated. It would be nice to have an easier 
way to reason and to check reasoning for validity-a 
way, for example, which requires fewer calculations and 
less writing. 

For these and many other historical reasons, most 
practicing logicians, mathematicians, and computer sci- 
entists prefer to do their reasoning, and to demonstrate 
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the validity of reasoning, in what are called "formal deduction systems." A formal de- 
duction system has its main mission in showing an argument to be valid; it is usually 
not concerned with showing an argument to be invalid. 

A formal deduction system shows an argument to be valid in a way that does not 
require a use of the concepts TRUE and FALSE. Instead, a formal deduction system 
deals with the "form" or "pattern" of an argument without considering, even temporarily, 
whether the sentences involved are TRUE or FALSE, or to what things in the real world 
these sentences refer. It is in this sense that a formal deduction system is formal. It 
deals only with the form (pattern) of an argument, not with its subject matter. 

The main vehicle of a formal system is a derivation. A derivation is often called a 
"deduction" or, slightly misleadingly, a "proof." A derivation shows that certain strings of 
symbols follow from other strings according to permitted rules. A derivation in a formal 
deduction system is a deduction of logical consequences from premises. It does not 
consider the meaning of the terms in a sentence or even the truth values of the sentences. 
The sole question in a derivation is whether a sentence, considered as a pattern of 
symbols, follows from other sentences by permitted rules. In deductive logic, these rules 
are usually called rules of inference, because their task is to change some sentences 
into others that can be validly inferred. We can think of the rules of any formal system 
as preestablished ways for transforming some strings into others. 

Because a formal system has rules that must be followed, it is natural to think of a 
deduction or derivation as being much like a game. The pieces, cards, plays, or moves 
of a game do not usually have any significance outside of the game, but a game must 
be played according to certain rules. So, too, the "playing pieces" of a derivation do not 
have any clear meaning-or, rather, it is not worthwhile in constructing the derivation to 
consider their meaning-but they must be handled according to preestablished rules. 

A Simple Formal System: 
The Game of Stars and Slashes 

To begin, let us consider some games that can be played with four kinds of symbols as 
playing pieces. The available symbols will be the two letters 'A' and 'B', stars, and slashes: 

A B * / 
These symbols can be combined, or "strung together," in many ways, and we may use 
as many copies of these symbols as we wish. For example, 

are all strings of these symbols. To create a game, some of these strings will be called 
"winning" strings, and the others will all be "losing" strings. The object of one game might 
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be to construct as many winning strings as possible. (To make this game more interesting, 
you might want to add some constraints, such as a time limit, but we won't do that here.) 
Another game might be to decide whether a given string is a winning string or a losing 
string. For instance, an opponent might challenge you to decide whether 

S /////A*B/*Al*Al*Bf*B// 

is a winning string. 
Of course, as in any other game, there will have to be some rules, and clearly, we'll 

need rules that precisely specify which strings are winning strings and which are losing 
strings. For both the "construction" game and the "decision" game, there will be three 
rules: 

1. The symbol 
A 

by itself is a winning string. 
2. The symbol 

B 
by itself is a winning string. 

3. If S, and S2 are winning strings, then 
/S,*S2' 

is a winning string. That is, to make a new winning string, we connect one winning 
string to another with the symbol '*' and sandwich the result between a pair of 
slashes. 

It is usually understood that nothing else is a winning string except the strings that result 
from applying rules 1 to 3. 

To see how these rules work, we can start playing the first, "construction," game. 
According to the first two rules, the string 

A 

and the string 

B 

are winning strings-they have been "given" to us by rules 1 and 2. Now that we have 
two winning strings, rule 3 can be applied. To apply it, we just have to consider the 
special case where S, is 'A' and S2 is 'B'. Then, according to rule 3, 

/A*B/ 

is a winning string. According to another application of rule 3, this time taking S, as 'B' 
and S2 as 'A', 

/B*AI 
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is a winning string. We now have four winning strings, and it is clear that we can continue 
to apply the third rule to produce many more of them. For instance, letting S, be 'A' and 
S2 be '/B*AI', we see that 

is a winning string. But 

is a losing string: it is understood that if a string is not producible by rules 1, 2, and 3, 
then it is a losing string. 

How can we show that '/A*/B*AI' is a losing string? Unfortunately, it's not enough 
to try to produce it from the rules but fail, because-especially with longer, more complex 
strings-there are always two possible reasons for failure: the string is indeed a losing 
string, or else it really is a winning string, but we just didn't try hard enough (or weren't 
clever enough) to produce it. 

To show that '/A*fB*AI' is a losing string, notice that all winning strings either consist 
only of the symbol 'A' or 'B' or else have the following structure: 

1. The first and last symbols are slashes. 
2. If you remove the first and last symbols, you will have a star between two winning 

strings. 

Now, the string we are considering fails to satisfy the second of these two conditions. 
To see that it fails, remove the outer pair of slashes, leaving 

We can see that this is not a string formed by joining two winning strings with a star. 
The string to the right of the first star is 

which violates the first condition. And the string to the left of the second star is 

which also violates the first condition. Since there is no other way to analyze the string, 
it must be a loser: there is no way to analyze it such that it consists of two winners 
joined by a star. 
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Formal Systems 

The game of stars and slashes illustrates the basic components of the simplest kind of 
formal system. A formal system consists of three features: 

1. A set of symbols out of which strings may be formed, together with rules specifying 
what constitutes a well-formed string. (In our game, the symbols were 'A', 'B', 
*, and/. Any string was considered well-formed, so long as it was some string 
of these symbols.) 

2. A set of "winning" strings that is given to you. This set is called the set of axioms. 
(In our game, the axioms were given by rules 1 and 2.) 

3. A set of methods for constructing new winning strings. This set is called the set 
of rules of inference. (Our game had only one rule in this sense.) 

A winning string is then understood to be a well-formed string, such that the string is an 
instance of an axiom or comes from previous winning strings by applications of any of 
the rules. 

A more common name for a winning string in mathematics and logic is theorem. In 
our game, 

/A*B/ 

was a theorem. It can be seen to be a winning string from rule 1, rule 2, and one 
application of rule 3. 

The formal deduction system we shall develop in the next sections will look much 
like the game of stars and slashes-at least in its broad outline. It will have well-formed 
strings, and it will have rules for generating new winning strings. And it will be understood 
that there are no winning strings except those that arise from the rules. But there will 
be no axioms. That is, no strings will be given that are automatic winners. A deduction 
system without axioms is called a natural deduction system. 

A Natural Deduction System 

Our game of stars and slashes is a good example of a formal system. !t has rigorous 
rules for generating winning strings, and it has procedures for constructing derivations 
using the rules. But it is not a formal deduction system. A formal deduction system has 
two additional features. First, all the strings of a formal deduction system are sentences. 
Second, the rules by which we derive some sentences from others are not arbitrary. A 
proper rule of inference should allow us to derive only those sentences that logically 
follow from earlier sentences. Additionally, a formal natural deduction system has no 
axioms. 

The special quality a rule in a deduction system must have is that of being truth- 
preserving. Truth-preserving rules never lead us from TRUE sentences to FALSE ones. 
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The quality of being truth-preserving is the central concern of logic, as we saw in Chapter 
1. It is also the idea that is so perfectly captured by the concept of "validity." A good 
argument is first and foremost an argument that is truth-preserving. If the premises are 
all TRUE, then the conclusion cannot help but be TRUE too. 

All the rules of a formal deduction system should, then, be truth-preserving. It should 
never be the case that we could begin with TRUE sentences and move, using correct 
applications of our rules, to a FALSE sentence. Note that there is nothing at all wrong 
with having rules that might take us from FALSE sentences to TRUE ones. Similarly, 
perhaps, we would frown upon a machine that turned gold into mud, although we would 
be quite happy with one that turned mud into gold! 

As we mentioned before, and saw demonstrated in the game of stars and slashes, 
the most important application of a formal system is in producing a derivation. A derivation 
is a sequence of steps, all of which are legitimate according to the rules of the formal 
system. To help someone reading a derivation see that it is correct, we shall number 
each step in the derivation and state whatever justifies our making that step. 

Conjunction Introduction 

Let us consider the first rule of our formal deduction system for sentential logic which 
we shall call "conjunction introduction," or &INTRO for short: 

&INTRO If P and Q are any two previous sentences in a derivation, 
then you may derive their conjunction: 

(P &Q) 

In other words, if sentence P had been permitted by the rules earlier in a derivation, 
and so had sentence Q, then you may "put them together," so to speak, joined by the 
conjunction connective. 

Most deductions have the task of showing that a sentence (the conclusion) follows 
from other sentences by the permitted rules of inference. Accordingly, the premises are 
"given" to you, and you may accept them as permitted sentences, without being disturbed 
by the fact that they are not otherwise justified. 

A deduction will then typically begin with sentences that have no justification other 
than their being the premises of the argument given to you. When we write the justification 
for such sentences in a deduction, we shall say, simply, PREMISE. For example, if an 
argument had the premises 

A 
(B- C) 

then the natural start of a deduction using these premises might look like this: 

1. A 
2. (B- C) 

:PREMISE 
:PREMISE 
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But how can the deduction continue? Aside from listing the premises of the argument, 
which we have now exhausted, we only have one rule so far, &INTRO. The rule &INTRO 
permits us to combine any two previous sentences with &. We should see that 'A' and 
'(B - C)' are two previous sentences, the first corresponding to the P of the rule, the 
second corresponding to the Q. We could then continue our deduction: 

1. A :PREMISE 
2. (B - C) :PREMISE 
3. (A & (B - C)) :&INTRO applied to lines 1 and 2 

In fact, the rule &INTRO can be applied over and over again: 

1. A :PREMISE 
2. (B - C) :PREMISE 
3. (A & (B - C)) :&INTRO, 1,2 
4. ((8 - C) & A) :&INTRO,2, 1 
5. (A & A) :&INTRO, 1, 1 
6. ((A & A) & (A & (B - C))) :&INTRO,5,3 

It should be clear that we could keep on going, applying &INTRO to any two of our 
accumulating sentences. Notice also that the "two" previous lines to which the rule 
&INTRO is applied can even be the same line. In the above deduction, we have: 

1. A :PREMISE 

5. (A & A) :&INTRO, 1, 1 

The main quality we aim for in formulating our rules in a formal deduction system 
is that they are truth-preserving. Is the rule &INTRO truth-preserving? That is, if previous 
sentences in a derivation were all TRUE, then does the rule &INTRO allow us to derive 
only other TRUE sentences? 

A way to see that &INTRO is truth-preserving is to look at the pattern of the sentences 
in an application of &INTRO and compare it with the truth table for &. 

1. P :PREMISE 
2. Q :PREMISE 
3. (P & Q) :&INTRO, 1,2 

Is there any possible way sentences P and Q could be true and yet in the same situation 
sentence (P & Q) be FALSE? This is, of course, impossible, as we have seen in Chapter 
3. Looking at the truth table, we find: 
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V(P) V(Q) V(P&Q) 

0 
0 

0 
1 
0 

0 
0 
0 

There is no situation where both P and Q are TRUE but (P & Q) is FALSE. So the rule 
&INTRO is truth-preserving. 

If a rule such as &INTRO is truth-preserving, then we can apply it over and over 
again to TRUE sentences without peing afraid that a FALSE sentence could somehow 
creep in. If &INTRO preserves truth once, it will do it twice, or any number of times. If 
the premises are all TRUE, then applying truth-preserving rules any number of times 
and in any order never allows a FALSE sentence to creep in. This fact lies behind the 
security we should feel with derivations. If a derivation uses only truth-preserving rules, 
then the derivation as a whole will be truth-preserving. The derivation will never allow 
us to go from TRUE premises to a FALSE conclusion. 

The Format of a Derivation 

Observe carefully that we shall always present a derivation in a certain format. We shall, 
for example, number the lines of the derivation, write a sentence on each line, and then 
explain why we are permitted to write that sentence. The explanation of why we are 
permitted to write a sentence will be called the justification for that sentence. 

So far, we have only two possible justifications for writing a sentence in a derivation: 

1. The sentence was given to us by the terms of the original argument and so has 
the justification PREMISE. 

2. The sentence was derived from the sentences in two previous lines by the rule 
&INTRO. 

More generally, every line of a derivation will have the following features: 

1. The line will begin with a number (a positive integer) followed by a period. We 
shall call the number of a line the line number. No two distinct lines of a derivation 
begin with the same line number. (We shall shortly modify this requirement slightly 
and allow certain symbols to be written before the line number.) 

2. Next in the line must appear a sentence, that is, a string that is well-formed 
according to the rules developed in Chapters 3 to 5. 

3. Last in the line must appear a colon(:) followed by a justification for the sentence. 
This justification is either PREMISE or a rule of the deduction system according 
to which we are permitted to write the sentence. If the justification is the result 
of applying a rule to previous lines of the derivatiqn, then we must also identify 
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the line numbers of these previous lines. Thus we can have as a justification of 
a line 

:PREMISE 
which does not require us to cite previous lines of the derivation, or (for example) 

:&INTRO, 1,2 
which cites lines 1 and 2. 

Conjunction Elimination 

Let us now introduce the companion rule to &INTRO: conjunction elimination, or &ELIM 
for short: 

&ELIM If (P & Q) is a previous sentence in a derivation, then you may derive 
either the first conjunct: 

p 
or the second conjunct: 

Q 

The following short derivation shows a correct application of this new rule. 

1. (A & B) :PREMISE 
2. C :PREMISE 
3. A :&ELIM, 1 

Here, the sentence, 'A' plays the role of P, and 'B' plays the role of Q. Sometimes the 
derived sentence may be more complex. Consider this derivation: 

1. (D & (E - F)) :PREMISE 
2. E :PREMISE 
3. (E - F) :&ELIM, 1 

Here, the sentence 'D' plays the role of P in the rule, and the molecular sentence 
'(E - F)' plays the role of Q. In other words, the rule &ELIM says, "From any conjunction 

( <sentence 1 > & <sentence 2>) 

you may derive 

<sentence 1 > 

by itself or, if you wish, 

<sentence 2> 
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by itself." These derived sentences may be atomic or molecular. The single requirement 
is that the original sentence must be a conjunction, a sentence whose main connective 
is&. 

It is easy to see that &ELIM is truth-preserving. If 

(P & Q) 

is TRUE, then 

p 

is also TRUE, as well as 

Q 

We can consult our truth tables in Chapter 3 to see this. So the rule &ELIM, like the 
rule &INTRO, will never take us from TRUE sentences to FALSE ones. 

Observe that the rule &INTRO converts two previous sentences into one new sen- 
tence, while the rule &ELIM converts one sentence into another sentence. (Although the 
&ELIM rule says that you are permitted to derive either conjunct, you must in every 
application derive just one of these conjuncts.) This means that the justification for a 
sentence using the &ELIM rule must refer only to one previous line number, while a 
sentence justified by &INTRO must cite two previous line numbers. Here are some 
sample justifications: 

:&ELIM,3 
:&INTR0,2,4 
:&INTRO,1,1 
:&ELIM,7 

But the following "justifications" would always be mistaken. 

:&ELIM,1,2 

:&INTRO,3 
:PREMISE,3 

[Incorrect, because &ELIM must cite one and only one previous 
line.] 
[Incorrect, because &INTRO must cite two previous lines.] 
[Incorrect, because with the justification PREMISE, we do not cite 
any previous lines.] 

The two rules &INTRO and &ELIM have a certain symmetry, as their names suggest. 
The rule &INTRO introduces a new conjunction, a sentence whose main connective is 
&. The rule &ELIM, on the other hand, takes us from a sentence that is a conjunction 
to one that has one less conjunction sign in it. 

The names of these two rules provide some clues to when they should be applied. 
The rule &INTRO should usually be applied when we want to obtain a sentence with an 
& in it. And the rule &ELIM should usually be applied if we want to eliminate an & or 
reduce the number of &'s in our earlier sentences. Most of our rules will, in fact, have 
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this symmetry of either introducing a connective or eliminating one. Each rule will thus 
come with some advice on when it might wisely be applied. 

Demonstrating the Validity of an Argument 
with a Derivation 

We are now in a position to relate a derivation to an argument. The derivation of the 
conclusion of an argument from the premises of that argument will have these features: 

1. Every sentence of every line is justified by either (a) its being a premise of the 
given argument or (b) its having been correctly derived from previous lines by 
the application of permissible rules. 

2. The sentence in the last line of the derivation is the conclusion of the given 
argument. 

So, if you are given the valid argument 

A 
B 

:. (A & B) 

a correct derivation of the conclusion from the premises would be: 

1. A :PREMISE 
2. B :PREMISE 
3. (A & B) :&INTRO, 1 ,2 

The last line of this derivation is the conclusion of the given argument. And the only 
justifications are PREMISE and a permissible rule. We shall speak of "deriving the 
conclusion," or "showing the argument to be valid." 

If you were given the valid argument 

(C & D) 
C 

then a correct derivation of the conclusion from the premises would be: 

1. (C & D) :PREMISE 
2. C :&ELIM, 1 

For the first argument [A, B, :.(A & B)], it should be easy to see that &INTRO must 
be used, since the conclusion contains an ampersand, but the premises do not. And for 
the second argument [(C & D), :.CJ, it should be easy to see that &ELIM must be used, 
since the premise contains an ampersand, but the conclusion does not. 
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We now give several more examples of derivations. 

Argument 1. 
(A & B) 

.-. (B & A) 
Derivation 

1. (A & B) 
2. A 
3.B 
4. (B & A) 

:PREMISE 
:&ELIM,1 
:&ELIM,1 
:&INTRO,3,2 

Observe carefully that the correct application of &INTRO in line 4 requires us to cite 
where the first conjunct, 'B', comes from (line 3) and then where the second conjunct, 
'A', comes from (line 2). 

Argument 2. 
A 

.-. A 
Derivation 

1. A :PREMISE 

This is admittedly a strange proof, but it conforms to the requirements for a correct 
derivation: we have used only the justification PREMISE, and the "last" line-which is 
also the first line-is the conclusion. 

Argument 3. 
(A & B) 
C 
(C &A) 

Derivation 
1. (A & B) 
2. C 
3. A 
4. (C & A) 

:PREMISE 
:PREMISE 
:&ELIM,1 
:&INTRO,2,3 

Argument 4. 
((A & B) & C) 

.-. (A & C) 
Derivation 

1. ((A & B) & C) 
2. (A & B) 
3. A 
4. C 
5. (A & C) 

Argument 5. 
(A & (C- D)) 
(-AvB) 

:PREMISE 
:&ELIM,1 
:&ELIM,2 
:&ELIM,1 
:&INTRO,3,4 
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Derivation 
1. (A & (C - D)) 
2. (-Av B) 
3. (C- D) 

:PREMISE 
:PREMISE 
:&ELIM,1 

Before continuing with the introduction of the next pair of rules, you should reflect 
on what a derivation shows. A derivation shows that a sentence-the last line of the 
derivation-can be derived from earlier sentences by the application of rules of inference. 
These rules are known to have the property of being truth-preserving. Consequently, 
we know that if the sentences introduced by the only justification other than a rule (namely, 
PREMISE) were all TRUE, then the last line of the derivation would also be TRUE. But 
then, the argument is valid. So a correct derivation of a conclusion from premises shows 
that the argument is valid. In most cases, this will be a far easier way to show an 
argument to be valid than constructing a truth table. A derivation will also usually give 
us a clearer understanding of why an argument is valid than does a cluttered truth table. 

Subproofs and Negation Introduction 

Consider the following argument. 

I can't both look at TV all night and get my homework done. I will watch TV all night. 
Therefore, I won't get my homework done. 

When symbolized, this argument becomes: 

Argument 6. 
-(L & H) 
L 
-H 

where 

L = 'I will look at TV all night.' 
H = 'I will get my homework done.' 

As reasoning to defend the validity of my argument I might offer: 

I can't both look at TV all night and get my homework done. 
I will watch TV all night. 

But suppose I do get my homework done too. 
Then I would watch TV all night and (somehow) get my homework done. 
But this contradicts my first statement that I cannot do both of these things. 
So my supposition that I do get my homework done must be mistaken. 

That is, I will not get my homework done. 
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If we had used symbolized sentences, we might have reasoned: 

-(L & H) 
L 

:PREMISE 
:PREMISE 

Suppose H. 
Then (L & H). 
But -(L & H) is the first premise. 
So the supposition H must be mistaken. 

Therefore, -H. 

The steps going from "Suppose H" to "Therefore, -H" have the effect of introducing a 
negation sign. They exhibit the central reasoning behind the new rule, negation intro- 
duction, or -INTRO for short. In this reasoning, which is not quite in our required form 
for derivations, there are two new, important ideas. One is the idea of "supposing" 
something. A supposition such as 'I will get my homework done' is not a PREMISE. We 
are not told to accept it as TRUE by the given argument. But neither is it derivable from 
previous lines by a rule like &ELIM or &INTRO. Instead, we are introducing this sentence 
as if it were legitimate in order to see what follows from it. We shall call these suppositions 
"assumptions." Because assumptions are "trial balloons"-neither given as PREMISES 
nor derivable from previous lines-they must be used with extraordinary care. 

Subproofs 

A subproof is a digression from the main proof. A subproof is also a proof within a proof. 
The supposition that begins a subproof may be thought of as a "temporary premise." 
This assumption is a "premise" only for the duration of the subproof-not for the entire 
derivation. 

We shall require subproofs to be distinguished from the rest of the proof by two 
features: 

1. Subproofs have asterisks before their line numbers to indicate that these lines 
depend on an assumption. 

2. The sentences in a subproof will be indented proportionally to the number of 
asterisks. 

Thus our full proof of '-H', with some gaps in the justifications, would be: 

1. -(L & H) 
2. L 
* 3. H 
* 4. L 
* 5. (L & H) 
* 6. -(L & H) 
* 7. -H 
8. -H 

:PREMISE 
:PREMISE 
:ASSUMPTION 

:&INTRO,4,3 

:-INTRO,3,5,6 
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Lines 3 to 7 are the subproof in this derivation. A subproof can be identified because 
each line will have the same number of asterisks, and that section of the derivation will 
not be broken by a line with fewer asterisks. A subproof will also always begin with the 
justification ASSUMPTION, which we have in line 3. The main proof, containing lines 
without any asterisks, includes lines 1, 2, and 8. 

Negation Introduction 

What follows in Argument 6 from the assumption of 'H' is a sentence that could not 
possibly be TRUE, namely 

(L & H) 

It could not be TRUE if the premises are all TRUE, because its negation, 

-(L & H) 

was also asserted as the first premise. When one sentence is the exact negation of 
another sentence, we shall say that the sentences contradict one another. This is the 
second new idea introduced in this reasoning. In the language of Chapter 7, these two 
sentences are not "simultaneously satisfiable" and thus are "inconsistent." More impor- 
tant, since our rules are truth-preserving, when contradictory sentences are derived from 
premises and an assumption, the premises plus the assumption are not simultaneously 
satisfiable either. And this means that if the premises are satisfied, then the assumption 
is not satisfied. Thus, finally, if the premises are satisfied, then the negation of the 
assumption is also satisfied. 

Therefore, when we have derived two sentences that contradict one another, such 
as '(L & H)' and its negation, '-(L & H)', in a subproof that begins with an assumption, 
we are then permitted to derive the negation of that assumption, the justification being 
-INTRO. The reasoning behind this rule has been frequently employed in philosophy, 
mathematics, theology, and other fields such as law and the natural sciences. Its tra- 
ditional Latin name is reductio ad absurdum, or, translating the expression, "reduction 
to an absurdity." The reductio ad absurdum principle is that if we correctly reason to 
two sentences that cannot both be TRUE, then at least one of our earlier claims must 
be mistaken. 

The use of the new rule -INTRO in line 7 is our special concern at this point. 

-INTRO If from an assumption P both a sentence Q and its negation -Q can 
be derived in the same subproof, then 
-P 

may be derived in that subproof. 

Notice that the rule refers to three previous lines, all in the same subproof: line 3 
(the assumption) is cited first, then line 5, and finally line 6, which contains the negation 
of the sentence on line 5. 
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The missing elements in this derivation are the justifications for lines 4, 6, and 8. 
We can see that the sentence of line 4 in the subproof is the same as the sentence of 
line 2. And the sentence of line 6 is the same as that of line 1. Furthermore, the sentence 
of line 8 is the same as that of line 7. 

SEND and RETURN 

We require that a subproof be a proof in its own right (with ASSUMPTION serving a 
role much like that of PREMISE) and that the subproof be distinct from the main proof 
and from other subproofs. Because they are independent sections of the derivation, the 
subproof and the main proof must "communicate" with each other. The flow of information 
between a subproof and the main proof can be in one of two directions. Information can 
be sent from the main proof into the subproof-as we seem to have in the derivation 
for Argument 6 from line 2 to line 4 and from line 1 to line 6. Or information can be 
returned from the subproof to the main proof, as occurs between lines 7 and 8. 

We shall justify information legitimately flowing into a subproof with a new rule SEND 
plus the citation of the earlier line number outside of the subproof. The justification SEND 
can be used, provided: 

1. We are in a subproof with more asterisks than the cited line. 
2. The sentence being "sent" is exactly the sentence in the cited line. 
3. Every line between the SEND line and the cited line has at least as many asterisks 

as the cited line. 

We shall justify information legitimately flowing out of a subproof with a new rule 
RETURN plus the citation of a line in the subproof. The justification RETURN can be 
used, provided: 

1. We are outside of the subproof, with one less asterisk than the cited line. 
2. The sentence being returned is exactly the sentence in the cited line. 
3. There is no line between the present line and the cited line with fewer asterisks 

than the cited line. 
4. The cited line has the justification -INTRO. 

This last proviso is to ensure that the returned information is not "contaminated" with 
any specific information stemming from the assumption. 

With these newly available justifications, our proof of '-H' becomes a complete, 
correct derivation of '-H' from premises '-(L & H)' and 'L'. 

1. -(L&H) 
2. L 
* 3. H 
* 4. L 
* 5. (L & H) 
*6. -(L&H) 
* 7. -H 
8. -H 

:PREMISE 
:PREMISE 
:ASSUMPTION 
:SEND,2 
:&INTRO,4,3 
:SEND,1 
:-INTRO,3,5,6 
:RETURN,? 
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The lines 3 to 7 are the subproof of this derivation. The subproof begins with an as- 
sumption, as all subproofs do. Information is "sent into" the subproof at lines 4 and 6. 
Information is "returned from" the subproof to the main proof in line 8. 

Rules such as SEND and RETURN are little more than "repetition" rules, which 
allow us to repeat a sentence that occurs earlier in a proof. But these repetitions have 
a twist: They are really communications between sections of the proof that are at different 
"levels"-between a main proof and a subproof, or between a subproof and a more 
deeply nested subproof. 

The rules SEND and RETURN, which allow communication between different levels 
of a derivation, are included in our formal deduction system for several reasons. One is 
that the communication between a main proof and a subproof is very much like the 
communication that occurs between a main procedure and a subprocedure in an al- 
gorithm or a computer program. Recent developments in good programming style have 
emphasized the importance of explicitly declaring what information is being transferred 
into and out of subprocedures. 

The information contained in sentences of the main proof is much like the information 
stored in so-called "global" variables in a program. A global variable is the name for 
information that can be accessed or changed at any point in the entire program. Hence 
it is "global" information. Analogously, the information contained in the sentences of the 
main proof of a derivation-the lines without asterisks-can be used anywhere in a proof, 
in a subproof, in sub-subproofs, and so on, provided that it is first sent. On the other 
hand, so-called "local" variables are names for stored information which can only be 
used in restricted sections of an algorithm. Outside of these restricted sections, the 
variables cannot be used at all; if they are used, they may have undesirable values. The 
information contained in our assumptions and the sentences dependent on them are 
much like local variables. The information such sentences contain cannot, in general, 
be used outside of the subproofs that contain the sentences. The only exceptions to 
this; are those situations that allow the use of the RETURN rule. 

More metaphorically, we can think of the information in subproofs as being "im- 
pounded" because it is known to be "contaminated" by a dubious sentence, the as- 
sumption. Because of these suspicions, information in a subproof is not allowed to "leak 
out" to the outside world. The restrictions on communication with the outside world are 
policed by the rules SEND and RETURN. 

Using Subproofs 

Before we continue, several observations must be made. First, if you are attempting to 
show that the conclusion of an argument can be derived from the premises, then the 
conclusion must be in the main proof. That is, the conclusion must be the sentence on 
the last line of the derivation, and that line cannot have any asterisks. This condition is 
necessary to ensure that the conclusion is not dependent on any assumption we might 
have made. 

Second, no rule except SEND or RETURN is permitted to cite a line in another 
subproof or outside of that subproof. In practice, this implies that no line can ever cite 
a line that has more or fewer asterisks-unless the justification is SEND or RETURN. 
In the above example, we might have been tempted to create this "derivation": 



170 
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2. L 
* 3. H 
* 4. (L & H) 
* 5. -H 
6. -H 

CHAPTER 8 

:PREMISE 
:PREMISE 
:ASSUMPTION 
:&INTRO,2,3 [Incorrect] 
:-INTRO,3,4, 1 [Incorrect] 
:RETURN,5 

Lines 4 and 5 are incorrect for the following reason. The &INTRO rule cannot cite a line 
which is outside of its own subproof. (In line 4 it is used incorrectly to cite line 2.) The 
information concerning 'L' must be sent into the subproof. Similarly, the information 
concerning '-(L & H)' must also be sent into the subproof before the -INTRO rule can 
refer to it. 

Finally, notice two facts about asterisks. An asterisk is added to a line only by the 
justification ASSUMPTION. And an asterisk is removed from a line only by the justification 
RETURN. 

Using -INTRO 

Is the -INTRO rule truth-preserving? Suppose that the premises of a derivation are all 
TRUE. Suppose further that -INTRO is used to derive -P but that -P is somehow 
FALSE. If -P is FALSE, then the assumption P of the subproof for -INTRO must be 
TRUE. But if the assumption P is TRUE, then how could the contradictory sentences 
arise? There are only two ways that two contradictory sentences can arise if the as- 
sumption is TRUE: 

1. SEND is not truth-preserving. 
2. The other available rules, &INTRO and &ELIM, are not truth-preserving. 

But SEND is surely the most truth-preserving of all our rules: it merely copies a previous 
sentence. And we have already seen that &INTRO and &ELIM are truth-preserving. 

So two contradictory sentences cannot arise in a subproof if all previous sentences 
are TRUE, unless the assumption is FALSE. And if the assumption P is FALSE, then 
its negation, -P, must be TRUE. Thus with premises that are TRUE, the subproof using 
-INTRO results in a sentence -P that is also TRUE. So, the -INTRO rule is truth- 
preserving. 

Before introducing the next rule, let us consider some applications of -INTRO, 
SEND, and RETURN. 

Argument 7 
A 

:. --A 
Derivation 

1. A 
* 2. -A 
* 3. A 

.* 4. --A 
5. --A 

:PREMISE 
:ASSUMPTION 
:SEND,1 
:-INTRO,2,3,2 
:RETURN,4 
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This is a proof that from a sentence, P, its double negation, --P, can be derived. Notice 
that the -INTRO rule requires us to add a negation sign to the assumption. This results 
in P's acquiring two negation signs. Notice also that line 4 cites line 2 twice: once because 
it must cite the assumption, and again because the sentence in line 2 is the negation 
of the sentence in line 3. Check carefully, and you will see that asterisks, indenting, the 
SEND rule, the RETURN rule, and the -INTRO rule are all correctly used. 

Argument 8 
A 

:. -(-A & B) 
Derivation 

1. A 
*2. (-A&B) 
* 3. -A 
* 4. A 
* 5. -(-A & -8) 
6. -(-A&-8) 

:PREMISE 
:ASSUMPTION 
:&ELIM,2 
:SEND,1 
:-INTR0,2,4,3 
:RETURN,5 

Negation Elimination 

The rule negation elimination, or -ELIM, enjoys an even closer relationship to -INTRO 
than &ELIM does to &INTRO. As a result, there are virtually no ideas in -ELIM that we 
have not seen in -INTRO. 

-ELIM If from an assumption -P both a sentence Q and its negation -a can 
be derived in the same subproof, then 

p 
may be derived in that subproof. 

The parallelism between the two rules, -INTRO and -ELIM, can be seen when we 
compare the steps to be used in applying each. 

-INTRO -ELIM 

In a subproof: 
Assume P. 
Derive a sentence, Q. 
Derive the negation 

of that sentence, -a. 
Derive, by -INTRO, 

the negation of the 
assumption, -P. 

In a subproof: 
Assume -P. 
Derive a sentence, Q. 
Derive the negation 

of that sentence, -Q. 
Derive, by -ELIM, the 

assumption without 
its negation, P. 

In other words, -INTRO adds (introduces) a negation sign to the assumption, while 
-ELIM removes (eliminates) a negation sign from the assumption. The names of the 
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rules give us a hint about when they are appropriately applied. If we wanted to derive 
a sentence that has a negation sign in front of it, we might consider assuming the 
sentence without its negation sign, then use -INTRO. If we want to derive any sentence, 
we might consider assuming the sentence with a negation, then use -ELIM. 

The same conditions governing subproofs, SEND, and RETURN that applied to 
-INTRO also apply to -ELIM. In particular, the rule RETURN must be modified to allow 
citation of a -ELIM line as well as a -INTRO one. So, there is very little new in -ELIM. 

Let us consider some examples. 

Argument 9 
--A 

:. A 
Derivation 

1. --A 
* 2. -A 
* 3. --A 
* 4. A 
5. A 

:PREMISE 
:ASSUMPTION 
:SEND,1 
:-ELIM,2,2,3 
:RETURN,4 

Notice carefully what our strategy was. We wanted to derive the conclusion, 'A', using 
-ELIM. So we assumed '-A' and searched for two contradictory sentences. 

Argument 10 
-(-A&-B) 
-A 

:. 8 
Derivation 

1. -(-A&-B) 
2. -A 
* 3. -8 
* 4. -A 
*5. (-A&-B) 
* 6. -(-A & -8) 
* 7. 8 
8. B 

:PREMISE 
:PREMISE 
:ASSUMPTION 
:SEND,2 
:&INTRO,4,3 
:SEND,1 
:-ELIM,3,5,6 
:RETURN,? 

Notice again our strategy. We wanted to derive the conclusion, 'B'. So we assumed its 
negation, '-8', and sought two contradictory sentences. 

Comment Lines in a Derivation 

In longer proofs such as the one above, we will occasionally write notes to ourselves 
on what we are trying to do. These notes will help enormously in the creation of proofs. 
These notes to ourselves will be called comments and will look like the following: 
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/BEGIN: ~ELIM to derive B/ 
/END: ~ELIM to derive B/ 

These lines are not "officially" part of the derivation, and so they do not have line numbers. 
Comments will start and finish with slashes (/). With comments added, the previous 
derivation would look like this: 

1. ~(~A&~B) 
2. ~A 

* 3. 
* 4. 
* 5. 
* 6. 
* 7. 

/BEGIN: 
~B 
~A 
(~A& ~B) 
~(~A & ~B) 
B 
/END: 

:PREMISE 
:PREMISE 

8. B 

~ELIM to derive B/ 
:ASSUMPTION 
:SEND,2 
:&INTRO,4,3 
:SEND,1 
:~ELIM,3,5,6 

~ELIM to derive B/ 
:RETURN,? 

Because these comments are very useful, we should develop some guidelines, or 
suggestions, for when they are properly used. 

1. Every /BEGIN .. ./ comment should have a corresponding /END .. ./ comment. 
2. Such comments are strongly recommended when rules using subproofs are 

applied, such as ~INTRO and ~ELIM. They remind us of our target, or goal, 
when we begin a subproof. 

3. When these comments are used to state the goal of a subproof, indent them the 
same amount the subproof would be indented. 

4. In creating a derivation, one should always work toward the goal of the last 
/BEGIN .. ./ comment that lacks a matching /END .. ./ comment. 

The purpose of such comments should always be to help us keep in mind where we 
are going and what rule we are about to apply. For this reason, a few such comment 
lines are helpful, but too many would obscure the goal of our derivation. 

The following derivation shows an elaborate use of ~INTRO and ~ELIM, as well 
as of our optional comments. 

Argument 11 
~(~A& ~B) 
~(A & ~C) 
~(B & ~C) 

:. C 
Derivation 

1. ~(~A&~B) 
2. ~(A& ~C) 
3. ~(B & ~C) 

:PREMISE 
:PREMISE 
:PREMISE 
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/BEGIN: -ELIM to derive Cl 
*4_ -C :ASSUMPTION 

/BEGIN: Derive ( - A & - B) and - ( - A & - 8)/ 
/BEGIN: - INTRO to derive - A/ 

**5. A :ASSUMPTION 
**6. - C :SEND,4 
**7. (A & - C) :&INTRO,5,6 
**a. - (A & - C) :SEND,2 
**g_ - A : - INTRO,5,7,8 

/END: - INTRO to derive - A/ 
* 10. - A :RETURN,9 

/BEGIN: - INTRO to derive - 8/ 
** 11. B :ASSUMPTION 
** 12. - C :SEND,4 
**13. (B & - C) :&INTRO, 11, 12 
**14. - (B & - C) :SEND,3 
**15. - B : - INTRO,11,13,14 

/END: - INTRO to derive - 8/ 
*16. - B :RETURN,15 
*17. (-A&-8) :&INTRO,10,16 
*1a. - ( -A & - B) :SEND,1 

/END: Derive ( - A & - B) and - ( - A & - 8)/ 
*19. C :- ELIM,4,17,18 

/END: - ELIM to derive C/ 
20. C :RETURN, 19 

The basic strategy here, as our first comment tells us, was to apply -ELIM in the hope 
of deriving the conclusion, ·c·. But once we have assumed '-C', we must then look for 
our two contradictory sentences. An early guess was made that these two might be 

(-A & -B) 

and 

-(-A & -B) 

The second sentence is, of course, just the first premise. But to derive '(-A & -8)' we 
might first derive '-A', then derive '-8'-and then put them together later with &INTRO. 
We can use our comments alone to sketch our strategy. 

/BEGIN:-ELIM to derive C/ 
/BEGIN: Derive (-A & -8) and -(-A & -8)/ 

/BEGIN: &INTRO to derive (-A & -8)/ 
/BEGIN: -INTRO to derive -A/ 
/END: -INTRO to derive -Al 
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/BEGIN: 
/END: 

/END: 
/END: 
/END: 

~INTRO to derive ~B/ 
~INTRO to derive ~B/ 

&INTRO to derive (~A & ~B)/ 
Derive (~A & ~ B) and~ (~A & ~ 13)./ 
~ELIM to derive Cl 

Completeness 

There is a sense in which the formal deduction system we have given so far, with only 
the justifications or rules 

PREMISE 
ASSUMPTION 

SEND 
RETURN 

&INTRO 
&ELIM 

~INTRO 
~ELIM 

is complete. First, notice that any sentence using the sentence connectives&, ~, v, -. 
NOR, NAND, and so on, is logically equivalent to a sentence using only the connectives 
~ and &. For example: 

(P v Q) is logically equivalent to ~(~P & ~Q). 
(P - Q) is logically equivalent to ~(P & ~Q). 

So we can translate any sentence using these connectives into a logically equivalent 
sentence that contains only ~ and & as connectives. There is even an algorithm to make 
this translation-although we will not give it here. (See Exercise F.) 

Furthermore, our paired rules 

&INTRO 
&ELIM 

and 

~INTRO 
~ELIM 

are sufficient to derive any conclusion that validly follows from a set of premises, so long 
as the premises and conclusion are expressed using only ~ and &, though we shall not 
prove that here. 

But because the derivations using only these rules would often be very long and 
difficult to construct-mainly because of the cumbersome ~INTRO and ~ELIM rules- 
we shall proceed in the next chapter to introduce additional rules of inference which 
apply directly to sentences containing v, -. and -- 
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Summary 

The notion of a iormal system was introduced. Then we said that a natural deduction 
system is a formal system whose elements are sentences and whose rules are truth- 
preserving. The natural deduction system developed so far has the following rules. (We 
list the names of the rules with a brief, informal statement of each rule.) 

PREMISE-P.remises are placed at the beginning of a derivation. 
ASSUMPTION-Any sentence may be assumed as the first line of a subproof. 
&INTRO-If P and Q are earlier lines, 

then (P & Q) is derivable. 
&ELIM-If (P & Q) is an earlier line, 

then P and Q are each derivable. 
-INTRO-If the assumption Pleads to a contradiction, 

then -Pis derivable. 
-ELIM-If the assumption -Pleads to a contradiction, 

then Pis derivable. 
SEND-Any earlier line in a proof may be sent to a subproof. 
RETURN-The last line of a subproof may be returned out of the subproof 

under certain restrictions. 

A derivation in our system is a numbered sequence of lines containing sentences 
and justifications. We distinguish between the main proof and subproofs. Finally, we 
use comments to help ourselves to structure the derivation, but such comments are not 
formally a part of the derivation. 

Exercises 

A. Stars and Slashes 
1. Why is '/B*A' a losing string? 
2. Why is 'A*B' a losing string? 
3. Is string S on page 155 a winning string? If so, how can it be constructed? 

If it's a losing string, why is it a losing string? 
B. Formal Systems 

1. Suppose that we describe a new game, Left and Right, where we want to 
distinguish left and right slashes. In this game, winning strings with a '/' on 
the left will now have'(', and those with a'/' on the right will now have')'. 
a. What would be an appropriate modification of rule 3? 
b. Construct two winning strings and two losing strings in the game of Left 

and Right. Show how the winning strings can be derived and why the 
losing strings cannot be derived. 

2. a. Write down a complete set of rules for a further modification in which the 
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symbol * is replaced by symbols for addition, multiplication, subtraction, and 
division. (Call the new system the game of Arithmetical Formulas.) 
b. Construct two winning strings and two losing strings in the game of Arith- 
metical Formulas. Show how the winning strings can be derived and why the 
losing strings cannot be derived. 

3. Modify the system still further by adding a new symbol that represents a 
"prefix" operation (for instance, a symbol V to represent the square-root 
operation, or a symbol - to represent the "forming the negative of" operation). 

C. Natural Deduction System 
Use the natural deduction system developed in this chapter to give derivations 
of the conclusions of the following arguments: 
1. (A & 8) 

-(A & -C) 
:. C 

2. A 
-(-8 & 8) 

3. -(A & -8) 
-8 
-A 

4. (A & -A) 
.-. 8 

5. -(A & -8) 
A 
8 

D. Symbolize the following arguments, and give derivations of them: 
1. It's not the case that both Alfred is an artist and Carol is a scientist. Since 

Alfred is an artist, Carol isn't a scientist. 
2. It's not the case that both David is hungry and Evelyn isn't. But Evelyn isn't 

hungry. So David isn't hungry. 

E. A conclusion of a derivation with no premises is a theorem. To show that a 
sentence is a theorem, begin with an assumption, so that the only line of the 
main proof is the last one. Give derivations of the following theorems. 
[Hint: Use -INTRO for each of these.] 
1. -(A & -A) 
2. -((A & 8) & -(A & 8)) 
3. -((-(A & -8) & A) & -8) 

F. Logical Equivalences 
1. Give an algorithm for replacing each of the following sentences with a logically 

equivalent sentence whose only connectives are - and &. 
(P-Q) 
(P V Q) 
(P ~ Q) 
(P NOR Q) 
(P NANO Q) 
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2. Consider an arbitrary sentence whose only connectives are (possibly) - , &, 
v, -, and-». Construct an algorithm for finding a logically equivalent sentence 
whose only connectives are - and &. 

3. a. Show how (P & Q) can be expressed using only NOR. 
b. Show how -P can be expressed using only NOR. 
c. Show how (P & Q) can be expressed using only NAND. 
d. Show how -P can be expressed using only NAND. 

In view of the fact (shown in 1, above) that all sentences can be expressed in 
terms of - and &, and in view of the fact (shown in 3) that all sentences that 
use only - or & can be expressed using only NOR or using only NAND, you should 
be able to see that all sentences can be expressed using only one two-place 
connective, namely, NOR, or else NAND. 



CHAPTER 9 

SENTENTIAL LOGIC: 
Additional Rules 

of Inference 

In the previous chapter, we studied two 
pairs of rules for deriving sentences from other sen- 
tences. As we mentioned, these four rules-&INTRO, 
&ELIM, -INTRO, and -ELIM-are sufficient to derive 
all sentences that can be validly inferred from given 
premises. There are, however, two factors that make 
using only these four rules somewhat inconvenient. One 
factor is that two of the rules, -INTRO and -ELIM, 
require us to discover contradictory sentences, but there 
does not seem to be any easy way of finding out in 
advance what these contradictory sentences will be. 
Consequently, in applying -INTRO and -ELIM, we 
must make guesses concerning what these contradic- 
tory sentences might be----or we might even have to 
wade into a subproof hoping accidentally to run across 
two contradictory sentences. 

179 
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The second factor is even more of a hindrance, if we were to apply just the four 
rules we have so far studied. These four rules are sufficient for deriving other sentences 
if these sentences are expressed only as negations and conjunctions. As we saw in 
Chapters 3 and 4, it is useful to have other connectives, such as v, -, ~, and even 
others. We could translate any sentences containing these additional connectives into 
logically equivalent sentences containing only the negation and conjunction connectives. 
But this is not so handy as, say, permitting the symbols v and - to have their own rules. 
In this chapter we shall broaden our deduction system to include additional rules. These 
rules are not really needed, but they will often make the job of constructing a derivation 
considerably easier than trying to work only with the four rules of Chapter 8. 

Conditional Introduction and Elimination 

One of the most frequently used patterns of reasoning has this form: 

If P, then Q. 
P. 
Therefore, a. 

For example: 

If the butler had a motive, then the butler committed the crime. 
The butler did have a motive. 
Therefore, the butler committed the crime. 

This pattern of correct reasoning was recognized as such from earliest times. Its Latin 
name is modus ponens. When symbolized, the pattern of such arguments is: 

(P-Q) 
p 
Q 

Because the sentence (P- Q) is logically equivalent to the sentence -(P & -Q), the 
above argument is valid iff the argument 

-(P&-Q) 
p 
Q 

is valid. In the previous chapter, we gave a derivation of an argument having just this 
pattern. It is: 
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1. -(P & - Q) :PREMISE 
2. P :PREMISE 

/BEGIN: - ELIM to derive Q/ 
*3_ -Q :ASSUMPTION 
* 4. P :SEND,2 
*s. (P & - Q) :&INTR0,4,3 
*6. - (P & - Q) :SEND, 1 
*7_ Q :- ELIM,3,5,6 

/END: - ELIM to derive Q/ 
8. Q :RETURN,7 

Since (P- Q) is logically equivalent to -(P & -Q), and since the argument pattern 
-(P & -Q), P .-.Q is truth-preserving, then the pattern (P- Q), P .-.Q must also be truth- 
preserving. This observation forms the basis of our next rule: conditional elimination, or 
-ELIM for short. 

-ELIM From a sentence of tHe form 
(P-Q) 

and a sentence of the form 
p 

you may derive the sentence 
Q 

A more direct way of seeing that this rule is truth-preserving would be to examine the 
truth table for (P - Q). There will be no situation where P and (P - Q) are both TRUE 
but Q is FALSE. 

Let us now look at several applications of the -ELIM rule in derivations. 

Argument 1 

(A- (B- C)) 
A 

.-. (B- C) 

Derivation 

1. (A- (B- C)) 
2. A 
3. (B- C) 

:PREMISE 
:PREMISE 
:-ELIM,1,2 

Here, the conclusion is itself a conditional, '(B - C)'. 
Be sure that the two sentences have the required pattern before applying the rule 

-ELIM. That pattern is: 

( <sentence 1 > - <sentence 2>) 
<sentence 1 > 
Therefore, <sentence 2> 
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That is, the derived sentence is the consequent of the conditional. And the antecedent 
of that conditional must also be a distinct sentence on a separate line. 

It is quite easy to become momentarily confused and to think of this pattern: 

( <sentence 1 > - <sentence 2>) 
<sentence 2> 
Therefore, <sentence 1 > 

As we saw in Chapter 6, this argument pattern is not valid, and a rule based upon it 
would not be truth-preserving. This non-truth-preserving pattern of reasoning is so often 
employed that it is termed a fallacy, specifically, the fallacy of "affirming the consequent." 

The companion rule of -ELIM is the rule conditional introduction, or -INTRO for 
short. 

If from an assumption of the form 
p 

a sentence 
Q 

can be derived in the same subproof, then you may derive 
(P-Q) 

The rule -INTRO, like the earlier rules -INTRO and -ELIM, requires a subproof 
beginning with an assumption. The intuitive reasoning behind the rule is not difficult to 
understand. Suppose a sentence, P, were TRUE. Consider a sentence, Q, that can be 
derived from the assumption of P. If Q can be derived from the assumption of P, then 
we have shown Q on condition that P-that is, if P then Q. 

The rule -ELIM is used when we wish to reduce the number of conditional con- 
nectives. The rule -INTRO, however, is used when we wish to derive a sentence whose 
main connective ls-». 

Here are some applications of the rule: 

Argl!ment 2 

(A-B) 
(B- C) 
(A-C) 

Derivation 

1. (A- B) 
2. (B- C) 
*3. A 
*4. (A- B) 
*5. (B-C) 
*6. B 
*7. C 
*a. (A- C) 
9. (A- C) 

:PREMISE 
:PREMISE 
:ASSUMPTION 
:SEND,1 
:SEND,2 
:-ELIM,4,3 
:-ELIM,5,6 
:-INTRO,3,7 
:RETURN,8 
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Before beginning the derivation, we observe that the conclusion, '(A- C)', is a condi- 
tional. Normally, when we wish to derive a conditional, we should proceed so that 
-INTRO can be applied. In order to apply -INTRO, we must first begin with an as- 
sumption, and this assumption should be the antecedent of the conditional we are trying 
to derive. Once a subproof is begun with this assumption, our goal should then be to 
derive the consequent of the desired conditional. Once we have an assumption and the 
consequent of this conditional, we may then apply -INTRO-and the result will be 
exactly what we wanted. Note that -INTRO cites two previous line numbers, which 
must both be in the same subproof: first the assumption, then another sentence (the 
consequent of the desired conditional). Observe also that the rule RETURN is now 
expanded to permit the citation of a line where -INTRO was applied. 

We can perhaps better see the strategy in this derivation if we add our comments: 

1. (A- B) :PREMISE 
2. (B - C) :PREMISE 

/BEGIN: -INTRO to derive (A- C)/ 
*3. A :ASSUMPTION 

/BEGIN: -ELIM to derive Cl 
* 4. (A- B) :SEND, 1 
*s. (B - C) :SEND,2 
*s. B :-ELIM,4,3 
*7. C :-ELIM,5,6 

/END: -ELIM to derive C/ 
*a. (A- C) :-INTRO,3,7 

/END: -INTRO to derive (A- C)/ 
9. (A - C) :RETURN,8 

Let's consider another example. 

Argument 3 

(A&B) 
:. (C-A) 

Here, it should be clear that -INTRO should be used. The conclusion contains an-, 
while the only premise does not. To apply-INTRO and have the result turn out correctly, 
we must assume the sentence 'C', then work toward the sentence 'A' in that subproof. 

Derivation 

1. (A & B) :PREMISE 
/BEGIN: - INTRO to derive (C - A)/ 

*2. C :ASSUMPTION 
*3. (A & B) :SEND, 1 
* 4. A :&ELIM,3 
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*5_ (C - A) : - INTR0,2,4 
/END: - INTRO to derive (C - A)/ 

6. (C - A) :RETURN,5 

We observe that the conclusion is a conditional, probably to be reached by -INTRO. 
If we are to apply-INTRO to obtain '(C- A)', we must assume 'C', then (somehow) 
derive 'A'. In line 2, we assume 'C'. Practically the only reasonable step open to us at 
this point is to "send" the single premise into the subproof. Once we do this, it is, of 
course, easy to derive 'A'. 

Argument 4 

A 
:.(B- (C- A)) 

Derivation 

1. A :PREMISE 
/BEGIN: - INTRO to derive (B - (C - A))/ 

*2. B :ASSUMPTION 
/BEGIN: - INTRO to derive (C - A)/ 

**3. C :ASSUMPTION 
**4. A :SEND,1 
**s. (C - A) : - INTR0,3,4 

/END: - INTRO to derive (A- A)/ 
*6. (C - A) :RETURN,5 
*7. (B - (C - A)) :-INTR0,2,6 

/END: - INTRO to derive (B - (C - A))/ 
8. (B - (C - A)) :RETURN,7 

This derivation uses two applications of-INTRO, with the result that there is a subproof 
within a subproof. The desired conclusion is '(B - (C - A))'. Since the conclusion is a 
conditional, the appropriate rule to use seems to be-INTRO. To arrive at this conclusion 
we must assume 

B 

which is the antecedent of the conclusion, and work toward 

(C-A) 

But '(C- A)' is itself a conditional, which suggests another use of -INTRO. To reach 
'(C - A)', we again apply-INTRO, beginning with the assumption of sentence 'C' and 
working toward sentence 'A'. The overall strategy is: 



185 

ADDITIONAL RULES 

/BEGIN: -INTRO to derive (B - (C - A))/ 
/BEGIN: -INTRO to derive (C - A)/ 
/END: -INTRO to derive (C - A)/ 

/END: -INTRO to derive (B - (C - A))/ 

This plan of attack virtually dictates the final form of our derivation. For example, the 
remark 

/BEGIN: -INTRO to derive (B - (C - A))/ 

dictates that the next step should be the assumption of the antecedent, 'B'. 

Disjunction Introduction and Elimination 

We have two paired rules for dealing with sentences involving disjunctions. They are 
disjunction introduction, or vlNTRO for short, and disjunction elimination, or vELIM for 
short. 

The first rule, vlNTRO, is a rule of deceptive simplicity. 

vlNTRO From any sentence of the form 
p 

you may derive 
(PvQ) 

or you may also derive 
(Qv P) 

It states that from any sentence, P, you may derive a sentence that has another sentence, 
Q, "added" to P. For this reason the rule is occasionally called "addition." The sentence 
added to the sentence we already have may be any sentence whatever. Thus lines 2 
to 5 are all legitimate applications of vlNTRO: 

1. A 
2. {Av B) 
3. {Av (C & D)) 
4. ((E - {F v G)) v A) 
5. ((Av B) v (Av B)) 

:PREMISE 
:vlNTRO,1 
:vlNTRO,1 
:vlNTRO,1 
:vlNTRO,2 

In the second line, 'B' is the added sentence. In the third line, it is the molecular sentence 
'(C & D)'. In the fourth line, the molecular sentence 

(E- (F v G)) 

is added to the sentence 'A', but 'A' is the second disjunct. In the fifth line, we added 
'(AV B)' to itself. 
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Because the rule vlNTRO is extremely generous and can be applied to any sentence 
whatever, the stumbling block is not in learning what the rule is but rather in learning 
when and how to use it and what sentence to add. As with our other rules, some hint 
of when the rule vlNTRO should probably be used is given by its name. The rule vlNTRO 
should usually be used when we have a disjunction to derive. For example, consider 
the following valid argument: 

Argument 5 

(A&B) 
:. (C- (Av D)) 

The desired conclusion is a conditional: (C- (Av D)). This suggests that the major 
strategy should probably be -INTRO. We would begin by assuming sentence 'C'. But 
observe that once we have done this, we should then derive '(Av D)'. This sentence is, 
of course, a disjunction and suggests that vlNTRO should then be used. Our strategy, 
then, is sketched as follows: 

/BEGIN: -INTRO to derive (C- (Av D))/ 
/BEGIN: vlNTRO to derive (Av D)/ 
/END: vlNTRO to derive (Av D)/ 
/END: -INTRO to derive (C - (Av D))/ 

The resulting derivation is: 

1. (A & B) :PREMISE 
/BEGIN: - INTRO to derive (C - (Av D))/ 

*2. C :ASSUMPTION 
/BEGIN: vlNTRO to derive (Av D)/ 

*3. (A & B) :SEND, 1 
* 4. A :&ELIM,3 
*s. (Av D) :vlNTRO,4 

/END: vlNTRO to derive (Av D)/ 
*6. (C - (Av D)) :-INTRO,2,5 

/END: - INTRO to derive (C - (Av D))/ 
7. (C - (Av D)) :RETURN,6 

At step 5, absolutely any sentence could have been "added" to sentence 'A'. But since 
we were aiming for '(Av D)', the natural addition was the sentence 'D'. 

Here is another application of vlNTRO: 

Argument 6 

((Av B)- C) 
A 

:. C 
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Derivation 

1. ((AvB)-C) 
2. A 
3. (Av 8) 
4. C 

:PREMISE 
:PREMISE 
:vlNTR0,2 
:-ELIM,1,3 

The rule vELIM is also simply stated: 

vELIM From a sentence of the form 

(PvQ) 

and one of the form 

-P 

you may derive 

Q 

Or, alternatively, from a sentence of the form 

(PvQ) 

and one of the form 

-a 
you may derive 

p 

In other words, from a disjunction and a sentence that is the negation of one of the 
disjuncts, you may derive the other disjunct. 

The simplest example showing the application of this rule is as follows: 

Argument 7 

(AvB) 
-A 
B 

Derivation 

1. (Av 8) 
2. -A 
3. B 

:PREMISE 
:PREMISE 
:vELIM,1,2 
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Observe that the rule vELIM cites the line with the disjunction first, and the second 
citation is the line with the negated sentence. 

Here is another application of vELIM: 

Argument 8 

(BvC) 
(A- -C) 

:. (A- B) 

At first, this argument might not look too promising for an application of vELIM. We have 
a disjunction, '(8 v C)', and one conditional, '(A- -C)'. The desired conclusion is a 
conditional, and so we might try an -INTRO strategy by assuming 'A'. We now try to 
derive 'B' in the subproof. 

Derivation 

1. (Bv C) 
2. (A- -C) 

Argument 9 

1. (Bv- C) 
2. C 
3. 8 

:PREMISE 
:PREMISE 

/BEGIN: - INTRO to derive (A- 8)/ 
*3. A :ASSUMPTION 
* 4. (A - -C) :SEND,2 
*5. - C : - ELIM,4,3 
*6. (B v C) :SEND, 1 
*7. 8 :vELIM,6,5 
*a. (A- B) :- INTR0,3,7 

/END: - INTRO to derive (A - 8)/ 
9. (A- B) :RETURN,8 

Please note that the next example is an incorrect use of vELIM: 

:PREMISE 
:PREMISE 
:vELIM, 1,2 [Incorrect] 

Later in this chapter, we will see how to derive '--C' from C and so correctly derive 
the conclusion: 

1. (Bv-C) 
2. C 
3. --c 
4. B 

:PREMISE 
:PREMISE 
:RR DN,2 (see "Rules of Replacement") 
:vELIM,1,3 
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Truth Preservation 

Are the last four rules of inference we have introduced- -ELIM, -INTRO, vlNTRO, 
and vELIM-truth-preserving? There are two methods we can use in answering this 
question. We might, for example, try to show directly that such a rule will never produce 
FALSE sentences out of TRUE ones. We could examine a truth table to see if there is 
a possible situation where the earlier sentences are TRUE but the derived sentence is 
FALSE. Another, and usually easier, method is to show that the new rule is derivable 
from rules that we already have and which are known to be truth-preserving. By "derivable 
from" we mean here that the new rule can only derive sentences that earlier rules could 
also have derived. 

We can readily see that the rule vlNTRO is derivable from a combination of other 
previously introduced rules which are all known to be truth-preserving. The pattern of 
inference we see with vlNTRO is: 

p 
:. (P v Q) 

where Q can be any sentence. Is such a rule truth-preserving? If we intend to apply the 
second method of showing that it is truth-preserving, we ask: Are there steps using 
previous rules that would get us from P to (P v Q)? The answer is yes, as the following 
derivation (repeated from the previous chapter) shows: 

1. p 
*2. (-P & - Q) 

*3, p 
*4, - p 
*5, - ( - p & - Q) 
6. -(-P&-Q) 

:PREMISE 
:ASSUMPTION [ - ( - P & - Q) is 

logically equivalent to (P v Q)] 
:SEND,1 
:&ELIM,2 
:- INTRO,2,3,4 
:RETURN,5. 

In other words, wherever we have a derivation that has already reached the sentence, 
P, we could insert the above derivation (with line numbers altered) and arrive at 
-(-P & -Q), without ever having to use vlNTRO. 

A similar demonstration is possible to show that vELIM is truth-preserving. To show 
that -INTRO is truth-preserving is difficult using the second rnsthqd but rather easy 
using the first method. 

Biconditional Introduction and Elimination 

The last of the frequently used connectives for which we have not yet given truth- 
preserving rules of inference is s-. One rule for the biconditional is: 
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~INTRO From a sentence of the form 
(P- Q) 

and another of the form 
(Q- P) 

you may derive 
(P~Q) 

Note that the application of the ~INTRO rule requires two previous sentences. Both 
must be conditionals, and the antecedent of each one is the consequent of the other. 

The other rule for the biconditional is: 

~ELIM From a sentence of the form 
(P~Q) 

you may derive either 
(P-Q) 

or 
(Q-P) 

These two rules, as their names suggest, are usually applied when we need to 
derive a sentence containing ~, or when we need to derive a sentence that does not 
contain ~ from sentences which do. The application of these two rules is shown in the 
following two derivations. 

Argument 10 

(A~ 8) 
A 

:. B 

Derivation 

1. (A~ B) 
2. A 

:PREMISE 
:PREMISE 

/BEGIN: ~ELIM to obtain (A - 8)/ 
3. (A - B) :~ELIM, 1 

/END: ~ELIM to obtain (A - 8)/ 
4. B :-ELIM,3,2 

Observe that the use of ~ELIM in a derivation requires citing one previous line, and 
that line must contain a biconditional. In the above argument, it should be apparent that 
~ELIM would probably have to be applied. One of the premises contains a biconditional, 
while the conclusion does not-therefore, the~ must be "eliminated." 
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Argument 11 

(A & (B - C)) 
(C-B) 
(A & (B - C)) 

Derivation 

1. (A & (B- C)) 
2. (C- B) 
3. A 
4. (B- C) 
5. (B- C) 
6. (A & (B - C)) 

:PREMISE 
:PREMISE 
:&ELIM,1 
:&ELIM,1 
:-INTR0,4,2 
:&INTR0,3,5 

These two rules can easily be shown to be truth-preserving. 

Rules of Replacement 

All the rules we have seen so far are what might be termed "one-way" rules. They permit 
us to derive a sentence from earlier sentences: 

<sentence 1 > 
<sentence 2> 

Derive: 
<sentence 3> 

But this does not mean that from <sentence 3> we could have derived <sentence 1 >. 
For example, from (P & Q) we can derive P; but from P alone we cannot derive (P & Q). 
Furthermore, these rules can be applied only when the entire sentence on a line has 
the appropriate form. For example, from 

1. (A- B) 
2. A 

:PREMISE 
:PREMISE 

we can derive by -ELIM 
3. B :-ELIM, 1,2 

since the sentences on lines 1 and 2 are of the proper form. But note that the following 
derivation is not correct: 



192 

1. ((A - 8) v C) 
2. A 
3. B 

CHAPTER 9 

:PREMISE 
:PREMISE 
:-ELIM, 1,2 [Incorrect] 

The difficulty lies with the fact that even though line 1 contains a conditional, '(A- B)', 
the entire sentence is not a conditional. (It is, in fact, a disjunction.) In brief, then, all our 
earlier rules can be applied to earlier sentences in a derivation, but not to parts of these 
sentences. 

For example, it is quite tempting to try the following derivation: 

1. ((A & B) - C) 
2. (A- C) 

:PREMISE 
:&ELIM, 1 [Incorrect] 

The difficulty here lies in the fact that &ELIM can be applied only to a sentence that is 
a conjunction, not to one containing a conjunction. 

In this last section, we shall introduce rules that are "two-way" and which allow us 
to make alterations in parts of previous sentences. The general name for such rules is 
rules of replacement, or RR for short. 

RR From any sentence containing another sentence, P, as a part: 
( ... p ... ) 

if you know that P is logically equivalent to Q, then you may derive the same 
sentence with P replaced by Q: 

( ... Q ... ) 

In other words, a sentence with a sentence part replaced by a logically equivalent 
sentence may be derived. 

In theory, the application of the replacement rule, RR, would require us always first 
to show that two sentences are logically equivalent before we derive a sentence in which 
one is replaced by the other. But there are a handful of logically equivalent pairs that 
are so frequently used that we can give them names and then appeal to them whenever 
we wish, without having to demonstrate that they are logically equivalent. 

These logically equivalent pairs, along with the names we shall give to them, are: 

p 
(P& Q) 
(P V Q) 
p 
p 
(P & (Q & R)) 
(P v (Q V R)) 
(P & (Q v R)) 
(P v (Q & R)) 
-(P& Q) 
-(P v Q) 
(P-> Q) 
(P-,,Q) 
(P-> Q) 
((P & Q) -,, R) 

--P 
(Q& P) 
(Q VP) 
(P & P) 
(P v P) 
((P & Q) & R) 
((P V Q) V R) 
((P & Q v (P & R)) 
((P v Q) & (P v R)) 
(-P v -Q) 
(-P & -Q) 
(-Q-> -P) 
(-P V Q) 
-(P & -Q) 
(P-> (Q-> R)) 

ON (Double-negation) 
CM (&-Commutativity) 
CM (v-Commutativity) 
ID (&-ldempotency) 
ID (v-ldempotency) 
AS (&-Associativity) 
AS (v-Associativity) 
DIS (&-over-v-Distributivity) 
DIS (v-over-&-Dlstributivity) 
OM (De Morgan) 
OM (De Morgan) 
CN (Contraposition) 
EQ (->/vEquivalence) 
EQ (->/&Equivalence) 
EXP (Exportation) 



193 

ADDITIONAL RULES 

When applying one of these replacement rules in a derivation, you should write 'RR' 
(for "rule of replacement"), then the abbreviation for the particular rule (listed above), 
then the line number of the previous line undergoing a replacement. 

The following short derivations show the correct application of several of these rules. 

Argument 12 

(A & (8 v C)) 
(A & (C v 8)) 

Derivation 

1. (A & (8 v C)) 
2. (A & ( C v 8)) 

:PREMISE 
:RR CM,1 

The only difference between the premise and the conclusion is the second conjunct: the 
second conjunct of the premise is '(B v C)', while the second conjunct of the conclusion 
is '(C v 8)'. Since '(8 v C)' is logically equivalent to '(C v B)', we may replace one with 
the other in the premise, directly obtaining the conclusion. 

Argument 13 

(~A-" 8) 
:. (8 v A) 

Derivation 

1. (~A-'> 8) 
2. (~~Av 8) 
3. (Av 8) 
4. (8 v A) 

:PREMISE 
:RR EQ,1 
:RR DN,2 
:RR CM,3 

Argument 14 

(A & ~(8-" ~C)) 
:. ((A & B) & C) 

Derivation 

1. (A & ~(B-" ~C)) 
2. (A & ~(~B v ~C)) 
3. (A & (~~8 & ~~C)) 
4. (A & (B & ~~C)) 
5. (A & (B & C)) 
6. ((A & 8) & C) 

:PREMISE 
:RR EQ,1 
:RR DM,2 
:RR DN,3 
:RR DN,4 
:RR AS,5 
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Argument 15 

((A v -8) -->- -E) 
(Av(-B&C)) 

:. -E 

Derivation 

1. ((Av -8)-->- -E) 
2. (Av (-8 & C)) 
3. ((A v -8) & ( A v C)) 
4. (AV -8) 
5. -E 

:PREMISE 
:PREMISE 
:RR DIS,2 
:&ELIM,3 
:->-ELIM, 1 ,4 

Throughout all these lines, the main justification for a sentence is "rule of replace- 
ment." We then cite how we know the replacement sentence is logically equivalent to 
the original sentence. One way is to cite by abbreviation one of the logically equivalent 
pairs given in the above list. 

Is the rule RR truth-preserving? That is, if we begin with TRUE sentences, will we 
derive only TRUE sentences, even if we use RR repeatedly? The truth value of a 
compound sentence is a function of the truth values of its parts. This fact was made 
abundantly clear in Chapters 3 through 6. If one of these parts is replaced by a sentence 
having the same truth value, the truth value of the entire sentence will not be changed. 
If the sentence was TRUE before, then replacing a part of that sentence with a part 
known to have the same truth value will result in a sentence which is also TRUE. Logically 
equivalent sentences are just sentences that have the same truth value in all situations. 
Thus the rule RR is truth-preserving: replacing a subformula of a sentence with a sen- 
tence logically equivalent to the part will not change its truth value. 

Sometimes we might not have available the list of logically equivalent sentences 
given above. Or perhaps we might have good reason to believe that two sentences are 
logically equivalent, even though they aren't on the list, and wish to use them in RR. 
What do we do? 

We could demonstrate that the two sentences are logically equivalent by constructing 
a truth table off to the side of the derivation, showing that the two sentences have the 
same truth values in all situations. But this would often be very paper- and time-con- 
suming; we would clutter our otherwise neat derivation with a long digression into what 
derivations are supposed to avoid: considerations of the truth and falsity of sentences. 

Instead of writing a truth table, we shall make use of an earlier observation. Two 
sentences, P and Q, are logically equivalent if and only if the biconditional (P - Q) is 
a tautology. Furthermore, a sentence is a tautology if and only if it can be RETURNed 
from a section of a derivation that does not use SEND on any premises or any lines 
outside of that section. When -INTRO is used on two tautologies, the resulting bicon- 
ditional is a tautology. 

In other words, a biconditional can be shown to be a tautology if we can construct 
a section of the derivation with this structure: 
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/BEGIN: -INTRO to derive (P - Q)/ 
/BEGIN: -INTRO to derive (P - Q)/ 
/END: -INTRO to derive (P - Q)/ 
/BEGIN: -INTRO to derive (Q - P)/ 
/END: -INTRO to derive (Q - P)/ 

/END: -INTRO to derive (P - Q)/ 

and within this section no SEND line is ever applied to lines before this section of the 
derivation. 

Consider the following argument: 

Argument 16 

(B & ((Av A) & A)) 
:. (B & A) 

We might begin by observing that if we could replace ((Av A) & A) with A, the derivation 
would be very simple. Furthermore, we might suspect that the sentences 

((Av A) & A) 

and 

A 

are logically equivalent, which would allow their replacement by RR. We might proceed 
as follows: 

1. (B & ((Av A) & A)) :PREMISE 
/BEGIN: -INTRO to derive 

(A - ((Av A) & A)) for RR/ 
/BEGIN: -INTRO to derive (A - ((A v A) & A))/ 

*2. A :ASSUMPTION 
*3. (Av A) :vlNTRO,2 
* 4. ((A v A) & A) :&INTRO,3,2 
*s. (A - ((A v A) & A)) :-INTRO,2,4 

/END: -INTRO to derive (A - ((Av A) & A))/ 
6. (A - ((A v A) & A)) :RETURN,5 

/BEGIN: -INTRO to derive (((A v A) & A) - A)/ 
*7. ((Av A) & A) :ASSUMPTION 
*a. A :&ELIM,7 
*9. (((Av A) & A) - A) :-INTRO,7,8 

/END: -INTRO to derive (((Av A) & A) - A)/ 
10. (((Av A) & A) - A) :RETURN,9 
11. (A - ((A v A) & A)) :-INTRO,6, 10 

/END: -INTRO to derive (A - ((Av A) & A))/ 
12. (B & A) :RR (2-11),1 
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A careful inspection of lines 2 to 11 will show that no previous lines outside of the section 
were cited. That section of the derivation is "self-contained." Consequently, it can be 
used to show that the sentence in line 11 is a tautology and thus that the two sentences 
are logically equivalent. In line 12 we apply the rule of replacement, RR, using the 
information garnered in lines 2 to 11 that 'A' and '((Av A) & A)' are logically equivalent. 
The replacement of '((Av A) & A)' by 'A' was applied to line 1, so we cite it. 

Modus Tollens 

Another rule for eliminating a conditional is commonly known by its Latin name, modus 
to/lens, or MT for short. It deals with sentences that combine - and - . 

MT From a sentence of the form 
(P-Q) 

and a sentence of the form 
-Q 

you may derive 
-P 

In other words, if we have a conditional sentence and the negation of the consequent 
of that sentence, we may derive the negation of the antecedent. 

Reasoning according to the rule modus to/lens is quite common in everyday affairs. 
An example is: 

If this is a pine tree, then it must have pine cones. 
It does not have pine cones. 
Therefore, this is not a pine tree. 

One way to show that MT is truth-preserving is to derive the desired conclusion: 

1. (P-Q) 
2. -Q 

/BEGIN: 
*3. p 
*4. (P- Q) 
*s. a 
*6. -Q 
*7. -P 

/END: 
8. -P 

:PREMISE 
:PREMISE 

-INTRO to derive -P/ 
:ASSUMPTION 
:SEND,1 
:-ELIM,4,3 
:SEND,2 
:-INTRO,3,5,6 

-INTRO to derive -P/ 
:RETURN,? 

So, MT is truth-preserving, since SEND, -ELIM, -INTRO, and RETURN are truth- 
preserving. What we have shown is that any time we have a sentence of the form 
(P- Q) and a sentence of the form -Q, we can derive a sentence of the form -P. 
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We shall call such a rule a derivable rule, because the validity of this new rule really 
rests on earlier rules. (In fact, as we mentioned earlier, all the rules in this chapter are 
derivable from the rules in Chapter 8.) 

Thus MT (or any derivable rule) used as a justification of a line in a derivation can 
be thought of as an abbreviation of its own derivation (given above). In an unabbreviated, 
or "expanded," derivation, the line whose citation is MT would be replaced by a copy of 
the above derivation, perhaps slightly altered: Each of the sentences P and Q would be 
replaced by appropriate sentences from the abbreviated derivation; the justifications for 
lines 1 and 2 might have to be replaced by the justifications for (P - Q) and -Q from 
the abbreviated derivation; line numbers might have to be changed; and so on. 

An example should clarify this: 

Argument 17 

(-A- 8) 
-8 

:. A 

Abbreviated Derivation 

1. (-A- 8) 
2. -8 
3. --A 
4. A 

:PREMISE 
:PREMISE 
:MT,1,2 
:RR DN,3 

Expanded Derivation 

1. (-A-8) 
2. -8 
*3. :_A 
*4. (-A- 8) 
*5. 8 
*6. -8 
*7. --A 
8. --A 
9. A 

:PREMISE 
:PREMISE 
:ASSUMPTION 
:SEND,1 
:-ELIM,4,3 
:SEND,2 
:-INTR0,3,5,6 
:RETURN,? [instead of MT,1,2] 
:RR DN,8 

There are many other useful derivable rules. Some of these are explored in the 
exercises. (The "expansion" of an "abbreviated" derivation that uses a derivable rule 
corresponds to the expansion of "macros" in assembly-language programming: Instead 
of always spelling out the details of a section of derivation to derive a sentence from 
earlier rules, we give certain steps a name-such as MT-and use that name to refer 
to that sequence of steps.) 
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Summary 

To make derivations simpler and more natural, additional derived rules of inference were 
added to our natural deduction system: introduction and elimination rules for the con- 
nectives v, -, and e-, 

vlNTRO-From P, (P v Q) is derivable. 
vELIM-From (P v Q) and -P, Q is derivable. 
-INTRO-With P as an assumption of a subproof and Q a line of that subproof, 

(P - Q) is derivable in the subproof and may be returned. 
-ELIM-From (P - Q) and P, Q is derivable. 
~INTRO-From (P - Q) and (Q - P), (P ~ Q) is derivable. 
~ELIM-From (P ~ Q), either (P - Q) or (Q - P) is derivable. 

Furthermore, the very powerful rule of replacement (RR) was discussed, along with a 
number of common logical equivalences: 

p 
(P& Q) 
(Pv Q) 
p 
p 
(P & (Q & R)) 
(P V (Q v R)) 
(P & (Q v R)) 
(P v (Q & R)) 
-(P&Q) 
-(PvQ) 
(P----..Q) 
(P----.. Q) 
(P----.. Q) 
((P&Q)----.. R 

--P 
(Q& P) 
(Q VP) 
(P & P) 
(P v P) 
((P & Q) & R) 
((P V Q) V R) 
((P & Q) v (P & R)) 
((P V Q) & (P V R)) 
(-P V -Q) 
(-P & -Q) 
(-Q----.. -P) 
(-PvQ) 
-(P & -Q) 
(P----.. (Q----.. R)) 

ON (Double-negation) 
CM (&-Commutativity) 
CM (v-Commutativity) 
ID (&-ldempotency) 
ID (v-ldempotency) 
AS (&-Associativity) 
AS (v-Associativity) 
DIS (&-over-v-Distributivity 
DIS (v-over-&-Distributivity) 
OM (De Morgan) 
OM (De Morgan) 
CN (Contraposition) 
EQ (----../vEquivalence) 
EQ (----../&Equivalence) 
EXP (Exportation) 

Also, one additional derived rule was introduced: 

MT (modus tollens)-From (P----.. Q) and -Q, -P is derivable. 

Exercises 

A. Natural Deductions 
Give derivations for the following arguments: 

1. (A & B) 2. (A - B) 
~-q ~-q 

:. C (C- D) 
:. (A-D) 
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3. (A- (B v C}) 
(D &A) 
-c 

.-. B 
4. (Av B) 

(Av -B) 
:. A 

5. A 
:. (B v -B) 

6. (Av B) 
-A 
(B- C) 

:. C 

ADDITIONAL RULES 

7. A 
(A--4 B) 
-B 

:.-A 
8. (A - (B --4 C)) 

(A- B) 
:. (A- C) 

9. ( - A v (B & C)) 
-B 

:.-A 
10. (A- B) 

-(B"vC) 
.-. -A 

B. Symbolize the following arguments, and give derivations for them. 

1. The dean and the chairs are in favor of the regulation, or the dean and 
the faculty are in favor of it. The faculty are in favor of the regulation only 
if a majority of students are in favor of it. But a majority of students are 
not in favor of the regulation. Hence, the chairs are in favor of the reg- 
ulation. 

2. Either my son or my daughter will have the car tonight. If either my son 
or my daughter has the car tonight, my wife will not be happy. I will be 
happy if neither has the car tonight. But if my wife is not happy, I will not 
be happy. And if I am not happy, I am grouchy. Thus I will be grouchy. 

3. The sports program will be discontinued unless there is additional money. 
If it is discontinued, we will attract students if and only if we are well 
known. But we will attract students and we are not well known. Therefore, 
there is additional money. 

4. If oil supplies run out, then the price of electricity will rise, and the cost 
of solar energy will increase provided that oil supplies do not run out. If 
the price of electricity rises, then people will be cold. Thus people will not 
be cold only if the cost of solar energy increases. 

5. Evil cannot exist unless God is unwilling or unable to prevent it. If God 
is omnipotent, then He is able to prevent evil. If God is omnibenevolent, 
then He is willing to prevent evil. If God exists, He is both omnipotent 
and omnibenevolent. Nevertheless, evil exists. Thus God does not exist. 

6. If the laws are just and are strictly enforced, there will be fewer crimes. 
If strictly enforced laws result in fewer crimes, then we can reduce the 
size of the police force. Therefore, if we cannot reduce the size of the 
police force, the laws are not just. 

7. Neither Albert nor Charlene is a good student. Yet either Albert is a good 
student if David is, or if David or Elizabeth is a good student, then Charlene 
is a good student if and only if David is. So David is not a good student. 

8. Paul is a philosopher only if Rudolph or Karl is. If Rudolph is a philosopher, 
then Alfred and Ludwig are philosophers. If Alfred is a philosopher, then 
Ludwig is one only if Willard is too. But not both Willard and Paul are 
philosophers. So Paul is a philosopher only if Karl is also. 
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C. The conclusion of a derivation that has no premises is called a theorem of 
logic. If the rules of derivation are correct, a theorem is a tautology. To prove 
a theorem, one must begin the derivation with one or more ASSUMPTIONS, 
which are subsequently eliminated by RETURN. Hence, the last line of the 
derivation is in the main proof and has no asterisk. Prove the following 
theorems: 

1. (A- A) 
2. ((A- 8)- ((8- C)- (A- C))) 
3. ((A- 8) - ((C - A) - (C - 8))) 
4. ((A- (8- en- ((A- 8)- (A- C))) 
5. ((A-(8-C))- (8- (A- C))) 
6. ((A- (A- 8))- (A- 8)) 
7. ((A- 8)- (-8- -A)) 
8. (A- (-A- 8)) 
9. (-A- (A- 8)) 

10. ((-A-A)-A) 
11. ((A- -A)- -A) 
12. (-(A- 8)- A) 
13. (-(A- 8)- -8) 
14. ((A & 8) ~ (8 & A)) 
15. ((A & (8 & C)) ~ ((A & 8) & C)) 
16. (((A & 8)- C) ~ (A- (8- C))) 
17. ((A- (8 & C)) ~ ((A- 8) & (A- C))) 
18. (((A- 8) & (C- □ ))- ((A & C)- (8 & D))) 
19. (((-Av 8) & A)- 8) 
20. ((A- 8) ~ -(A & -8)) 
21. ((A & 8) ~ -(A- -8)) 
22. (-(A & 8) ~ (A- -8)) 
23. (A~ (A & A)) 
24. ((A & -8) - -(A- 8)) 
25. (-(A & 8) ~(-Av -8)) 
26. (-(Av 8) ~ (-A & -8)) 
27. (((A- 8) & (C - 8)) ~((Av C) - 8)) 
28. ((Av 8) ~ (8 v A)) 
29. ((Av (8 v C)) ~((Av 8) v C)) 
30. ((A- (8 v C)) ~ ((A- 8) v (A- C))) 
31. ((A- 8) v (8- C)) 
32. (Av -A) 
33. ((A & (8 v C)) ~ ((A & 8) v (A & C))) 
34. ((Av (8 & C)) ~((Av 8) & (Av C))) 
35. (A~ ((A & 8) v (A & -8))) 
36. (A~ ((Av 8) & (Av -8))) 
37. (A~ --A) 
38. ((A- 8) ~(-Av 8)) 
39. (((A & 8) - C) ~ (A - (8 - C))) 
40. ((A~ 8) ~ ((A- 8) & (8 - A))) 
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D. Define appropriate introduction and elimination rules for NANO, NOR, and XOR, 
and show that they are truth-preserving. 

E. Show that the following rules are derivable: 
1. Hypothetical Syllogism (HS): 

From a conditional of the form 
(P-Q) 

and another of the form 
(Q-R) 

you may derive a third conditional of the form 
(P-R) 

2. Constructive Dilemma (CD) 
From a disjunction of the form 

{P V Q) 
and two conditionals of the form 

(P-R) 
(Q-S) 

you may derive the disjunction 
{R v S) 

F. Show that the following rules are truth-preserving: 

1. Hypothetical syllogism (HS) 
2. -INTRO 
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SENTENTIAL LOGIC: 
An Algorithm for 
Checking Proofs 

In Chapter 5, we gave algorithms for cal- 
culating truth values and for determining whether a sym- 
bolized sentence is well-formed. In Chapter 6, we gave 
algorithms for producing a truth table for an argument 
and for using this truth table to determine whether a 
symbolized argument in the logic of sentences is valid 
or invalid. 

In Chapters 8 and 9, we gave the rules for showing 
an argument in the logic of sentences to be valid by 
giving a derivation. This method of showing how an 
argument is valid is considerably less cumbersome than 
the truth-table method of Chapters 5 and 6; it also re- 
flects a more "natural" way of thinking about how an 
argument is valid. It should, however, be kept in mind 
that the "proof" method does have its weaknesses: If 
an argument is valid, we can derive its conclusion. 
Moreover, the proof shows us why it is valid. But if the 
argument is invalid, the proof method is not useful. We 
would simply get "stuck" and not be able to derive the 
conclusion. Before even beginning to try to show an 
argument to be valid using a derivation, we should first 
have a hunch that it is valid. 

In applying the "proof" method of Chapters 8 and 
9, two important questions arise: 
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1. If we have written a proof, how do we know it is correct? That is, how can we 
be sure that it follows the rules for proofs? 

2. If we know that the argument is indeed valid (perhaps we have been told that it 
is valid by a reliable authority), how can we produce a proof? 

The first question is one of whether a proof given to us is correct. The second question 
is one of how to create proofs in the first place. 

These two questions constitute the topics of the next two chapters. In this chapter 
we shall address the first question-how to determine when a proof is correct-by 
describing an algorithm that checks a proof to determine if it is correct. We shall call the 
algorithm PROOF-CHECKER. 

The second question-how to construct a proof given the premises and the con- 
clusion-will be discussed in Chapter 11. 

Lines of a Proof 

The algorithm for checking a proof should detect any error we might make: line numbers 
out of order, an improperly used rule, or a mistaken subproof. The algorithm must be 
sensitive to several aspects of a line in a proof. Because a line of a derivation contains 
organized information, it is customary to speak of a line as a "data structure." A line is 
the basic and most important data structure in PROOF-CHECKER. 

Each line in a proof should have the following structure: 

(asterisks)(line number).(sentence):(rule),(line numbers) 

An example is: 

*4. (A & B) :&INTRO,2,3 

Each line has predetermined areas that should contain special information. These areas 
of the line will be called its fields. 

The first field contains a string of asterisks-possibly a "null" string, that is, one with 
no asterisks. The number of asterisks indicates the number of assumptions under which 
we are working in that section of the proof. We shall call this section of a line the subproof- 
depth field, because the number of asterisks indicates the "depth" of the subproofs at 
that point. 

The second field is the line-number field. It simply indicates the line number in a 
proof and should contain a (positive) whole number (1, 2, 3, ... ). For convenience, the 
line-number field is separated from the next field by a period ('.'). 

The third field should contain a well-formed sentence, such as '(A & B)', '(C - D)', 
and so on. We shall call it the sentence field. It is separated from the next field by a 
colon(':'). 

The fourth field contains whatever justifies our writing the sentence in the sentence 
field: PREMISE, &INTRO, vELIM, and so on. We shall call this area of the line the rule 



205 

CHECKING PROOFS 

field. We shall call whatever occupies the rule field the rule used in that line-in spite 
of the fact that two justifications (PREMISE and ASSUMPTION) are not actually rules 
in our earlier terminology. If there are citations to previous lines, then following the rule 
field is a comma. 

Finally, the fifth field will contain the line numbers of any previous lines that might 
need to be cited according to the rule we are using. Two rules (PREMISE and AS- 
SUMPTION) do not need such previous lines, so this last field might be empty. We shall 
call this field the citation field. It can contain up to three (positive) whole numbers, 
separated by commas. 

As an example, consider the following line: 

*** 11 . (A - (B & C)) :- ELIM,2,4 

Occupying each field in this line we have: 

Subproof-depth field: 
Line-number field: 
Sentence field: 
Rule field: 
Citation field: 

*** 
11 
(A- (B & C)) 
-ELIM 
2,4 

You should see that the fields of a line can be uniquely identified; that is, an algorithm 
could be written to identify them. Although we shall not present such an algorithm 
(because it largely depends on the particular data structure chosen to represent a line), 
we shall assume that it is available for use in PROOF-CHECKER. 

The Algorithm: Proof-Checker 

Errors in a proof cari occur in all sorts of ways. But in each case, the error will occur in 
some line of the derivation: 

There may be too few, or too many, asterisks. 
The line number may not be correct. 
What occupies the sentence field might not be a well-formed sentence. 
The period ending the line-number field, or the colon ending the sentence field, 

might be missing. 
What occupies the rule field might not be a proper rule, or it might not correctly 

justify the sentence in the sentence field-that is, the rule might be misapplied. 
And, finally, what is in the citation field might not be appropriate for the sentence 

in the sentence field and the rule in the rule field. 

In short, there are lots of mistakes we might make and for which our algorithm must 
be on the lookout. We shall divide the algorithm PROOF-CHECKER into several parts, 
or "procedures," each of which corresponds to various types of mistakes in a derivation. 
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The four procedures in PROOF-CHECKER are: 

CHECK-LINE-STRUCTURE: makes sure that every line has the correct format and 
provides names for the fields of each line. 

CHECK-SENTENCE-STRUCTURE: determines whether what occupies the sen- 
tence field is a well-formed sentence. 

CHECK-RULE: makes sure that every rule in a rule field, together with the accom- 
panying cited lines, correctly justifies the sentence in the sentence field. 

CHECK-SUBPROOF: makes sure that every subproof uses the correct number of 
asterisks and follows the rules for subproofs. 

The complete algorithm is shown below. 

ALGORITHM PROOF-CHECKER 

1. INPUT the derivation to be tested. 
2. FOR every line of the derivation 

(a) CHECK-LINE-STRUCTURE. 
(b) CHECK-SENTENCE-STRUCTURE. 
(c) CHECK-RULE. 
(d) CHECK-SUBPROOF. 

3. IF there are no errors 
THEN OUTPUT "Derivation is correct; argument is valid." 

4. STOP. 

We now turn to the task of refining each of the four procedures. 

The Procedure CHECK-LINE-STRUCTURE 

Let's begin with the simplest and most fundamental of the four procedures: CHECK- 
LINE-STRUCTURE. What exactly must the structure of every line in a proof be? We 
shall ignore our "comment" lines, which begin with '/' and end with '/', since these are 
not part of the proof but just notes to ourselves. Every line must have a period (separating 
the line-number and sentence fields) and a colon (separating the sentence and rule 
fields). Between the beginning of the line and the period, a number must occur. But this 
is only a collection of observations. We now present the algorithm for checking to see 
if the requirements are met. 

Recall that this procedure is repeated for each line of the derivation, so the input 
for the procedure is a line, which we shall call THISLINE. Such an abbreviation will allow 
us to refer to what occupies the fields of this line and other lines. For example, SUB- 
PROOF-DEPTH(THISLINE) will be the subproof depth of the current line, and SEN- 
TENCE(THISLINE) will be the sentence of the current line. We can also use this system 
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to refer to whatever occupies a field of another line. For example, SENTENCE(line n) 
is whatever occupies the sentence field of line n. 

Algorithm PROOF-CHECKER, Procedure CHECK-LINE-STRUCTURE 
1. IF there is no period in THISLINE 

THEN OUTPUT "Error." 
2. IF there is no colon somewhere after the first period in THISLINE 

THEN OUTPUT "Error." 
3. Let SUBPROOF-DEPTH(THISLINE) = the number of asterisks in the subproof- 

depth field of THISLINE. 
4. IF the line-number field of THISLINE is empty 

THEN OUTPUT "Error." 
5. IF the line-number field of THISLINE is not empty 

THEN 
(a) Let LINENUMBER(THISLINE) = the number in the line-number field of 

THISLINE. 
(b) IF LINENUMBER(THISLINE) is not a (positive) whole number 

THEN OUTPUT "Error." 
(c) IF this is the first time the procedure CHECK-LINE-STRUCTURE is being 

applied and LINENUMBER(THISLINE) cf= 1 
THEN OUTPUT "Error." 

(d) IF this is not the first time 
and LINENUMBER(THISLINE) ~1 + LINENUMBER (the previous line) 

THEN OUTPUT "Error." 
6. IF the sentence field of THISLINE is empty 

THEN OUTPUT "Error." 
7. IF the sentence field of THISLINE is not empty 

THEN let SENTENCE(THISLINE) be the sentence in the sentence field of 
THISLINE. 

8. IF the rule field of THISLINE is empty 
THEN OUTPUT "Error." 

9. IF the rule field of THISLINE is not empty 
THEN let RULE(T!-f lSLINE) be the rule in the rule field of THISLINE. 

10. IF the citation field of THISLINE is not empty 
THEN 
(a) Let CIT1 (THISLINE) be the first citation in the field. 
(b) IF there is a second citation 

THEN let CIT2(THISLINE) be the second citation. 
(c) IF there is a third citation 

THEN let CIT3(THISLINE) be the third citation. 
(d) IF there is a fourth citation 

THEN OUTPUT "Error." 
(e) IF any one of the citations is not a (positive) whole number 

THEN OUTPUT "Error." 
(f) IF any one of the citations is ;;;,, LINENUMBER(THISLINE) 

THEN OUTPUT "Error." 
End of the procedure CHECK-LINE-STRUCTURE 
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The steps in this procedure make sure that all the basic elements of a line of a 
proof are in order before a more detailed examination is begun. Steps 3, 5(a), 7, 9, and 
1 0(a) to (c) also give names to the fields of the line for future reference. 

The Procedure CHECK-SENTENCE-STRUCTURE 

The second procedure of PROOF-CHECKER, CHECK-SENTENCE-STRUCTURE, is, 
for our purposes in this chapter, very simple. The first procedure, CHECK-LINE-STRUC- 
TURE, tbld us which part of the line is supposed to be the well-formed string. But in 
Chapter 5, we gave an algorithm for determining whether a string is well-formed. We 
need only to insert that algorithm here. So CHECK-SENTENCE-STRUCTURE is just 
the algorithm SENTENCE-CHECKER from Chapter 5 that examines strings for their 
well-formedness, using SENTENCE(THISLINE) as its input. 

The Procedure CHECK-RULE 

The third procedure in PROOF-CHECKER, CHECK-RULE, is the heart of the Algorithm 
PROOF-CHECKER: It determines if the rule given as a justification in each line was 
correctly applied. Because of the number of possible rules which could have been used 
to justify a sentence, this procedure is somewhat lengthy: we must examine the way 
each rule works. The procedure uses RULE(THISLINE) as its input. 

Algorithm PROOF-CHECKER, Procedure CHECK-RULE 
0. IF RULE(THISLINE) = PREMISE 

THEN 
(a) IF SUBPROOF-DEPTH(THISLINE) 4c 0 

THEN OUTPUT "Error." 
(b) IF there is a number in the citation field 

THEN OUTPUT "Error." 
1. IF RULE(THISLINE) = &ELIM 

THEN 
(a) IF there is not just one number in the citation field 

THEN OUTPUT "Error." 
[This is because the rule &ELIM refers back to only one previous line.] 

(b) Where SENTENCE(CIT1 (THISLINE)) is the sentence in the line whose 
number is CIT1 (THISLINE), 
IF SENTENCE(CIT1 (THISLINE)) '4= (SENTENCE(THISLINE) & P) or to 
(P & SENTENCE(THISLINE)), where P is some sentence 

THEN OUTPUT "Error." 
[That is, the previous line cited must be a conjunction-a sentence 
whose main connective is &-and the inferred sentence, 
SENTENCE(THISLINE), must be one of the conjuncts.] 

2. IF RULE(THISLINE) = &INTRO 
THEN 
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(a) IF there are not just two numbers in the citation field 
THEN OUTPUT "Error." 

(b) IF SENTENCE(THISLINE) 4c 
(SENTENCE(CIT1 (THISLINE)) & SENTENCE(CIT2(THISLINE))) 

THEN OUTPUT "Error." 

Step 2 requires that the rule cite two (and only two) previous line numbers. Step 
2(b) requires that the sentence in THISLINE consist of '(', followed by the sentence in 
the first line cited, followed by an ampersand(&), followed by the sentence in the second 
line cited, followed by')'. 

Our rule is in fact very exacting, as we have written it. Suppose we encountered 
the following "proof": 

1. A 
2. B 
3. (A & B) 

:PREMISE 
:PREMISE 
:&INTRO,2, 1 [Mistake] 

Line 3 contains a mistake (although a small one). In the citation for line 3, we cite 2 
before 1. This indicates that the sentence of line 2 should be the first conjunct of the 
sentence in line 3 and that the sentence in line 1 should be the second conjunct. In the 
example above, they are not. 

There are two ways of correcting line 3-that is, two ways of making line 3 correct 
while retaining its rule as &INTRO. We could keep the rule and citations as they are but 
correct the sentence: 

3. (B & A) :&INTRO,2, 1 [Correct] 

Or we could change the citations and keep the sentence the same: 

3. (A & B) :&INTRO, 1,2 [Correct] 

This example shows the extraordinary care we must exhibit in using our rules if we 
want to make them subject to algorithms. We could allow ourselves more freedom in 
the expression of a citation, but then our algorithm would be more complicated. For 
example, if we wanted to allow ourselves the freedom of writing the cited lines in any 
order, we would have to modify step 2(b) to: 

2(b) [Experimental] 
IF SENTENCE(THISLINE) 4' (SENTENCE(CIT1 (THISLINE)) & SEN- 
TENCE(CIT2(THISLINE))) and SENTENCE(THISLINE) 4c 
(SENTENCE(CIT2(THISLINE)) & SENTENCE(CIT1 (THISLINE))) 

THEN OUTPUT "Error." 

This example demonstrates an unfortunate trade-off we often face in writing algorithms. 
If it is to be convenient and versatile for us humans, then the algorithm must be made 
more complicated. On the other hand, if the algorithm is to be simple, then the rule is 
rigid and not always convenient for human users. 
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Continuing the procedure CHECK-RULE: 

3. IF RULE(THISLINE) = -ELIM 
THEN 
(a) IF there are not just two numbers in the citation field 

THEN OUTPUT "Error." 
(b) IF SENTENCE(CIT1 (THISLINE)) -=I= 

(SENTENCE(CIT2(THISLINE)) - SENTENCE(THISLINE)) 
THEN OUTPUT "Error." 

Step 3(a) requires the-ELIM rule to cite two previous lines. Step 3(b) requires the 
two cited lines to be "related" in a certain way. The sentence in the second cited line 
must be the antecedent of the sentence in the first cited line. And the sentence in 
THISLINE must be the consequent of the sentence in the first cited line. For this to be 
true, the sentence in the first cited line must, of course, be a conditional: that is, it must 
be a sentence whose main connective is-». 

This rule, too, has a certain rigidity about it. The cited line numbers must occur in 
the right order: conditional first, antecedent second. For example, in: 

1. (A- 8) 
2. A 
3. 8 

:PREMISE 
:PREMISE 
:-ELIM,2, 1 [Mistake] 

line 3 is mistaken (and would produce an "Error"), because the sentence in line 2 (the 
first citation of line 3) is not identical to: 

(SENTENCE(line 1) - SENTENCE(line 3)) 

This mistake can be corrected by reversing the order of the cited line numbers in line 
3: 

3. B :-ELIM, 1,2 [Correct] 

This is acceptable and would not produce an "Error," because 

SENTENCE(line 1) = (SENTENCE(line 2)- SENTENCE(line 3)) 

is indeed true. 
The next step of the procedure CHECK-RULE is: 

4. IF RULE(THISLINE) = -INTRO 
THEN 
(a) IF there are not just two numbers in the citation field 

THEN OUTPUT "Error." 
(b) IF CIT2(THISLINE) < CIT1 (THISLINE) 

THEN OUTPUT "Error." 
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(c) IF RULE(CIT1 (THISLINE)) 4= ASSUMPTION 
THEN OUTPUT "Error." 

(d) IF SENTENCE(THISLINE) 4= 
(SENTENCE(CIT1 (THISLINE)) - SENTENCE(CIT2(THISLINE)) 

THEN OUTPUT "Error." 

This step governs the use of the-INTRO rule. Additional requirements for its proper 
application will be discussed in the section on CHECK-SUBPROOF, since the use of 
-INTRO involves the use of a subproof. 

Step 4(a) requires that two lines be cited. Step 4(b) requires that the consequent 
of the derived conditional be a line occurring after the assumption. Step 4(c) requires 
that the rule in the first cited line must have been ASSUMPTION. (Here is where a 
subproof must begin and an * introduced, if the justification was ASSUMPTION, but this 
will be discussed later.) Step 4(d) requires that a conditional of a certain form be derived 
on THISLINE. 

Continuing with the procedure, we have: 

5. IF RULE(THISLINE) = -ELIM 
THEN 
(a) IF there are not just three numbers in the citation field 

THEN OUTPUT "Error." 
(b) IF CIT2 or CIT3 < CIT1 

THEN OUTPUT "Error." 
(c) IF SENTENCE(CIT1 (THISLINE)) 4= 

the negation of SENTENCE(THISLINE) 
THEN OUTPUT "Error." 

(d) IF RULE(CIT1 (THISLINE)) 4= ASSUMPTION 
THEN OUTPUT "Error." 

(e) IF SENTENCE(CIT3(THISLINE)) 4= 
the negation of SENTENCE(CIT2(THISLINE)) 

THEN OUTPUT "Error." 
6. IF RULE (THISLINE) = -INTRO 

THEN 
(a) IF there are not just three numbers in the citation field 

THEN OUTPUT "Error." 
(b) IF CIT2 or CIT3 < CIT1 

THEN OUTPUT "Error." 
(c) IF SENTENCE (CIT3(THISLINE)) 4= 

the negation of SENTENCE(CIT2(THISLINE)) 
THEN OUTPUT "Error." 

(d) IF RULE (CIT1 (THISLINE)) 4= ASSUMPTION 
THEN OUTPUT "Error." 

(e) IF SENTENCE(CIT3(THIS LINE)) 4= 
the negation of SENTENCE(CIT2(THIS LINE)) 

THEN OUTPUT "Error." 
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The steps governing -INTRO and -ELIM are identical except for (c). In -INTRO, 
the sentence in THISLINE must be the negation of the sentence in the first cited line. 
In -ELIM, the sentence in the first cited line must be the negation of the sentence in 
THISLINE. 

Step (a) requires that the rule cite three lines. Step (d) requires that the rule have 
originated with an ASSUMPTION. Step (e) requires that two lines be cited that contradict 
one another (that is, that could not be TRUE at the same time). And step (b) ensures 
that these contradictory sentences occur in the derivation after the ASSUMPTION. 

The next five steps of the procedure are: 

7. IF RULE (THISLINE) = vELIM 
THEN 
(a) IF there are not just two numbers in the citation field 

THEN OUTPUT "Error." 
(b) IF SENTENCE(CIT1 (THISLINE)) is not a disjunction of the form 

(i) (P v SENTENCE(THISLINE)) or 
(ii) (SENTENCE(THISLINE) v Q) 

THEN OUTPUT "Error." 
(c) IF SENTENCE(CIT1 (THISLINE)) is of form (i) 

and SENTENCE(CIT2(THISLINE)) is not of the form -P 
where P is the first disjunct of SENTENCE(CIT1 (THISLINE)) 

THEN OUTPUT "Error." 
(d) IF SENTENCE(CIT1 (THISLINE)) is of form (ii) 

and SENTENCE(CIT2(THISLINE)) is not of the form -Q 
where Q is the second disjunct of SENTENCE(CIT1 (THISLINE)) 

THEN OUTPUT "Error." 
8. IF RULE(THISLINE) = vlNTRO 

THEN 
(a) IF there is not just one number in the citation field 

THEN OUTPUT "Error." 
(b) IF SENTENCE(THISLINE) -f- (SENTENCE(CIT1 (THISLINE)) v P) 

and SENTENCE(THISLINE) -f- (P v SENTENCE(CIT1 (THISLINE))) 
where P is a well-formed sentence 

THEN OUTPUT "Error." 
9. IF RULE(THISLINE) = ~ELIM 

THEN 
(a) IF there is not just one number in the citation field 

THEN OUTPUT "Error." 
(b) IF SENTENCE(CIT1 (THISLINE)) is not a biconditional of the form (P ~ Q) 

THEN OUTPUT "Error." 
(c) IF SENTENCE(THISLINE) -f- (P - Q) 

and SENTENCE(THISLINE) -f- (Q - P) 
THEN OUTPUT "Error." 

10. IF RULE(THISLINE) = ~INTRO 
THEN 
(a) IF there are not just two numbers in the citation field 

THEN OUTPUT "Error." 
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(b) IF SENTENCE(CIT1 (THISLINE)) and SENTENCE(CIT2(THISLINE)) are 
not conditionals having the forms 

(P----'> Q) 
and 

(Q----'> P) 
respectively, where P and Q are well-formed sentences, and where 
SENTENCE(THISLINE) is of the form (P ~ Q) 

THEN OUTPUT "Error." 
11. IF RULE(THISLINE) is neither one of the above nor ASSUMPTION, SEND, or 

RETURN 
THEN OUTPUT "Error." 

Step 11, the final step in CHECK-RULE, requires that the rule be one of the rules 
discussed in Chapters 8 and 9. The rules ASSUMPTION, SEND, and RETURN will be 
checked in the next procedure, CHECK-SUBPROOF. 

The Procedure CHECK-SUBPROOF 

We now turn to the last procedure in PROOF-CHECKER, CHECK-SUBPROOF. This 
procedure will certify the correctness of certain rules usually involving subproofs. 

Algorithm PROOF-CHECKER, Procedure CHECK-SUBPROOF 
1. IF SUBPROOF-DEPTH(line 1) > 1 

THEN OUTPUT "Error." 
2. IF SUBPROOF-DEPTH(line 1) = 1 

and RULE(line 1) 4c ASSUMPTION 
THEN OUTPUT "Error." 

3. IF SUBPROOF-DEPTH(THISLINE) is more than 1 different from SUBPROOF- 
DEPTH(the previous line) 

THEN OUTPUT "Error." 
4. IF SUBPROOF-DEPTH(THISLINE) = 1 + SUBPROOF-DEPTH(the previous line) 

and RULE(THISLINE) 4c ASSUMPTION 
THEN OUTPUT "Error." 

5. IF SUBPROOF-DEPTH(THISLINE) = SUBPROOF-DEPTH(the previous line) - 1 
and RULE(THISLINE) 4c RETURN 

THEN OUTPUT "Error." 
6. IF RULE(THISLINE) = ASSUMPTION 

THEN 
(a) IF SUBPROOF-DEPTH(THISLINE) 4c 

1 + SUBPROOF-DEPTH(the previous line) 
THEN OUTPUT "Error." 

(b) IF there is a number in the citation field 
THEN OUTPUT "Error." 
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7. IF RULE(THISLINE) = SEND 
THEN 
(a) IF there is not just one number in the citation field 

THEN OUTPUT "Error." 
(b) IF SENTENCE(THISLINE) =le- SENTENCE(CIT1 (THISLINE)) 

THEN OUTPUT "Error." 
(c) IF SUBPROOF-DEPTH(CIT1 (THISLINE)) is not less than SUBPROOF- 

DEPTH(THISLINE) 
THEN OUTPUT "Error." 

(d) IF there is a line number n greater than CIT1 (THISLINE) and less than 
LINENUMBER(THISLINE) such that SUBPROOF-DEPTH(n) < SUB- 
PROOF-DEPTH(CIT1 (THISLINE)) 

THEN OUTPUT "Error." 
8. IF RULE(THISLINE) = RETURN 

THEN 
(a) IF there is not just one number in the citation field 

THEN OUTPUT "Error." 
(b) IF RULE(CIT1 (THISLINE)) is not one of -INTRO, -INTRO, or -ELIM 

THEN OUTPUT "Error." 
(c) IF SUBPROOF-DEPTH(CIT1 (THISLINE)) =/c- 

SUBPROOF-DEPTH(THISLINE) + 1 
THEN OUTPUT "Error." 

(d) IF SENTENCE(THISLINE) =le- SENTENCE(CIT1 (THISLINE)) 
THEN OUTPUT "Error." 

(e) IF LINENUMBER(THISLINE) =le- CIT1 (THISLINE) + 1 
THEN OUTPUT "Error." 

Step 1 says that the first line cannot have more than one asterisk. Step 2 says that 
if the first line does have an asterisk, then the line must be justified by the rule AS- 
SUMPTION. That is, it must be the beginning of a subproof. (The first two steps differ 
from the remaining steps because they deal with the first line of the derivation, not with 
THISLINE. We shall have more to say on this later.) 

Step 3 says that the number of asterisks in a line can change at most by one asterisk 
from the number in the previous line. Step 4 says that the only way a line can acquire 
more asterisks (greater subproof depth) than the previous line is if it uses the rule 
ASSUMPTION. Step 5 says that the only way a line can have fewer asterisks (less 
subproof depth) than the previous line is if it uses the rule RETURN. 

The following error-ridden proof indicates the applications of these conditions. 

**1. p 
***2. Q 
**3. (P & Q) 
***4_ ((P & Q) & Q) 
**s. (P & Q) 
6. p 

:PREMISE 
:ASSUMPTION 
:&INTRO, 1,2 
:&INTRO,3,2 
:&ELIM,4 
:&ELIM,5 

[Violates step 1] 

(Violates step 5] 
(Violates step 4] 
(Violates step 5] 
[Violates step 3] 
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Steps 6 to 8 govern the application of the justifications ASSUMPTION, SEND, and 
RETURN. They are included as part of CHECK-SUBPROOF rather than as part of 
CHECK-RULE because they are used exclusively in connection with subproofs. The 
primary use of SEND and RETURN, as noted in the previous chapters, is to allow us 
to "send" information into a subproof and to allow us to recover information gained 
through a subproof (the information is "returned"). 

If the rule used in a line is SEND, then exactly one previous line must be cited. The 
sentence in that line must be exactly the sentence in THISLINE: that is, SEND merely 
copies the sentence. Steps 7(c) and 7(d) are cumbersome to express but have a simple 
idea behind them: information from a lesser subproof level can be sent into a greater 
("deeper") subproof level, but not vice versa. For example, consider the following correct 
section of a proof: 

1. p 
*2. a 
*3. p 
*4_ (Q- P) 

:PREMISE 
:ASSUMPTION 
:SEND,1 
:-INTRO,2,3 

Here, the information given by a premise, P, is merely duplicated in line 3 by using the 
SEND rule. The subproof depth of line 1 is 0, so it is less than the subproof depth of 
line 3, which is 1. Since P was given as a premise, it seems harmless to repeat it. 

But consider this incorrect section of a proof: 

1. a 
*2. p 
*3_ a 
*4_ (P- Q) 
5. (P- Q) 
6. p 

:PREMISE 
:ASSUMPTION 
:SEND,1 
:-INTRO,2,3 
:RETURN,4 
:SEND,2 [Error-violates step 7 (c)) 

Line 6 is in error because information in a subproof cannot be sent to a line of less 
subproof depth-at least not if we're using the SEND rule. We don't, after all, have any 
reason to believe that P is true-except when we assumed it in the subproof in lines 2 
to 4. But in line 6 we are "out of" this subproof. And thus in the context of line 6 we have 
no justification for asserting P. 

Step 8 tells us the restrictions governing the rule RETURN. As we noted, RETURN 
extracts information from a subproof for use in a section of the proof which is of lesser 
subproof depth. ;, "returns" information out of a subproof rather than sending it into one. 
The rule can only be used, as step B(b) states, when the cited line is justified by-INTRO, 
-INTRO, or -ELIM. Step B(c) ensures that RETURN moves information from a greater 
subproof depth to a lesser one. Step B(d) requires that the line whose justification is 
RETURN merely repeats, or copies, the sentence of the line it cites. And step B(e) checks 
that new subproofs occur at a greater subproof depth. 

• Finally, the last step of CHECK-SUBPROOF ensures that information is not sent 
into or out of subproofs except by the rules SEND and RETURN: 
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9. FOR each line L: 
(a) IF SUBPROOF-DEPTH(CIT1 (L)) or SUBPROOF-DEPTH(CIT2(L)) or 

SUBPROOF-DEPTH(CIT3(L)) < SUBPROOF-DEPTH(THISLINE) 
and RULE(THISLINE) -4= SEND 

THEN OUTPUT "Error." 
(b) IF SUBPROOF-DEPTH(CIT1 (L)) or SUBPROOF-DEPTH(CIT2(L)) or 

SUBPROOF-DEPTH(CIT3(L)) > SUBPROOF-DEPTH(THISLINE) 
and RULE(THISLINE) -4= RETURN 

THEN OUTPUT "Error." 
(c) FOR any citation in L 

IF there exists an intervening line n such that 
SUBPROOF-DEPTH(n) < SUBPROOF-DEPTH(THISLINE) 
and RULE(THISLINE) -4= SEND 

THEN OUTPUT "Error." 

This completes the last of the four procedures in ALGORITHM PROOF-CHECKER. 

Applications and Modifications of Proof-Checker 

Here, again, is the complete algorithm: 

ALGORITHM PROOF-CHECKER 

1. INPUT the derivation to be tested. 
2. FOR every line of the derivation 

(a) CHECK-LINE-STRUCTURE. 
(b) CHECK-SENTENCE-STRUCTURE. 
(c) CHECK-RULE. 
(d) CHECK-SUBPROOF. 

3. IF there are no errors 
THEN OUTPUT "Derivation is correct; argument is valid." 

4. STOP. 

Applying this algorithm would result in some unnecessary repetition of the first two 
steps of the procedure CHECK-SUBPROOF. These steps, it should be recalled, pertain 
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only to the first line of the proof. So the examination of the first line would be needlessly 
repeated for every line of the proof. A more efficient algorithm might be the following: 

ALGORITHM PROOF-CHECKER-1 

1. INPUT the derivation to be tested. 
2. Apply the procedure CHECK-SUBPROOF, steps 1 and 2. 
3. FOR every line of the derivation 

(a) CHECK-LINE-STRUCTURE. 
(b) CHECK-SENTENCE-STRUCTURE. 
(c) CHECK-RULE. 
(d) CHECK-SUBPROOF, steps 3 to 9. 

4. IF there are no errors 
THEN OUTPUT "Derivation is correct; argument is valid." 

5. STOP. 

If we are applying this algorithm ourselves, there are several tasks we can use it 
for. We can follow it for every line of a proof we have written. If we correctly follow the 
algorithm and never output "Error," then we know that our proof is correct. 

Or, we might wonder if only one line is correct; we might be reasonably certain that 
the other lines are correct. It is fairly quick and simple to modify the algorithm to apply 
it to just one line. 

Or, finally, if we are correcting a proof-noting mistakes in it-we might use the 
steps in the full algorithm as a shorthand to describe how a proof goes wrong. We might, 
for example, write after a mistaken line in a proof "[Error: violates CHECK-RULE 4(b)]." 

For example, consider the following "proof," containing several mistakes, some of 
which are marked: 

1. -A 
2. (B - (A & C)) 
*3. B 
*4. -A 
*s. (A & C) 

*6. A 
*7. -B 
8. -B 

:PREMISE 
:PREMISE 
:ASSUMPTION 
:SEND,1 
:-ELIM,3,2 [Violates CHECK-RULE 3(b) and 

violates CHECK-SUBPROOF 8 (b)] 
:&ELIM,5 
:-INTR0,3,4,6 (Violates CHECK-RULE 6(c)] 
:RETURN,? 
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The proof can be corrected so that we obtain 

1. -A 
2. (B- (A & C)) 
*3. B 
*4_ -A 
*5. (B- (A & C)) 
*6. (A & C) 
*7_ A 
*a. -B 
9. -B 

:PREMISE 
:PREMISE 
:ASSUMPTION 
:SEND,1 
:SEND,2 
:-ELIM,5,3 
:&ELIM,6 
:-INTRO,3, 7,4 
:RETURN,8 

We might want to add several features to the algorithm. One weakness of the 
algorithm is that when it encounters an error, it outputs only "Error." It does not tell us 
in which line the error occurs, nor does it tell us how the line is mistaken. In short, such 
a message is uninformative and would not be especially useful in improving the proof: 
We would know only that it is mistaken somewhere. 

For example, if we input the mistaken proof we just examined into a computer 
programmed with ALGORITHM PROOF-CHECKER, it would print out: 

Error 
Error 
Error 

-and nothing more. We would then have a difficult time determining how to correct our 
proof. We would know only that there are three errors in it, somewhere. (When applying 
the algorithm by hand, we see where each error is.) 

So if we were really interested in turning ALGORITHM PROOF-CHECKER into a 
computer program, we would surely want to make some additions-unless we were 
content with it merely to count mistakes. The two additions we would probably be most 
interested in are the following: 

A. At every point in ALGORITHM PROOF-CHECKER where we earlier had written 
OUTPUT "Error" 

replace this with 
OUTPUT "Error at" LINENUMBER(THISLINE). 

B. In the algorithm, add to every 
OUTPUT "Error" 

some clarification of the nature of the error, such as: 
Sentence not well-formed. 
2d citation is not the negation of the 3d citation. 
Sentence not the correct conjunction. 
Unknown rule. 
Rule &INTRO must have two citations. 

and so on. 
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Summary 

This chapter presented an algorithm, PROOF-CHECKER, that takes as input a purported 
derivation in the natural deduction system presented in Chapters 8 and 9 and outputs 
one of two messages: either "Error," if the input did not follow the rules of correct proof, 
or "Derivation is correct; argument is valid," if the input followed all the rules. 

PROOF-CHECKER works by examining the structure of each line of the derivation, 
since any error will show up as an error in the line structure. A line consists of 0 or more 
asterisks (0 for lines of the main proof; 1 or more for lines of subproofs), followed by a 
whole number, followed by a period, followed by a well-formed sentence, followed by 
a colon, followed by a rule of our natural deduction system, followed by a comma, 
followed by Oto 3 line numbers (as citations for the rule). 

There are four procedures: CHECK-LINE-STRUCTURE makes sure that each line 
has the correct format; if a line is incorrectly formatted, the derivation has a "grammatical" 
mistake. CHECK-SENTENCE-STRUCTURE makes sure that the sentence is well-formed; 
if a sentence is not well-formed, the derivation has a "grammatical" mistake. CHECK- 
RULE makes sure that the rule, together with its citations, correctly justifies the sentence; 
if a rule does not correctly justify the sentence, then the derivation is incorrect. CHECK- 
SUBPROOF makes sure that every subproof is properly written; if there are improperly 
written subproofs, then the derivation has a "grammatical" mistake. 

Exercises 

A. Use PROOF-CHECKER to locate errors in the following derivations. 
1. (a) 1. (A---+ B) :PREMISE 

2. (C & -B) :ASSUMPTION 
3. -B :&ELIM,2 
* 4. A :PREMISE 
*5. B :---+ELIM,4, 1 
6. -B :SEND,3 
*7. -A :-INTRO,4,5,6 
8. -A :SEND,7 

(b) Taking the first two lines in (a) as premises, construct a correct derivation 
of '-A'. 

2. (a) 1. (A v (C & D)) :PREMISE 
2. (A---+ (C & D)) :PREMISE 
*3. -(C & D) :PREMISE 
*4. -A :MT,1,3 
*s. (C & D) :vELIM,4, 1 
6. (C & D) :RETURN 

(b) Taking the first two lines in (a) as premises, construct a correct derivation 
of '(C & D)'. 
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3. (a) 1. 8 
2. (8 - (A & D)) 
*3. C 
*4. 8 
*5. (C- 8) 
6. (C- 8) 
**7. (A & D) 
8. ((C - 8) & (A & D)) 

:&ELIM,1 
:PREMISE 
:ASSUMPTION 
:RETURN,1 
:-INTRO,4,3 
:RETURN,5 
:-ELIM,2,1 
:vlNTRO, 7,6 

4. (a) 

(b) Taking the first two lines of (a) as premises, construct a correct derivation 
of '((C - 8) & (A & D))'. 
1.(-A~8) 
2. ((-A- C) & -C) 
3. (8- -A) 
*4. 8 
*5. (8- -A) 
*6. -A 
*7. (-A- C) 
*a. C 
*s. -c 
*10. -8 
11. -8 
12. (C & -8} 

:PREMISE 
:PREMISE 
:~ELIM,1,2 
:SEND 
:SEND,3 
:-ELIM,3,4 
:SEND,2 
:-INTRO,6,7 
:&ELIM,SEND,2 
:-INTRO,8,9,4 
:RETURN,10 
:&INTRO,8,9 

(b) Taking the first two lines of (a) as premises, construct a correct derivation 
of '-8'. 

8. Add steps to PROOF-CHECKER to check for correct use of these derivable 
rules: 
1. Modus to/lens (MT) 
2. Hypothetical syllogism (HS) 

Suggestions for Computer Implementation 

The conversion of PROOF-CHECKER into a working program could be somewhat dif- 
ficult, in some languages requiring a dazzling use of string functions (or a complicated 
use of records, if you are programming in Pascal). PROOF-CHECKER would presumably 
begin with the input of an entire proof-either from the user or from a file. Each line of 
the proof would then be checked for correctness. 

Preceding this check would be an identification of each field of each line (record) 
in the proof. If you were to use string functions, this identification would be simplified if 
we had reserved specific positions in each line for specific information. For example, 
we might require that asterisks (or blanks) occupy the first five positions of each line- 
assuming that we never have the need of six nested subproofs. We might further let the 
line number (without its accompanying period) occupy the next three positions, the 
sentence positions 9 through 26, the rule positions 27 through 33, and the citations of 
previous line numbers positions 34 through 40. Making these changes in our format 
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would complicate typing our proofs but would spare us from having to find fields by 
locating periods, numbers, and colons by string functions. 

Another possibly troublesome feature is the use of commas to separate cited line 
numbers. Some systems perceive a comma as ending a string. Handy replacements 
might be the slash (/), a plus sign ( + ), or even a blank. 

In Pascal, each line could literally be a record whose record fields are the fields of 
the line, simplifying CHECK-LINE-STRUCTURE. But this makes it more difficult to input 
the derivation. 

When the proof is input, it should be stored in arrays (or some other data structure) 
in order to make reference to the parts of the line simpler. For example, SUBPROOF- 
DEPTH(n) might be a string array. For example, it might be that · 

SUBPROOF-DEPTH(3) = ** 

That is, the subproof depth of line 3 is 2 (asterisks). It would be even more convenient 
to store the subproof depth in a numerical array. Using this technique, it might be that 

SUBPROOF-DEPTH(3) = 2 

That is, the subproof depth of line 3 is 2: there are two asterisks preceding the line 
number. 

The sentence and rule of each line can be stored in string arrays SENTENCE(n) 
and RULE(n), and the citations can be stored in three numerical arrays, CIT1 (n), CIT2(n), 
and CIT3(n). 

Thus the sample proof 

1. 8 
2. (B- C) 
3. C 

:PREMISE 
:PREMISE 
:-ELIM,2,1 

would be "redigested" and stored by the program as 

SUBPROOF-DEPTH(1) = 0 
SUBPROOF-DEPTH(2) = 0 
SUBPROOF-DEPTH(3) = 0 
CIT1 (1) = 0 
CIT1(2) = O 
CIT1(3) = 2 

CIT2(1) = 0 
CIT2(2) = 0 
CIT2(3) = 1 

SENTENCE(1) = 8 
SENTENCE(2) = (8 - C) 
SENTENCE(3) = C 
CIT3(1) = 0 
CIT3(2) = 0 
CIT3(3) = 0 

RULE(1) = PREM 
RULE(2) = PREM 
RULE(3) = -ELIM 

Data structures such as these allow very handy reference to the fields of each line of 
the proof. For example, because RULE(3) = -ELIM, it should be the case that 

SENTENCE(CIT1 (3)) = (SENTENCE(CIT2(3)) - SENTENCE(3)) 

or, in English, that the sentence referred to by the first citation of line 3 should be identical 
to the string composed of the sentence referred to by the second citation of line 3, 
followed by an arrow, followed by the sentence in line 3. 
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Exercises 

Those who are familiar with programming might want to attempt the following exercises. 

A. Choose an appropriate data structure for a line (for example, a string, a list, a record, 
or an array), and write an algorithm that takes a line as input and outputs a message 
stating whether the line is properly formatted. 

B. Write a program that inputs an entire proof, identifies the relevant fields of each line 
using our original format (with periods and colons), and places these items into 
appropriate arrays (or another data structure). 

C. Write a section of a program that implements the procedure CHECK-LINE-STRUC- 
TURE. You may assume that the proof has already been input into an appropriate 
data structure. 

D. Write a section of a program that implements the procedure CHECK-SUBPROOF. 
You may assume that the proof has already been input into an appropriate data 
structure. 

E. Assuming that a proof has already been input into an appropriate data structure, 
write a program to determine if the rule -ELIM has been appropriately applied. 

F. Do the same for the rule &INTRO. 
G. Do the same for the rule -INTRO. 
H. Again assuming that a proof has already been input into an appropriate data struc- 

ture, write a program that checks the application of the rules &ELIM, &INTRO, 
-ELIM, and -INTRO. (Recall that these connectives are sufficient to express all 
the logic of sentences and thus that CHECK-RULE is in a sense complete when 
these four rules have been tested for correctness.) 



CHAPTER 11 

SENTENTIAL LOGIC: 
A Method for 

Producing Proofs 

We now take up the second of our two 
questions from Chapter 1 0: how to construct a proof of 
a valid argument given the premises and the conclu- 
sion. We could give an algorithm for constructing a proof, 
in the logic of sentences, for any premises and any 
conclusion validly following from them. But the resulting 
algorithm would be either very long or "unnatural" (in 
failing to follow the "natural" inferential rules we gave 
in Chapters 8 and 9). Consequently, we shall not aim 
in this chapter to give the full algorithm for constructing 
a derivation. We shall instead content ourselves with 
describing a method for constructing a proof that will 
work most of the time. That is, in some cases, some 
creative intervention by a human user might be re- 
quired. We shall call this method PROOF-GIVER. 

223 
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General Strategies for Constructing Proofs 

The task we face in constructing a derivation of a conclusion from given premises seems, 
at first, like nothing we have ever done before. Consequently, the beginner might feel 
somewhat lost when it comes to constructing a proof. But, in fact, the construction of a 
proof in logic is a great deal like problems we regularly solve without much difficulty. 
The construction of a proof also resembles tasks for which computers (and hence 
algorithms) are regularly employed. 

Analogous Problems 

One task analogous to constructing proofs is the problem of finding our way through a 
maze. 

Entrance 
Figure 11-1 A maze. 

We all quickly recognize what the goal is: to find a path through the maze, beginning at 
the entrance and coming out at the exit, without crossing a line (a "wall"). Finding our 
way through a maze might not seem at first much like constructing a proof. But the two 
problems have some interesting similarities. In a maze, we are always told where to 
begin (at the "entrance"). In constructing a proof in logic, we are also told where to begin: 
with our premises. The premises are our "entrance" to a logic puzzle. In a maze, we 
are also told where we are supposed to end up (at therexlt"). In constructing a proof in 
logic, our goal also lies clearly before us: the conclusion, which we must somehow reach. 

In finding our way through a maze, certain methods of proceeding are allowed, and 
others are forbidden to us. We may turn left or right or go straight ahead, but we are 
not allowed to "jump over" or "go through" a wall. In a proof in logic, there are certain 
maneuvers that are allowed: these are the rules of our natural deduction system: &ELIM, 
-INTRO, and so on. But certain maneuvers are denied to us: we are not allowed to 
infer any old sentence we would like. 

As it will turn out, the strategies we use in finding a way through a maze and in 
constructing a proof are quite similar. In finding our way through a maze on paper, we 
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might visually start at the entrance and see where we can go from there. Or we might 
glance ahead to our goal, the exit, and see how we might get there. That is, we might 
glance ahead to see what routes lead to the exit. In constructing a proof in logic, there 
are also two basic strategies. We might look at the premises and see what follows from 
them by the rules that are permitted to us. Or we might look ahead and see how the 
conclusion might come about through using the known rules. 

Another analogous task is a more practical problem that a computer-in the hands 
of an able travel agent-is frequently used to solve. Suppose that you must fly from 
Chicago to New Orleans but that, unfortunately, there are no direct flights at the time, 
you want to make your trip. Suppose that the relevant flights have the following pattern: 

Boston 

NEW ORLEANS 
Figure 11-2 Flights with connections to Chicago and New Orleans. 
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Just as with the maze and with constructing a proof in logic, there are "dead ends" that 
will not lead to our destination, and there are sometimes several ways to reach our 
destination-some that are shorter and some that are longer. The strategies we might 
use to solve this flight problem are like the strategies we might use to find our way 
through a maze. For example, we might use a finger to trace a path beginning with 
Chicago, or we might use a finger to trace a path backward from New Orleans. We 
might even combine the two strategies to see where they meet. 

The flight problem has some features that make it more like a logic problem than 
the maze. In order to fly from Chicago to New Orleans, we might first have to fly to other 
cities-Atlanta, for example. In the jargon of a travel agent, these are our "connections." 
We might even have to go considerably out of our way to get to New Orleans: we might 
have to fly to Seattle, for example, if there are no direct flights to New Orleans. 

In constructing a proof in logic, there might also be no "direct flights." We might first 
have to make "trips" to intermediate "destinations." A "direct flight" in the proof of an 
argument would be one in which the conclusion follows from the premises through the 
application of only one rule. For example, the argument 

(A-B) 
A 
B 

has a proof that corresponds to a direct flight: 

1. (A- B) 
2. A 
3. B 

:PREMISE 
:PREMISE 
:-ELIM,1,2 

In a proof, however, we do not often have the luxury of a "direct flight"; we must make 
"connections" by deducing intermediate sentences that eventually allow us to reach our 
destination: the conclusion. 

Forward-Looking and Backward-Looking Strategies 

The strategy used in constructing a proof will be so remarkably similar to the strategies 
we would ordinarily use to solve the maze and the flight problems that it bears repeating. 

We can begin with our starting point and work forward, or we can glance ahead to 
our destination and work backward. 

In constructing a proof, these two methods would correspond, respectively, to 

1. Considering the premises and wondering what follows from them by our rules. 
2. Considering the conclusion and wondering how it could arise by our rules. 
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For several reasons, method 2-looking ahead to the destination (our conclusion) and 
working backward-will turn out to be especially fruitful in logic. 

There is one big difference between the logical problem of constructing a proof and 
the maze and flight problems. This difference will make approaching the construction of 
a proof with a strategy all the more important. The difference is that the ways we get 
from our point of departure to our destination in the maze and flight problems are few 
in number. In the maze problem, we move in any direction we wish, so long as we don't 
cross a line; in the flight problem, we move along connecting lines. But in the logical 
problem of "departing from" the premises and "arriving at" the conclusion, there are at 
any point many different rules we could use. Still worse, there are in the construction of 
a proof many more "intermediate destinations" than in the case of the flight from Chicago 
to New Orleans. There are in fact an infinite number (so we could not even chart the 
options, as we did in the Chicago-New Orleans case). And most of these intermediate 
destinations are blind alleys: they do not get us any closer to our destination-the 
conclusion. We must then plan our proof very carefully. And to plan our proof, we must 
have a method for creating the plan-a plan for making plans, if you wish. This method 
for creating plans for a proof is the purpose of PROOF-GIVER. 

Consider the following argument: 

A 
(A- (B - C)) 
(B- C) 

The argument is valid. But how do we produce a proof? We first begin by examining 
the premises, the conclusion, and their connection. We see that the conclusion is a 
conditional, '(B - C)'. Furthermore, we should observe that this very same conditional 
is part of one of the premises: (A- (B - C)), the second premise. Reflecting briefly on 
this premise and its main connective, -. we see that if we could somehow eliminate 
this connective (and the antecedent 'A') from the premise, we would be left with the 
desired result: (B- C). But, of course, to elimlnate-», we just apply the -ELIM rule. 
To apply it, we need the antecedent 'A', which, conveniently, is the first premise. 

The proof resulting from these observations is: 

1. A 
2. (A- (B- C)) 
3. (B-C) 

:PREMISE 
:PREMISE 
:-ELIM,2,1 

This proof resulted from our observation that the desired conclusion is a subformula of 
one of the premises. We then reasoned how this subformula could be derived by itself 
on a line. Obtaining a subformula by itself will typically involve the use of an ELIM rule. 

But consider the following argument: 

B 
((A-C)-B) 
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Here, the conclusion is not a subformula of a premise. The lengthy conclusion is not 
embedded anywhere in the simple premise. What information do we have to go on in 
determining our strategy for the proof? Even though we cannot see the relationship of 
the conclusion to the premises (as we did in the previous example), we can examine 
the structure of the conclusion itself. It is, again, a conditional. How could a condi- 
tional arise in a proof? It might well come from an application of -INTRO. (In fact, it is 
difficult in this example to see how a conditional could be arrived at other than through 
- INTRO.) 

So we might guess that one step in the proof uses -INTRO. But what previous 
lines could produce '((A- C) - B)' by -INTRO? The answer is this. If '(A- C)' were 
an ASSUMPTION and 'B' were a later line in the same subproof, then '((A- C) - B)' 
could be inferred by-INTRO. A good guess, then, is that the proof proceeds as follows: 

1. B 
*2. (A- C) 

:PREMISE 
:ASSUMPTION 

*?. B 
*?. ((A - C) - B) 
?. ((A - C) - B) 

:? 
:-INTRO,?,? 
:RETURN,? 

The dots and question marks indicate parts of the proof yet to be filled in. The only 
mystery is how to derive 'B'. That, however, is easy to guess in this example: it was 
"sent" into the subproof from the premise, 'B'. The resulting proof, with comment lines 
inserted, is: 

1. B :PREMISE 
/BEGIN: -INTRO to derive ((A- C) - B)/ 

*2. (A- C) :ASSUMPTION 
*3. B :SEND, 1 
*4. ((A- C)- B) :-INTRO,2,3 

/END: -INTRO to derive ((A- C) - B)/ 
5. ((A - C) - B) :RETURN,4 

These two examples give us the basis of a strategy for creating proofs. An overall view 
of the method we have just seen applied in devising a strategy is: 

1. If the conclusion is a subformula in a previous line, then use the appropriate 
ELIM rule to isolate this subformula on its own line. 
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2. If the conclusion is not a subformula of a previous line, then examine the structure 
of this conclusion, and use the appropriate INTRO rule to reconstruct the con- 
clusion. 

These two suggestions are the basic elements in PROOF-GIVER. 
In building up a derivation, we shall need two items. The first is simply the ongoing 

derivation. It will be composed of the steps of the proof, as far as we have gotten. The 
second item is what we shall call the task list. The task list will be our list of the steps 
yet needed to complete the proof. The task list is best thought of as our notes to ourselves 
on how to complete the proof. In this respect, the task list is little more than what we 
have been calling "comments." 

This task list can be written immediately following any portion ot the proof we have 
completed {or it can be kept in a separate place) and constitutes instructions on our 
"plan of attack" for how best to complete the proof. When we are first given the premises 
and the conclusion that validly follows from them, the first instruction is to derive that 
conclusion. We would write: 

PROOF 
1. A 
2. (A- {B- C)) 

TASK LIST 
Derive (B - C) 

:PREMISE 
:PREMISE 

The last line, 'Derive (B- C)', is our first task and so is the sole item in our task list at 
the beginning of our attempt to create a proof. 

The rest of the method consists of replacing 'Derive <the conclusion>' with more 
helpful advice; accordingly, the task list grows. Furthermore, as some of these tasks 
become precise enough to be turned into lines of a proof, the proof itself also grows. 

Tree-Searching Strategies 

One of the main areas of research in artificial intelligence concerns the topic of a "search": 
how to program computers to find solutions or reach goals by guided, or "intelligent," 
methods (including trial and error), rather than by "exhaustively" searching all possibilities. 
The possession of such methods seems to be essential for anything claiming to employ 
"intelligence." 

We have already drawn some parallels between the problem of constructing a proof 
and other problems that require a search. Let us now display with more precision what 
our search looks like when we are attempting to construct a proof. 
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Argument A 
(A-->B) 
:. B 

... (A➔ (A&(A➔ B))) A ... 

--A ((A➔ B)vE) (AvC) (AvD) ... 

➔ ELIM 

(A&(A v C)) --(Av C) ((Av C)v D) ... 

B 

Figure 11-3 Search tree for the argument A, (A - B), :. B. 

Such diagrams are called "trees." Our starting point is the set of our premises. Our goal 
is the conclusion. After correctly applying a rule, we call the point that we have reached 
a node of the tree. At this node, we write the new sentence that the rule allowed us to 
derive. We also have available at this node any of the previous sentences-the sentences 
we have derived above this node. We can apply any of the rules to these available 
sentences. (Another way of thinking about the proof-search tree is that at each node 
there is a set of "available" sentences. This set "grows" each time a rule is applied, and 
we can stop when the conclusion is included in the new set.) Such a display is called 
a search tree, and what it displays is called the search space of the problem. 

Acceptable means of "traveling" from the premises to the conclusion are restricted 
by the available rules. Let us now introduce some terminology. We can measure the 
distance of a sentence from the premises (or the conclusion) by the number of rules 
used on the shortest path between the premises and the sentence. For example, all the 
sentences on the first row below the premises have a distance of one unit from the 
premises. 

We can now make some observations about the above display of a rather typical 
proof problem. 

1. The number of sentences in the tree whose distance is one unit from the premises 
is infinite-no matter what the premises are. The rules vlNTRO and -INTRO 
can be used to add indefinitely many new nodes. 
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2. If there is one path through the tree from the premises to the conclusion, then 
there are an infinite number of such paths. 

3. If there is a path of length n from the premises to the conclusion, then there is 
also a path of still greater length. 

4. There are an infinite number of sentences whose distances are one unit from 
the conclusion. 

5. The tree branches endlessly into directions that are not especially close to the 
premises or conclusion. 

The job of PROOF-GIVER is to find a reasonably short path from the premises to 
the conclusion. Two strategies for searching a tree for a particular node are the "breadth- 
first" search and the "depth-first" search, illustrated in Figure 11-4. 

A breadth-first search considers, first, all the nodes that are one unit distant from 
the starting node. Then it considers all the nodes that are one unit distant from those 
nodes, and so on until the goal is reached. It is a search which seeks its goal by first 
checking out all the nearest nodes from the starting node, then the next-nearest nodes, 
and so on. 

Consider this analogy. In conducting a breadth-first search for a lost dollar, I might 
begin by visiting all the places where I might have lost it and only then turn to more 
"distant" options-for example, that I dropped it on the sidewalk, but it then blew away. 

A breadth-first search of our proof tree would not be a reasonable way of discovering 
a proof. The number of sentences one unit distant from our premises is infinite (as we 
observed above). So we would first have to consider a// of these sentences before going 
further with the search. But this first step would itself take forever. In short, a breadth- 
first search is not reasonable when our search tree has "unlimited branching," which 
rules such as vlNTRO and -INTRO permit. 

Although an "all-out" breadth-first search would not be feasible in our case, we might 
consider a limited breadth-first search. For example, we might ignore certain of the 
branches. (Carrying on the "tree" metaphor, researchers in artificial intelligence speak 
of this technique as "pruning" the tree.) The branches we might ignore would be: 

1. Branches that use vlNTRO or -INTRO and result in a sentence containing an 
atomic sentence that is contained in neither the premises nor the conclusion 

2. Branches that use &INTRO and result in a sentence that is not contained as a 
subformula in any of the premises or in the conclusion 

3. Branches that use &ELIM and result in a sentence that is neither a subformula 
of any premise or conclusion nor are the premises or conclusion a subformula 
of the sentence. 

The result of this limited breadth-first search would be a much-pruned search tree that 
would usually reach the conclusion. But the tree would still often be quite large. 

The second major search strategy is a depth-first search. In depth-first search, we 
make a single, deep plunge into the search tree, hoping to catch our quarry, the goal, 
in one quick thrust. This strategy contrasts with the many, equally shallow plunges (or 
"guesses") of breadth-first search. The depth-first strategy might also be described as 
pursuing our "best guesses" as far as we can take them. 

/ 
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The Breadth-first Strategy 

First Stage 

Starting point 

~ 

•GOAL 
Second Stage 

•GOAL 

Third Stage 

GOAL 

The Depth-first Strategy 

Starting point 

/I 
/ I 

' I ' II J. 111 I\ ttl /11 / I 
I I I / 11 / \ ,,,,,11 \ 

//I/ I If \ 
I 4 ,~: ,~l~, "' /t ,, ,\1 ,,,,\1 \' 

fl : ' I ,l ' 'i• I I \ ', , .. II " 1 I ,I , I \ , 
GOAL 

Figure 11-4 Breadth-first and depth-first search strategies. 

The Method: PROOF-GIVER 

Several concepts will be useful in our presentation of PROOF-GIVER. First, recall the 
notion of subproof depth from Chapter 10. A subproof of any depth may be said to 
contain itself. A subproof S of depth n may be said to contain a subproof S' of a depth 
greater than n iff there is no line with fewer than n stars between the last line of S and 
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the first line of S'. In particular, the main proof (which is a subproof of depth 0) contains 
itself and all subproofs of any depth. 

Intuitively, proofs can be pictured as "nested boxes," as in Figure 11-5. 

MAIN PROOF 

LINE 1: _ 

SUBPROOF 1 

LINE •2: _ 

SUB-SUBPROOF 2 
LINE ••3: _ 

SUBPROOF 3 

LINE •4: _ 

Figure 11-5 Diagram of a proof. 

In Figure 11-5, the main proof contains itself and all three subproofs. The first subproof 
contains only itself and subproof 2. The second and third subproofs contain only them- 
selves. 
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We can now say that a line L is accessible to a later line L' iff the subproof that L 
is in contains the subproof that L' is in. For instance, in Figure 11-5, line 1 is accessible 
to lines in all subproofs, line 2 is only accessible to lines in subproofs 1 and 2, line 3 is 
only accessible to lines in subproof 2, and line 4 is only accessible to lines in subproof 
3. We shall sometimes simply say that "the line is accessible." (In the terminology of 
computer science, a sentence in a particular subproof is said to be "local" to that subproof 
and "global" to all subproofs contained within that subproof. Thus line Lis accessible to 
line L' iff the sentence on line L is global to the subproof that L' is in or L and L' are in 
the same subproof, in which case the sentence is local.) 

Second, an asterisk before a task will indicate that a subproof must be begun. Third, 
a sentence in brackets, such as [P], will indicate that the first accessible line number 
containing sentence P should be cited. Fourth, we shall always call the sentence in the 
first 'Derive' statement in the task list the "desired result," sometimes representing it as 
'DR'. 

Finally, suppose that a sentence, Q, is on an accessible line L and that we wish to 
use Q in our derivation. If the line we wish to use it on is in the same subproof as L, 
then we need do nothing special. But if that line is in a sub-subproof, we need to SEND 
Q into that sub-subproof. In addition, there will be some "bookkeeping" to take care of. 
To make our presentation of PROOF-GIVER simpler, we shall use a procedure called 
'OBTAIN Q': 

PROCEDURE OBTAIN Q 

1. IF the line containing Q has fewer asterisks than the desired result (that is, 
Q is in a containing proof) 

THEN 

(a) Replace the first 'Derive' statement in the task list with: SEND,[Q]. 
(b) Let all subsequent references to line [DR] in the current subproof be 

replaced by the line number of this SEND line. (This is the "book- 
keeping.") 

2. IF the line containing Q has the same number of asterisks as the desired 
result (that is, Q is in the same subproof) 

THEN 

(a) Delete the first 'Derive' statement from the task list 
(b) Let all subsequent references to line [DR] in the current subproof be 

replaced with the line number of this previous line (more "bookkeep- 
ing"). 

We now have enough background to present the method. 

METHOD PROOF-GIVER: 
1. INPUT the premises, with the justification 'PREMISE', in the standard format 

for proofs. 
2. Add 'Derive (conclusion)' to the task list. 



235 

PRODUCING PROOFS 

3. WHILE the task list is not empty and there is a 'Derive' statement in the task 
list, keep repeating (a) to (c): 

(a) IF DR = a subformula of a sentence, Q, on an accessible line 
THEN 

(i) OBTAIN Q. 
(ii) IF DR= Q 

THEN GO TO step 3(c). 
(iii) IF DR is a proper subformula of Q 

THEN 

(1) IF Q is a conditional 
and the desired result is a subformula of Q's consequent 

THEN replace the first 'Derive' statement in the task list 
with: 
Derive (antecedent of Q) 
Apply -ELIM,[Q],[(antecedent of Q)] 
Derive DR (if DR -4= (consequent of Q)) 

and GO TO step 3(c). 

(2) IF Q is a conjunction 
and the desired result is a subformula of one of its conjuncts 

THEN replace the first 'Derive' statement in the task list 
with: 
Apply &ELIM,[Q] (to obtain conjunct containing DR) 
Derive DR (if DR -4= the inferred conjunct) 

and GO TO step 3(c). 

(3) IF Q is a disjunction, (P v R), 
and the desired result is a subformula of one of its disjuncts, 
say R 

THEN replace the first 'Derive' statement in the task list 
with: 
Derive -P 
Apply vELIM, [Q],[-P] 
Derive DR (if DR -4= R) 

and GO TO step 3(c). 

(4) IF Q is a negation, say -P, and DR is a subformula of P, say 
R 

THEN replace the first 'Derive' statement in the task list 
with: 
"Assume -R 
*OBTAIN Q 
"Derive P 
* Apply -ELIM,[-R],[P],[Q] 
RETURN,[R] 

and GO TO step 3(c). 
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(b) IF DR is not a subformula of a sentence on an accessible line meeting 
the above conditions 

THEN 

(i) IF the desired result has the form (P - Q) 
THEN replace the first 'Derive (P- Q)' in the task list with: 

"Assume P 
"Derive Q 
* Apply -INTRO,[P],[Q] 
Apply RETURN,[P - Q] 

and GO TO step 3(c). 

(ii) IF the desired result has the form (P & Q) 
THEN replace the first 'Derive (P & Q)' in the task list with: 

Derive P 
Derive Q 
Apply &INTRO,[P],[Q] 

and GO TO step 3(c). 

(iii) IF the desired result has the form (P v Q) 
THEN replace the first 'Derive' statement in the task list either 

with: 
(1) * Assume -(P v Q) 

"Derive R 
"Derive -R 
* Apply -ELIM,[-(P v Q)],[R],[-R] 
RETURN,[(P v Q)] 

or with: 
(2) Derive P 

Apply vlNTRO,[P] to obtain (P v Q) 
or with: 

(3) Derive Q 
Apply vlNTRO,[Q] to obtain (P v Q) 

and GO TO step 3(c). 

(iv) IF the desired result has the form -P 
THEN replace the first 'Derive -P' in the task list with: 

"Assume P 
"Derive R 
"Derive -R 
* Apply -INTRO,[P],[R],[-R] 
RETURN,[-P] 

and GO TO step 3(c). 

(v) IF none of the previous steps have been applied 
THEN replace the first 'Derive P' in the task list with: 
"Assume -P 
"Derive R 
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"Derive -A 
*Apply -ELIM,[-P], [A], [-A] 
RETURN,[P] 

and GO TO step 3(c). 

(c) Convert all statements in the task list that precede the first 'Derive' 
statement into lines of proof, removing them from the task list. 

4. STOP. 

Applications of PROOF-GIVER 

Let us now apply the method to an argument: 

A 
B 
D 
((A & B) & (C - D)) 

Following steps 1 and 2 of PROOF-GIVER, we obtain: 

PROOF 
1. A 
2. B 
3. D 

:PREMISE 
:PREMISE 
:PREMISE 

TASK LIST 
Derive ((A & B) & (C - D)) 

The desired result is '((A & 8) & (C- D))'. At step 3(a) we can see that it does not 
appear in the previous lines (the premises), so we pass on to step 3(b). 

Since the desired result is a conjunction, step 3(b)(ii) applies, and we replace the 
original 'Derive ((A & 8) & (C - D))' in our task list with: 

Derive (A & 8) 
Derive (C - D) 
Apply &INTRO,[(A & B)],[(C - D)] 

obtaining: 

PROOF 
1. A 
2. B 
3. D 

:PREMISE 
:PREMISE 
:PREMISE 
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TASK LIST 
Derive (A & B) 
Derive (C - D) 
Apply &INTRO,[(A & B)],[(C - D)] 

We now go to step 3(c), which returns us to step 3(a). 
At this point, '(A & B)' becomes our "desired result." It is a conjunction, so again 

step 3(b)(ii) is applied, resulting in: 

PROOF 
1. A 
2. B 
3. D 

:PREMISE 
:PREMISE 
:PREMISE 

TASK LIST 
Derive A 
Derive B 
Apply &INTRO,[A],[B] 
Derive (C - D) 
Apply &INTRO,[(A & B)],[(C----'> D)] 

After step 3(c), we again return to step 3(a). Now, however, the desired result is 
simply 'A', and it is contained in a previous line-namely, it is identical to the first premise. 
So, step 3(a)(i) requires us to delete the first 'Derive' statement and replace references 
to [A] with 1. Looking at the task list only, we see that the result is: 

Derive B 
Apply &INTRO, 1,[B] 
Derive (C - D) 
Apply &INTRO,[(A & B)],[(C - D)] 

Since there is a 'Derive' statement at the top of the task list, step 3(c) again returns us 
to step 3(a). 

Now the desired result is 'B', which is identical to the second premise. After following 
the directions in the appropriate clause of step 3(a), we find that our task list looks like 
this: . 

Apply &INTRO, 1,2 
Derive (C - D) 
Apply &INTRO,[(A & B)],[(C----'> D)] 

We again drop down to step 3(c), but this time we do not simply return to step 3(a). It 
tells us to convert the first line in the task list, 'Apply &INTRO, 1,2', into a line of proof. 
The result is: 
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PROOF 
1. A 
2. B 
3. D 
4. (A & B) 

:PREMISE 
:PREMISE 
:PREMISE 
:&INTRO, 1,2 

TASK LIST 
Derive (C - D) 
Apply &INTRO,4,[(C - D)] 

Returning to step 3(a), we see that our desired result is now, (C - D)'. It is not 
contained in a previous line, including our newly acquired line 4, so we proceed to step 
3(b}. The desired result is a conditional, so, applying 3(b) (i), we find that our task list 
becomes: 

"Assume C 
"Derive D 
* Apply -INTRO,[C],[D] 
Apply RETURN,[(C - P)] 
Apply &INTRO,4,[(C - D)] 

Dropping down to step 3(c), we must convert every statement that occurs in the task 
files before the first 'Derive' statement into a new line of proof. We obtain: 

PROOF 
1. A 
2. B 
3. D 
4. (A& B) 
*s. C 

:PREMISE 
:PREMISE 
:PREMISE 
:&INTRO, 1,2 
:ASSUMPTION 

TASK LIST 
"Derive D 
* Apply -INTRO,5,[D] 
Apply RETURN,[(C - D)] 
Apply &INTRO,4,[(C - D)] 

Returning to step 3(a), we see that 'D' is now the desired result. It is part of a 
previous sentence, so step 3(a)(i) applies. Following those directions, we have in the 
task list: 

*SEND,3 
* Apply -INTRO,5,[D] 
Apply RETURN,[(C - D)] 
Apply &INTRO,4,[(C - D)] 
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Dropping down to step 3(c), we now see that there are no 'Derive' statements left in the 
task list. This means that all instructions in the task list must be converted into lines of 
proof. Applying the instructions in the task list line by line, we obtain the following result: 

1. A 
2. B 
3. D 
4. (A& B) 
*5. C 
*s. D 
*7. (C- D) 
8. (C-D) 
9. ((A & 8) & (C - D)) 

:PREMISE 
:PREMISE 
:PREMISE 
:&INTRO, 1,2 
:ASSUMPTION 
:SEND,3 
:-INTRO,5,6 
:RETURN,? 
:&INTRO,4,8 

Limitations of PROOF-GIVER 

PROOF-GIVER, as we have described it, falls short of being a true algorithm. The 
construction of proofs for some arguments requires imagination or inspiration. The short- 
comings of PROOF-GIVER fall into three major areas. 

First, the application of several rules requires the user of the procedure to make 
additional "guesses." Chief among these are arguments that take us to steps 3(b)(iii), 
3(b)(iv), and 3(b}(v). Although many steps in PROOF-GIVER could be straightforwardly 
translated into algorithms, these steps are not among them. Step 3(b)(iii) requires us to 
choose among three ways of introducing a disjunction. Steps 3(b)(iv) and 3(b)(v) require 
us to derive ~ contradiction: some sentence, R, on one line and its negation, -R, on 
another. But which sentence and its negation should be derived? This is left to our own 
invention. 

The second and third parts of step 3(b)(iii) apply the rule vlNTRO. There is no 
ambiguity concerning what to derive. But this technique will not always work; where it 
does work, it works easily. So we find ourselves in a dilemma: the first technique, of 
indirect proof, always works (and so is listed first) but requires "creativity" to find a 
contradiction. The second method does not always work, but when it does, it requires 
no creativity. 

The. kinds of cases where the two different techniques of 3(b)(iii) are appropriate 
can be illustrated by two examples. 

Consider: 

(A& B) 
(AvC) 

Using the first technique, we start with: 

PROOF 
1. (A& B) :PREMISE 



241 

PRODUCING PROOFS 

TASK LIST 
Derive (A v C) 

Then we have (by step 3(b)(iii)(2)): 

PROOF 
1. (A& B) :PREMISE 

TASK LIST 
Derive A 
Apply vlNTRO,[A] to obtain (Av C) 

Going back to step 3(a), we arrive at step 3(a)(iii)(2), which results in: 

PROOF 
1. (A& B) :PREMISE 

TASK LIST 
Apply &ELIM, 1 to obtain A 
Apply vlNTRO,[A] to obtain (Av C) 

And finally, after step 3(c) is performed, we have: • 

PROOF 
1. (A & B) 
2. A 
3. (Av C) 

:PREMISE 
:&ELIM,1 
:vlNTRO,2 

Step 3(b)(iii)(1) could also be applied-since it always works. Its application might 
result in: 

PROOF 
1. (A & B) 
*2. -(Av C) 
*3. (A & B) 
*4_ A 
*5. (Av C) 
*6. (Av C) 
7. (Av C) 

:PREMISE 
:ASSUMPTION 
:SEND,1 
:&ELIM,3 
:vlNTRO,4 
:-ELIM,2,5,2 
:RETURN,6 

In this proof, '(Av C)' functions as the R. This choice of R results in citing line 2 twice: 
once as the assumption of the -ELIM, and again as part of the contradiction. The 
unusual appearance of line 6 of this proof is in fact a symptom that there is an easier 
way to construct a proof of '(Av C)'-namely, using the vlNTRO strategy. 

Sometimes, however, the vlNTRO option in 3(b)(iii) cannot be applied successfully 
at all. In these cases, we must resort to the longer, indirect method of proof. This 
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unfortunate circumstance will arise when neither disjunct of the desired disjunction is 
derivable by itself. Consider, for example, the following argument: 

(Av B) 
(A-C) 
(B-D) 

:. (C v D) 

The "natural" strategy might be to derive '(C v D)' by first deriving 'C' or 'D' and then 
applying vlNTRO. But in this example, the sad fact is that 'C' alone cannot be derived, 
and neither can 'D'. So we would find ourselves blocked if we tried to use step 3(b)(iii)(2) 
on this argument: 

PROOF 
1. (Av 8) 
2. (A- C) 
3. (B- D) 

1. (Av 8) 
2. (A- C) 
3. (B- D) 
*4. -(C v D) 
*s. (-C & -D) 
*6. (A- C) 
*7. (B - D) 
*a. (Av 8) 
*s. -c 
*10. -A 
*11. B 
*12. -D 
*13. -B 
*14. (C v D) 
15. (C v D) 

:PREMISE 
:PREMISE 
:PREMISE 

TASK LIST 
Derive C [You should note that 'Derive D' is just as bad.] 
Apply vlNTRO,[C] to obtain (C v D) 

We could never derive C from these premises-a fact that could be shown by using 
truth tables-and so the task list would never be emptied. Hence, we could never 
complete the proof with these instructions. 

A successful proof, using step 3(b)(iii)(1 ), would be: 

:PREMISE 
:PREMISE 
:PREMISE 
:ASSUMPTION 
:RR DM,4 
:SEND,2 
:SEND,3 
:SEND,1 
:&ELIM,5 
:MT,9,6 
:vELIM,8, 10 
:&ELIM,5 
:MT,7,12 
:-ELIM,4, 11, 13 
:RETURN,14 

In this proof, the contradiction derived involved the sentences 'B' and '-8'. This was, 
however, a matter of choice (and discovery): contradictions could be derived involving 
the sentences 'A' and '-A', or 'C' and '-C', or even '(Av B)' and '-(Av B)'. PROOF- 
GIVER can help get us to line 4; after that, we're on our own. 
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Step 3(b)(iv) also cannot easily be transformed into a mechanical procedure, for it 
requires us to derive contradictory sentences R and -R, but we are not told which 
sentences this might involve. 

A second difficulty with PROOF-GIVER is that it builds a task list based on whether 
a sentence is identical to a previous sentence or subformula in the derivation. Sometimes, 
however, a sentence might not be exactly identical to a previous sentence but might be 
logically equivalent to it. Consider this argument: 

(-A&-8) 
(-(AvB)-C) 
C 

Our task list would at first contain only: 

Derive C 

Since sentence 'C' is contained in the second premise, PROOF-GIVER would then direct 
us to step 3(a)(iii)(1 ), at which point the task list would become: 

Derive -(Av B) 
Apply -ELIM,2,(-(A v 8)] 

But how do we derive '-(Av B)'? Glancing at our list of logical equivalences, we might 
see that '-(Av B)' is logically equivalent to '(-A & -8)' and so can be derived in one 
step using the rule RR OM. But PROOF-GIVER does not see this and notices only that 
the two are not identical. PROOF-GIVER directs us to step 3(b)(iv). 

PROOF-GIVER could be corrected to allow it to "see" logical equivalences as iden- 
tities and then use RR. In other words, every time PROOF-GIVER refers to "identical" 
sentences, we could replace this with "identical or logically equivalent" sentences. But 
then, unfortunately, testing to see whether a sentence might be logically equivalent to 
a previous sentence or subformula would consume almost all the time used in applying 
PROOF-GIVER. Consequently, the astute user of PROOF-GIVER should keep a sharp 
eye out for when a rule of replacement might be used. But such equivalences will not 
be built into PROOF-GIVER. 

A still worse problem is that we can occasionally be "hung up" at step 3(a}, when 
we should go to step 3(b). Consider the following argument: 

(A- (8 & C)) 
B 
C 
(B&C) 

After performing steps 1 and 2 of PROOF-GIVER, we have: 

PROOF 
1. (A- (B & C)) 
2. B 
3. C 

:PREMISE 
:PREMISE 
:PREMISE 
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TASK LIST 
Derive (B & C) 

We now go to step 3(a), because the desired result, '(B & C)', is contained in an earlier 
line (the first premise). After step 3(a)(iii)(1) we have: 

PROOF 
1. (A ~ (B & C)) 
2. B 
3. C 

TASK LIST 
Derive A 
Apply ~ELIM, 1,[A] 

:PREMISE 
:PREMISE 
:PREMISE 

But it is easy to see-and could be shown by a truth table-that 'A' does not validly 
follow from the premises. Consequently, we would never be able to derive 'A' on a line 
by itself. (More precisely, we would never be able to eliminate all the 'Derive' statements 
from the task list for this argument, once it is begun in this way.) 

The problem lies with step 3(a). Whenever the desired result is a subformula of an 
accessible line, step 3(a) applies. But sometimes the desired result can only be derived 
by using parts of step 3(b). As an example, if we went to step 3(b)(ii) instead of step 
3(a), we would have in the task list 

Derive B 
Derive C 
Apply &INTRO,[B],[C] 

which would eventually result in this proof: 

1. (A~ (B & C)) 
2. B 
3. C 
4. (B & C) 

:PREMISE 
:PREMISE 
:PREMISE 
:&INTRO,2,3 

The problem is not easy to correct. About the only symptom that we are hung up 
is if we feel that our proof is not going anywhere. Another symptom is that our task list 
grows and grows, with no end in sight. In these cases, we should retrace our steps to 
find where our task list seems to have gone wrong. That will be a step where PROOF- 
GIVER placed us at step 3(a) when it would have been more fruitful to be at step 3(b)(i). 
Once we have found where the difficulty seems to lie, we should rebuild the task list, 
this time going to step 3(b)(i) instead of step 3(a). 

In our discussion of the method PROOF-GIVER, we may have become too immersed 
in the details of constructing proofs. Let us rise above the sometimes dreary details for 
a moment and review the general significance of the steps in PROOF-GIVER. 

As we mentioned earlier, certain features of the construction of proofs-notably the 
infinitely many possible connections between the premises and the conclusion using our 



245 

PRODUCING PROOFS 

rules-require that we "work backward" from the conclusion. We must first somehow 
determine how the conclusion might have arisen. 

There are essentially two ways that a conclusion can be derived: It can be "part of" 
an earlier line of the proof (such as a premise), or it can be "reconstituted" from information 
contained somewhere in the premises. 

It is the purpose of steps 3(a) and 3(b) to deal with these possibilities. If the con- 
clusion is contained in some part of a previous line, we are at step 3(a), which then tells 
us how to extract the conclusion from the previous line. If the conclusion is not contained 
in a previous line, we are at step 3(b). There, there are numerous recipes for building 
up the conclusion from other bits of information that might somehow be contained in the 
premises. 

PROOF-GIVER, as we have described it, is primarily a depth-first search strategy: 
It guides us on a single path through the search tree. The main flaw with PROOF-GIVER, 
as with other depth-first strategies, is that if we are wrong-that is, if we do not reach 
our goal easily-we must back up and reconsider one of the branches we earlier ignored. 
In other words, depth-first strategies will often require us to "backtrack." 

Summary 

In this chapter, we presented a method PROOF-GIVER, for constructing proofs of ar- 
guments known to be valid. PROOF-GIVER is not an algorithm, since it will not always 
work and, at certain points, requires human intervention. Nevertheless, it can be useful 
and illustrates some important techniques .• PROOF-GIVER uses a depth-first search 
strategy to search a tree of possible lines of a proof; that is, it follows a "best guess" as 
to how the proof should proceed rather than trying all possibilities at once. You should 
find it helpful in constructing proofs of arguments. 

Exercises 

A. 1. Using PROOF-GIVER, determine what the next change of the proof or task 
list should be. 
a. PROOF 

1. (A~ 8) 
2. (C & A) 

TASK LIST 
Derive (8 & C) 

b. PROOF 
1. ((A~ -8)~ D) 
2. -8 
3. (D ~ (Ev 8)) 

TASK LIST 
Derive D 
Apply ~ELIM,3,[D] 

:PREMISE 
:PREMISE 

:PREMISE 
:PREMISE 
:PREMISE 
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c. PROOF 
1. (A & (8 v 0)) 
2. ((8 v D) - (A - -E)) 
3. A 

TASK LIST 
Apply &ELIM, 1 
Apply -ELIM, [(8 v D)],2 
Apply -ELIM, [(A- -E)],3 

2. From an inspection of the proof and task list of (c), what is the desired 
conclusion of the argument? 

8. Using PROOF-GIVER, construct proofs of the following arguments: 
1. (A & (A- (8- C))) 6. -A 

:. (8 - C) (Av -8) 
((A- 8) & (8- C)) (8- -C) 
(C - D) :. ( - 8 & (8 - - C)) 
(A- D) 7. (A- -C) 
(A&(-8&C)) (8-C) 

:. -8 ( - Av - 8) 
(A- 8) 8. (-8 ~ (A & D)) 
(A- -E) (-8 & (A~ E)) 
-A E 
(A- 8) 9. (A- (8- (-C- D))) 
~&~ ~&~ 

:. 8 :. ( -c- D) 

:PREMISE 
:PREMISE 
:&ELIM,1 

2. 

3. 

4. 

5. 

C. Add a step to PROOF-GIVER that will enable it to handle 'Derive (P ~ Q)' 
in a task list. 

D. For programmers: 
1. Why doesn't "Apply &INTRO,n,m" in a task list require a goal sentence? 

That is, why is the goal sentence optional? 
2. Assume that premises and the conclusion contain only atomic-sentence 

letters and the symbol &. Write a program to input such an argument 
and construct a proof of it. 

3. Assume that premises and the conclusion contain only atomic-sentence 
letters, parentheses, and the symbol-». Write a program to input such 
an argument and construct a proof of it. 

Suggestions for Computer Implementation 

The full implementation of PROOF-GIVER should be supremely gratifying to any am- 
bitious "hacker." As in PROOF-CHECKER, an appropriate data structure (such as an 
array) is necessary for storing the ongoing proof. Initially, of course, only the premises 
would be stored; the conclusion-with its justifying rule left blank-might be stored 
temporarily in some arbitrarily high line number of the final proof, sure to exceed the 
other lines of the proof (say, 100). 
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A separate data structure is also needed to store the distinct elements of the task 
list. Furthermore, since the contents of the task list are constantly changing, we frequently 
need to "sort" these elements into their order of priority. 

We have not been as rigid in the text with the format of each record in the task list 
as we would have to be if we wished to implement PROOF-GIVER. We can impose the 
required rigidity here. The 'Derive' statement should have four fields: 

1. A RANK: a number to indicate the priority of a task in the task list 
2. A TASK: the task to be done-"DERIVE" (or "APPLY") 
3. A sentence to be derived (our "goal") 
4. The subproof-depth of the task 

For example, consider the following argument: 

A 
8 

:. (A & 8) 

Our task list might at first contain 

RANK(1) = 1 
TASK(1) = DERIVE 
TSEN(1) = (A & 8) 
TSU8(1) = 0 

indicating, respectively, that the first element in the task list is first in order of priority, 
that the task is to derive a sentence, that the goal is to derive the sentence '(A & 8)', 
and that it is not in a subproof. The names TSEN and TSU8 indicate task-list sentences 
and subproof depths. 

The other kind of statement in the task list is the 'APPLY' statement, which could 
have the following fields: 

1. A RANK 
2. The TASK: Here, 'APPLY' 
3. The goal sentence (optional, except in the case of rules, ASSUMPTION, &ELIM, 

vlNTRO) 
4. The TRULE to be applied 
5. The line(s) to which the rule is to be applied-expressed either as a line number 

or as a sentence 
6. The subproof depth of the apply line 

Thus we might have 

RANK(2) = 3 
T ASK(2) = APPLY 
TSEN(2) = (A v 8) 
TRULE(2) = vlNTRO 
TCIT1(2) = 1 
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TCIT2(2) = 0 
TCIT3(2) = 0 
TSUB(2) = 1 

indicating that the priority of task-list line 2 is 3, that the task is to APPLY, that the goal 
sentence is '(Av B)', that the rule is to be applied to line 1, and that the APPLY is in a 
subproof of depth 1. 

Note that the task can be stored in numerical fashion, since there are only two 
possible tasks. For example, 1 = DERIVE, and 2 = APPLY. Similarly, TRULE can also 
be stored numerically: 1 for &INTRO, 2 for &ELIM, 3 for vELIM, and so on. Using numbers 
where possible might spare us some nasty string operations. A sentence, however, such 
as '(A & (B v C))' cannot (easily!) be converted into numerical information. 

Once the stage is set in this fashion, lt is relatively straightforward to convert METHOD 
PROOF-GIVER into a computer program. Several features of the problem might, how- 
ever, threaten this conversion. 

1. Sometimes a line in a task list might be replaced by two (or more) lines. These 
new lines are always inserted at the beginning, and so they disturb the order of 
items in the task list. The clue to their priority in the task list is their RANK. If a 
task of rank 1 is to be replaced by two tasks, we might let these two tasks have 
ranks 1.1 and 1.2. We would first delete the original task, and we would know 
that the task with rank 1.1 is to be performed before the task with rank 1 .2 and 
that both are to be performed before a task of rank 2. 

Similarly, a task of rank 2.1 might be replaced by tasks of ranks 2.11, 2.12, 
and 2.13. Including the RANK of a task performs an automatic sort or ordering 
of the elements in our task list. 

2. As we have noted, sometimes PROOF-GIVER is misled or tricked, and the task 
list grows prodigiously-never getting closer to the conclusion. Since computers 
work so quickly, it might be a matter of mere microseconds before the task list 
is full of hundreds of tasks which will never allow PROOF-GIVER to reach the 
conclusion. 

There are two solutions to this problem-one a "quick fix," the other more 
elegant. 

We could write our program so that any time the task list grows to a certain 
size (say, twenty or thirty lines), then the program stops and alerts the user to 
the problem. (This is a so-called "disaster cutoff.") 

Another solution is to display to the user each revision of the task list and 
ask the user if he or she wishes to: 

a. Go on. 
b. Stop. 
c. Back up to an earlier stage of the proof and task list. 
d. Override step 3(a). 
e. Intervene and make a "human" suggestion on what to do: what contra- 

diction to aim for, what step to follow, or what goal sentence to have. 
3. The mention of "backing up" alerts us to the fact that we also need to store 

information about past proofs and task lists, as well as about the current, ongoing 
ones. We thus need to have the proof and task list of every previous step available 
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to us if we are going to be able to "back up." The easiest way to implement this 
suggestion is to store the proofs and task lists in some data structure (such as 
two-dimensional arrays). For example, TRULE(3,2) might be the TRULE in the 
second element of a task-list array on the third step of applying PROOF-GIVER. 

4. It is possible to program other "hunches" and strategies into PROOF-GIVER 
beyond the ones given in this chapter. Strategies for choosing the contradictions 
to be aimed for with -ELIM and -INTRO could be given, as well as tips for 
keeping proofs shorter. If the arguments PROOF-GIVER is attempting to prove 
are all being created by a single person, we might also program strategies to 
deal with what seem to be this person's habits. The user might, for example, 
use vlNTRO frequently or -INTRO rarely. 



CHAPTER 12 

PREDICATE LOGIC: 
Quantification 

The procedures and techniques that we 
have studied so far for showing the validity of arguments 
are perfectly fine as far as they go. But they are limited 
to some extent, for there are many valid arguments 
whose validity cannot be shown by the methods we 
have studied in the previous chapters. Take, as an ex- 
ample, an argument found in logic texts for many years: 

All Greeks are mortal. 
Socrates is a Greek. 

: . Socrates is mortal. 

Since all the sentences in this argument are different 
atomic sentences, this argument would be symbolized 
by three distinct sentence letters: 

G 
C 

:. A 

This argument has the following form: 
p 
Q 

:. R 
But no argument of this form can be shown to be valid 
in sentential logic when R is a different atomic sentence 
from atomic sentences P and Q. Yet the argument does 
appear to be valid: It seems impossible for the conclu- 
sion to be FALSE while the premises are TRUE. 

251 
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Individuals and Properties 

If we look at our sample argument more carefully, we see that its validity rests on the 
fact that all individuals of a certain sort have a special property and that some particular 
individual, Socrates, is an individual of that sort. Therefore, the argument concludes, 
this particular individual (Socrates) has the special property. This observation suggests 
that we should extend our symbolic language to include devices for referring to individuals 
and for indicating properties that individuals have. In the logic of sentences, we looked 
only at whole sentences, either atomic or molecular. Now, in predicate logic, we are 
going to look at what some sentences say about certain individuals. 

Individual Constants 

An individual is a specific single thing, such as a person, a number, a horse, and so 
on. To be able to refer to individuals, we shall change the way we have been using 
various letters. From now on, we shall let lower-case letters from the front of the alphabet: 

a, b, c, ... , h 

be the names of (or "refer to," or "denote") individuals. These letters will be called 
individual constants. They are called "constants" because they do not change their 
reference within any one argument. (If we need more individual constants, we shall place 
numerals to the right of the letters. Thus 'a1 ', 'b12', and 'c567' are also individual 
constants.) In the argument concluding that Socrates is mortal, we can let 'c' play the 
role of 'Socrates'. That is, let 'c' name, or refer to, Socrates. 

Individuals have properties, such as being mortal, being evenly divisible by 2, being 
brown, being upholstered, and so forth. We shall now let upper-case letters from the 
front of the alphabet: 

A, 8, ... , 0 

indicate properties of individuals, as well as simple atomic sentences. So, 'G' might be 
a good choice to indicate the property of being Greek. Such property indicators are 
called predicate letters. If we need more predicate letters (or atomic sentences), we 
shall place numerals to the right of the letters, as above. 

We shall indicate that a certain individual has a specific property by writing the 
predicate letter indicating that property and, immediately following, an individual constant 
referring to that individual. Thus 'Socrates is a Greek' would be written as 

Ge 

If 'E' is the predicate letter for the property of being wise, then 'Socrates is wise' would 
be 

Ee 
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If 'a' is the individual constant denoting Aristotle, then 

(Ga & Ea) 

is our way of stating that Aristotle is Greek and Aristotle is wise. 

Variables 

Many times, however, we make statements that are not about any particular individual. 
For instance, the first premise of our initial argument is about all Greeks. Or, to take 
another example, if we want to say 

1. Someone received an A on the midterm. 

we are not referring explicitly to any specific individual. We may not know exactly which 
individual, or we may know but prefer not to say exactly which one. In order to express 
such statements in our symbolic language, we need to take the procedure for forming 
sentences that we now have and modify it to form "incomplete" sentences, which we 
will then use to create new sentences. · 

Take the following sentence: 

Bob received an A on the midterm. 

Where it is possible, we choose letters that remind us of the English names of individuals 
and properties. So, with an obvious choice of letters for the individual constant and the 
predicate letter, we would write the sentence 

2. Ab 

To produce sentence (1 ), we first need to eliminate the specific reference to Bob in 
sentence (2). As we suggested above, we may not want to identify who received the A, 
but we do want to say that someone (unspecified) did. However, if we simply erased 
the 'b', it would not be evident that some symbol belongs there. So, we are going to 
establish some symbols as placeholders in sentences. These placeholders will be called 
individual variables. They will be lower-case letters taken from the end of the alphabet: 

U, V, W, X, y, Z 

Notice, individual variables do not denote any particular individual; they will serve only 
as placeholders for reference to any nonspecified individual. (As in''the case of individual 
constants, if we need more individual variables, we shall place numerals to the right of 
the letters: x3, ya, z52.) 

The first step in constructing a sentence that does not name a specific individual is 
to make an "incomplete sentence" by replacing the individual constants with individual 
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variables. Thus, to produce sentence (1) from sentence (2), we can begin by replacing 
the individual constant 'b' with, say, the individual variable 'x'. The result is: 

Ax 

This could be read as 

x received an A on the midterm. 

But this is an incomplete sentence, and it is neither TRUE nor FALSE. We shall call 
such incomplete sentences ''formulas." (This differs from the notion of formula in Chapter 
5.) 

Quantifiers 

We now develop the idea of a quantifier-an expression that states how many individuals, 
but not which ones, have the property indicated in an incomplete sentence. A quantifier 
placed before an incomplete sentence makes it complete; that is, it makes it into a 
sentence that is either TRUE or FALSE. Although there are several different ones, we 
shall use only two quantifiers. The universal quantifier is used to assert that all individuals 
have the indicated property, and the existential quantifier is used to assert that some 
(at least one) individual has the property. 

What do these quantifier expressions look like? The universal quantifier consists of 
a rotated A to the left of a variable: Vx, Vw, Vz. For the existential quantifier, we shall 
use a rotated E to the left of a variable: 3x, 3y, 3w. Finally, we construct the sentence 
we desire by placing the appropriate quantifier to the left of the relevant formula. An 
"appropriate" quantifier is a quantifier that contains the same variable as does the formula. 
Thus sentence (1), 'Someone received an A on the midterm', looks like this: 

3xAx 

And 

Everyone received an A on the midterm. 

looks like this: 

VxAx 

These are usually read, respectively, as 

There is an individual x such that x received an A on the midterm. 

and 

For every individual x, x received an A on the midterm. 
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Well-Formed Formulas 

We must become quite precise about the forms of sentences. In order to do this, we 
define a we/I-formed formula, or wff for short. A string, you recall, is any sequence of 
characters. A formula, in Chapter 5, was a string that mixed numerals, parentheses, 
and connective symbols in a definite way. 

We now define a well-formed formula: 

1. A string consisting of a single sentence letter is a wff. 
2. A string consisting of a predicate letter followed by either a constant or a variable 

is a wff. 
3. If P and Q are wffs, so are 

~P 
(P&Q) 
(P V Q) 
(P---'>Q) 
(P~ Q) 
(The list of allowable connectives can be extended.) 

4. If P is a wff, then 'vvP and 3vP (where v is any variable: x, y, z, w, ... ) are 
wffs. 

Thus, the following strings are all well-formed formulas: 

'vxFx 
('vxFx & Ga) 
'vx(Fx & Ga) 
3x~(Gx v B) 
('vyHy---'> 3yGy) 

(A-'> ~B) 
(Fx v Gy) 
'vx(Fx---'> Hz) 
'vx(Fx---'> A) 
(3xGx & Hx) 

Later, we shall expand the notion of a well-formed formula to include relations: predicate 
letters followed by strings of more than one constant or variable. 

Scope 

To assist us in our discussion of both quantified sentences and formulas, we need some 
additional terminology. Every quantifier will have a scope; intuitively, the scope is the 
formula covered by the quantifier. The scope of a quantifier is defined precisely as the 
well-formed formula immediately to its right. Thus 

The Scope of in Sentence is Formula 

Vx Vx(Ax-> Bx) (Ax-> Bx) 
3x (3xAx & C) Ax 
Vy 3xVy(Ax & (By-> Cy)) (Ax & (By-> Cy)) 
3x 3xVy(Ax & (By-> Cy)) Vy(Ax & (By-> Cy)) 
Vz Vz-(Azv Bz) -(Azv Bz) 
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Free and Bound Variables 

In each of the above sentences, the same variable appears in several different places. 
Each appearance of a variable is called an occurrence of the variable. An occurrence 
of a variable is bound if the variable occurs in a quantifier or in the scope of a quantifier 
using that variable. If an occurrence of a variable is not bound, it is a free occurrence 
of the variable. In a given formula, a variable could have both free and bound occurrences. 

In the Formula the Variable Occurs 

1/xl/y(Fy-> Gx) y 
1/x(Fx-> Gy) y 
(Fx & 1/xGx) x 

bound 
free 
first free, then bound 

Two remarks are in order at this point. First, the rules for wffs allow what is called 
"vacuous quantification." That is, one may place a quantifier in front of a wff, even if the 
variable in the quantifier does not occur, or does not occur free, in the wff. Here are 
some examples of wffs that are vacuously quantified: 

'v'xFy 
3yA 
'v'z(3zHz & Gx) 

Second, a sentence is any wff with no free occurrences of variables. Well-formed for- 
mulas containing free occurrences of variables do not have truth values. {They are 
incomplete sentences.) But those wffs with no free occurrences of variables are sen- 
tences, and they do have truth values. 

An Algorithm for Sentences 

The algorithm in Chapter 5 that determines whether a string is a (well-formed) sentence 
has to be modified, since we have new possibilities. There, after replacing every atomic 
sentence with a truth value and changing '-0' to '1' and '-1' to 'O', we found every 
formula from then on to be of the form 

<truth value> 

or else 

( <truth value 1 > * <truth value 2>) 

We now have two new possibilities: Sentences may begin with one of two quantifiers. 
Let us call a wff whose first two symbols are a quantifier and a variable a quantified 
formula. Hence, in the original algorithm from Chapter 5, after replacing atomic sentences 
with their truth values, we might have 
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<quantified formula> 
(<quantified tormuta» « <truth value>) 
(<truth value>* <quantified formula>) 

or 

( <quantified formula 1 > * <quantified formula 2>) 

These strange possibilities can be avoided, however, if we perform the following 
operations before replacing atomic sentences with truth values: 

Step 0. FOR every quantified formula in the string, working from left to right 

a. Delete the first two symbols. 
b. Replace all now free occurrences of the deleted variable with an indi- 

vidual constant not previously used. 
c. Replace all predicate formulas containing only individual constants with 

an atomic-sentence letter not previously used. 

For example, applying these operations to the sentence 

(A & 'v'xFx) 

results in: 

(A & Fx) 
(A& Fa) 
(A & 8) 

At this point, we can continue with TRUTH-VALUE CALCULATOR, replacing the 
newly introduced atomic sentences with truth values. If at any point in TRUTH-VALUE 
CALCULATOR we do not have either a single truth value or a pair of truth values 
surrounding a connective, then the original string was not a sentence. Observe, however, 
that the truth-value result of the above algorithm is not a useful value and so cannot be 
used in VALIDITY/INVALIDITY DETERMINER. 

One step in our new algorithm needs refinement. How do we mechanically identify 
the "now free occurrences," which were bound occurrences before we deleted the quan- 
tifier? In order to do that, we need to identify the next wff. The next symbol following 
the quantifier variable can only be (1) a predicate letter, (2) a negation sign, (3) a left 
parenthesis, or (4) a quantifier symbol. (We are excluding vacuous quantification of a 
sentence letter.) Each of these cases can easily be handled. Note that when the scope 
includes a formula with parentheses, procedure "First Counter" will find the matching 
right parenthesis. 
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Finally, let us work through a more complicated example: 

'v'x(3y(Fx v Ly) - (Gx & 'v'yHy)) 
(3y(Fx v Ly) - (Gx & VyHy)) 
(3y(Fa v Ly) - (Ga & VyHy)) 

(3y(A v Ly) - (B & 'v'yHy)) 
((Av Lb) - (8 & 'v'yHy)) 
((Av C) - (8 & 'v'yHy)) 
((Av C) - (8 & He)) 
((Av C) - (8 & D)) 

Truth Values of Quantified Sentences 

Before we learn inference rules for correctly introducing and eliminating quantifiers in 
the course of a derivation, we must be perfectly clear about the truth values of sentences 
with quantifiers. Sentences like 'Aristotle is Greek', that is, 'Ga', present no problem. 
'Ga' is TRUE if the individual denoted by 'a' (namely, Aristotle) has the property indicated 
by 'G' (namely, being Greek), and similarly for all sentences containing only individual 
constants and predicate letters. In any other situation, 'Ga' is FALSE-that is, when the 
individual denoted by 'a' does not have the property denoted by 'G'. An instance of a 
wff is a sentence that results from replacing all free occurrences of individual variables 
with individual constants. 

Using the valuation function, V, introduced earlier, we now claim that 

V('v'xGx) = TRUE if and only if the value of every instance of 'Gx' is TRUE. 
V(3xGx) = TRUE if and only if the value of at least one instance of 'Gx' is TRUE. 

(You should remember that if the value of a sentence is not TRUE, it is FALSE.) 
The set of individuals we are talking about is frequently referred to as the universe 

of discourse. Thus if the universe of discourse contains individuals denoted by 'a', 'b', 
and 'c', then 'Fa', 'Fb', and 'Fe' are all the instances of 'Fx', So, V('v'xFx) = TRUE iff 
V(Fa) and V(Fb) and V(Fc) are TRUE, and V(3xFx) = TRUE iff V(Fa) or V(Fb) or 
V(Fc) is TRUE. 

Quantifying Molecular Formulas 

Recall our earlier example that stated that Aristotle is Greek and that he is wise. This 
is the conjunction of the two sentences 'Aristotle is Greek' and 'Aristotle is wise', so we 
used our symbol for conjunction to write: 

(Ga & Ea) 



259 

QUANTIFICATION 

From this sentence we can construct a wff by replacing all occurrences of the individual 
constant 'a' with the variable 'x', obtaining 

(Gx & Ex) 

Existential Quantifiers 

If we prefix the expression above with an existential quantifier using 'x', we obtain a new 
sentence: 

3x(Gx & Ex) 

which can be read as 

There is something that is Greek and wise. 

or, more naturally, as 

Some Greek is wise. 

We now have a general pattern for English sentences of the following forms: 

Some Sis T. 
Some Sare T. 

These should all be symbolized as 

3x(Sx & Tx) 

This can be read literally as "There is an x such that xis Sand xis T." 

This pattern, then, is proper for all the following sentences: 

Some baby is cute. 
Some babies are cute. 
Some students are musicians. 
Some musicians are students. 
Some students played all night. 

(That is, some students are all-night players.) 

Similarly, sentences of the forms 

Some Sis not T. 
Some S are not T. 

will be symbolized as 
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3x(Sx & -Tx) 

This can be read literally as "There is an x such that x is S and x is not T." 

Universal Quantifiers 

Placing the appropriate universal quantifier before the well-formed formula 

(Gx & Ex) 

results in 

'v'x(Gx & Ex) 

which can be read as 

Everything is both Greek and wise. 

We would seldom make such a claim. More likely, we would want to assert that all 
Greeks are wise. How can we express a statement of the form 

All Sare T. 

In this case, we are claiming that the property T holds for all the S sort of individuals. 
We will now show that the conditional can be used to make this kind of claim. In particular, 
we symbolize 

All Sare T. 

as 

'v'x(Sx - Tx) 

This says that for every x, if x is S, then x is T. This sentence is TRUE, according to 
the evaluation rule, if every instance of '(Sx - Tx)' is TRUE. A few of these instances 
are: 

(Sa-Ta) 
(Sb- Tb) 
(Sc-Tc) 
(Sd-Td) 

These instances are sentences, but what do they assert? The first states that if a has 
the property S, then it has the property T (for instance, if a is Greek, then a is wise). 
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When is this sentence TRUE? Clearly, if 'Sa' is TRUE and also 'Ta' is TRUE, then the 
conditional sentence '(Sa - Ta)' is TRUE. Indeed, for each instance, the ordinary truth 
table for a conditional will tell us when it is TRUE and when it is FALSE. As you know, 
the conditional is FALSE just when the antecedent is TRUE and the consequent FALSE. 
Again referring to the example, an instance is FALSE only when, for some individual 
constant, the individual denoted is Greek but is not wise. A Greek who is not wise is 
precisely the situation that falsifies the original sentence: All Greeks are wise. 

It is important to understand how the conditional form for universally quantified 
sentences works. The truth value of 

All hamburgers are delicious. 

is TRUE if and only if each and every hamburger is delicious. So, as we go through the 
universe of discourse, examining individuals one at a time, we must be sure that if an 
individual is a hamburger, then it is delicious. If the individual is not a hamburger, then 
the instance is not FALSE, that i~. it is TRUE. Notice that the antecedent in this instance 
is FALSE. Only when we find an individual that is a hamburger but is not delicious is 
the instance FALSE. With one instance FALSE, the universally quantified sentence is 
also FALSE. For example: 

\fx(Hx- Dx) 

Universe of discourse: 

denoted by 
a hamburger that is delicious a 
an apple that is delicious b 
a rotten apple c 
Julius Caesar d 

Instances: 

(Ha - Da) 
(Hb - Db) 
(He- De) 
(Hd- Dd) 

TRUE 
TRUE 
TRUE 
TRUE 

Thus, in this universe of discourse, '\fx(Hx - Dx)' is TRUE. But in a universe of discourse 
such as 

denoted by 
a hamburger that is delicious a 
an apple that is delicious b 
a stale hamburger c 
Julius Caesar d 
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Instances: 

(Ha- Da) 
(Hb- Db) 
(He- De) 
(Hd- Dd) 

TRUE 
TRUE 
FALSE 
TRUE 

the universally quantified sentence is FALSE, because one instance is FALSE. 
We now have a general way of representing sentences of the form 

All Sare T. 

We write 

'v'x(Sx-Tx) 

for sentences such as 

All drivers are careful. 
All joggers are healthy. 
All fish swim. 

(That is, all fish are swimmers.) 

A sentence of the form 

No Sare T. 

meaning that every single individual that is S is not T, can be rewritten in the more 
suggestive form: 

All Sare not T. 

We write 

'v'x(Sx- +Tx) 

for sentences like 

No cobras are pets. 
No Australian is sad. 
No vegetarian eats meat. 

(That is, no vegetarian is a meat eater.) 

You are cautioned that this type of sentence does not mean the same thing as 

Not all S are T. 
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This should be symbolized as 

-Vx(Sx-Tx) 

'Not all Australians are sad' is quite different from 'No Australians are sad'. In the first 
case, it is still possible for some Australians to be sad while the given sentence is TRUE. 
This is not possible in the second case. 

Dossiers and Models 

In our discussions of sentential logic, we introduced the concept of a "situation." This is 
a possible case or scenario in which some sentences are TRUE and all others are 
FALSE. The real world is just one such situation. For our purposes in sentential logic, 
the most useful way to describe a situation is simply as a list of atomic sentences together 
with their truth values in that situation. We saw how to apply TRUTH-VALUE CALCU- 
LATOR to use this information to calculate the truth value of any molecular sentence. 

Our purpose in considering such situations in predicate logic is the same as it was 
in the earlier chapters-namely, to allow ourselves to determine when an argument is 
valid. The basic definition of validity applies whether we are working in sentential logic 
or in predicate logic: An argument is valid iff in all situations in which the premises are 
TRUE, the conclusion is also TRUE. But in predicate logic, our descriptions of situations 
must refer not only to the truth values of atomic sentences but also to individuals and 
their properties. 

In order to develop a systematic way of evaluating the truth values of sentences 
containing quantifiers, let us first consider the case of just one predicate letter, 'F'. We 
shall say that an individual j satisfies the predicate 'F' in a situation iff V(F/) = TRUE in 
that situation. This is little more than another way of saying that an individual "has" a 
property in a situation. 

Representative Individuals 

If we consider only one predicate, either each individual will satisfy that predicate or it 
won't. If the predicate 'F' is 'is a tomato', then each individual either is or is not a tomato. 
There are only two distinguishable kinds of individuals if we consider only this one 
predicate: An individual is either of the kind that satisfies 'F' or of the kind that does not 
satisfy it. Hence, we can simplify matters by dealing with only two representative indi- 
viduals, a and b, where individual a does not satisfy predicate 'F', but individual b does. 
The individual a is representative of all the individuals that do not satisfy 'F', and the 
individual bis representative of all the individuals that do satisfy 'F'. We can picture this 
case with a table: 

~ 
~ I ~ 
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Let us a call a row of such a table a dossier on the individual named in the left column. 
The dossier on an individual indicates which predicates it does ( = 1) or does not ( = 0) 
satisfy. Each column of the table, on the other hand, indicates which individuals do or 
do not satisfy the predicate listed at the top of the column. 

If we consider two predicates, 'F' and 'G', we can see that there are four distinct 
representative individuals that are possible: 

F G 
a 0 
b 0 
C 
d 

0 
1 
0 

It should be easy to see that when there are n distinct predicates, there will be 2 ** n 
representative individuals needed to cover every possibility. In the table above, it is 
unnecessary to consider a fifth individual, since that individual will be similar to one of 
the four representative individuals with respect to the predicates 'F' and 'G'. 

Models 

A model situation (or simply a model) for a sentence consists of a set of individuals and 
their dossiers. We require that every model contain at least one individual and that the 
dossier on each individual in the model specify for every predicate in the sentence 
whether the individual satisfies the predicate or not. When we consider the models for 
several sentences simultaneously-for instance, when we are trying to show an argument 
to be invalid-the dossiers on individuals must include every predicate in every sentence. 

For the two sentences in this argument: 

'v'x(Fx---+Gx) 
'v'y(Gy---+ Fy) 

one model would be: 

1. Individuals: a, b 
2. Dossiers: 

Observe that the dossiers on the individuals in a model can be listed together, forming 
a table that looks much like a truth table. We shall frequently characterize a model by 
simply giving such a table. The individuals in the model will then be indicated in the left 
column of the table. 
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The model given above meets the two requirements we have specified: It contains 
at least one individual, and the dossiers include information about each predicate in the 
original two sentences. 

A model can contain any number of individuals. This means that for any sentence 
there are an infinite number of possible models. Some have one individual, some have 
two, some have three, and so on. In this section, however, we need only consider what 
we shall call "minimal models." A minimal model contains only representative individuals. 
The model we have just described is a minimal model, but the following model: 

rtt1G 
0 
1 

0 

is not a minimal model, since individual f satisfies exactly the same predicates as does 
individual b. Either b or f is a representative individual, but not both of them. 

A complete listing of all the minimal models for the two sentences above, which 
contain only the predicates 'F' and 'G', is: 

I. 
I ~ 

G 
a 0 x.rtH 

II. 
I ~ 

G 
C 1 0 

b 1 
d 1 1 

Ill. 
I ~ 

G 
XI. F G 

C 0 
a 0 0 

IV. 
I ~ 

b 0 1 

G 
d 

C 1 0 

1 

v.rtt-t Xll.rtH 
a O 0 

a O 0 

b O 1 

b 0 

Vl.m 

d 

a O 0 

XIII. F G 

C 1 0 

a 0 0 

VII.~ 

C 1 0 
d 1 1 

a O 0 XIV. 

d 1 1 

F G 

VIII.~ 

b 0 1 
C 1 0 

b O 1 
d 1 1 

C 1 0 
xv. F G 

IX.rtt-t 

a 0 0 

b O 1 
b 0 1 

d 1 1 
C 1 0 
d 

Although the number of possible models is infinite, the number of minimal models 
is (2 ** m) - 1, where mis the number of representative individuals. In this case, there 
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are just four representative individuals, and so the number of minimal models is 
(2 u 4) - 1 = 15. 

We now have the basic notions of models, representative individuals, and minimal 
models. We need now to develop a procedure for determining when a sentence is TRUE 
in a model. 

Determining whether a Sentence Is TRUE in a Model 

The determination of whether a sentence containing quantifiers is TRUE in a model is 
not as simple as the earlier task of truth-value determination in sentential logic. We shall 
extend and modify the techniques we developed in Chapter 6 in connection with WANG'S 
ALGORITHM. Recall that there we constructed a pair of lists, the left list of the pair 
containing sentences we tried to make TRUE, and the right list containing sentences 
we tried to make FALSE. Let us apply this idea to the problem of determining if a single 
sentence containing a quantifier is TRUE. 

Consider, as an example, this sentence: 

\fx(Fx v Gx) 

in the model: 

We begin, as in WANG'S ALGORITHM, by trying to make the given sentence TRUE. 
When we wish to make a sentence TRUE, we place it on the left list of a list-pair: 

\fx(Fx v Gx)[ 

Now when is such a universally quantified sentence TRUE in a model? Only when all 
the instances of the nonquantified formula are TRUE. In this model, the instances are 
'(Fa v Ga)' and '(Fb v Gb)'-obtained by deleting the initial quantifier and then replacing 
the now free occurrences of the variable first with 'a' and next with 'b'. Putting both of 
these instances on the left list, we have: 

(Fa v Ga) I 
(Fb v Gb) 

Neither of the sentences on the left list contains a quantifier, so we can now proceed 
with the earlier rules from WANG'S ALGORITHM. The first sentence is a disjunction on 
the left, which requires us to branch: 

Fa I 
(Fb v Gb) Ga / (Fb v Gb) 
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The second sentence on both lists is again a disjunction on the left, so we branch again 
on both list-pairs: 

Fal 
Fb 

Fa I 
Gb 

Gal 
Fb 

Gal 
Gb 

Observe that the right list of each of these four list-pairs is empty. We cannot apply 
WANG'S ALGORITHM any further, since at this point, every sentence in the lists is a 
simple predicate formula, containing neither a quantifier nor a connective. Sentences 
on the left list, we recall, are to be made TRUE. Are the two sentences in the first list- 
pair satisfied in the model? To answer this question we turn to the dossiers. 'Fa' is 
indeed TRUE in this model situation, but 'Fb' is not, so this branch fails. We can indicate 
this failure by placing a 'O' under the branch and then proceed to the next branch. Here, 
'Fa' is TRUE, but 'Gb' is not, and this branch also fails. Continuing on to the third and 
fourth branches, we finally obtain: 

Fal 
Fb 

0 

Fa I 
Gb 

0 

Gal 
Fb 

0 

Gal 
Gb 

0 

All branches originating from the sentence 'Vx(Fx v Gx)' fail. From the failure of all 
branches, we conclude that the original sentence is not TRUE in the model. 

We now formulate a principle for evaluating list-pairs relative to a model: 

The original sentence is TRUE in a model if one of the branches leading from it is 
successful. 

This can also be formulated alternatively as: 

The original sentence is FALSE in a model if all branches leading from it fail. 

A branch succeeds when nothing but simple predicate formulas occurs on both lists, 
and all the sentences on the left list are satisfied in the model, and all the sentences on 
the right list are not satisfied in the model. When this condition is met, we can write a 
'1' under the branch to indicate that it is successful. We may also stop at this point, 
since one successful branch is sufficient to show that the original sentence is TRUE in 
the model. 

A branch fails when either of the following conditions occurs: 

1. The same sentence occurs on both the left list and the right list of a list-pair. 
2. Nothing but simple predicate formulas occurs on both lists, but either a formula 

on the left list is not satisfied in the model or a formula on the right list is satisfied 
in the model. 

In the case where a branch fails, we shall write a 'O' below it and go on to the next 
branch. If there are no more branches to examine, and if all previous branches failed, 
then we conclude that the original sentence is not TRUE in this model. 
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To the previous seven substeps in step 3 of WANG'S ALGORITHM we now add 
four more: 

(viii) If a sentence is universally quantified and on the left list, then delete the 
sentence and add to the left list all the instances of the formula without its 
initial quantifier. 

(ix) If a sentence is universally quantified and on the right list, then branch and 
replace the sentence in each branch with one instance. 

(x) If a sentence is existentially quantified and on the left list, then branch and 
replace the sentence in each branch with one instance. 

(xi) If a sentence is existentially quantified and on the right list, then delete this 
sentence and add to the right list all the instances of the formula without its 
initial quantifier. 

The number of instances added in steps viii and xi, as well as the number of branches 
required in steps ix and x, is exactly the number of individuals in the model. It goes 
without saying that different instances should be used on different branches. In the 
example we have been working with, there are only two individuals, a and b. 

Using this same model situation, let us consider a slightly more difficult sentence: 

3x3y(Gx v -Fy)I 

3y(Ga v -Fy)I 3y(Gb v -Fy)/ 

(Gav-Fa)/ 

Gal -Fal 
0 

I Fa 
0 

(Gav -Fb)I 

Gal -Fbl 
0 

/Fb 
1 

(Gb v -Fa)/ (Gbv-Fb)/ 

Gbl -Fal Gbl 

0 0 

I Fa 
0 

-Fbl 

IFb 
1 

The original sentence is TRUE in this model because we found a branch that succeeds: 
'Fb' is not satisfied in the model. 

It should be kept in mind that we are only using part of WANG'S ALGORITHM here. 
We are simply trying to determine whether a sentence is TRUE in a given model. It is 
quite clear that the above use of list-pairs and branches is convenient only when the 
number of individuals in the model is relatively small, or when the original sentence 
contains only a few quantifiers. 

Finally, let us take up the question of whether the premise and conclusion of a 
simple argument are TRUE or FALSE in a model. A simple argument is: 

v'x(Fx-Gx) 
:. v'y(Gy- Fy) 
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Consider minimal model I: 

G 
a H 0 

Applying the list-pair method to the premise, we have: 

'r/x (Fx- Gx)I 

(Fa- Ga)I 

-Fal 

IFa 
1 

Gal 
0 

Since one of the branches concludes with a '1 ', the premise is TRUE in this model. 
Applying the same method to the conclusion, we discover that it, too, is TRUE in this 
model. But we cannot yet conclude that the argument is valid, since we have to consider 
all minimal models. We must not have any model where the premises are TRUE and 
the conclusion FALSE, or else the argument is invalid. Consider, then, this argument 
relative to minimal model II: 

F G 
b 0 

After applying the list-pair method, we would find that in this model the premise is TRUE 
but the conclusion is FALSE. Hence, this model shows the argument to be invalid. 

Here is a sketch of a procedure to determine whether an argument containing 
quantifiers is valid: 

1. INPUT the sentences of the argument. 
2. Determine the representative individuals from the number of distinct predicates 

contained in the premises and conclusion. 
3. Construct all the possible minimal models. 
4. FOR each minimal model: 

a. Apply the list-pair method to determine whether the premises and conclusion 
are TRUE or FALSE in the model. 

b. IF all the premises are TRUE in the model and the conclusion is FALSE 
THEN OUTPUT "Argument invalid" and STOP. 

5. OUTPUT "Argument valid" and STOP. 

This procedure is not an algorithm because, in many cases, steps 2 and 3 cannot be 
completed. 

There are two additional special circumstances we should mention. A sentence with 
a quantifier might also contain a single atomic-sentence letter, such as '(A & 3xFx)'. 
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Whenever a sentence contains sentence letters, then the model must also specify the 
truth value of those atomic sentences. Second, we have been identifying individuals in 
the model with lower-case letters. This usage could become confused with the occurrence 
of individual constants in sentences. Let us agree, then, to identify the individuals in the 
model with lower-case letters different from any individual constants occurring in the 
sentences under examination. Furthermore, whenever a sentence occurs on a list-pair 
and contains an individual constant that is not within the scope of any quantifier, we 
treat the sentence as if it were an instance of an existentially quantified sentence. That 
is, if such a sentence occurs on the left, branch and replace all occurrences of the 
individual constant with names of the individuals in the model. If such a sentence occurs 
on the right, delete the sentence and add all instances resulting from replacement of 
the individual constant with names of individuals in the model. For instance, 

(Ga -> 'v'xFx)I 

(Gb -> 'v'xFx)I (Ge -> 'v'xFx)I 

where the model contains two individuals, b and c. 

Limitations of Models 

It can be quite time-consuming to determine whether an argument is valid or invalid by 
examining its models. In some cases, we might find a model in which the premises are 
TRUE but the conclusion FALSE rather quickly. In other cases, we might have to examine 
many models. We must examine all models, although we have simplified this task by 
restricting ourselves to minimal models. Yet even after we restrict ourselves to minimal 
models, the task of determining validity can be huge. For example, in an argument 
containing only three predicates, there will be eight representative individuals, and thus 
255 minimal models. The task of determining the truth values for each premise and the 
conclusion would be very time-consuming, unless, of course, we had programmed a 
computer to do it. 

Furthermore, as we shall soon see, even a modest extension of predicate logic to 
include relations between individuals, or to include the special logical relation of identity 
(symbolized by '= '), renders the notion of a minimal model almost useless. In these 
cases, we shall be forced, in general, to consider infinitely many minimal models. 

Examining all minimal models is not the most efficient way to determine truth values. 
There are numerous shortcuts, too sophisticated for this book, by which one can trans- 
form sentences into a normal form and then quickly determine if the normal form is 
TRUE in a minimal model. We shall return to this topic briefly in Chapter 14. 

Relations 

Before we turn to the delicate task of representing more complicated English sentences 
using the device of quantification symbols, it is important to note that not all the arguments 
we are interested in involve individuals and their properties. Some arguments depend 
on relations between individuals. For example, consider: 
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Tom is older than Jane. 
Jane is older than Sam. 

:. Tom is older than Sam. 

In this argument, it is the relations between the individuals Tom, Jane, and Sam, and 
not just the properties they have, that underlie the validity of the argument. This argument 
makes sense to us, and is apparently valid, because of our understanding of the relation 
being older than, which relates two individuals. 

To Eieal with relations between two or more individuals, we will simply extend the 
use of predicate letters. Let 'L' indicate the relation of being older than. We write the 
names of the individuals to the right of the predicate letter in the proper order. So, if 

a= Tom 
b = Jane 
c = Sam 

we now write 

Lab for: 
Lbc for: 
Lac for: 

Tom is older than Jane. 
Jane is older than Sam. 
Tom is older than Sam. 

The order of the individual constants is important, for 'Loa' represents 'Jane is older 
than Tom', a quite different sentence from 'Tom is older than Jane'. 

We can handle well-formed formulas and quantifications involving relations as we 
did before. Relation letters are simply more-than-one-place predicates, taking more than 
one constant or variable after them in order to result in a well-formed formula. It is a 
simple matter to revise the definition of a wff to deal with n-place predicates. We must, 
however, pay close attention to the location of the variable. The wff 'Lxb' (x is older than 
Jane) can be existentially quantified as 

3xlxb 

Notice that 

3xLbx Jane is older than someone. 

is a very different sentence. 
In order to keep straight what is related to what in a completely quantified sentence, 

we use different variables for possibly different (unspecified) individuals: 

3x3ylxy 

Someone is older than Jane. 

Someone is older than someone. 

If we used just one variable, we would have 

3xlxx Someone is older than himself (or herself). 

which is, of course, a sentence whose truth value is FALSE. 
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The universal quantifier is handled in a similar fashion: 

'v'xlxb Everyone is older than Jane. 

'Everyone' is understood in logic quite literally; it does not mean "everyone else." This 
sentence is evidently FALSE, since Jane is not older than herself. Likewise, 

'v'xLbx Jane is older than everyone. 

is FALSE, since Jane is not older than herself. And, finally, mixing quantifiers we can 
get: 

3x'v'ylxy 
'v'x3zlxz 

Someone is older than everyone. 
Everyone is older than someone. 

Both of these, of course, are FALSE in the real world (because no one is older than 
himself or herself, and there are only a finite number of individuals.) 

We must extend our earlier notion of a dossier on an individual in order to construct 
models for sentences contaimnq relational predicates. Consider, first, just one two-place 
predicate 'R' and, for simplicity, three individuals a, b, and c. There are nine relationships 
that might exist between a, b, and c with respect to the relation R. That is, there are 
nine sentences whose truth values we must specify. An orderly array of these sentences 
is: 

Raa 
Rab 
Rae 

Rba 
Rbb 

Rbc 

Rea 
Rcb 
Rec 

The format above does not lend itself easily to the notion of a dossier, but with some 
redundancy we can construct a dossier for each of the individuals. The dossier on a 
should show which two-place predicates are satisfied with 'a' as the first term and which 
ones are satisfied with 'a' as the second term. After all, with regard to, say, individual 
a, we want to know which instances of 'Rax' are TRUE and which instances of 'Rxa' 
are TRUE. We proceed, then, to construct, for our simple example, six columns, first 
fixing the first individual to a, b, and c and then similarly fixing the second individual: 

Ra - Rb Re - R a Rb RC - 
a 

b 

C 
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The top row of cells contains the truth values for the sentences resulting from placing 
·a· in the blanks at the top. The second row uses 'b' in the blank spaces, and the bottom 
row uses 'c'. If 'Raa' is TRUE, then the cell at the top left will contain '1' (and so will the 
fourth cell over). If 'Raa· is not TRUE, then the cell will contain ·o· (and likewise for the 
fourth cell). For V(Raa) = 1, we have: 

Ra - Rb - Re - R a Rb R_e 

a 1 1 

b 

e 

Simply stated, to construct the dossier on a, move across the top of the table inserting 
·a· in each of the blank spaces, ensuring that when the same expression results at the 
tops of the different columns, the same value occurs in the corresponding cells in the 
appropriate row. 

The proviso in the final clause of the previous sentence must be observed. Note 
that in the construction of the dossier on a, the second entry evaluates 'Rba'. But 'Rba' 
will also occur in the construction of the dossier on b. In particular, this will be the fourth 
entry to the right on the row for b. Whatever value for 'Rba' is in the dossier on a must 
also be the value for 'Rba' in the dossier on b. 

Ra - Rb - Re - R a Rb Re 

a 0 

b 0 

e 

Once dossiers are specified, models can be constructed as we did earlier, and 
various quantified sentences can be evaluated for truth or falsity in different models. 

In general, the interesting two-place relations require a large number of individuals 
for the construction of appropriate minimal models. When more than a handful of indi- 
viduals are in a universe of discourse, dossiers and tables are quite difficult to exhibit 
and work with. The idea of a dossier, nevertheless, helps us to see how to evaluate a 
quantified sentence, even if the dossier cannot easily be displayed. 

Symbolizing 

The art of symbolizing English sentences depends on a clear understanding of the truth 
conditions of the original sentence. For instance, if we were to state 

Only students are fun-loving. 
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we should first clearly understand the conditions under which this sentence is TRUE, 
and also the conditions under which it is FALSE. Notice that if some nonstudent, say, 
a teacher, were found to be fun-loving, then the sentence would be FALSE. In other 
words, the basic claim amounts to saying that all fun-loving (persons) are students. This 
is easily symbolized as 

'v'x(Fx-,, Dx) 

A sentence such as 

Voters are either Democrats or Republicans. 

can be symbolized quite simply as 

'v'x(Ex- (Dx v Bx)) 

That is, for any individual x, if x is a voter, then x is a Democrat or x is a Republican. 
More care must be taken with 

Bats and cats are mammals. 

This is correctly symbolized as 

('v'x(Bx-,, Mx) & 'v'x(Cx-,, Mx)) 

or as 

'v'x((Bx v Cx)-,, Mx) 

If one were to neglect the truth conditions of the original English sentence, one might 
incorrectly symbolize the sentence with a formula that begins: 

For any x, if xis a bat and xis a cat. .. 

But nothing is both a bat and a cat, and surely the original sentence was not talking 
about bat-cats. 

Not only can English sentences appear in greater and greater grammatical com- 
plexity once quantifiers and predicates are permitted, but they are also frequently am- 
biguous. When one exclaims: 

God helps those who help themselves. 

the claim could be 

1. God helps (only) those who help themselves. 
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Or it could be 

2. God helps (all) those who help themselves. 

Or possibly the claim could be both (1) and (2)! 
Using 'Hxx' for 'x helps x' (that is, x helps himself or herself), we have two different 

claims: 

1 '. Vx(Hgx - Hxx) 

and 

2'. Vx(Hxx - Hgx) 

In this symbolization, it should be evident that g = God and that 'Hgx' means that God 
helps x. 

You will frequently find it helpful to symbolize more complicated statements in stages 
starting at the beginning of the sentence. Consider this example: 

3. All students like some professor or other. 

Since this is a universal claim about all students, the first stage of symbolizing is to 
represent the universal form: 

Vx(if x is a student, then x likes some professor) 

We now symbolize 'x is a student' as 'Dx' and get: 

'v'x(Dx - x likes some professor) 

How do we symbolize 'x likes some professor'? Using 'Lxy' for 'x likes y' and 'Fy' for 'y 
is a professor', we write: 

3y(Fy & Lxy) 

We now place this clause in the consequent of the conditional, in place of 'x likes some 
professor'. 

3. Vx(Dx - 3y(Fy & Lxy)) 

In this example, we used 'Fy' for 'y is a professor'. It is important to recognize that the 
variable could be different in both places: 

Fy: y is a professor 
Fz: z is a professor 
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Had we chosen 'z', we would have had this equally correct symbolization: 

3a. 'v'x(Dx - 3z(Fz & L.xz)) 

Let us look at a related example: 

4. Professors admire any professor who is liked by students. 

Here we have a universal claim about professors. Our first stage might look like this: 

'v'x(Fx - x admires any professor who is liked by students) 

We need to characterize a professor, any one, who is liked by students. Then we shall 
state that x admires such a professor. So, this last clause will be written as 

For any y, if y is a professor who is liked by students, then x admires y. 

Now 'y is a professor who is liked by students' can be written (with the understanding 
that we mean some students) as follows: 

(Fy & 3z(Dz & Lzy)) 

Putting all the clauses together, we get: 

4. 'v'x(Fx - 'v'y((Fy & 3z(Dz & Lzy)) - Axy)) 

Summary 

Predicate logic takes us beyond assigning truth values to sentences and requires us to 
consider individuals and their properties, relations between individuals, and quantifica- 
tion. Individuals are denoted by lower-case letters from the beginning of the alphabet, 
while individual variables are lower-case letters from the end of the alphabet. Predicate 
letters are upper-case letters from the beginning of the alphabet. A single-place predicate 
followed by an individual constant is a sentence. An n-place predicate followed by n 
constants is a sentence. 

Among the possible strings (sequences of symbols), we carefully distinguished well- 
formed formulas (wffs). A wff preceded by a quantifier is also a wff. Quantifiers are either 
universal or existential. They have a scope, and any occurrence of the quantifier variable 
in the scope of the quantifier is bound. A wff with no free occurrences of variables is a 
sentence. 

The truth conditions for a quantified sentence are: 

V('v'xSx) = TRUE iff the value of every instance of 'Sx' is TRUE. 
V(3xSx) = TRUE iff the value of at least one instance of 'Sx' is TRUE. 
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Finally, the notions of a model, a minimal model, and dossiers on individuals were 
introduced, and some suggestions for symbolizing were put forward. 

Exercises 

A. Using the individual constants and predicate letters in the table below, symbolize 
the sentences that follow. 

a = Socrates F = is (or was) a philosopher 
b = Plato G = is (or was) a logician 

1. Socrates is a logician. 
2. Plato was a logician. 
3. Socrates was a philosopher and Plato was a logician. 
4. Plato was not a logician but Socrates was a philosopher. 
5. If Plato was a philosopher, then so was Socrates. 

B. Using the table from Exercise A, translate the following formulas into English: 
1. Fa 
2. Fb 
3. (Gav Fb) 
4. (Gb & -Fa) 
5. (Ga~ Gb) 

C. Let C = is a computer programmer 
D = is a philosopher 
E = is a mathematician 

Symbolize the following sentences: 
1. Everyone is a philosopher. 
2. Someone is a mathematician. 
3. Nobody is a computer programmer. 
4. Not everyone is a mathematician. 
5. All mathematicians are philosophers. 
6. Some philosophers are computer programmers. 
7. Every computer programmer is not a philosopher. 
8. Some philosophers are not computer programmers. 
9. Not all mathematicians are philosophers. 

10. Everyone is either a mathematician or a philosopher. 
11. Everyone is a mathematician and a philosopher. 
12. No mathematician programs computers. 

D. Using the same interpretations for the symbols as in C, translate the following 
formulas into English: 

1. \:/xCx 
2. \:/yCy 
3. 3uDu 
4. -3xDx 
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5. 3x-Dx 
6. 'v'x-Ex 
7. 'v'x(Cx - Dx) 
8. 3x(Cx - Dx) 
9. 3x(Cx & Ex) 

10. 'v'x(Cx & Ex) 

E. In which of the fifteen minimal models mentioned in the chapter are the following 
sentences TRUE, and in which are they FALSE? 

1. 'v'xFx 
2. 'v'x(Fx - Gx) 
3. 'v'x(Fx v Gx) 
4. 'v'x(Fx & Gx) 
5. 'v'x-Gx 
6. 3xFx 
7. -3x-Gx 
8. 3x-Gx 
9. -'v'xGx 

10. 3x(Fx v Gx) 
11. 3x(Fx & Gx) 
12. 3x(Fx - Gx) 
13. 'v'x(Fx v Fx) 
14. 'v'x(Fx - Fx) 
15. 3x(Fx & Fx) 

F. Let L = is taller than 
a= Alfred 
b = Betty 

Symbolize the following sentences: 
1. Alfred is taller than Betty. 
2. Betty is taller than Alfred. 
3. Alfred is not taller than himself. 
4. Someone is taller than Betty. 
5. Alfred is taller than everyone. 
6. Everyone is taller than someone. (Hint: Be careful!) 
7. Someone is taller than everyone. 

G. Using the same interpretations of the symbols as in F, translate the following 
formulas into English: 

1. Lba 
2. -Lab 
3. -Abb 
4. 'v'xLax 
5. 'v'xlxa 
6. 3xLbx 
7. 3xlxb 
8. 3x'v'ylxy 
9. 3x'v'yLyx 

10. 'v'x3ylxy 
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11. 'v'x3yLyx 
12. 'v'xlxx 
13. 3yLyy 

H. Symbolize the following sentences: 
1. If Sam really loves Mary, then no one loves Sam. 
2. All owners of handguns are in violation of some law. (Where Oxy = x owns 

y, Hx =xis a handgun, Vxy = x violates y, and Lx =xis a law.) 
3. All lovers of lovers love themselves. (Use only the predicate Lxy = x loves 

y.) 
4. Every doctor who treats himself has a fool for a client. (Where Dx = x is a 

doctor, Txy = x treats y, Fx = xis a fool, Cx = xis a client.) 
5. Some business people have their fingers in every business. (Where Bx = x 

is a business person, Hxyz = x has y in z, Fxy = x is the finger of y and 
Ox =xis a business.) 

6. All those who admire themselves and who love no one other than their 
mothers are going to get elected in every country. (Where Axy = x admires 
y, Lxy = x loves y, Mxy = x is the mother or y, Exy = x is going to get 
elected in y, Cx = xis a country.) 

7. No one who despises Napolean loves a dirty joke. 
8. No one admires anyone who tries to do everything. 
9. Everyone has some problems but no one has every problem. 

10. Everyone either admires or despises Franklin D. Roosevelt. 
11. If anyone gives me a stupid gift on my birthday, I won't send him a thank- 

you card. (Where Gxyzw = x gave y to z on w, Gx = x is a stupid gift, 
Bx= x is my birthday, m = I/me, Sxyz = x will send y a z, Tx =xis a 
thank-you card.) 

Suggestions for Computer Implementation 

It is not especially difficult to convert into a computer program the algorithm for deciding 
when a string that might include quantifiers, variables, or constants is a well-formed 
sentence. We only need to modify the algorithm given in Chapter 5. Since few computer 
terminals have the symbols ''v'' and '3', you might wish to reserve the letters 'A' and 'E' 
to serve in their place and then avoid using these letters for sentences or predicates. 
Or, you could use the words 'ALL' and 'SOME'. 

If we restrict ourselves to sentences containing one-place predicates, a program 
could also be written that determines whether an argument is valid or invalid. We gave 
a sketch of the underlying algorithm in this chapter. When the corresponding program 
is written, one of the first steps must be to provide some data structure to hold a model 
or many models. As we have hinted, a model can be stored as an array (a table) whose 
rows (dossiers) indicate the predicates satisfied by distinct individuals. One early step 
also must be to count the total number of distinct predicates contained in the sentences 
of the argument. We then need to generate all the representative individuals. (For 
inspiration on a method for doing so, you might recall how we generated all the possible 
combinations for truth values in Chapter 6. Additionally, if the representative individuals 
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are "named" by numbers, they can carry their dossiers with them.) We next need to 
produce all the minimal models. This task amounts to producing all the various com- 
binations of representative individuals. 

Once the minimal models have been produced, we need to devise a procedure for 
determining the truth values of the premises and conclusion in a given model. As we 
have seen, this can be accomplished by borrowing the main technique from WANG'S 
ALGORITHM {step 3 in Chapter 6) and by adding the conditions whose "main connective" 
is in fact a quantifier. For suggestions on programming these steps, consult the imple- 
mentation suggestions at the end of Chapter 6. Note that we also need a slightly different 
TEST procedure than that given in Chapter 6 for WANG'S ALGORITHM. 

Exercises 

1. Write an algorithm {or program) that inputs the sentences of an argument and 
determines the total number of distinct predicates in them. 

2. Write an algorithm (or program) that takes a list of distinct predicates (either as 
input or produced by another procedure in the same program) and generates 
all the representative individuals. 

3. Modify the algorithm MAIN-CONNECTIVE in Chapter 6 so that if a formula is 
universally or existentially quantified, the quantifier whose scope covers the rest 
of the formula is identified as the "main connective" of the formula. (The initial 
quantifier is not really a connective, since it does not connect sentences. It is a 
"connective" much like negation is a connective.) 

4. Write an algorithm (or program) that takes as input a universally or existentially 
quantified formula and a list of individuals and then does the following: (a) deletes 
the initial quantifier and (b) outputs all the instances of the resulting formula. 

5. Write an algorithm (or program) to determine when a formula is a simple predicate 
formula-a formula containing only a predicate and individual constants. 



PREDICATE LOGIC: 
Quantifier Inference 

Rules 

A valid argument, we recall, is an argu- 
ment where it is impossible for the premises to be TRUE 
and the conclusion FALSE. In the logic of sentences, 
there are several ways to determine if an argument is 
valid or invalid. We can, in the logic of sentences, con- 
struct a truth table and examine every situation to see 
if it is possible for the premises to be TRUE and the 
conclusion FALSE. In predicate logic, however, it is not 
possible, in general, to construct or to inspect all models, 
including those models in which the premises are TRUE 
or the conclusion FALSE. Consequently, other ways of 
showing an argument to be valid must be found. One 
of the simplest ways is to derive the conclusion from 
the premises in a formal deduction system with truth- 
preserving rules of inference. (The system should also 
be complete, in the sense that every conclusion of a 
valid argument can be derived in the system.) 

281 
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We turn now to the problem of deriving conclusions with sentences containing 
quantifiers and variables. The whole point of symbolizing the structure of sentences with 
quantifiers and variables is to enable ourselves to derive conclusions that we could not 
prove by the methods of sentential logic ,~lone. 

We feel sure that 

1. All Greeks are mortal. 
2. Socrates is a Greek. 
3. Socrates is mortal. 

is a valid argument. We need to see why it is valid, and also we need to develop rules 
that will allow us to derive the conclusion from the premises. 

When the above argument is symbolized, we get something like 

1. Vx(Gx - Mx) 
2. Ge 
3. Mc 

Sentence (1) "says" that for every individual x, '(Gx - Mx)' is satisfied by that individual. 
Hence, an instance using 'c', the name of Socrates, for 'x' is TRUE. That is, if (1) has 
the truth value TRUE, so does 

1a. (Ge - Mc) 

But now we can use -ELIM on (1a) and (2) to obtain (3). 
The earlier rules for introducing and eliminating connectives in a sentential derivation 

remain unchanged. We need only to add some rules for introducing and eliminating 
quantifiers. Our general strategy will be to eliminate quantifiers somehow, manipulate 
and transform the results using the earlier sentential rules, and, finally, introduce ap- 
propriate quantifiers, if needed, to obtain the desired conclusion. These new rules for 
quantifier INTRO and ELIM are very precisely stated, and careful attention must be paid 
not only to the sentence on the line to which the rule is applied but also to other sentences 
in the proof or subproof. 

Universal Quantifier Rules 

Our earlier rules of inference from Chapters 8 and 9 apply to quantified sentences 
considered as atomic sentences. Thus &ELIM will apply to a line with the sentence 
'(Vxfx & VyGy)' on it. We take 'VxFx' as a single sentence P and 'VyGy' as Q. That 
is, we take '(VxFx & VyGy)' as having the form (P & Q). Now, however, we are going 
to extend our deduction system in order to make additional derivations to and from 
quantified sentences. 
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Universal Elimination 

Reflecting on the truth conditions for a universally quantified sentence, say 'VxFx', we 
note that it has the value TRUE only if all instances of 'Fx' also have the value TRUE. 
Hence, if we infer an instance, any instance, from 'VxFx', we shall never move from a 
true sentence to a false one. This provides a justification for the rule: 

VELIM RULE: From a sentence of the form 
VvP 

you may derive 
P[c/v] 

In the statement of the rule, 'v' is used for any variable at all (w, x, y, z, ... ) and 'c' 
for any constant at all (a, b, c, d, ... ). We use the notation P[c/v] for the result of 
replacing all free occurrences of the variable v in formula P with the constant c. 

For example, if P is '3x(Fx v Gy)', then P[a/y] is '3x(Fx v Ga)', but P[a/x] is still 
'3x(Fx v Gy)', since 'x' is not free in P. 

In a derivation, the use of VELIM would look like this: 

10. Vx(Fx - Hx) 

15. (Fd- Hd) 

:<PREMISE or Rule> 

:VELIM,10 

The sentence on line 10 is universally quantified, and the sentence on line 15 results 
from the one on line 10 by deleting the initial quantifier and replacing all now free 
occurrences of the quantifier variable 'x' with the individual constant 'd'. 

It is essential to note that this rule and all the other quantifier rules require the scope 
of the initial quantifier to stretch to the end of the sentence on that line. Here is an 
example of a sentence where VELIM cannot be used, because the scope of the universal 
quantifier expression 'Vx' is not the entire sentence: 

(VxFx v VyGy) 

From this sentence, one cannot get '(Fa v VyGy)' by VELIM. 
One can use VELIM several times over, citing the same line: 

10. Vx(Fx - Hx) 

15. (Fd - Hd) 
16. (Fe - He) 

:VELIM,10 
:VELIM,10 
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Universal Introduction 

Next, we would like to be able to generalize, that is, to introduce a universal quantifier. 
A clue to justifying this move can be found in elementary geometry classes, where the 
teacher draws a triangle on the board and then uses this specific triangle to prove 
theorems about all triangles. This works as long as no appeal is made to any special 
properties of the example triangle. That is, if we can prove something about an arbitrarily 
selected individual, we have proved it for any individual. We need only to ensure that 
special properties of the selected individual play no role in the proof. The following rule 
is qualified to ensure just that. 

VINTRO RULE: From a sentence 
p 

you may derive 
VvP[v/c] 

Provided that: 
1. c does not occur in any premise. 
2. If P occurs in a subproof, no constant in P occurs in an 

ASSUMPTION still in force. 
3. All new occurrences of the variable v in P are free after 

the replacement in P[v/c]. 

In proviso (2), an ASSUMPTION is "still in force" during the subproof following it 
and during any sub-subproofs within that. Finally, the notation P[v/c] means that all 
occurrences of the constant c are replaced by the variable v. So, proviso (3) means 
that when v replaces c, it should not fall within the scope of a quantifier already present 
that uses v. The new occurrence of the variable should not, so to speak, be "captured" 
by a quantifier already present in the wff P. 

Examples of the correct use of VINTRO are given below. Assume throughout that 
the restrictions on the constant on line 5 are all met. 

Example 1. 
5. (Fa_,, Ga) :<Rule> 

9. Vx(Fx _,, Gx) :VINTRO,5 

Example 2. 
5. (Fb v 3yGy) :<Rule> 

12. Vx(Fx v 3yGy) :VINTRO,5 
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Here is a complete derivation for the following argument: 

'v'x(Fx- Gx) 
:. ('v'yFy- 'v'zGz) 

1. 'vx(Fx - Gx) :PREMISE 
/BEGIN: ('v'yFy- 'vzGz) by-INTRO/ 

*2. 'v'yFy :ASSUMPTION 
*3. Fa :'v'ELIM,2 
*4. 'v'x(Fx- Gx) :SEND,1 
*5, (Fa - Ga) :'v'ELIM,4 
*6. Ga :-ELIM,5,3 
*7. 'v'zGz :'v'INTRO,6 
*a. ('v'yFy- 'v'zGz) :-INTRO,2,7 

/END: ('v'yFy- 'v'zGz)/ 
9. ('v'yFy- 'v'zGz) :RETURN,8 

Here is an incorrect use of 'v'INTRO: 

Example 3. 
5. (Fa - Ga) 

9. 'v'x(Fx - Ga) 

:<Rule> 

:'v'INTRO,5 [INCORRECT-Not all occurrences of 'a' 
replaced.] 

Another incorrect use of 'v'INTRO is: 

Example 4. . 
5. (Fa - 3x(Ga & Hx)) :<Rule> 

:'v'INTRO,5 [INCORRECT-the 'x' in 'Gx' 
was captured.] 

Observe that the replacement of 'a' in 'Ga' by 'x' in line 5 led to its being captured by 
the existential quantifier already there. Instead of 'x', we could use another variable, say 
'y', and correctly infer: 

9. 'v'x(Fx - 3x(Gx & Hx)) 

9. 'v'y(Fy- 3x(Gy & Hx)) :'v'INTRO,5 

With these two rules we can derive the conclusions of some arguments traditionally 
studied since the time of Aristotle. One, for instance, is the ancient syllogistic argument: 
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All humans are mortal. 
All Greeks are humans. 

:. All Greeks are mortal. 

The first step, of course, is to symbolize the English sentences: 

'v'x(Hx- Mx) 
'v'x(Gx- Hx) 
'v'x(Gx- Mx) 

A proof of the conclusion using our two quantification rules goes as follows: 

1. 'v'x(Hx- Mx) 
2. 'v'x(Gx - Hx) 
3. (Ha - Ma) 
4. (Ga- Ha) 
5. (Ga- Ma) 
6. 'v'x(Gx - Mx) 

:PREMISE 
:PREMISE 
:'v'ELIM,1 
:'v'ELIM,2 
:HS,2,1 
:'v'INTR0,5 

The restrictions on the rule 'v'INTRO prevent the following attempted derivation: 

1. 'v'x(Gx - Mx) 
2. Gf 
3. (Gt- Mf) 
4. Mf 
5. 'v'xMx 

:PREMISE 
:PREMISE 
:'v'ELIM, 1 
:-ELIM,2,3 
:'v'INTR0,4 [INCORRECT] 

Here, 'f' occurs in PREMISE 2 and cannot be generalized on. 

Existential Quantifier Rules 

Having a pair of rules for introducing and eliminating universal quantifiers, we need now 
to develop a pair of rules of inference to introduce and eliminate existential quantifiers. 

Existential Introduction 

The next rule is again easy to justify. If something is true of a particular individual, then 
there is some individual for which it is true. Schematically, 

Fa 
3xFx 
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The correct statement of the rule is: 

3INTRO From a sentence of the form 
P[c/v] 

you may derive 
3vP 

In this rule, the constant c replaces all free occurrences of the variable v in well-formed 
formula P. 

You may find the statement of this rule to be odd, because as you move down the 
lines of a derivation, you encounter the sentence P[c/v) before you come to the sentence 
with the variable v, namely, 3vP. But to use the rule correctly, you need only to ensure 
that the earlier sentence and the wff you are about to existentially quantify are properly 
related: The earlier one can be obtained from P by replacing all free occurrences of v 
with c. In addition, if you are following a modified version of PROOF-GIVER, then you 
will, in fact, encounter 3vP first in your task file before you get to P[c/v]. This is because 
the task file begins at the end of the derivation and works up to the premises. 

These are all correct uses of the rule 3INTRO: 

n. Faa Faa Faa Faa :<PREMISE or Rule> 

n + k. 3xFxx 3xFxa 3xFax 3xFaa :3INTRO,n 

Each of these is a truth-preserving inference allowed by the rule. Any argument with 
line n as premise and line (n + k) as conclusion is a valid argument. Each of the four 
simple inferences above is allowable by the rule 3INTRO. Moreover, in our previous 
example, although we could not derive "v'xMx' ('Everything is mortal'), we could at line 
5 derive '3xMx' ('Something is mortal'). 

1. 'v'x(Gx - Mx) 
2. Gf 
3. (Gf - Mf} 
4. Mf 
5. 3xMx 

:PREMISE 
:PREMISE 
:'v'ELIM,1 
:-ELIM,3,2 
:3INTR0,4 

Existential Elimination 

The final rule, 3ELIM, deals with the sorts of inferences one can validly make from an 
existentially quantified sentence. Here we take a cue from legal practice. Frequently, in 
legal situations, we know that someone committed the crime, but we don't know who 
specifically it was. A warrant is issued for someone, John Doe or Jane Doe. We then 
reason about, say, John Doe, although we don't know exactly who he is. Whatever 
conclusion we reach that does not refer to John Doe by that name is, in general, a 
correct conclusion. 
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Our strategy with an existentially quantified sentence is to name someone as John 
Doe and see what follows. If we reach a conclusion that does not depend on someone's 
actually being named John Doe, then that is a valid conclusion from the original statement 
referring, nonspecifically, to someone or other. Let us look at the rule and practice using 
it. 

3ELIM If a sentence on a previous line has the form 
3vP 

and there is a subproof beginning with ASSUMPTION 
P[c/v] 

where constant c is new to the proof, and ending with a sentence 
Q 

not containing c, 
then Q may be RETURNed from that subproof. 

To say that a constant is "new to the proof" means, simply, that it has not been used 
before. Note that the RETURN rule has now been slightly, but significantly, expanded. 

Rule 3ELIM is different from any of the other elimination rules because it is not a 
rule for eliminating an existential quantifier from a line. It is more like a strategy for 
constructing subproofs to derive conclusions from existentially quantified sentences. 

Let us work a few examples, again drawn from traditional Aristotelian logic. 

All circus animals are tame animals. 
Some lions are circus animals. 

:. Some lions are tame animals. 

1. \fx(Cx - Ax) 
2. 3x(Lx & Cx) 

/BEGIN: 3ELIM/ 

*3. (La & Ca) 
* 4. \fx(Cx--+ Ax) 
*s. (Ca - Aa) 
*6. Ca 
*7. Aa 
*a. La 
*9. (La & Aa) 
*10. 3x(Lx & Ax) 

/END: 3ELIM/ 

11. 3x(Lx & Ax) 

:PREMISE 
:PREMISE 

:ASSUMPTION for 3ELIM,2 
:SEND,1 
:\fELIM,4 
:&ELIM,3 
:--+ELIM,5,6 
:&ELIM,3 
:&INTRO,8,7 
:3INTRO,9 

:RETURN,10 

In line 3, we assumed that a is a lion who is a circus animal. The subproof concludes 
on line 1 O with a sentence that does not mention a and thus does not depend on the 
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assumption that 'a' is a name of a circus lion. So, the information on line 10 may be 
returned to the main proof.* 

Some Examples 

When using the quantifier introduction and elimination rules, one must take care that 
the scope of the quantifier (introduced or eliminated) is the entire sentence on the line. 
We shall examine some ways of dealing with sentences having quantifiers whose scope 
is only a proper part of the sentence. For instance, in 

(\fxFx&A) 

the scope of '\fx' is just the left conjunct. The inner structure of the right conjunct, 'A', 
is of no concern here; it can be any sentence whatever, with one caution to be explained 
shortly. We cannot use \fELIM on this sentence as it stands, but we can derive another 
sentence from it to which \fELIM can apply: 

1. (\fxFx & A) 
2. \fxFx 
3. A 
4. Fa 
5. (Fa & A) 
6. \fx(Fx & A) 

:PREMISE 
:&ELIM,1 
:&ELIM,1 
:\fELIM,2 
:&INTR0,4,3 
:\flNTR0,5 

The derivation assumes that the sentence A does not contain the constant 'a'. If there 
are constants in sentence A, then the constant introduced at line 4 should be different 
from any of them. 

Here is another simple derivation that moves a quantifier to the beginning of the 
sentence: 

1. (A--" \fxFx) :PREMISE 

/BEGIN:--" INTRO for (A-" Fa)/ 

*Historical note: The argument above was stated as a correct Aristotelian syllogistic argument. 
The noun phrase "tame animals" must be used, although to a modern ear, the sentence sounds 
stilted. With our symbolism, we could deal directly with the more naturally sounding argument: 

All circus animals are tame . 
Some lions are circus animals. 

.-. Some lions are tame. 

The symbolic form remains the same. The difference is that earlier, 'Ax' symbolized 'x is a tame 
animal', while now it symbolizes 'xis tame'. 
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*2. A :ASSUMPTION 
*3. (A- VxFx) :SEND, 1 
* 4. VxFx :-ELIM,3,2 
*5. Fa :VELIM,4 
*6. (A- Fa) :-INTRO,2,5 

/END: -INTRO/ 

7. (A- Fa) :RETURN,6 
8. Vx(A- Fx) :VINTRO,7 

Quantifier Negation Rule 

Before we work on the next examples, it will be helpful to consider the cases where a 
negation sign precedes a quantifier whose scope is the rest of the sentence. There are 
two kinds of cases: 

-VxFx -3xFx 

We propose to show that 

'-3xFx' is logically equivalent to 'Vx-Fx'. 

The equivalence between the other two, '-VxFx' and '3x-Fx', is shown similarly; it is 
an exercise at the end of the chapter. The results are of some importance, since these 
logical equivalences open the way to using the rule of replacement on wffs with quantifiers 
flanked by negation signs. 

One way to show the equivalence is by way of a semantic discussion of the truth 
conditions for the pair of sentences. Thus we would begin by pointing out that 

'-3xFx' is TRUE if and only if '3xFx' is FALSE 

and that 

'3xFx' is FALSE if and only if every instance of 'Fx' is FALSE. 

But this is so if and only if every instance of '-Fx' is TRUE, and that is the condition if 
and only if 'Vx-Fx' is TRUE. 

A second way of showing equivalence is to prove that the biconditional of the two 
is a theorem. Thus we shall prove '(-3xFx ~ Vx-Fx)' beginning with no premises. 
There is a problem of strategy during the derivation, and we shall interrupt the derivation 
at that point to discuss the problem and a solution. 
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*1. -3xFx :ASSUMPTION 
/BEGIN: -INTRO to derive -Fa/ 

**2. Fa :ASSUMPTION 
**3_ 3xFx :3INTRO,2 
**4_ -3xFx :SEND,1 
**5. -Fa :-INTRO,2,3,4 

/END: -INTRO/ 
*6. -Fa 
*7_ Vx-Fx 
*a. (-3xFx- Vx-Fx) 

/END: -INTRO/ 

:RETURN,5 
:VINTRO,6 
:-INTRO,1,7 

9. (-3xFx- Vx-Fx) :RETURN,8 
*10. VX-Fx :ASSUMPTION 

/BEGIN: -INTRO to derive -3xFx/ 
3xFx :ASSUMPTION 

/BEGIN: 3ELIM/ 
Fb 

**11. 

*** 12. 
*** 13. 
***14_ 

Vx-Fx 
-Fb 

:ASSUMPTION for 3ELIM,2 
:SEND,10 
:VELIM,13 

We now have a problem: A contradiction can be seen on lines 12 and 14, but since they 
contain 'b'-the constant in the assumption at 12-they cannot be returned out of the 
subproof. But given a contradiction, any sentence can be proved-in particular, a con- 
tradiction without the constant 'b'. Letting 'A' be an atomic sentence (say, 'Grass is 
green'), we continue the proof. 

*** 15. 
***16. 

(Fb v (A & -A)) 
(A & -A) 
/END: 3ELIM/ 

(A & -A) 
A 
-A 
-3xFx 
/END: -INTRO/ 

*21. -3xFx 
*22. (Vx-Fx - -3xFx) 

/END: -INTRO/ 

**17. 
**rn. 
**19_ 
**20. 

23. (Vx-Fx- -3xFx) 
24. (-3xFx ~ Vx-Fx) 

:vlNTRO,12 
:vELIM, 15, 14 

:RETURN,16 
:&ELIM,17 
:&ELIM,17 
:-INTRO, 11, 18, 19 

:RETURN,20 
:-INTRO, 10,21 

:RETURN,22 
:~INTRO,9,23 

Since 'Fx' played no significant role in the above proof, this result holds for any wff 
in place of 'Fx'. We can now adopt a quantifier negation rule: 
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QUANTIFIER NEGATION (QN) -3vS is derivable iff 'v'v-S is derivable. 
-'v'vS is derivable iff 3v-S is derivable. 

This rule enables us, at any time in a proof, to "move the negation sign through a 
quantifier" if we change the quantity of the quantifier. This derived rule is very useful, 
as the following proof shows: 

To prove that "v'x(Fx - A)' is logically equivalent to '(3xFx - A)' 

A proof, using no premises, of the biconditional: 

**2. 

***3_ 
***4, 
***s. 
***6. 

'v'x(Fx - A) :ASSUMPTION 
/BEGIN: - INTRO for (3xFx - A)/ 
3xFx :ASSUMPTION 

/BEGIN: 3ELIM/ 
Fa 
'v'x(Fx- A) 
(Fa-A) 
A 
/END: 3ELIM/ 

**7_ 
**a. 

A 
(3xFx-A) 
/END: - INTRO/ 

*g_ (3xFx - A) 
* 10. ('v'x(Fx - A) - (3xFx - A)) 

/END: - INTRO/ 
11. ('v'x(Fx - A) - (3xFx - A)) 
*12. (3xFx-A) 

:ASSUMPTION for 3ELIM,2 
:SEND,1 
:'v'ELIM,4 
:- ELIM,3,5 

:RETURN,6 
: - INTRO,2,7 

:RETURN,8 
:- INTRO,1,9 

:RETURN,10 
:ASSUMPTION 

**13, 
**14, 

***1s. 
***16. 
***17_ 
*** 18. 
***19_ 
***20. 
***21. 

**22. 
**23_ 
**24, 
**2s. 

/BEGIN: -ELIM to derive 'v'x(Fx-A)/ 
-'v'x(Fx - A) :ASSUMPTION 
3x -(Fx-A) :QN,13 

/BEGIN: 3ELIM/ 
-(Fb-A) 
--(Fb & -A) 
(Fb & -A) 
Fb 
3xFx 
-A 
(3xFx & -A) 
/END: 3ELIM/ 

(3xFx & -A) 
3xFx 
(3xFx-A) 
A 

:ASSUMPTION for 3ELIM,14 
:RR EQ,15 
:RR DN,16 
:&ELIM,17 
:3INTRO,18 
:&ELIM,17 
:&INTRO,20, 19 

:RETURN,21 
:&ELIM,22 
:SEND,12 
: - ELIM,24,23 
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**26. 
**27, 

-A 
Vx(Fx - A) 
/END: -ELIM/ 

*20. Vx(Fx-A) 
*29_ ((3xFx - A) - Vx(Fx - A)) 

/END: - INTRO/ 
30. ((3xFx - A) - Vx(Fx - A)) 
31. (Vx(Fx - A) ~ (3xFx - A)) 

:&ELIM,22 
:-ELIM, 13,25,26 

:RETURN,27 
: - INTRO, 12,28 

:RETURN,29 
:~INTRO, 11,30 

Let us apply our expanded set of rules to a few examples in order to become more 
familiar with proofs. The first example has some historical interest. The British logician 
and logic-machine builder W. S. Jevons, modifying an example from Augustus De Mor- 
gan, accused traditional Aristotelian logic of being unable to validate this argument: 

Horses are animals. 
Therefore, every head of a horse is a head of an animal. 

Using 'Dyx' for 'y is a head of x', we can symbolize these sentences as: 

Vx(Hx-Ax) 
:.'lfy(3x(Hx & Dyx) - 3z(Az & Dyz)) 

Now working back from the conclusion, we can devise a simple proof. 

1. Vx(Hx - Ax) :PREMISE 
/BEGIN: - INTRO for (3x(Hx & Dax)- 3z(Az & Daz))/ 

*2. 3x(Hx & Dax) :ASSUMPTION 
/BEGIN: 3z(Az & Daz)/ 
(Hb & Dab) 
Vx(Hx-Ax) 
(Hb-Ab) 
Hb 
Ab 

**3, 
**4, 
**s. 
**6. 
**7_ 
**0. 
**s. 
**10. 

Dab 
(Ab & Dab) 
3z(Az & Daz) 
/END: 3ELIM/ 

* 11. 3z(Az & Daz) 
*12. (3x(Hx & Dax)- 3z(Az & Daz)) 

/END: - INTRO/ 
13. (3x(Hx & Dax) - 3z(Az & Daz)) 
14. Vy(3x(Hx & Dyx) - 3z(Az & Dyz)) 

:ASSUMPTION for 3ELIM,2 
:SEND,1 
:VELIM,4 
: & ELIM,3 
:- ELIM,6,5 
:&ELIM,3 
: & INTRO, 7,8 
:3INTRO,9 

:RETURN,10 
: - INTRO,2, 11 

:RETURN,12 
:VINTRO,13 

This concludes the proof. Notice that line 13 contains 'a' with no restrictions on VINTRO, 
since the assumptions at lines 2 and 3 are no longer in force. 



294 

CHAPTER 13 

The next example illustrates how we can handle the identity relation with our present 
notation. [We could, by the way, extend our present system to treat the identity relation 
in a special way, with special rules of inference for formulas with an identity sign ( = ).] 
Consider this argument: 

If one event causes another event, the first event begins before the second. When 
one event begins before another, the events are not identical. Every event is identical 
to itself. Hence, no event is its own cause. 

Our dictionary for symbolizing is: 

Cxy: x causes y 
Bxy: x begins before y 
lxy: x is identical to y 

We symbolize this argument as follows: 

1. 'v'x'v'y(Cxy- Bxy) 
2. 'v'x'v'y(Bxy- -lxy) 
3. 'v'xlxx 

:. 4. 'v'x-Cxx 

Observe that the conclusion is a universally quantified sentence. This suggests that in 
the last step in the derivation, the rule VINTRO is applied. As usual, our strategy will be 
to eliminate quantifiers first, perform sentence transformations, and then introduce quan- 
tifiers where needed. 

1. 'v'x'v'y(Cxy - Bxy) 
2. 'v'x'v'y(Bxy - -lxy) 
3. 'v'xlxx 
4. laa 
5. 'v'y(Bay - -lay) 
6. (Baa - +laa) 
7. 'v'y(Cay - Bay) 
8. (Caa - Baa) 
9. --laa 

10. -Baa 
11. +Caa 
12. 'v'x-Cxx 

:PREMISE 
:PREMISE 
:PREMISE 
:VELIM,3 
:VELIM,2 
:VELIM,5 
:VELIM,1 
:VELIM,7 
:RR DN,4 
:MT,6,9 
:MT,8,10 
:VINTRO,11 

Our final example will give us some practice with the quantifier negation rule: 

Not all successful people are rich. But all successful people are either happy or 
rich. So, there are some people who are not rich and yet who are happy. 
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Symbolizing this with some care, we get: 

1. -'v'x(Sx - Rx) 
2. 'v'x(Sx - (Rx v Hx)) 

:. 3. 3x(-Rx & Hx) 

One proof of this argument is: 

1. -'v'x(Sx-Rx) 
2. 'v'x(Sx - (Rx v Hx)) 
3. 3x-(Sx - Rx) 

:PREMISE 
:PREMISE 
:QN,1 

/BEGIN: 3ELIM to derive 3x(-Rx & Hx)/ 
*4. -(Sa - Ra) :ASSUMPTION for 3ELIM,3 
*s. 'v'x(Sx - (Rx v Hx)) :SEND,2 
*6. (Sa - (Rav Ha)) :'v'ELIM,5 
*7. --(Sa & -Ra) :RR EQ,4 
*a. (Sa & -Ra) :RR DN,7 
*9. Sa :&ELIM,8 
*10. (Rav Ha) :-ELIM,9,6 
* 11. -Ra :&ELIM,8 
*12. Ha :vELIM,11,10 
*13. (-Ra & Ha) :&INTRO,11,12 
*14. 3x(-Rx & Hx) :3INTRO,13 

/END: 3ELIM/ 
15. 3x(-Rx & Hx) :RETURN,14 

This concludes the proof. It will be very helpful for you to review these examples and 
to work some of the related exercises at the end of the chapter. 

Invalid Arguments 

We have been deriving conclusions of valid arguments. But what if an argument is 
invalid? How would we show that an argument is invalid? Consider this argument: 

All circus animals are tame. 
Some lions are not circus animals. 
Some lions are not tame. 

'v'x(Cx-Ax) 
3x(Lx & -Cx) 

:. 3x(Lx & -Ax) 

Try as we might, we would not be able to produce the indicated conclusion using our 
rules. And it is well that we cannot, for the conclusion is not a logical consequence of 
the premises. But how do we show that it is not? 
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To show an argument to be invalid, we must provide a model in which the premises 
are true sentences but the conclusion is a false one. That is, we must describe a model 
where inspection of the dossiers on individuals in the model reveals that the premises 
are TRUE but the conclusion is FALSE. There are many such models for the argument 
we are now considering; here is one with just two individuals: 

We can see that both '(Ca -Aa)' and '(Cb-Ab)' are TRUE in this model. Thus 

'\fx(Cx - Ax)' is TRUE in the model. 

Furthermore, V(Lb & -Cb) = TRUE, so 

'3x(Lx & +Co)' is TRUE in the model. 

But V(La & -Aa) = FALSE, and V(Lb & -Ab) = FALSE also. Since there are no other 
individuals, 

'3x(Lx & -Ax)' is FALSE in the model. 

There is no algorithm for finding models that invalidate an argument. However, some 
procedures and rules of thumb can be devised for this search task, as we shall see in 
the next chapter. 

Summary 

Two universal quantification rules were discussed: universal elimination (VELIM) and 
universal introduction (\/INTRO). 

VELIM-From a sentence of the form \fvP, you may derive P[c/v]. 
VINTRO--From a sentence P, you may derive \fvP[v/c], provided that: 

1. c does not occur in any premise. 
2. If P is in a subproof, no constant in P occurs in an ASSUMPTION still in force. 
3. All new occurrences of v in P are free after the replacement in P[v/c]. 

The notation P[c/v] means that the constant c replaces all free occurrences of the variable 
v in P. Similarly, P[v/c] means that the variable v replaces all occurrences of the constant 
c in P and is free after replacement. 

Two existential quantification rules were also discussed: existential introduction 
(31NTRO) and existential elimination (3ELIM). 
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31NTRO-From a sentence P(c/v], you may derive 3vP. 
3ELIM-lf a sentence has the form 3vP, and there is a subproof with ASSUMPTION 

P[c/v], where c is new to the whole proof, and the subproof ends with sentence 
Q not containing c, then Q may be RETURNed from the subproof. 

A quantifier negation rule was (partially) proved: 

-3vS is derivable iff Vv-S is derivable. 
-'v'vS is derivable iff 3v-S is derivable. 

This rule enables us to move negation signs back and forth through quantifiers, if we 
change the quantity of the quantifiers. 

Some examples were worked, and then the problem of showing an argument to be 
invalid was introduced. 

Exercises 

A. Construct derivations for the following arguments: 
1. 'v'x(Fx - Gx) 6. -3xFx 

3x(Fx & Hx) :.'v'x(Fx - Gx) 
:.3x(Gx & Hx) 

2. -'v'x(Fx - Gx) 
:.3x(Fx & -Gx) 

3. -3x(Fx & -Gx) 
:.'v'x(Fx - Gx) 

4. 'v'x(Fx - 3yRxy) 
'v'x'v'y(Rxy- Gx) 
3xFx 

:.3xGx 
5. 'v'x(Fx - Gx) 

(3xGx - 3x(Hx & Dx)) 
:.(3xFx - 3xHx) 

7. -'v'x(Fx - -Gx) 
:.3x(Fx & Gx) 

8. -3x(Fx & Gx) 
:.'v'x(Fx - -Gx) 

9. 'v'x-Gx 
'v'x'v'y(Rxy- Fx) 
'v'x(Fx- Gx) 

:.3x3y-Rxy 
10. 'v'x((Fx v Gx) - Hx) 

'v'x((Hx v Dx) - +Fx) 
:.'v'x-Fx 

B. Prove that the following pairs of sentences are logically equivalent as was done 
on pages 290 to 293 in this chapter. 

1. 'v'x(Fx & Gx) 
2. 'v'x(Fx & A) 
3. 3x(Fx v Gx) 
4. 'v'x(Fxv A) 
5. 'v'x(A- Fx) 
6. 3x(Fx-A) 
7. 'v'x'v'yFxy 
8. 3x3yFxy 
9. -'v'x3yFxy 

10. 'v'x((Fx v Gx) - Hx) 

('v'xFx & 'v'xGx) 
('v'xFx & A) 
(3xFx v 3xGx) 
('v'xFx v A) 
(A- 'v'xFx) 
('v'xFx-A) 
'v'y'v'xFxy 
3y3xFxy 
3x'v'y-Fxy 
'v'x((Fx - Hx) & (Gx- Hx)) 
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C. Some sentences are derivable from no premises at all. These sentences are 
called theorems of logic, and if our rules are correctly chosen, they will be 
universally valid sentences. Let us prove a theorem of logic. 

To prove: (3yVxFxy--'> Vx3yFxy) 
/BEGIN:--'> INTRO to derive conclusion/ 

*1. 3yVxFxy :ASSUMPTION 
/BEGIN: 3ELIM/ 

**2. VxFxa 
**3. Fba 
**4. 3yFby 

/END: 3ELIM/ 
*5. 3yFby 
*6. Vx3yFxy 
*7. (3yVxFxy--'> Vx3yFxy) 

/END:--'> INTRO/ 
8. (3yVxFxy--'> Vx3yFxy) 

:ASSUMPTION for 3ELIM,1 
:VELIM,2 
:3INTRO,3 

:RETURN,4 
:VINTRO,5 
: --'> INTRO, 1,6 

:RETURN,? 

Notice that in the proof of a theorem of logic, the last line is not starred. Prove 
the following theorems of logic: 

1. 3x(Fx--'> VxFx) 
2. ((3XFx--'> VxFX)--'> (VxFx v Vx-Fx)) 
3. (Vx(Fx--'> Gx)--'> (3x-Gx--'> 3x-Fx)) 
4. (3x(3yFy--'> Gx(3xFx--'> 3yGy)) 
5. -3yVx(Fxy ~ -Fxx) 

D. Symbolize and then construct derivations for these arguments. 
1. All phenomenalists deny the reality of matter, but no materialist does. 

Hence, no materialist is a phenomenalist. 
2. No capitalists are socialists. Only socialists are egalitarians. Therefore, 

no capitalist is an egalitarian. 
3. All politicians are good communicators. Some women are politicians. 

Thus, some women are good communicators. 
4. All students take either logic or mathematics. Some students do not take 

mathematics. Therefore, some students take logic. 
5. Anyone who helps a criminal is guilty. Therefore, any criminal who helps 

himself is guilty. 
6. If Adam graduates, then everyone does. Adam graduates only if Betty 

does also. But Betty graduates only if everyone does. So, if someone 
doesn't graduate, neither Adam nor Betty graduates. 

7. No one who thinks for himself or herself supports every position of the 
party. One is totally loyal only if one supports every position of the party. 
Hence, those who are totally loyal do not think for themselves. 

8. Some teachers are admired by all those students who admire any teacher 
at all. Every student admires some teacher or other. Therefore, there are 
teachers who are admired by all students. 
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9. People like anything liked by anyone they like. Not everybody dislikes 
everybody. People like those who like them. Consequently, somebody 
likes himself. 

10. Whenever there is a problem at the college, all the faculty blame the dean 
for it. Now, if someone blames someone for something, then he (or she) 
must think that person has control over what he (or she) is being blamed 
for. The dean is a person. Hence, there is a person whom the faculty 
thinks has control over all the problems at the college. 



CHAPTER 14 

PREDICATE LOGIC: 
Determining Validity 

and Proving Theorems 

As we mentioned in Chapter 2, a part of 
the field known as Artificial Intelligence is concerned 
with instructing computers to perform the activities we 
associate with an ability to reason. These activities in- 
clude determining whether or not arguments are valid, 
deducing valid consequences from sentences, and pro- 
ducing proofs for valid arguments. 

Chapter 6 gave us an algorithm for determining 
whether or not an argument in sentential logic is valid. 
As we observed, this method is perfectly "mechanical" 
and can, for any argument, determine in a finite amount 
of time whether the argument is valid or invalid. This 
method thus qualifies as an algorithm. 

In Chapter 11 , we gave a method for producing a 
proof of a valid argument in the logic of sentences. 
Although this method is mechanical (or can easily be 
made so), it will not always produce a correct proof of 
any valid argument in a finite amount of time. So this 
method is not a real algorithm. It so happens, however, 
that an algorithm to produce proofs in the logic of sen- 
tences can be given-although the resulting PROOF- 
GIVER will be larger and less convenient to use than 
the method we gave. 

301 
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In Chapters 12 and 13 we introduced the concepts of predicate logic, which go far 
beyond those used in the logic of sentences. While the logic of sentences treats argu- 
ments with no examination of the inner structure of atomic sentences, predicate logic 
examines how even "atomic" sentences are constructed. 

Decidability 

There are two important questions that can be posed for any system of logic. These 
questions are: 

1. Is it possible to devise an algorithm for classifying any argument in the system of 
logic as being valid or invalid? 

2. Is there a mechanical procedure that always produces a proof of any valid argument 
in the system of logic? 

The first question is usually described as the question of whether the system of logic is 
decidable-whether there exists a decision procedure (an algorithm) that "decides" 
whether an argument is valid or invalid. We did not explicitly pose this question with 
regard to the logic of sentences, because it is easy to see, once truth tables are introduced 
(as in Chapter 6), that sentential logic is decidable. 

The surprising answer to question 1 for predicate logic is that it is undecidable. 
There is no algorithm that can classify every argument according to whether it is valid 
or invalid. It is important to realize the full force of this claim. We are not saying merely 
that such an algorithm is difficult to find or that it hasn't yet been found. Nor are we 
saying that the algorithm is long and hard to describe. We are saying that it is impossible 
to find such an algorithm. This far-reaching result is known as Church's theorem, after 
its discoverer, the American logician Alonzo Church, who proved it in 1936. 

Church's theorem implies that no chapter like Chapter 6 is possible for predicate 
logic. There is nothing like a "truth table" that can be generated by an algorithm and 
applied to an argument in predicate logic in order to determine whether it is valid or 
invalid. Explaining the incontrovertible reasoning behind Church's theorem is beyond 
the scope of this book. In a sentence, the difficulties that Church's theorem identifies 
creep into logic when both quantifiers and relations are admitted. 

Models 

There are some types of arguments that escape the force of Church's theorem and for 
which an algorithm can be constructed that classifies them as valid or invalid. One type 
of argument that escapes the force of Church's theorem is, as we have already remarked, 
sentential logic. 

Let us call the logic in which formulas may contain quantifiers, relations, sentence 
connectives, and the other symbols of logic we have discussed the full predicate logic. 
Church's theorem asserts that the full predicate logic is undecidable. 
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Are there certain kinds of arguments in predicate logic that are decidable, even 
though there is no decision procedure for all arguments? Not surprisingly, the answer 
to this question is affirmative, but a detailed discussion and proof of this answer is 
beyond the scope of this book. 

The question of whether such an argument is valid or invalid is the same as this 
question: 

Is there a model in which the premises are satisfied (TRUE) but in which the 
conclusion is not satisfied (FALSE)? 

If so, the argument is invalid; if not, then the argument is valid. This observation can be 
put in the form of an algorithm: 

1. INPUT an argument. 
2. FOR every possible model of this argument: 

(a) IF the premises are satisfied and the conclusion is not satisfied in this 
model, THEN OUTPUT "Invalid" and STOP. 

3. OUTPUT "Valid" and STOP. 

In order to use this algorithm, we need to refine step 2. In particular, we need a procedure 
for constructing every possible model of an argument and a way to order the models 
so that we can be sure that each one is examined in the FOR-loop. We also need to 
be sure that there are only a finite number of models so that we can be sure that we 
shall eventually exit the FOR-loop [either by running through all the models without 
finding one in which the premises are satisfied but in which the conclusion is not, thus 
moving to step 3, or else by finding such a model, thus exiting the loop early, at step 
2(a)]. 

Arguments with no quantifiers are decidable. One simply treats 'Fa' or 'Gb' or 'Hbc' 
as atomic sentences, each of which is either TRUE or FALSE in a given model. The 
number of models, in this case, is clearly finite. Indeed, WANG'S ALGORITHM can be 
applied directly. In the terminology of Chapter 6, if the same sentence occurs on both 
the left and right sides, the attempt fails. If all attempts fail, the argument is valid. 

Arguments having only one-place predicates (and possibly other atomic sentences) 
are also decidable. If there are n distinct one-place predicate letters in the argument, 
then at most 2 ** n distinct types of individuals need to be considered to determine 
validity or invalidity. Whenever only a finite number of individuals are involved, a decision 
procedure can be devised. In this case, universally quantified sentences reduce to a 
finite conjunction of instances, and existentially quantified sentences reduce to a finite 
disjunction of instances. Then, truth tables or WANG'S ALGORITHM can be used. 

The trouble arises when we have quantified n-place relations, for n > 1. The 
number of distinct types of individuals-and, hence, the number of different possible 
models-increases quite rapidly. Consider 

3xFxa 
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Begin with a model with only one kind of individual, say Alfie. The letter 'a' refers to 
Alfie. Now 'Faa' could be TRUE (and then so would '3xFxa'), or 'Faa' could be FALSE 
(and then so would '3xFxa'). So, in order to explore all possible situations, we need two 
kinds of individuals: those for which 'Faa' is TRUE and those for which 'Faa' is FALSE. 
Let Alfie be the first kind of individual and Betty the second kind. When 'a' is the name 
of Alfie, V(Faa) = TRUE, and when 'a' is the name for Betty, V(Faa) = FALSE. Now 
we want a model containing both Alfie and Betty, whose names will be 'a' and 'b', 
respectively. (Of course, we could switch the names around, or even let both of them 
refer to one individual, say Alfie.) But what are the truth values of 'Fab' and 'Fba'? The 
number of possible kinds of individuals doubles, and doubles again. As we continue, 
the number of possible kinds of individuals quickly becomes infinite, and the number of 
models becomes even larger-since models are subsets of the collection of individuals. 

Since the time that Church's theorem was proved, logicians have not only tried to 
identify types of arguments that are decidable but have also tried to identify types of 
arguments that are undecidable by any algorithm. Indeed, some logicians have shown 
that some kinds of arguments are "more undecidable" than others. The intriguing notion 
of "being more undecidable than" can be made quite precise. Argument type A is more 
undecidable than argument type B if, given a way of deciding type A arguments (say, 
an oracle), we could then decide type B arguments, but given a way (another oracle!) 
of deciding type B arguments, we still could not decide type A arguments. Unfortunately, 
the pursuit of this issue is well beyond the scope of this book. 

Church's Thesis 

Can a computer exist that would decide the question-for any argument-of whether 
the argument is valid or invalid? What we have said thus far does not quite imply that 
no such computer is possible. We have only asserted that: 

No algorithm for classifying arguments as valid or invalid is possible. 

To claim that computers could not ever classify any argument as valid or invalid, we 
need an additional assumption: 

Computers can perform only what algorithms describe. 

This latter assertion is widely believed to be true but cannot be conclusively shown to 
be true. The assertion is known as Church's thesis, or as the Church-Turing thesis. It 
is not to be confused with Church's theorem, which has been conclusively proved. 

A valid argument concerning the limitations of computers would be: 

1 . No algorithm for classifying all arguments as valid or invalid is pos- 
sible. (Church's theorem) 

2. Computers can perform only what algorithms describe. (Church's 
thesis) 
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Therefore, 3. No computer could ever effectively classify all arguments as valid or 
invalid. 

The claim that Church's thesis is true is discussed in Appendix B. 
Some people have been eager to capitalize on this weakness of computers that no 

computer could ever effectively classify all arguments as valid or invalid, further asserting 
that this shows that there are some things humans can do that computers can't. It is 
true that Church's theorem, together with Church's thesis, implies certain limitations on 
the ability of computers to reason. However, it also seems that humans are subject to 
the same limitations. Are there human beings who can always, and in a finite time, state 
correctly whether an argument is valid or invalid? It seems that there do not exist such 
human beings. In fact, very few of us, and then only with a great deal of time, can 
determine whether relatively complicated arguments in predicate logic are valid or invalid. 
We do not normally say that these limitations of human beings render us altogether 
unable to reason. We should not say it of computers either. So computers' inability to 
decide, for any argument, whether it is valid or invalid does little to show the superiority 
of human reasoning. We are apparently subject to the same limitations. 

Mechanical Theorem Proving 

Church's theorem and Church's thesis are heavy doses, because they apparently show 
the limitations of intelligence to solve problems-regardless of whether this intelligence 
is "artificial" or human. In the light of these observations, we might face the second of 
our two original questions with some pessimism: 

If we know (somehow) that an argument in predicate logic is valid, is there a 
mechanical procedure that always produces a proof of it? 

After the blow Church's theorem delivered to our confidence, we might be tempted to 
answer, "Probably not!" 

Contrary to these expectations, however, the answer to this question is, Yes, there 
is such a procedure. If an argument is valid, there exists a method that will eventually 
show that it is valid. Moreover, the procedure can be designed so that it will also tell us 
why the argument is valid-that is, it will give us a demonstration of the argument's 
validity. It is interesting to contemplate what would happen if we fed this procedure an 
invalid argument. It is in this case that Church's theorem comes into play: the method 
will never halt. If a computer were programmed with this method and we gave it an 
invalid argument, we would never know whether the computer was about to give us a 
proof or disproof or whether the computer might be working forever on the problem. 

The general topic addressed by this question is called mechanical theorem proving. 
There are essentially two different ways a procedure can be constructed to give a 
demonstration of a valid argument. One way is along the lines of the method we gave 
in Chapter 11, PROOF-GIVER. There, we created an almost mechanical procedure that 
would output a proof in the deductive system in which we were working. We might call 
this the proof method of demonstrating an argument to be valid. 
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The other way of creating a procedure to demonstrate that an argument is valid will 
not output a real proof. It will not give us a proof using our rules of deduction, but will 
instead demonstrate that it is impossible for the premises to be TRUE and the conclusion 
FALSE. 

Consider the following argument: 

A 
B 

:. C 

As we saw in Chapter 7, this argument is valid if and only if its corresponding conditional 

((A & B)- C) 

is a tautology. That is, the argument is valid if and only if this conditional is TRUE in all 
possible situations. But it is also true that the argument is valid if and only if the conjunction 

((A & B) & -C) 

is inconsistent, that is, ,f and only if a contradiction can be derived from it. That is, the 
argument is valid if and only if this conjunction is FALSE in all situations. (For a review 
of the meaning of 'tautology', 'contradiction', and 'inconsistent', you should reread the 
relevant sections of Chapter 7.) 

Resolution 

There is a technique that relies on this second observation: An argument is valid if and 
only if the conjunction formed by taking the conjunction of all the premises together with 
the negation of the conclusion is not satisfiable in any model. This technique is called 
resolution. It might not at first seem very promising to assert that an argument is valid 
if and only if some formula is FALSE in every possible situation. The determination of 
whether a formula is FALSE in every situation might, after all, take forever. 

Let us see how resolution works in the case of the logic of sentences. The idea 
behind resolution is that many valid argument forms (including most rules of inference) 
can be seen as instances of a single, very general pattern that can be used as a solitary 
rule of inference: the Rule of Resolution. To see this more clearly, consider a new notation 
for the logic of sentences. Let us agree to write a disjunction 

(P v Q) 

as 

PQ 



307 

DETERMINING VALIDITY 

and a negation 
-P 

as 
P' 

And let's agree to write the premises of an argument separated by commas above a 
line, with the conclusion below the line. Now let's consider some valid argument forms, 
with the premises converted first to CNF and then to our new notation: 

(P-Q) 
p 

:.Q 

(P-Q) 
-Q 

:.-P 

((P & (Q & R)) 
Q 

:.((P & R - S)) 

(P-Q) 
(Q-R) 

:.(P- R) 

(PvQ) 
-P 

:.Q 

becomes 
P'Q, p 

Q 

becomes 
P'Q, Q' 

P' 

becomes 
P'Q'R'S, Q 

P'R'S 

becomes 

becomes 

P'Q, Q'R 
P'R 

PQ,P' 
Q 

If we look at these valid arguments in our new notation, we see that they all have a 
common form: 

1. Each premise is a disjunction of sentences. 
2. One of the premises has some sentence U as a disjunct. 
3. The other premise has U' as a disjunct. 
4. The conclusion is the disjunction of all the sentences in the premises except U and 

U'. 

That is, in general, all arguments of the form 

U'QR ... , UST ... 
QRST ... 

are valid. This is the Rule of Resolution. 
The following algorithm for using resolution to decide whether an argument in sen- 

tential logic is valid begins with writing the sentences in the argument in conjunctive 
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normal form (CNF). We discussed this notation and presented an algorithm for turning 
a sentence into a logically equivalent CNF sentence in Chapter 7. 

1. INPUT an argument. 
2. Let C be a collection consisting of the premises and the negation of the 

conclusion of the argument. 
3. FOR each sentence Sin the collection C: 

(a) Replace S with its CNF equivalent. 
4. Repeat the following: 

(a) Find two sentences S1 and S2 in collection C such that S1 contains 
some atomic sentence letter P as a disjunct and S2 contains its ne- 
gation~ P as a disjunct. 

(b) Let S be a new CNF sentence whose disjuncts are all the disjuncts 
of S1 and S2 except for P and ~P. (Sis called the "resolvent of" S1 
and S2.) 

(c) Remove S1 and S2 from C. 
(d) Add S to C. 

Until (i) C contains two atomic sentences a and ~a 
or 
(ii) no new resolvent S can be formed. 

5. IF the repeat-loop in step 4 stopped because of case (i) 
THEN OUTPUT "Valid" and STOP. 

6. IF the repeat-loop in step 4 stopped because of case (ii) 
THEN OUTPUT "Invalid" and STOP. 

Recall that we are trying to derive a contradiction from the collection C. Step 4 is 
a loop that keeps searching for a contradiction by generating and testing successive 
resolvents. Each resolvent is logically derivable from the two sentences that are used 
to generate it, so if an inconsistency is produced, we can exit the loop knowing that the 
argument is valid. Some examples should help clarify this method. 

Example 1. 
1. (A-B) 

A 
B 

2. C = {(A- B), A, ~B} 
3. C ={(~Av B), A, ~B} 
4. Choose S1 = (~AV B) and S2 = A. 

Then S = B. 
So C = {B, ~B}. 



309 

DETERMINING VALIDITY 

This is case (i), so the argument is valid (as you can check by a simple application of 
-ELIM). 

Example 2. 
1. ~{~A&~B) 

B 
A 

2. C = {~(~A & ~B), B, ~A} 
3. C = {(Av B), B, ~A} 

This is case (ii), so the argument is invalid. 

For arguments in predicate logic, it is necessary to find instances of quantified 
formulas and then to apply the above technique to them. The main problem is to find 
appropriate instances. In 1930, the French logician Jacques Herbrand showed that if a 
formula is FALSE in a certain finite number of situations (described in what is called the 
"Herbrand universe of clauses"), then it is FALSE in a// situations. So according to 
Herbrand's theorem, we do not really have to look at a// situations or instances to see 
if a formula is inconsistent. We really only need to look at whether it is FALSE in a 
certain finite number of situations. Then, we may reason, if it is FALSE in all of these 
situations, it is FALSE in absolutely all situations. That is, it is inconsistent. Herbrand 
showed that his theorem was true in the abstract, so to speak. He did not actually show 
how to go about economically applying it to various formulas. He showed only that there 
exists a mechanical procedure to show an argument to be invalid. 

No computer existed in 1930 that could have been used to apply Herbrand's result. 
But in the 1960's, the importance of Herbrand's theorem to mechanical theorem proving 
was recognized, and various computer scientists and logicians set about showing how 
it could be applied on a working computer. The early attempts unfortunately were not 
entirely successful. Some formulas could not be shown to be inconsistent (even when 
they were), and showing that others were sometimes consumed tremendous amounts 
of computer time. 

Enormous progress was made by the logicians and computer scientists who de- 
veloped resolution in the early 1960s. This technique, as we have seen, is a method of 
showing how a formula is inconsistent. It "flushes out" an inconsistency that is lurking 
in the formula, somewhere. The resolution technique turned out to be a genuine me- 
chanical procedure (if a formula is inconsistent, the method can always determine that 
this is so in a finite amount of time). And the resolution technique also led to computer 
programs that could discover these inconsistencies in a reasonably short amount of 
computer time. 

Even the resolution method of theorem proving has the limitation imposed by Church's 
theorem-namely, if it is given an invalid argument to analyze, it will work forever. If a 
computer is programmed with this method, it will still be working on the problem when 
we are forced to shut it off-at the end of the day, or after years. At the point where we 
shut it off, we will not know whether the argument is invalid (and the program will never 
halt) or whether the argument is valid {but is one of those difficult problems that takes 
days or years to prove). For more information on resolution, see Raphael, 1976. 
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The Proof Method 

Let us return to the proof method of mechanical theorem proving, because it is usually 
more enlightening. Our question is, Can PROOF-GIVER be modified to incorporate the 
new rules governing quantifiers, constants, predicates, and variables? We shall call the 
modified method for generating proofs PROOF-GIVER*, to distinguish it from its strictly 
sentential predecessor. 

Our investigation into the required modifications will begin with some observations 
about strategy in using quantifiers and constants. Suppose we have three premises- 
'A', 'B', and 'C' (whose internal structure will not interest us now)-and a conclusion: 

'v'xFx 

How can we go about deriving this conclusion? We might reason as follows. If we 
somehow earlier derived 'Fb', then we can infer ''v'xFx' from it-provided that 'Fb' arose 
in the "proper" manner. Once 'Fb' is derived, 'v'INTRO is applied, resulting in the desired 
'v'xFx. But consider what our strategy should be if the third premise, 'C', is in fact 

(B- 'v'xFx) 

In such a situation, it does not seem necessary to derive 'Fb'. Instead, ''v'xFx' can be 
derived directly-if we can derive 'B'. These two observations give us the tips we need 
for part of our modifications. The two possible strategies we have just mentioned are in 
fact already addressed by steps 3(a) and (b) of PROOF-GIVER: 

3(a) IF DR = a subformula of a sentence, a, on an accessible line, . 
3(b) IF DR is not a subformula of a sentence on an accessible line, . 

These steps decide whether we proceed to derive the desired result from previous lines 
or whether we construct it by some standard strategy. 

We modify PROOF-GIVER by changing the number of step 3(b)(v)to 3(b)(viii) and 
inserting the following: 

3(b)(v) IF the desired result has the form 'v'x( x ) 
THEN replace the first 'Derive 'v'x( x )' in the task list with: 

Derive ( ... b ... ) 
Apply 'v'INTRO [( ... b ... )] 

where '( ... b ... )' is the earlier formula with the outermost universal 
quantifier deleted and all resulting free occurrences of the quantified 
variable replaced by some individual constant, 'b'. The constant 'b' should 
be the alphabetically first constant not previously appearing in an ac- 
cessible line. 

3(b)(vi) IF the desired result has the form 3x( x ) 
THEN replace the first 'Derive 3x( x )' in the task list with: 

Derive ( ... b ... ) 
Apply 31NTRO [( ... b ... ) 

where b is any individual constant. 
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3(b)(vii) IF the desired result has the form ( b ) 
THEN replace the first 'Derive ( b )' in the task list with: 

Derive 'v'x( ... x ) 
Apply 'v'ELIM ['v'x( x ... )] 

where 'x' is some variable. 

No other modifications to PROOF-GIVER are necessary. 

Summary 

In this chapter, we discussed the decidability of predicate logic-the issue of whether 
there is an algorithm that decides whether or not an argument is valid. 

Church's theorem states that the full predicate logic is not decidable. However, 
parts of predicate logic are decidable, and we discussed the relationship of this fact to 
our notion of models. Church's thesis, on the other hand, is the unprovable but generally 
accepted claim that computers can perform only what algorithms describe. 

We ended with a presentation of two methods of proving theorems in predicate logic 
mechanically: resolution, which we presented in the form of a rule of inference and as 
an algorithm, and a proof method-an extension of the PROOF-GIVER method of Chap- 
ter 11. 



APPENDIX A 

APPLICATIONS OF 
SENTENTIAL LOGIC 
TO CIRCUIT DESIGN 

AND ARITHMETIC 

In Chapter 2, we mentioned that there is 
a close relationship between truth values (TRUE and 
FALSE, or 1 and 0) and the presence or absence of an 
electric current flowing through a circuit. In the areas of 
computer architecture and computer electronics, a cir- 
cuit is thought of as an electronic device that has "in- 
puts" and "outputs." An input will be a current flowing 
into the device, and an output will be a current flowing 
out of the device. Since the output is completely de- 
termined by the input and the design of the circuit, a 
circuit can be thought of as a function. Moreover, if we 
limit the inputs and outputs to two "values"-the pres- 
ence or absence of current, which we can represent by 
1 and 0, respectively-then we can think of a circuit as 
a truth function. 
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Electric Circuits 

Modern circuits used in computers are usually engraved on "chips" of silicon, but they 
can be (and were, in the early days of computers) built out of wires and such electric 
components as resistors, capacitors, transistors, and diodes. (You don't have to know 
what these are or how they work-only that they are things that can be combined to 
form circuits.) 

Consider a circuit whose input is a source of current (such as a battery) controlled 
by a switch and whose output is an electric device such as a bulb, as in Figure A-1. 

- 

~ 

Battery Bulb 

- - Switch 

Figure A-1 A simple circuit. (The arrows indicate the direction in which the current flows.) 

The switch in Figure A-1 is in the "open" position, so no current reaches the bulb. If the 
switch is closed, the bulb will light. The operation of this circuit can be shown in the 
following table: 

Input 
(Switch) 

Output 
(Bulb) 

Closed 
Open 

On 
Off 

Now consider a similar circuit with one more device: an inverter. An inverter is 
actually another circuit, with its own wires and electric components (usually a resistor 
and a transistor). We shall be concerned not with its actual structure but only with its 
behavior: When an electric current enters an inverter, the inverter acts as an open switch, 
preventing the current from leaving; and when no current (or a very low current) enters, 
the inverter acts as a source of electricity, allowing a current to leave it. It thus behaves 
very much like an emergency light with its own battery, which only lights when there 
has been a power failure. The new circuit, with both bulb and inverter, is diagrammed 
in Figure A-2. 

Now, when the switch is closed, electricity flows from the battery to the inverter, 
which blocks it; so the bulb doesn't light. But when the switch is open, so that no current 
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- 
~ 

Battery Bulb 

~ 
- - ·- - Inverter - - - Switch 

Figure A-2 A circuit with an inverter. 

flows to the inverter, the inverter sends a current to the bulb, causing it to light. The 
operation of such a circuit can be summarized in the following table: 

Input 
(Switch) 

Output 
(Bulb) 

Open 
Closed 

On 
Off 

Using 1 to represent the presence of current and O to represent its absence, the table 
then looks like this: 

Input Output 

0 1 
0 

But this is just the truth table for FNEG; so, an inverter can be used to represent negation. 
In fact, an inverter is called a "NOT gate." (The term "gate" is used because such a device 
acts as a gate, an entranceway, that transforms the current.) 

Logic Gates 

In general, a logic gate is a circuit whose output current depends on its input currents 
in a way that can be described by (and therefore used as a representation of) the laws 
of sentential logic. In theory, there could be gates corresponding to each of the logical 
connectives, but in practice, the most common ones are the NOT gate, the ANO gate, the 
OR gate, the NANO gate, and the NOR gate. 
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As we have seen, the NOT gate is a circuit whose behavior can be symbolized thus: 

___ A __ --;►~1 __ N_0_T _ ___,,___-_A_----;ll►

Figure A-3 A NOT gate. 

Here, 'A' represents the input current. So, '-A' is a reasonable way to represent the 
output current. Computer engineers use a special symbol for the NOT gate: 

A -A 

Figure A-4 Symbol for the NOT gate. 

An AND gate that has two inputs (and, of course, only one output) can be represented 
as either 

A 
(A&B) 

B :j AND .. 
----~ 

Figure A-5 An AND gate. 

or 

___ :_---lo,---(A_&_B_) __ 

Figure A-6 Symbol for the AND gate. 

The AND gate behaves by taking two low currents as input and producing a low-current 
output, taking one high and one low-current input and producing a low-current output, 
and taking two high-current inputs and producing a high-current output. 
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Exercises 

1. Explain the relationship between an AND gate and the truth table for conjunction, 
as we did for the NOT gate and negation. 

2. Describe the behavior of an OR gate. 

: :I OR I !Ml • 

Figure A-7 An OR gate. 

___ : __ D (AvB) 

Figure A-8 Symbol for an OR gate. 

Explain its relationship to disjunction. 
3. A NAND gate can be constructed from an AND gate and a NOT gate: 

A ~ 
B 

AND NOT (ANAND B) 

NANO 

Figure A-9 A NANO gate. 

a. Describe its behavior. 
b. Explain its relationship to the logical connective NAND. 
c. Explain the relationship between the tautology 

((ANAND 8) ~ -A & 8)) 
and the behavior of a NAND gate. 

4. a. Show how to construct a NOR gate. 
b. Describe its behavior. 
c. Explain its relationship to the logical connective NOR. 
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d. Explain the relationship between the tautology 
((A NOR 8) - - (AV 8)) 
and the behavior of a NOR gate. 

5. Do the same for an XOR gate. (Suggestion: Consider the tautology 
((A XOR 8) - ((Av 8) & - (A & 8))) 

Combining Logic Gates 

These logic gates can be combined so that they can represent any truth-functional 
formula (as we combined a NOT gate with an AND gate to form a NAND gate, in Exercise 
3). 

For instance, 

((A & B) v -C) 

can be represented by the following circuit: 

A 

AND 
(A&B) 

B 

;. ((A&B)v -C). 
OR 

. 

C NOT -c 

Figure A-10 A circuit that represents ((A & B) v -C) 

Similarly, 

(-Av -8) 

can be represented by 
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- 
A ~ NOT -A 

- 
..,... 

OR 
(-Av-B) 

~ 

B NOT -B 

I 

Figure A-11 A circuit that represents (-Av -8) 

But, by De Morgan's law (see Chapter 7), 

((-Av -8) - -(A & 8)) 

there is another combination of circuits that behaves exactly the same: 

: : I AND I · I NOT I - IA&B) • 

Figure A-12 A circuit that represents -(A & B) and so behaves like the circuit in Figure A-11. 

(This, of course, is also a NAND circuit.) 

Exercises 

6. Use the other of De Morgan's laws to construct a circuit that behaves like a NOR 
gate. 

7. Construct circuits for the following formulas: 
a. ((Av 8) v C) 
b. (Av (8 v C)) 
c. ((A & 8) v C) 
d. (A & (8 v C)) 
e. (-Av 8) 
f. -(A & -8) 

g. (((-A & -13) v C) & -D) 
h. (-(A & (-Av B)) v B) 
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8. a. Construct an IF-THEN circuit. (Hint: See Exercise 7.) 
b. Using your IF-THEN circuit, construct a circuit for 

((A & (A- B)) - B) 

Translating between Logic and Circuits 

We have seen that information about truth values and truth functions can be described 
in two ways: by using the logic of sentences and by using electric circuits. Whenever 
there are two ways of representing the same information, it is important to be able to 
translate between the representations. In the present case, it is important to be sure 
that any logic circuit with precisely one output can be understood as (that is, can be 
translated into) a sentence and that any sentence can be represented by (that is, can 
be translated into) a logic circuit with one output. Moreover, if a logic circuit corresponds 
to two different sentences, it is important that the sentences be logically equivalent; and 
if a sentence can be translated into two different circuits, it is important that both circuits 
have the same input-output behavior. 

In fact, the relationship between circuits and sentences that has been described 
here guarantees that those criteria are satisfied. We shall not prove that they are, but 
you have enough information in this book to carry out the proof yourself. What we shall 
do in the remaining sections is give examples of how to perform the translations. 

Given a logic circuit, it is rather straightforward to write down a corresponding 
sentence (although, of course, the more complicated the circuit, the more tedious it will 
be to find a sentence). Sometimes, a circuit can have more than one output. If a circuit 
has more than one output, then it can be viewed as a combination of separate circuits, 
each of which has precisely one output. Consider the following circuit: 

A . 
NOR - B 

- I 

o, 
OR 

A 

o, 
OR 

B 

o, 

Figure A-13 A combination of three circuits. 
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This circuit has two inputs-A and B--and three outputs-0,, 02, and 03• It can be 
seen as three circuits linked together: first, a NOR gate whose inputs are A and B and 
whose output is 01; second, an OR gate whose inputs are A and o, and whose output 
is 02; and third, another OR gate, whose inputs are B and 01 and whose output is 03• 

The question is, What sentences do 0,, 02, and 03 represent? You should be able 
to see that if the currents A and B represent atomic sentences 'A' and 'B', respectively, 
then: 

1. O, represents '(A NOR B)'-or, if you prefer, '-(Av B)'. 
2. 02 represents '(Av O,)'-that is, '(Av -(Av B))', to use just the inputs. 
3. 03 represents '(B v O,)'-that is, '(B v -(Av B))'. 

But there is a much more informative way of describing 02 and 03. If we put 02, 
that is 

(Av -(Av B)) 

into disjunctive normal form (see Chapter 7), we get 

(Av (-A & -8)) 

which is logically equivalent to 

((Av -A) & {Av -8)) 

which, in turn, is logically equivalent to 

(Av-8) 

In a similar fashion, 03 can be shown to represent '(B v -A)'. 
You should observe that the most "straightforward" sentences represented by the 

circuit-the ones we simply "read off" it-were not the simplest. The converse is also 
the case: given our three simple sentences, if we built a circuit directly from them, we 
would get the circuit of Figure A-14. This has two more NOT gates than the first circuit, 
so it is not the simplest circuit to represent our sentences. 

Simplifying Circuits 

This trade-off in complexity between two different representations of the same i ... 
formation is a common feature of representations in general. Once we have prov, 
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A . - NOR 
B . 

A 

OR 
. 

B ~B 
NOT . 

A NOT ~A ~ - 
OR 

. 

B - 

o, 

Oz = (Av ~B) 

03=(~AvB) 

Figure A-14 A circuit whose behavior is the same as that of the circuit of Figure A-13. 

representations are equivalent, we can then use whichever is simplest or best suited 
for our purposes. 

Thus if we are building computers, we would prefer the first circuit to the second 
one, because it is no doubt less expensive and easier to build and repair; but if we are 
studying the logical behavior of the circuits, we would prefer the second set of sentences 
to the first one. 

This trade-off can be measured. One way to do this is to say that one circuit is 
simpler than another if it has fewer gates (and fewer input lines); this translates into the 
terminology of the logic of sentences as fewer connectives (and fewer occurrences of 
sentence letters). 

As you know from Chapter 8, all quantifier-free sentences can be expressed using 
only - and &, so an engineer could get by with only NOT and AND gates. In fact, even 
simpler circuits can be constructed if NANO and NOR gates are used wherever possible, 
since they are easier to construct than sequences of AND. OR, and NOT gates. NANO and 
NOR gates are particularly useful, since, as you know from Exercise F of Chapter 8, all 
sentences can be expressed using NANO (or else NOR) as the only connective. 

(There are standard algorithms for translating between circuits and sentences, using 
an alternative representation for truth tables called "Karnaugh maps." For further reading, 
see Ennes, 1978; Kasper and Feller, 1983; or Malvino, 1976.) 
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Circuits for Adding 

In this section, we shall show how to construct a logic circuit that adds two numbers. It 
is hoped that you will see that it is no exaggeration to say that computers are truly based 
on logic. 

Let us proceed "bottom-up." Consider the following circuit: 

A -- 1 

B XOR (A XOR B) 

-- ~ 

- 

A .... 
B AND 

(A& B) ~ 

Figure A-15 A half-adder. 

Two inputs, A and B, of either high or low current are sent through two circuits, an XOR 
gate and an AND gate. Letting 1 represent a high current and O represent a low current, 
we can tabulate the outputs of this circuit as follows: 

A B (A & B) (A XOR B) 

0 
0 

0 
1 
0 

0 
0 
0 

0 
1 
1 
0 

Now, consider the following fragment of an addition table for binary arithmetic: 

A B A+ B 

0 0 
0 1 
1 0 

0 

10 

If we write the sum of two 1-bit numerals as a 2-bit numeral, using a "leading zero" 
as a placeholder on the left, then this table becomes: 
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A B A+B 

0 0 00 
0 1 01 
1 0 01 
1 10 

And now, here is the link between the electronic implementation of a logic circuit 
and the mathematical operation of addition: When electronic inputs A and B are inter- 
preted as numbers, then the ones column of their sum is represented by the output of 
the xoa gate and the twos column is represented by the output of the AND gate. Such 
a circuit is called a half-adder. 

Exercises 

9. A full-adder is a circuit that can be used to represent the addition of three 1- 
bit binary numerals. That is, given three binary numbers A, B, and C, a full- 
adder outputs A + B + C. Here is a full-adder circuit: 

A 

AND B . . 

C C 

AND OR ~ A . 

B . 
AND C , 

, 

A 
B 
C XOR . 

Figure A-16 A full-adder. 
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Explain how it works. 
10. A binary-adder is a circuit that can be used to represent the addition of any 

two binary numbers. 
In particular, if binary number A is a string of 4 bits, A,A2A3A4, and binary 

number B is B,828384, then their sum can be represented thus: 

A,A2A3A4 
+ B,828384 
S0S,S2S3$4 

For instance, if A = 1010 and B = 1011, then we have: 

1010 
+ 1011 

10101 

where $4 = 0 + 1 = 1 , S3 = 1 + 1 = 0 with a "carry" of 1, S2 = 0 + 0 + the 
"carried" 1 = 1 , S, = 1 + 1 = 0 with a "carry" of 1, and S0 = the "carried" 1. 
A binary-adder that will add any two such numbers is: 

A4 
. s, Half 

84 adder "Carry" " ~ 

A3 
Full ~ S, 

83 - adder "Carry" 

' 

A2 
Full S2 

82 adder "Carry" 

A1 
. ~s- Full 

81 adder 
~S.-: 

Figure A-17 A binary-adder. 
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a. Explain how it works. 
b. Show how it can be used to add: 

(i) 1000 and 0111 
(ii) 1111 and 1111 
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TURING MACHINES 

fhroughout this book, we have relied 
heavily on the description of an algorithm (given in 
Chapter 2) as a detailed, step-by-step, finite sequence 
of instructions that are mechanical and unambiguous 
for performing a task. This is a rather informal and in- 
tuitive notion: How detailed must an algorithm be? What 
kinds of instructions are allowed? What does "mechan- 
ical" mean? How can ambiguity be avoided? The pur- 
pose of this appendix is to try to make the notion of 
"algorithm" a bit more precise by clarifying the notion 
of a mechanical procedure.* 

*The presentation of Turing machines in this appendix is based 
on Clark and Cowell, 1976, pp. 44-49. 

327 
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Turing's Analysis of Computation 

We have said that an algorithm is a "mechanical procedure" for carrying out some task 
in a finite number of steps. If we limit ourselves to tasks that can be described in some 
language (either a natural language or a programming language), then we can think of 
such a procedure as a "computation." In 1937, the English logician Alan Turing (1912-1954) 
presented an analysis of this notion in an important paper, "On ·computable Numbers, 
with an Application to the Entscheidungsproblerr:,,," that led, among other things, to the 
notion of the stored-program computer. (The English translation of the German word 
Entscheidungsproblem is "decision problem"-the question of whether a procedure for 
a given task will produce a definite affirmative or negative answer in a finite number of 
steps.) 

Turing's analysis begins by considering what it means for a computation to be carried 
out "mechanically." At the very least, we would need: 

l• 

1. A "computer"-either a person or a machine-to do the computation, 
2. Some scratch paper (a memory device) to do the computation on, 
3. A deterministic program for the computer to follow-that is, a finite sequence of 

instructions for performing the computation by manipulating symbols on the scratch 
paper. 

We can refine this somewhat informal picture. Let us suppose that the mind of the 
person (or computer) can only be in a finite number of different "states." Also, let's 
suppose for the sake of convenience that the person (or computer) has memorized the 
program (so that we only have to concern ourselves with two things: the computer and 
the scratch-pad "memory"). 

As for the scratch-pad memory, let's suppose that we have lots of paper-not 
necessarily an actually infinite amount of paper, but enough paper so that if we need 
more, we can always get it. And, so that we can describe precisely what's written on 
the paper, let's imagine that it is crosshatched into small squares (like graph paper), 
each containing one symbol, so that we can systematically locate any symbol in any 
square on any page of the scratch pad (for instance, by starting at the square in the 
first row and first column of the first page and examining each square in turn until we 
either find the symbol or else reach the last square on the last page without having 
found it). · 

Finally, imagine that the person (or computer) doing the computing can only see a 
finite, bounded number of squares on the scratch pad at any one time. 

As the next refinement, let us now assume the following: 

1. The person (or computer) sees only one square (containing at most one symbol) 
of the scratch pad at a time. 

2. (a) The scratch pad is a linear tape (like an adding-machine tape), divided into 
squares, that is potentially infinite in both directions (that is, we can always 
add an extra square on either end). 
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I I I I I I I I I 
Figure B-1 A Turing-machine tape. 

(b) Each square on the tape has a '1' or a 'O' printed on it at the start (this is 
the input). 

3. The program that the person (or computer) memorized doesn't consist of complex 
instructions (such as "Find the word MULTIPLY on the tape"); instead, it consists 
of a finite sequence of instructions of the following five kinds: 
(a) START. 
(b) IF your state of mind is P 

and you are scanning symbol S 
THEN 
(i) Change S to S'. 

(ii) Change your state of mind to Q. 
(c) IF your state of mind is P 

and you are scanning symbol S 
THEN 
(i) Move 1 square to the right. 

(ii) Change your state of mind to Q. 
(d) IF your state of mind is P 

and you are scanning symbol S 
THEN 
(i) Move 1 square to the left. 

(ii) Change your state of mind to Q. 
(e) STOP. 

Below, we shall make these instructions even more precise. The result of this is a "Turing 
machine," which may be imagined as a physical machine on wheels, with a unit for 
reading and writing on the tape and a "register" to indicate what state it is in. 

Figure B-2 An imaginary, physical Turing machine. 
Square being Read/write 
scanned scanner 

Finite amount of 
circuitry for 
representing the 
algorithm and 
other states 

State register 

Wheels for 
moving 
left/right 
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Turing Machines 

A Turing machine can be defined as follows: It consists of a certain set, called the 
memory set, and a program constructed from elements of specified sets of operations 
and tests. 

The memory set is the formal analog of the tape. Each element of the set consists 
of two items: (1) a string of 'O's and '1 's (representing the information stored on the tape) 
and (2) a positive integer (representing the symbol currently being scanned by the Turing 
machine). For instance, 

1 1 0 0 1 
r 

Scanner 

Figure B-3 The Turing-machine tape represented by (11001, 4) or by 11 0Q1. 

would be represented by the memory-set element 

(11001,4) 

where the first element of this pair is the string and the second is the square being 
scanned, or by the symbol 

110Q1 

where the underline represents the position of the scanner. The "empty" tape-the tape 
with no little squares of paper-is represented by any element whose scanning number 
is 0; we'll represent the empty tape with the symbol e. 

The Turing-machine programming language (TM) that we shall use consists of seven 
operations and four tests. The operations are: 

1. START. 
2. PRINT-0. This changes the symbol currently being scanned to 0. More precisely, 

PRINT-0 changes memory-state e to (0, 1) and memory-state s,s2 ... s;_,~ 
S;+1 ... s.to s.s, ... S;-1QS;+1 ... sk. (Of course, it s.were Ofo beqin wlth, PRINT- 
0 would not change the tape.) 

3. PRINT-1. (Exercise: Describe the behavior of PRINT-1.) 
4. LEFT. This moves the scanner one symbol to the left, adding on a new square 

with a 0 in it if necessary. (Remember: Our Turing machine is on wheels; it 
moves, not the tape.) More precisely, LEFT leaves memory-state e alone; it 
changes s, ... ~ ... s, to s, ... §f.1S; ... sk; and it changes §.1 ... s, to Qs, ... sk. 
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5. RIGHT. This operation moves the scanner one symbol to the right, adding a new 
square with a 0 in it if necessary. That is, it leaves e alone; it changes s1 ... §j ... s, 
to s, ... S§J+1 ... sk; and it changes s1 ... §J< to s, ... s,J!. 

6. ERASE. This operation does nothing unless the scanner is at the left-hand end 
or the right-hand end of the tape, in which case it erases the symbol being 
scanned and cuts off the square. That is, ERASE leaves e and s, ... §j sk 
alone; but itchanges~1S2 ... s, to~ ... sk, and it changess, ... sk-1§.k to s, §.I<-,; 
also, it causes a 1-square tape with only one symbol on it to disappear (that is, 
~ becomes e). 

7. STOP. 

The tests are: 

1. 0? and 1? These two test whether the symbol being scanned is 0 or 1. Formally, 
if the tape is e, then the result of the tests is FALSE; and if the tape is s, ... §j ... sk, 
then the result is TRUE if S; = s and FALSE otherwise (where s is 0 or 1, 
depending on the test). 

2. LEFTEND? Tests whether the scanner is at the left-hand end of the tape. If it 
is, or if the tape is empty, the test result is TRUE; otherwise, it is FALSE. 

3. RIGHTEND? Tests whether the scanner is at the right-hand end of the tape. If 
it is, or if the tape is empty, the test result is TRUE; otherwise, it is FALSE. 

Turing-Machine Programs 

Let us see what some of our simple algorithms look like when translated into programs 
in TM. 

Negation 

We'll begin with the algorithm for FNEG, that is, for computing the truth value of the 
negation of a sentence (see Chapter 3). The first decision we need to make is how to 
"code" truth values so that they can be expressed on the tape. One obvious way is to 
represent a TRUE sentence with a 1-square tape containing a '1' and a FALSE sentence 
with a 1-square tape containing a '0'. 

Next, we must decide what the output should look like. One possibility is to have 
our algorithm end with a 2-square tape whose first symbol is the original truth value and 
whose second symbol represents the negation of that truth value, with the scanner on 
the second symbol. (Remember: We can add new squares to our tape whenever we 
want.) Thus for input '1', the output would be '1Q', and for input 'Q', the output would be 
'01', 

So, we'll need to scan the input tape and, if there's a '1', move right and print a 
but if there's a 'Q', we'll move right and print a '1'. 
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In TM we shall let the "states of mind" be represented by M0, M1, M2, M3, etc. We 
shall always begin (START) in the state of mind M0• The program for computing FNEG 
in the manner we have just described is: 

1. START. 
2. IF you are in Mo and are scanning 0, 

THEN 
(a) RIGHT. 
(b) Change state of mind to M1. 

3. IF you are in M0 and are scanning 1, 
THEN 

(a) RIGHT. 
(b) Change state of mind to M2. 

4. IF you are in M1 and are scanning O, 
THEN 

(a) PRINT-1. 
(b) Change state of mind to M2. 

5. IF you are in M2, 
THEN STOP. 

Notice that you will never be in M1 and scanning 1, so that possibility is not covered in 
the program. 

It is easier to represent the program using a flowchart, where your position on the 
chart corresponds to a "state of mind": 

START 

TRUE FALSE 

RIGHT RIGHT 

STOP 

PRINT -1 

Figure B-4 TM program (in flowchart form) for computing the truth value of a negation. 
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The Turing machine begins by scanning the input tape. If it has '1', then the Turing 
machine moves right, automatically attaching a new square to the tape with a 'O' already 
on it, and the scanner is over that square; so the output tape is '1Q'. On the other hand, 
if the input tape has 'Q', then the Turing machine moves right, adding on a square with 
·o·, which is being scanned; it then prints a '1' on the scanned square, so the output 
tape is ·or. 

Exercise 

Suppose we use the same coding for the input, but we code the output as follows: If 
the input tape has 'Q', then the output tape has '1'; and if the input tape has '1', then 
the output tape has 'Q'. In other words, both input and output tapes have only one square 
(and so there is no record of the original truth value on the output tape). Write a Turing- 
machine program in flowchart form for FNEG, using this coding. 

Conjunction 

Now let's look at an algorithm in TM for FCNJ, that is, for computing the truth value of 
the conjunction of two sentences. Again, we need to decide on the input-output coding. 
A reasonable extension of the coding we used before would be this: The input tape has 
two squares, each containing a 'O' or '1' to represent the truth values of two sentences, 
and the scanner is over the first square (that is, the leftmost square). The output tape 
will have three squares: the original two, unchanged, and a new one (being scanned) 
containing the truth value of the conjunction. Thus if the input is 'Q1 ', the output will be 
'01Q'. 

You should verify that the TM program in Figure B-5 does the job. 

Exercises 

Write TM programs in flowchart notation for each of the following problems: 

1. An algorithm for FCNJ, starting with the test 1 ?, using the above input-output 
coding. 

2. An algorithm for FCNJ using the "destructive" input-output coding, where, for 
instance, if the input tape is Q1, the output will be Q. 

3. An algorithm for FDSJ. Be sure to specify your input-output coding. 
4. An algorithm for FCND. 
5. An algorithm for FBIC. 
6. An algorithm for FXOR. 
7. An algorithm for FNOR. 
8. An algorithm for FNAND. 
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START 

TRUE FALSE 

RIGHT 

TRUE FALSE 

RIGHT RIGHT RIGHT 

PRINT-1 

STOP 

Figure B-5 TM program for computing the truth value of a conjunction. 

9. An algorithm for adding two positive integers. Let the input-output coding be as 
follows: The addition problem m + n will be representd by m '1 's, followed by a 
'O', followed by n '1 's. A nice notation for this is: 

The output tape will consist of m + n '1 's, that is: 

Palindromes 

As a final example of TM programming, we shall sketch out a program that decides if 
the input tape contains a palindrome. A palindrome will be any string of 'O's and '1 's 
that reads the same backward and forward. For instance, 
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000 
010 
001100 

are palindromes, but 

01 
110 
0011110 

are not. Clearly, a 1-square tape always contains a palindrome. It will be useful to consider 
the empty tape to be a palindrome too. 

The input will be a tape containing the string to be tested, with the scanner on the 
first (leftmost) symbol. The output will be a 1-square tape with a '1' if the input is a 
palindrome and a 'O' otherwise. Two examples are as follows: 

Input Output 

101 
100 

1 
Q 

The algorithm that we shall use is the following: 

1. IF the tape is empty 
THEN OUTPUT '1' [since it is a palindrome). 

2. IF the tape has only 1 square 
THEN OUTPUT '1' [since it is a palindrome]. 

3. IF the tape has 2 or more squares 
THEN . 
(a) Compare the symbol in the leftmost square with the symbol in the 

rightmost square. 
(b) IF they match 

THEN 
(i) Erase both symbols. 
(ii) GO TO step 1. 

(c) IF they do not match 
THEN 
(i) Erase the tape. 
(ii) OUTPUT 'O' [since it is not a palindrome). 

4. STOP. 

(You should try this algorithm on a few examples to convince yourself that it works.) 
This time, we shall use top-down design and stepwise refinement to write the 

program (and we shall leave some of the details as exercises). To do this, we shall 
introduce a new flowchart symbol-a circle-to represent steps that will have to be 
refined into the basic TM operations and tests. 

The top-level program is: 



START 

PRINT -1 STO P 

TRUE (:. left-most symbol is 0) FALSE (:. left-most symbol is 1) 

ERASE ERASE 

FALSE 

TRUE 

ERASE 

TRUE 

ERASE 

PRINT-0 

STOP 

Figure B-6 TM program for the palindrome problem. 
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The circles labeled 1 to 5 represent procedures that must be refined. Here is the re- 
finement of procedure 1 : 

START 

TRUE FALSE 

False 
halt 

TRUE 

(i.e., the tape 
is not blank) FALSE 

True halt 

(i.e., the tape 
is not blank) 

Figure B-7 TM program for procedure 1 of the palindrome program. 

And here is the refinement of procedure 5: 

START 

ERASE 

FALSE TRUE STOP 

Figure B-8 TM program for procedure 5 of the palindrome program. 
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Exercises 

10. Refine procedure 2. 
11 . Refine procedure 3. 
12. Refine procedure 4. 
13. Refine the given refinement of 5 (in Figure B-8). 
14. Refine procedure 5 without using procedure 1. (Hint: Use LEFTEND?) 

Church's Thesis 

Let us consider the relationship between a Turing machine and our notion of an algorithm. 
One version of Church's thesis (see Chapter 14), known as the Church-Turing 

thesis, says that our intuitive notion of a mechanical computation can be defined as any 
computation that can be carried out by a Turing machine. This cannot be proved (because 
our notion of a mechanical computation is intuitive and vague, and proofs require precise 
notions}, but there is a substantial amount of evidence to suggest the following two 
points: 

1. Any computation that seems intuitively "mechanical" can be carried out on a 
Turing machine. 

2. Any computation that can be carried out on a Turing machine is intuitively "me- 
chanical." 

The main evidence for statement 2 is Turing's analysis of computation that we 
discussed in an earlier section. It seems, intuitively, that any computation that can be 
done by a Turing machine is intuitively mechanical. 

We said that the thesis cannot be proved; but if it is false, then it can be falsified: 
If anyone were to deny the Church-Turing thesis, it would have to be because he or she 
denied statement 1 , that is, claimed that there might be an intuitively mechanical pro- 
cedure that a Turing machine could not carry out-that, perhaps, Turing machines, with 
all their limitations of size and of operations, were not powerful enough. (After all, those 
instructions seem rather simplistic, especially if the only symbols allowed are 'O' and 
'1'.) 

But there are two sorts of evidence in favor of statement 1. First, there is empirical 
evidence: All (intuitively mechanical) procedures that have been constructed so far can 
be translated into Turing-machine programs. ' 

Second, all "rival" theories of what might count as being "mechanically computable" 
have turned out to be equivalent to the theory of Turing-machine computability, 

Some of these other theories of what is "mechanically computable" are: 

1. Church's lambda calculus-the notion he used in the original formulation of the 
thesis; it was later used as the basis for the programming language LISP. 

2. Markov algorithms-which later became the basis for the programming language 
SNOBOL 
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3. The theory of partial-recursive functions, which lies at the foundation of Godel's 
incompleteness theorem, and which also can be considered to underlie much 
of the recent theory of "structured" programming. 

4. The Herbrand-Godel theory of recursion equations-which later became the 
basis for the programming language ALGOL (and thus, indirectly, its descendant 
Pascal). 

5. The theory of register machines-which is a mathematical analogue of a "von 
Neumann" digital computer. 
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