

LOGIC:
A COMPUTER APPROACH

LOGIC:
A COMPUTER APPROACH

Morton L. Schagrin
State University of New York

at Fredonia

William J. Rapaport
State University of New York

at Buffalo

Randall R. Dipert
State University of New York

at Fredonia

McGraw-Hill Book Company
New York St. Louis San Francisco Auckland

Bogota Hamburg Johannesburg London Madrid
Mexico Montreal New Delhi Panama Paris

Sao Paulo Singapore Sydney Tokyo Toronto

(§) 1qi5"

LOGIC: A COMPUTER APPROACH

Copyright© 1985 by McGraw-Hill, Inc. All rights reserved. Printed
in the United States of America. Except as permitted under the
United States Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or
stored in a data base or retrieval system, without the prior written
permission of the publisher.

2 3 4 5 6 7 8 9 0 DOCDOC 8 9 8 7 6 5

ISBN □ -□ 7-055131-6
This book was set in Helvetica
by J. M. Post Graphics, Corp.

The editors were Emily G. Barrosse
and James A. Belser; the designer was Robin Hessel;

the production supervisor was Charles Hess.
The drawings were done

by Volt Information Sciences, Inc.
The cover was designed by Eric Elias;

cover art by David Channon;
A. R. Donnelley & Sons Company was printer and binder.

Library of Congress Cataloging in Publication Data
Schagrin, Morton L.

Logic : a computer approach.

Bibliography: p.
Includes index.

1. Logic-Data processing. 2. Algorithms.
3. Electronic digital computers-Programming.
I. Rapaport, William J. II. Dipert, Randall R.

Ill. Title.
BC138.S32 1985 160'.28'54 84-19430

ISBN 0-07-055131-6

Preface (2022)

This logic textbook was written almost 40 years ago, when
personal computers were large, bulky items sold, among other
places, in toy stores, and when Basic was the predominant
programming language for them.

Now that my two co-authors have, sadly, passed away and the
book is out of print, I have received permission from the
publisher and copyright holder to make it available on the Web.
(The permission letter is appended to this Preface.)

In addition, I have added a “missing chapter” on “The Logic of
the Ternary Sentential Connective ‘If-Then-Else’ ”. This
appears at the end of Chapter 4.

— Bill Rapaport
 https://cse.buffalo.edu/~rapaport/
 rapaport@buffalo.edu

https://cse.buffalo.edu/~rapaport/

Subject: RE: Logic: A Computer Approach
From: MHE-Permissions <mhe-permissions@mheducation.com>
Date: 4/19/22, 11:54 AM
To: Bill Rapaport <rapaport@buffalo.edu>

Dear	William,

Thank	you	for	your	email.	Please	see	the	a7ached	le7er	in	response.

Unfortunately,	whilst	we	have	no	objec@on	to	your	request,	we	have	no	digital	copies	available	due	to	the	age	of	the	Title.

Please	do	not	hesitate	to	contact	me	if	you	have	any	further	ques@ons.

Kind	regards,
Karen

Karen Maxwell
Copyrights & Permissions
McGraw Hill
P: +44 28 9592 5865
Karen.Maxwell@mheducation.com
mheducation.com
From:	Bill	Rapaport	<rapaport@buffalo.edu>
Sent:	04	April	2022	15:05
To:	MHE-Permissions	<mhe-permissions@mheduca@on.com>
Subject:	Logic:	A	Computer	Approach

***	EXTERNAL	EMAIL:	If	sender	is	unknown,	use	cauAon	when	opening.	***

I am one of the co-authors of:

Schagrin, Morton L.; Rapaport, William J.; & Dipert, Randall R. (1985), Logic: A Computer Approach (NY: McGraw-Hill), ISBN
0-07-055131-6.

It is my understanding that the book is out of print and no longer sold by you. Both of my co-authors, sadly, have passed away.

I would like to put a copy of the book on my website so as to make it accessible.

1. May I?
2. If so, is there a digital copy that could use?
3. And would there be a fee for doing this, if it is possible?

Thank you.

--
William J. Rapaport
CSE Eminent Professor Emeritus;
Affiliated Faculty Emeritus, Philosophy and Linguistics;
Member Emeritus, Center for Cognitive Science;
Associate Director Emeritus, SNePS Research Group (SNeRG)

Dept. of Computer Science & Engineering | home: 716-487-2668
University at Buffalo (SUNY) | fax: 716-483-5392
Buffalo, NY 14260-2500 | rapaport@buffalo.edu
postal: Box 95, Greenhurst, NY 14742 | www.cse.buffalo.edu/~rapaport

--
Computer Science/Engineering: www.cse.buffalo.edu/
Cognitive Science: www.cogsci.buffalo.edu/
SNePS Research Group: www.cse.buffalo.edu/sneps/
Philosophy of Computer Science book:

www.cse.buffalo.edu/~rapaport/Papers/phics.pdf
vocabulary research: www.cse.buffalo.edu/~rapaport/CVA/
Buffalo Restaurant Guide: www.cse.buffalo.edu/restaurant.guide/
Good Things about Buffalo: www.cse.buffalo.edu/~rapaport/buffalo.html
How to Study: www.cse.buffalo.edu/~rapaport/howtostudy.html
Buffalo buffalo buffalo buffalo buffalo:
www.cse.buffalo.edu//~rapaport/BuffaloBuffalo/buffalobuffalo.html

RE: Logic: A Computer Approach

1 of 2 4/19/22, 12:11 PM

https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.proofpoint.com%2Fv2%2Furl%3Fu%3Dhttp-3A__www.mheducation.com_%26d%3DDwMFAg%26c%3Dt3lWmpkR7R5WvkB3-rDjug%26r%3D-V_xQe-_KEKXSGGVLbtTUWjdKCD1rxzcrylRF8-ZmLk%26m%3DFxCdKit2CXxp6nbu9BuyNRziWzEO14oTuYWm1h2rVQo%26s%3DN_Ss5EUQdjc5sO5Favkp0vWw7jDklu60ce1M0dCQNw4%26e%3D&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206172008%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=b1u16XEuXJCSkRVATlKiV3QonZhjEnhbItk6Sbx%2FL5U%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.proofpoint.com%2Fv2%2Furl%3Fu%3Dhttp-3A__www.mheducation.com_%26d%3DDwMFAg%26c%3Dt3lWmpkR7R5WvkB3-rDjug%26r%3D-V_xQe-_KEKXSGGVLbtTUWjdKCD1rxzcrylRF8-ZmLk%26m%3DFxCdKit2CXxp6nbu9BuyNRziWzEO14oTuYWm1h2rVQo%26s%3DN_Ss5EUQdjc5sO5Favkp0vWw7jDklu60ce1M0dCQNw4%26e%3D&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206172008%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=b1u16XEuXJCSkRVATlKiV3QonZhjEnhbItk6Sbx%2FL5U%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.proofpoint.com%2Fv2%2Furl%3Fu%3Dhttp-3A__www.mheducation.com_%26d%3DDwMFAg%26c%3Dt3lWmpkR7R5WvkB3-rDjug%26r%3D-V_xQe-_KEKXSGGVLbtTUWjdKCD1rxzcrylRF8-ZmLk%26m%3DFxCdKit2CXxp6nbu9BuyNRziWzEO14oTuYWm1h2rVQo%26s%3DN_Ss5EUQdjc5sO5Favkp0vWw7jDklu60ce1M0dCQNw4%26e%3D&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206172008%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=b1u16XEuXJCSkRVATlKiV3QonZhjEnhbItk6Sbx%2FL5U%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.proofpoint.com%2Fv2%2Furl%3Fu%3Dhttp-3A__www.mheducation.com_%26d%3DDwMFAg%26c%3Dt3lWmpkR7R5WvkB3-rDjug%26r%3D-V_xQe-_KEKXSGGVLbtTUWjdKCD1rxzcrylRF8-ZmLk%26m%3DFxCdKit2CXxp6nbu9BuyNRziWzEO14oTuYWm1h2rVQo%26s%3DN_Ss5EUQdjc5sO5Favkp0vWw7jDklu60ce1M0dCQNw4%26e%3D&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206172008%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=b1u16XEuXJCSkRVATlKiV3QonZhjEnhbItk6Sbx%2FL5U%3D&reserved=0
mailto:Karen.Maxwell@mheducation.com
mailto:Karen.Maxwell@mheducation.com
mailto:Karen.Maxwell@mheducation.com
mailto:rapaport@buffalo.edu
mailto:rapaport@buffalo.edu
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2F~rapaport&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206172008%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=stUMTTyREJSO5%2F84nKBrUQdVc1equJu7wD7J%2FzEoLXs%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2F~rapaport&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206172008%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=stUMTTyREJSO5%2F84nKBrUQdVc1equJu7wD7J%2FzEoLXs%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2F&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206172008%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=vqmxitFwuUzMFKBlGWZRm1lg1TG1o6fBxGgoKfFep88%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2F&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206172008%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=vqmxitFwuUzMFKBlGWZRm1lg1TG1o6fBxGgoKfFep88%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cogsci.buffalo.edu%2F&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206172008%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=IByRUUVic4wueeiDqdaxExYHnq%2Fns64NEdSA8kaLZDo%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cogsci.buffalo.edu%2F&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206172008%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=IByRUUVic4wueeiDqdaxExYHnq%2Fns64NEdSA8kaLZDo%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2Fsneps%2F&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206172008%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=FufRiuHH4HBF2YJwhWZTz19yNFkWILtIQFMlom8KKPk%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2Fsneps%2F&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206172008%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=FufRiuHH4HBF2YJwhWZTz19yNFkWILtIQFMlom8KKPk%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2F~rapaport%2FPapers%2Fphics.pdf&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206172008%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=amDigHpdg2zW980ggT416MRRPH01Av3eb%2BeGaP1%2FWsA%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2F~rapaport%2FPapers%2Fphics.pdf&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206172008%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=amDigHpdg2zW980ggT416MRRPH01Av3eb%2BeGaP1%2FWsA%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2F~rapaport%2FCVA%2F&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206328230%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=zH9fPG%2FjF1P03UicCz4sMnJBZLzNauXKWxNAyKKpWeE%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2F~rapaport%2FCVA%2F&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206328230%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=zH9fPG%2FjF1P03UicCz4sMnJBZLzNauXKWxNAyKKpWeE%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2Frestaurant.guide%2F&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206328230%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=0CxVyslXEksYeOV%2F2JdzfdI0cknih3TUyKl6EH%2F0BDM%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2Frestaurant.guide%2F&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206328230%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=0CxVyslXEksYeOV%2F2JdzfdI0cknih3TUyKl6EH%2F0BDM%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2Frestaurant.guide%2F&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206328230%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=0CxVyslXEksYeOV%2F2JdzfdI0cknih3TUyKl6EH%2F0BDM%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2F~rapaport%2Fbuffalo.html&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206328230%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=8NpA77RjlWDL%2Bp8f8yVCqdZ3J%2BKsbhcXwCIFNWB%2F6JU%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2F~rapaport%2Fbuffalo.html&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206328230%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=8NpA77RjlWDL%2Bp8f8yVCqdZ3J%2BKsbhcXwCIFNWB%2F6JU%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2F~rapaport%2Fhowtostudy.html&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206328230%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Gm9bWTxuvdSmi6Soh9%2FmRpH%2F5JVXHAVuGClCFQkYORw%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2F~rapaport%2Fhowtostudy.html&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206328230%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Gm9bWTxuvdSmi6Soh9%2FmRpH%2F5JVXHAVuGClCFQkYORw%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2F%2F~rapaport%2FBuffaloBuffalo%2Fbuffalobuffalo.html&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206328230%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=eu%2BDoAurrpH2iDAtXyJF45H6%2BrILPJhk6j8NtbFUAUE%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2F%2F~rapaport%2FBuffaloBuffalo%2Fbuffalobuffalo.html&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206328230%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=eu%2BDoAurrpH2iDAtXyJF45H6%2BrILPJhk6j8NtbFUAUE%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cse.buffalo.edu%2F%2F~rapaport%2FBuffaloBuffalo%2Fbuffalobuffalo.html&data=05%7C01%7Crapaport%40buffalo.edu%7C3c5ab883a6d346525ed408da221ce9e9%7C96464a8af8ed40b199e25f6b50a20250%7C0%7C0%7C637859805206328230%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=eu%2BDoAurrpH2iDAtXyJF45H6%2BrILPJhk6j8NtbFUAUE%3D&reserved=0

April 19th, 2022

To: William J. Rapaport
 University at Buffalo
 Buffalo
 NY 14260-2500
 United States

Dear William,

RE: Your permission request for

Author: Rapaport, et al.
Title: Logic: A Computer Approach
ISBN: 9780070551312
Edition: 1
Description of material: Entire Work

Request ID Number: REQ-000145906

In response to your request, please be advised that McGraw Hill has no objection to your
proposed use of the above-referenced material, provided any Third-Party material is
excluded.

We should be grateful for acknowledgment of our author(s), title, and McGraw Hill.

Sincerely,
Karen Maxwell
Permissions Department
McGraw Hill LLC

http://www.mheducation.com/

CONTENTS

To the Student xiii

To the Teacher xv

Chapter 1
The Nature of Logic 1

Deductive Logic 2
Arguments 3

Premise and Conclusion Indicators 4
Validity and Soundness 6

Truth Values 7
Summary 9
Exercises 10

Chapter 2
Logic, Computers, and Algorithms 13

Mechanical Reasoning 14
Computers and Reasoning 16
How Computers Work 17

Computer Languages 18
Machine Languages 19
Higher-Level Computer Languages 19

Algorithms 20
Mechanical Procedures 21

Flowcharts 22
A Program Design Language 27 V

vi

CONTENTS

Operation Statements
Control Statements

Summary
Exercises

28
29
32
33

Chapter 3
Sentential Logic:
The Connectives 'Not', 'And', and 'Or'
Negation

The Truth Function FNEG
Truth Tables and Algorithms for FNEG
Double Negation

Atomic and Molecular Sentences
Conjunction

The Truth Function FCNJ
Disjunction

The Truth Function FDSJ
Inclusive and Exclusive Disjunction

Sentences with Multiple Connectives
Other Connectives
Summary
Exercises
Suggestions for Computer Implementation

Chapter 4
Sentential Logic:
The Connective 'If ... Then .. .'
and Additional Connectives
The Conditional

The Truth Function FCND
Symbolizing Conditionals
Only if
Necessary and Sufficient Conditions

The Biconditional
Exclusive Disjunction
Unless
NOR

NANO

The Two-Place Truth-Functional Connectives
Summary
Exercises

37

38
40
42
43
45
45
47
52
53
55
56
57
58
59
64

67
68
70
72
74
75
76
77
79
81
82
82
83
83

vii

CONTENTS

Chapter 5
Sen'\ential Logic:
Algorithms for Calculating Truth Values
and Determining Well-Formedness 87
An Informal Method for Calculating Truth Values 88

Observations about the Informal Method 89
Innermost Subformulas 90

The Algorithm: TRUTH-VALUE CALCULATOR 91
Refining Step 5(d): Finding the Innermost Subformulas 92
Refining Step 5(e): Replacing Innermost Subformulas with Truth Values 93

Formulas and Sentences 95
An Algorithm for Determining Well-Formedness 96

Summary 98
Exercises 98
Suggestions for Computer Implementation 101

Chapter 6
Sentential Logic:
Algorithms for Truth Tables
and Determining Validity 105
General Truth Tables 107
The Algorithm: TRUTH-TABLE GENERATOR 108
Determining Validity 109
The Algorithm: VALIDITY/INVALIDITY DETERMINER 112
Alternative Methods 113
WANG'S ALGORITHM 114
Summary 125
Exercises 125
Suggestions for Computer Implementation 129

Chapter 7
Sentential Logic:
Logical Equivalence, Normal Forms,
and Polish Notation 133
Tautologies and Arguments 134

Arguments and Corresponding Conditionals 135
Logical Equivalence 136
Normal Forms 138
Consistency and Satisfiability 141
Polish Notation 144

viii

CONTENTS

Summary
Exercises

147
148

Chapter a
Sentential Logic:
A Natural Deduction System
A Simple Formal System: The Game of Stars and Slashes
Formal Systems
A Natural Deduction System
Conjunction Introduction
The Format of a Derivation
Conjunction Elimination
Demonstrating the Validity of an Argument with a Derivation
Subproofs and Negation Introduction

Subproofs
Negation Introduction
SEND and RETURN

Using Subproofs
Using -INTRO

Negation Elimination
Comment Lines in a Derivation
Completeness
Summary
Exercises

153
154
157
157
158
160
161
163
165
166
167
168
169
170
171
172
175
176
176

Chapter 9
Sentential Logic:
Additional Rules of Inference
Conditional Introduction and Elimination
Disjunction Introduction and Elimination
Truth Preservation
Biconditional Introduction and Elimination
Rules of Replacement

Modus Tollens
Summary
Exercises

179
180
185
189
189
191
196
198
198

ix

CONTENTS

Chapter 10
Sentential Logic:
An Algorithm for Checking Proofs
Lines of a Proof
The Algorithm: Proof-Checker

The Procedure CHECK-LINE-STRUCTURE
The Procedure CHECK-SENTENCE-STRUCTURE
The Procedure CHECK-RULE
The Procedure CHECK-SUBPROOF

Applications and Modifications of Proof-Checker
Summary
Exercises
Suggestions for Computer Implementation

Chapter 11
Sentential Logic:
A Method for Producing Proofs
General Strategies for Constructing Proofs

Analogous Problems
Forward-Looking and Backward-Looking Strategies

Tree-Searching Strategies
The Method: PROOF-GIVER
Applications of PROOF-GIVER
Limitations of PROOF-GIVER
Summary
Exercises
Suggestions for Computer Implementation

203

204
205
206
208
208
213
216
219
219
220

223

224
224
226
229
232
237
240
245
245
246

Chapter 12
Predicate Logic:
Quantification
Individuals and Properties

Individual Constants
Variables

Quantifiers
Well-Formed Formulas
Scope
Free and Bound Variables
An Algorithm for Sentences

Truth Values of Quantified Sentences

251
252
252
253
254
255
255
256
256
258

X

CONTENTS

Quantifying Molecular Formulas
Existential Quantifiers
Universal Quantifiers

Dossiers and Models
Representative Individuals
Models
Determining whether a Sentence Is TRUE in a Model
Limitations of Models

Relations
Symbolizing
Summary
Exercises
Suggestions for Computer Implementation

Chapter 13
Predicate Logic:
Quantifier Inference Rules
Universal Quantifier Rules

Universal Elimination
Universal Introduction

Existential Quantifier Rules
Existential Introduction
Existential Elimination

Some Examples
Quantifier Negation Rule
Invalid Arguments
Summary
Exercises

Chapter 14
Predicate Logic:
Determining Validity and Proving Theorems
Decldability
Models
Church's Thesis
Mechanical Theorem Proving

Resolution
The Proof Method

Summary

258
259
260
263
263
264
266
270
270
273
276
277
279

281
282
283
284
286
286
287
289
290
295
296
297

301
302
302
304
305
306
310
311

xi

CONTENTS

Appendix A
Applications of Sentential Logic
to Circuit Design and Arithmetic

Electric Circuits
Logic Gates
Combining Logic Gates
Translating between Logic and Circuits
Simplifying Circuits
Circuits for Adding

313
314
315
318
320
321
323

Appendix B
Turing Machines

Turing's Analysis of Computation
Turing Machines
Turing-Machine Programs

Negation
Conjunction
Palindromes

Church's Thesis

Bibliography

Index

327
328
330
331
331
333.
334
338

341

343

TO THE STUDENT

Learning by Learning to Explain

One of the best tests of whether you really know something is whether you can explain
it clearly to someone else. In other words, one of the best ways to learn is by learning
to explain. Of course, relatively few of us ever have the chance to put this into practice.

However, with the introduction of small, relatively inexpensive personal and home
computers, almost anyone can now have a "student" on whom to practice "explaining"
how to do certain things. Computers are ideal students for learning how to do certain
things-at least, things that deal with the manipulation of symbols. They don't tolerate
unclarities or contradictions, they have enormous and highly accurate memories, and
they are patient. They don't ever embarrass or make fun of their "teacher," and-unlike
cases in the real world of education-it is no great tragedy if they fail to "learn" to do
what we hoped to teach them.

The one disadvantage of present-day computers as "students" is that they are not
as flexible as human students would be in understanding what we say to them. The
"explanation" must be given as a program: a sequence of instructions written in a highly
precise computer programming language (such as BASIC or Pascal).

The teaching of symbolic logic is ideally suited for the use of computers as "ex-
perimental students." This is so because all the elementary principles of logic (such as
truth functions and ways of showing the validity and invalidity of arguments) and even
many of its more advanced techniques (such as strategies for proving theorems) are
admirably suited for the use of a computer. The learning of these techniques involves
learning to handle information and symbols in certain ways-exactly what computers
are best at doing.

Using Computers When Reading This Text

Since you, the reader of this text, are to play an active role in a real or imaginary interaction
with an ideal student (the computer), you must learn something about how computers, xiii

xiv

TO THE STUDENT

these ideal students, "think." Understanding how to "talk" to computers is a topic that is
explicitly discussed in Chapter 2 and is dealt with in numerous examples.

The chief tool in understanding how to "talk" to computers is what we call a "program
design language." This is not an actual computer language; rather, it is a language that
has many features in common with actual computer languages (such as BASIC and
Pascal) and that has some features which promote clear thinking about instructions to
be given to computers. Any instructions written in our program design language could
easily be translated into an actual computer language. It is a "program design" language
in the sense that we can use it to give a sketch of what the actual program would
eventually look like.

Thus if a computer is available-a large one, or even a very small one-and if you
know a real computer programming language, you will be able to apply the instructions
we state in our program design language. All that has to be done is to translate the
instructions into whatever actual instructions your computer will accept.

Actually running programs on a computer would make reading this text fun and
would probably also make you more aware of some of the finer points in the theory of
logic and the applications of these principles. But using a computer is by no means
necessary for understanding the content of this book-or even for having fun with it.
Thus if you do not have a computer to use, you need not feel left out. One very easy
way to test some instructions, to see if they work, is to pretend that you (or a friend) are
the computer and then do exactly what your instructions say to do.

What You Will Know about Computers
after Reading This Text

If you complete this text, you will know a great deal about computers and their appli-
cations. Even if you consider yourself an "expert" on computers, you will find a new field
for the application of what you know: the field of symbolic logic. For the novice who
knows little or nothing about computers or logic, the text is self-sufficient. You should
be able to learn all you need to know about computers for completing this book by
carefully reading Chapter 2 and by thinking about what has been said. Actively thinking
is part of reading with understanding that is often underestimated. To stimulate thinking,
it is strongly recommended that you try one or more of the exercises at the end of each
chapter.

Of course, if you know nothing about computers when you begin reading this text
and you understand every sentence and example in it, you still will not be fully prepared
to walk up to any computer and begin operating it. But we venture to say that you will
find it much easier to do so after having completed this book. You will also find it easier
to understand the basic principles behind any programming language. And, most im-
portant, you will have a sound knowledge of one of the key ideas of computer science:
the idea of an algorithm-crystal-clear instructions for explaining how to do something.

Morton L. Schagrin
William J. Rapaport
Randall R. Dipert

TO THE TEACHER

This text uses concepts from computer science to cover all the traditional topics in an
introductory deductive logic course: the nature of logic, sentential logic;, truth tables,
natural deduction, and predicate logic. Although there are many tineintroductory logic
texts, none of them approaches the study of logic from a point of view arising out of the

l . .
insights of computer science,'nor do any texts easily relate to the widespread availability
of computers. The use of this text should not present any difficulties for an instructor
familiar with any of the usual introductory textbooks in symbolic logic. Nevertheless,
several remarks are in order.

Some of the more powerful techniques introduced in a traditional logic course, such
as constructing truth tables, are, in fact, rather tedious procedures J~ carry out. They
require many steps, usually use a lot of time and paper, and are very sensitive to small,
easy-to-make errors. Many teachers of logic have probably wished to be able to teach
and test the basic principles behind such methods rather than their time-consuming
implementations. But teaching, learning, and testing in traditional logic courses have
often centered on the details of applying such methods because, among other things,
of the lack of a suitable framework for talking about exactly what one is doing when,
say, one constructs a truth table.

Computers, and the increasing sensitivity to specifying how information and symbols
are manipulated by them, provide an escape from this dilemma and an opportunity to
return to principles of logic. We can let the computer do the "dirty work" while we
concentrate our attention on grasping the major ideas and learning how to "explain"
these ideas to a computer in such a way that it can apply them. All that is necessary is
to have some understanding of how computers work and how to "explain" to them what
to do. (These topics are addressed in Chapter 2.)

The use of computers proposed in this book is thus quite different from many
educational uses to which computers have recently been put; e.g., in learning foreign
languages or even in learning logic. In these applications, computers are used like
electronic flash cards or like "programmed" texts-guiding us through the subject matter,
tutoring us along the way, gently correcting our mistakes, and giving us useful information
at appropriate times. xv

xvi

TO THE TEACHER

In these traditional uses of computers in education, the computer has the "active"
role: It "explains" something to us. In the way we use computers and computer-inspired
methods in this book, we "explain" to the computer what is to be done. It is, thus, the
student who has the active role in the learning process, not the computer. (This is
discussed at greater length in "To the Student.")

For these reasons among others, the central computer science notion stressed
throughout the text is that of an algorithm: the means by which "explanations" are given
to the computer. While we do not cover every possible topic of interest in logic, we do
cover those that lend themselves to the algorithmic approach. Many students in computer
science have difficulty with this concept; here, it can be learned within the context of a
logic course. Thus while our main purpose in writing the book is to teach logic, we also
address some of the problems and issues of computer literacy, and so, in addition to
its intended use in introductory logic courses in philosophy or mathematics, the text is
also especially appropriate for a logic course that serves as a prerequisite for entry into
a computer science program, or as a supplementary text in computer science courses.

The algorithms in the text can be programmed on a small home computer (we have
done so in BASIC on a VIC-20); yet access to a computer is not required. Furthermore,
the algorithms in the text are not necessarily the most elegant that can be constructed.
Our intention was to present easily understandable algorithms, not necessarily clever
ones. We hope that readers will be motivated to construct simpler and faster algorithms,
for this can be done only if the reader understands the logical issues that we are trying
to teach.

Chapter 1 is an introduction to the nature of logic and to the notions of argument,
validity, and soundness, employing some of the techniques of informal logic.

Chapter 2 contains a discussion of the nature and history of computers and the
impact of logic on their development. It presents the notion of an algorithm and the top-
down design-stepwise refinement method of constructing one, as well as a "program
design language" that does not require the reader to know any specific programming
language. The language of flowcharts is also introduced.

Chapters 3 and 4 present algorithms for computing the truth functions for negation,
coniunctlon, disjunction, material conditional, biconditional, exclusive disjunction, NOR,
and NANO. The treatment of sentential connectives and their associated truth functions
gives more explicit attention to the functional nature of these connectives than is cus-
tomary in other introductory logic texts, thus broaching the relationship between (recur-
sive) functions and algorithms. Our rules of formation do not allow the dropping of outer
parentheses. E.g., a conjunction will always be expressed as (A & B) and never as A
& 8. The reason for this is that certain later algorithms-such as the one for determining
whether a formula is well-formed-would be considerably more complicated if outer
parentheses could be dropped.

Chapter 5 contains an algorithm, TRUTH-VALUE CALCULATOR, for computing the
truth values of molecular sentences and an algorithm for determining the well-formedness
of a sentence.

Chapter 6 contains an algorithm, TRUTH-TABLE GENERATOR, that "nests" TRUTH-
VALUE CALCULATOR in a count-loop in order to generate truth tables. The use of truth
tables is quite standard, although it is unusual to clearly state an algorithm for generating
them. The chapter also contains an algorithm, VALIDITY/INVALIDITY DETERMINER,
that uses the output of TRUTH-TABLE GENERATOR to determine the validity or invalidity

xvii

TO THE TEACHER

of arguments in sentential logic. (Although each algorithm should be followed precisely,
in the cases where one algorithm uses a previously introduced one as a "subroutine,"
the instructor can relax the requirement that the details of the subalgorithm be followed
to the letter.) Most introductory logic textbooks usually include a "shorter truth-table
method" by which an argument is shown to be valid or invalid without the need for the
full truth table. Quite often, however, certain strategies and tricks are needed to employ
the shortened methods with any success. We replace these usually incomplete methods
with a version of WANG'S ALGORITHM, which is not only extremely clever but also
useful in introducing the computer-science idea of a "stack." As part of this algorithm,
there is also a "subroutine" for identifying the main connective of a sentence.

Chapter 7 presents algorithms for transforming a sentence into conjunctive normal
form and into Polish notation, as well as discussions of tautologies, logical equivalence,
arguments and corresponding conditional sentences, consistency, and satisfiability.

Chapters 8 and 9 present a new natural deduction system for sentential logic, one
that relies on the similarities between, on the one hand, proofs and subproofs in logic
and, on the other, programs and subprograms in computer science (including parameter
passing and the scope of global and local variables). It should be noted that no prior
knowledge of the computer science notions is needed to use or to understand the natural
deduction system. Rather, it is our hope that a familiarity with the deduction system will
make the computer science concepts clearer.

In Chapters 8 and 9, and in other places where we manipulate sentences as strings,
we always use single quotes. Elsewhere, sentence letters alone and (single) quoted
molecular formulas denote sentences.

The astute reader will notice that we go to extraordinary lengths in Chapters 8 and
9, and again in Chapters 12 and 13, to control the information that may flow into and
out of a subproof. These considerations arise in the context of our SEND and RETURN
rules. To some, these measures might seem to lengthen derivations and to involve us
in unnecessary complications. However, we believe that these techniques are, in fact,
very well-justified. One reason for them is given in the text: They closely parallel the
proper use of global and local variables in elegant computer programs.

Another reason has a far more secure foundation in logical theory. The extension
of a natural deduction system to deal with certain issues in modal logic, and with issues
of relevance and entailment, requires exactly this degree of care with information flowing
into and out of subproofs. The lack of care with which most natural deduction systems
deal with this information makes their users insensitive to these issues, and renders the
systems themselves incapable of being easily modified to deal with anything but the
most well-trod paths in the philosophy of logic (namely, "standard" logics). Although we
shall not extend our system in these directions, we wish to have a system that is, in
principle, capable of being so extended.

One of the first logicians to promote the use of natural deduction systems that
carefully (and with full consciousness, import information into subproofs and export it
out) was Frederic Fitch in his 1952 Symbolic Logic. It is his pioneering efforts that we
follow. Sound logical practice thus mirrors-and predates-sound programming practice.

Chapters 1 O and 11 present two of the most significant features of the text: the
algorithm PROOF-CHECKER and the mechanical procedure PROOF-GIVER. The for-
mer enables a student to check a proof in the text's natural deduction system for validity;
the latter helps the student construct proofs in the text's system. Thus one of the hardest

xviii

TO THE TEACHER

topics for a student to learn in an introductory logic course is covered by purely me-
chanical methods.

Chapters 12 and 13 cover the syntax and semantics of predicate logic and extend
the natural deduction system to cover the universal and existential quantifiers.

Chapter 14 discusses the limitations on the algorithmic approach to predicate logic
in the context of Church's theorem and Church's thesis, and it discusses mechanical
methods of theorem proving. It presents an algorithm for using resolution (another tech-
nique for determining validity, much used in computer science) and extends PROOF-
GIVER to predicate logic.

Appendix A covers the application of sentential logic to circuits and computer arith-
metic, and Appendix B covers Turing machines.

Exercises at the ends of the chapters test the students' comprehension of the basic
material, as well as extend the material. There are frequent suggestions for computer
implementation of the algorithms; these can be used by instructors who wish to em-
phasize the computational aspects of logic or by students with access to hardware who
are interested in doing independent work.

Most of the material can be covered in a one-semester course. A typical course
might consist of Chapters 1 through 12, with selections from Chapters 13 and 14 as
time or preferences permit. Chapters 1 and 2 can be covered in the reverse order, or
both could be covered together. In Chapter 6, WANG'S ALGORITHM is optional. Instead
of covering all of Chapter 7, an instructor might prefer to use selections from among its
topics; this can be done easily, since most of the sections are independent of each other.
Chapter 8 contains a complete natural deduction system for sentential logic using only
negation and conjunction. Thus Chapter 9, while strongly recommended, could be omit-
ted in view of the completeness of the system in Chapter 8. Chapters 10 and 11 can
be covered in any order, and it is quite possible to introduce the algorithms in these
chapters during the presentation of the material in Chapters 8 and 9. The appendixes
are independent of each other; Appendix A could be covered following Chapter 4, while
Appendix B could be covered following Chapter 2 or Chapter 14.

We are grateful to Dawn Beke, who encouraged us to begin; to Kaye Pace, Anne
Murphy, and Jim Dodd, who encouraged us to continue; to Leslie Burkholder (Carnegie-
Mellon University), who class-tested an earlier version and made many useful sugges-
tions; to our reviewers, who caught several major errors and made many valuable
comments. We also want to acknowledge our debts to our teachers of logic and computer
science at the University of Michigan, Chicago, Rochester, California at Berkeley, at
Indiana University, and the State University of New York at Buffalo. Finally, many thanks
to our students (who gleefully caught typos) for their excitement (and surprise) at seeing
connections between logic and computers.

Most texts, like most computer programs, have undetected bugs. We urge readers
who find them, or who have any suggestions for improvement, to contact us.

Morton L. Schagrin
William J. Rapaport
Randall R. Dipert

CHAPTER 1

THE NATURE OF
LOGIC

Logic, in its broadest sense, is the study
of correct reasoning. It produces and examines meth-
ods for identifying good reasoning, as well as bad rea-
soning, in all places: in our own thought, in the writings
of others, and in the conversations of our friends. Logic
provides rules for determining how we should move
from one belief to another. Seen in this way, logic gives
us the standards for determining which beliefs are ac-
ceptable on the basis of other beliefs. Logic is thus
sometimes described as the study of the "laws of thought."
This is true if by it we mean a study of the laws of
correct thought or reasoning. Logic is a study not of
how people do reason but of an ideal way of reasoning.

To produce the standards of "correct reasoning" in
all fields-everyday life, psychology, history, physics,
and mathematics-would obviously be a very tall order.
In different areas, and in different circumstances, there
are varying standards of "correct reasoning." In math-
ematics, we often have very rigid rules for what counts
as a correct calculation, proof, or demonstration. But
determining whether to take our umbrella with us, on
the basis of present weather conditions and current
predictions, is necessarily a far less rigid procedure.
Here, it might be acceptable to reason: "It is overcast,
and the clouds are dark; therefore, it will rain, and I
should take my umbrella."

2

C HA PTER 1

Consider this sentence:

1. Some apples are red.

From this sentence, and the knowledge that (2) All apples are fruit, we might correctly
reason:

3. Some fruit is red.

It would be erroneous, however, to conclude that:

4. All fruit is red.

To infer (3) from (1) and (2) is always correct reasoning-as we shall see-while to infer
(4) from (1) and (2) is not.

Deductive Logic

There is a core of reasoning that is accepted by all sciences and disciplines under all
circumstances. This core is given the name deductive logic. In deductive logic, we are
interested in studying reasoning that never strays from true beliefs to false ones.

If a piece of reasoning is acceptable according to the standards of deductive logic,
then we can be sure that it is correct reasoning in all circumstances. On the other hand,
if this reasoning does not come up to the standards of deductive logic, we cannot
automatically dismiss it as bad reasoning. Such nondeductive reasoning might be ac-
ceptable in some sciences or under some circumstances.

Deductive logic-the standards of reasoning acceptable to all disciplines in all cir-
cumstances-forms the topic of this book. As we shall explore in later chapters, the
study of deductive logic has extensive connections with computers and with methods
used in computer science. For example, elements of deductive logic are extensively
used in the programming of computers, and computers can easily be used to solve
problems in deductive logic.

If there is any discipline that has historically used only deductive logic as a standard
of correct reasoning, with no extensions or additions, it is mathematics. In other words,
the standards of reasoning aimed for in mathematics closely resemble the standards of
deductive logic. This is not to say that mathematics is "the same as" deductive logic:
Logic is the study of how to identify correct reasoning, whereas mathematics rarely
studies the methods it uses, and it is often more concerned with the products of math-
ematical reasoning.

The development of modern logic owes much to the various attempts to make
mathematics rigorous. But what constitutes "rigor"? The history of modern attempts to
characterize rigor can be traced to such seventeenth-century Rationalist philosophers
as Descartes and Leibniz, who championed the notion of reasoning as a step-by-step
process, with all the steps being made explicit, none being hidden:

3

THE NATURE OF LOGIC

We shall comply with it [the method for finding out the truth] exactly if we reduce
involved and obscure propositions step by step to those that are simpler, and then
starting with the intuitive apprehension of all those that are absolutely simple, attempt
to ascend to the knowledge of all others by precisely similar steps. [Descartes, Rules
for the Direction of the Mind, Rule V (1628).]

Such a method was what mathematicians studying the foundations of their discipline
required; since logic was precisely the study of such steps, logic and mathematics have
become almost inseparable (in theory if not in practice).

Arguments

A notion fundamental to logic is that of an "argument"-not in the sense of fights or
quarrels, but in the sense in which people speak of a lawyer "arguing" a case. Typically,
a lawyer might try to convince a judge or jury that, say, the defendant is not guilty. The
way the lawyer does this is by presenting evidence to support the claim of innocence,
i.e., reasons why the judge or jury should believe in the defendant's innocence. Note
carefully that we have distinguished between persuasion by reasons and persuasion by
any means whatever. Some successful persuasion might take the form of jokes, emo-
tional appeals, an appealing turn of phrase, or a friendly face. This more general form
of persuasion is usually given the name rhetoric. Logic considers more narrow forms of
persuasion-forms which would appeal only to an ideal rational person (or to a sophis-
ticated computer). These forms include what we describe as reasons, evidence, and
argument-and not smiles, jokes, or emotional appeals. Abstracting from a particular
case, we can define an argument as a set of sentences, some of which are identified
as reasons for one of the others.

For example, a lawyer might try to convince the jury that the defendant could not
have committed a murder in New York on the night of January 29, because the defendant
was in Los Angeles from the 27th through the 31st. The lawyer could cite as evidence
the testimony of two highly reputable witnesses who were with the defendant the entire
time. The lawyer's case might consist of the following sentences:

1. Witness A was with the defendant in Los Angeles from January 27 through
January 30.

2. Witness B was with the defendant in Los Angeles from January 28 through
January 31.

Therefore,
3. The defendant was in Los Angeles from January 27 through January 31.
Therefore,

4. The defendant was not in New York on January 29--the night of the murder.

In this example, sentences (1) to (3) are offered as reasons for believing sentence (4).

4

CHAPTER 1

Actually, the lawyer's case consists of two distinct arguments: Sentences (1) and
(2) are offered as reasons for sentence (3), and sentence (3) is offered as a reason for
sentence (4). In each argument, there is a set of sentences, some of which are reasons
for the remaining one. That remaining sentence is the claim that is being argued for; it
is called the conclusion of the argument. (Do not confuse the conclusion of an argument
with the conclusion of an essay; the latter is typically only a summary of what has been
said in the main body of the essay.) Each of the reasons or bits of evidence for the
conclusion is called a premise.

Often, a number of premises are unstated. Sometimes they are so obvious that
they need not be stated (for example, the lawyer's case did not state that Los Angeles
is so far from New York that it would have been impossible for the defendant to have
gotten there and back without the disappearance being discovered by the witnesses).
When evaluating an argument, it is sometimes important to include all the unstated
premises. In some cases, these missing premises might not be obvious (for example,
suppose a foreign lawyer ignorant of U.S. geography were reading about our case), or
they might even be false (the lawyer might be trying to mislead the jury). None of the
examples in this book will have missing premises.

Premise and Conclusion Indicators

The very first step in evaluating an argument is to identify the conclusion and find all
the premises. To identify the premises and conclusion, it often helps to look for certain
key words that indicate whether a sentence is a premise or a conclusion.

Premise indicators. The sentence following each one of these expressions is
usually a premise:

For
Since
Because
In view of the fact that
As is shown by the fact that
Assuming that
Granted that
Given the fact that
The reason is that
Is implied by
Is entailed by
Follows from the fact that

Conclusion Indicators. The sentence following each one of these expressions is
usually a conclusion:

Therefore
Thus

5

THE NATURE OF LOGIC

Hence
So
Then
Consequently
Accordingly
That's why
It follows that
Which implies that
This entails that
This proves that
Which means that
From which we can deduce that
As a result, we may infer that

Using these indicators as evidence of a sentence's being a premise or a conclusion,
we can now apply them to an actual argument. Consider the following argument, in
ordinary English:

The reduction of the level of inflation can apparently be accomplished only by
temporarily increasing the amount of unemployment. So, all possible options will
be unpopular-since both inflation and unemployment are unpopular.

In this argument, we can detect one conclusion indicator, 'so', and one premise indicator,
'since'. The conclusion of this argument appears to be:

All possible options will be unpopular.

One of the premises is:

Both inflation and unemployment are unpopular.

The other premise-which does not contain a premise indicator-is the first sentence;
it is fairly obviously given as evidence for the conclusion.

The natural way to test these guesses (since our indicators only provide us with
good first attempts) is to rewrite the argument in very clear premise-conclusion form. If
the result seems to preserve the "intent" of the original argument, it is probably a correct
analysis of the premises and conclusion. For example:

1. Reducing the level of inflation increases the amount of unemployment.
2. Both inflation and unemployment are unpopular.
Therefore,

3. All possible options are unpopular.

This does seem to be a correct reconstruction of the intent of the original argument.

6

CHAPTER 1

Validity and Soundness

Suppose we have an argument. How do we know if it's a good argument? Should we
believe the conclusion if we believe the premises? In other words, are the premises
good reasons for the conclusion?

One important test of a good argument is to determine whether the premises are
true. False premises do not provide us with good reasons for accepting a conclusion.
Often, however, it is difficult to know whether the premises are true or false. Yet regardless
of whether the premises are true or false, there is another test that can always be
performed: In deductive reasoning, the conclusion must necessarily follow from the
premises. That is, the relationship between the premises and the conclusion must be
such that if the premises were true, then the conclusion would be true also.

Before this latter test is described more precisely, it might be helpful to consider
another way of looking at arguments. Instead of asking when an argument is good, we
could ask when it's bad. There are two ways an argument can go wrong: It can be
logically incorrect, or it can be factually incorrect. An argument is logically incorrect if
the conclusion does not necessarily follow from the premises, and an argument is
factually incorrect if one or more of the premises are false.

You might think that there's a third way: The conclusion could be false. But there
are only two ways that could happen. Either the argument was logically incorrect, in
which case the conclusion did not follow from the true premises, or the argument was
factually incorrect. If the argument were both logically and factually correct, then the
conclusion would necessarily follow from the premises, and so it could not have been
false.

Since we sometimes do not know whether the premises are true or false, the test
for logical correctness often becomes the more useful test. The technical name for logical
correctness is validity. We can define it as follows:

To say that an argument is valid means that it is impossible for the conclusion to
be false while the premises are all true.

Notice that this definition does not say or imply that the premises of a valid argument
are true-that's a matter of factual correctness, not logical correctness. Nor does it say
that the conclusion is true. All that the definition says is that the conclusion would have
to be true if the premises were true. We shall sometimes speak of a "valid conclusion,"
meaning a conclusion of a valid argument.

An argument that is not valid is said to be invalid. Thus an argument is invalid if it
is possible for the conclusion to be false while the premises are true.

The best kind of argument, of course, is one that passes both tests-an argument
that is both logically and factually correct. Such arguments are said to be "sound." Thus
we define a sound argument as one that is valid and has all true premises. And, as we
have seen, there are two ways for an argument to be unsound: either by being invalid
or by having at least one false premise (or both!).

7

THE NATURE OF LOGIC

What follows are several arguments that demonstrate some of the possible com-
binations of true or false premises and conclusions, described according to whether they
are valid or invalid, sound or unsound. Try to see why each one is valid or invalid, as
the case may be.

1. VALID and SOUND
All dogs are mammals.
Lassie is a dog.

Therefore,
Lassie is a mammal.

2. INVALID and UNSOUND
All Volkswagens are vehicles.
The President's limousine is a vehicle.

Therefore,
The President's limousine is a Volkswagen.

3. VALID but UNSOUND
All cats are dogs.
All dogs are mammals.

Therefore,
All cats are mammals.

4. INVALID and UNSOUND
All recent Presidents have lived in the White House.
Ronald Reagan has lived in the White House.

Therefore,
Ronald Reagan is a recent President.

(true)
(true)

(true)

(true)
(true)

(false)

(false)
(true)

(true)

(true)
(true)

(true)

Truth Values

Sentences, as well as propositions, statements, and assertions, are frequently described
as being the kinds of things that are true or false. The truth or falsity of a sentence is
called the truth value of the sentence.

Determining the truth value of a sentence is equivalent to answering the question
of whether the sentence is true or false. Some sentences have the interesting property
of always being true, such as this sentence:

1 = 1

Some sentences are always false, such as

1 "F 1

8

CHAPTER 1

And the truth values of some sentences depend on the way things are, so to speak,
such as:

The President of the United States is over 60 years old.

-which depends on who is President.
Up to this point, we have talked rather nebulously about the "truth values" of sen-

tences as being either true or false. These truth values are perhaps most intuitively
thought of as properties of sentences, much as tallness is a property of the Empire State
Building. We must be careful not to confuse the truth value of a sentence with the
sentence itself. The truth value of the sentence The earth is flat' is identical to the truth
value false, but the sentence itself is not identical to the truth value false. Falsity is a
property of this sentence; it is not identical to it.

Several important computer programming languages preserve the uniqueness of
truth and falsity and have special words, usually simply 'TRUE' and 'FALSE', to indicate
them. We shall also maintain this distinction and use these capitalized expressions to
refer to the truth values of sentences. These two values, TRUE and FALSE, are often
called "Boolean values," after the nineteenth-century British logician George Boole.
Expressions having one of these values-usually, sentences-are often called "Boolean
variables."

One important logician, Gottlob Frege (1848-1925), went so far as to claim that the
truth values of sentences are unique and abstract things called The True and The False.
This level of abstraction is, however, not always necessary, and for a variety of reasons-
primarily "technical" rather than philosophical ones-logicians and computer scientists
often find it useful to treat the truth values of sentences (TRUE or FALSE) as if they
were numbers. The most usual identification is of the number 1 with TRUE and O with
FALSE.

This identification is not to say that FALSE is really the same as O or that TRUE is
really the same thing as the number 1. In fact, we could if we wished reverse this
assignment and treat falsity as 1 and truth as O! But most logicians associate O with
falsity and 1 with truth. Their reasons for doing so vary but are primarily connected with
easily remembering which is which. Some might say that a false sentence is "worthless,"
that nothing is greater than the truth, that truth is greater than falsity, or that truth is
unity. None of these sayings are very clear, nor are they worth pursuing; but perhaps
ideas like these have helped logicians and students remember which is which. (There
are also some deeper reasons for identifying O with falsity and 1 with truth. They have
to do with the behavior of O and 1 in ordinary arithmetic, as we shall see.)

It is increasingly common in computer science, and obviously useful in avoiding
confusion, to use terms such as TRUE' and 'FALSE' rather than arithmetical substitutes
such as '1' and 'O'. In this text, we shall use both TRUE' and 'FALSE' as well as
arithmetical equivalents, depending on the circumstances.

It is extremely useful to be able to distinguish clearly the truth value of a sentence
from the sentence itself. To help ourselves do this, we shall introduce some notation.
We shall use the capital letters (possibly with numerals):

9

THE NATURE OF LOGIC

A, B, C, ... , 0, A 1, B1, ... 01, A2, ...

to designate particular sentences, and we shall use

V(<some sentence>)

to designate the truth value of a sentence. For example,

C = 'The earth is flat.'
V(C) = FALSE

In other words, 'V(C)' designates the truth value of sentence C. When we discuss arbitrary
or nonspecified sentences, we shall use boldface capital letters from later in the alphabet:

P, Q, R, ... , Z

Here are some concrete examples using this notation:

A = 'Logic is fun.'
B = 'All birds fly.'
V('There exists an odd number.') = TRUE
V('The earth is flat.') = FALSE
V(B) = FALSE
Consider a sentence P such that V(P) = TRUE.
For every sentence Q either V(Q) = TRUE or V(Q) = FALSE.

Summary

Logic is the study of correct reasoning. One branch of logic, deductive logic, studies
reasoning that never moves from TRUE sentences to FALSE ones.

A basic unit in logic is an argument, which is a set of sentences, one of which (the
conclusion) is claimed to follow from the others (the premises). There are two important
attributes that a good deductive argument has. First, all its premises are TRUE. When
this is so, we say that the argument is factually correct. Second, when an argument is
such that if the premises were all TRUE then the conclusion would also be TRUE, we
say that the argument is logically correct. Another word for logical correctness is validity.
An argument that is both factually correct and logically correct is said to be sound.

We shall use the capital letters A, B, C, ... , 0 to designate particular sentences,
and we shall use the boldface capital letters P, Q, R, ... , Z to designate arbitrary
sentences. Every sentence has one truth value, either TRUE or FALSE. We shall some-
times represent TRUE and FALSE with the numbers 1 and 0, respectively. We shall
indicate the truth value of a sentence, P, by writing V(P).

10

CHAPTER 1

Exercises

A. Identify the premise and conclusion indicator words, the premises, and the con-
clusions in the following arguments.
1. Computers cannot be intelligent, because they are not human.
2. Robots could not be persons, since they don't have minds, and having a

mind is a necessary condition for being a person.
3. God does not exist. If he did exist, he would not allow suffering to exist. But

there is suffering.
4. Intelligent life might exist elsewhere in the universe. Yet we might never be

sure of this fact, because this intelligent life might be too distant from us
ever to be discovered.

5. Deficit spending by a government always produces inflation. The reason for
this is that deficits increase the money supply without increasing the number
of goods. And this is just what inflation is-a money supply increasing more
rapidly than the supply of goods.

6. "Thinking is a function of man's immortal soul. God has given an immortal soul
to every man and woman, but not to any other animal or to machines. Hence no
animal or machine can think." (Turing, 1950, in Anderson, 1964, p. 14.)

7. "There are a number of results of mathematical logic which can be used to
show that there are limitations to the powers of discrete state machines [i.e.,
computers). The best known of these results is known as Godel's theorem,
showing that, in any sufficiently powerful logical system, statements can be
formulated which can neither be proved nor disproved within the system,
unless possibly the system itself is inconsistent. (But humans can know
whether these statements are true or false.] ... This is the mathematical
result; it is argued that it proves a disability of machines to which the human
intellect is not subject." (Turing, 1950, in Anderson, 1964, p. 16.)

8. "The nervous system is certainly not a discrete state machine. A small error
in the information about the size of a nervous impulse impinging on a neuron,
may make a large difference to the size of the outgoing impulse. It may be,
argued that, this being so, one cannot expect to be able to mimic the behavior
of the nervous system with a discrete state machine." (Turing, 1950, in
Anderson, 1964, p.22.)

9. "Now the common philosophical argument is that minds and mental states
are so extremely unlike bodies and bodily states that it is inconceivable that
the two should be causally connected. It is certainly true that, if minds and
mental events are just what they seem to be to introspection and nothing
more, and if bodies and bodily events are just what enlightened common
sense thinks them to be and nothing more, the two are extremely unlike.
And this fact is supposed to show that, however closely correlated certain
pairs of events in mind and body respectively may be, they cannot be
causally connected." (Broad, 1962, p. 97.)

B. Make up a simple argument in English that has:
1. A TRUE conclusion but that you believe is invalid.
2. A FALSE conclusion but that you believe is valid.

11

THE NATURE OF LOGIC

C. Fill in the blanks in the following chart using:

T for TRUE I for "invalid"
F for FALSE S for "sound"
V for "valid" U for "unsound"
? for "There is not enough information."

For example:

I "
Premises are

T = A" TRUE,
F = At Least

one FALSE

1. T
2. F

Argument is
Valid or
Invalid

Ill
Argument is

Sound or
Unsound

IV
Conclusion is

TRUE or
FALSE

V
V

s
D

D
D

Answers to Examples

1. The conclusion of a valid argument with TRUE premises (i.e., a sound
argument) must be TRUE, so the blank in column IV should be a T.

2. A valid argument with a FALSE premise is unsound, so the blank in column
Ill should be filled in with a U. Since such an argument could have either
a TRUE conclusion or a FALSE one, the blank in column IV should be?

Premises Argument Conclusion

3. F D u D
4. F I D D
5. T I D D
6. T D u D
7. D V u F
8. D V D F
9. D V D T

10. D D s T
11. D I D T
12. D D u T
13. D I D F
14. D D u F
15. F D D F
16. F D D T
17. T D D T
18. T V D D
19. D D s D
20. T D D D
21. D V D D
22. D D u D
23. D D D F
24. T D D F

D. Some sections of prose, as we have already noted, contain several arguments.
In the two sentence groups following the example, count the number of distinct

12

CHAPTER 1

arguments, and use the sentence numbers to indicate the premises and con-
clusions of the distinct arguments. Example:
1 . Computers are made out of nonliving material.
2. Only living material is capable of having feelings.
3. So computers do not have feelings.
4. But having feelings is necessary for thinking in the broad sense.
5. Therefore, computers do not even think in the broad sense.
Answer:

Number of arguments: 2
Structure of the first argument:

Premises: 1, 2
Conclusion: 3

Structure of the second argument:
Premises: 3, 4
Conclusion: 5

Group a
1. Geometry is a branch of mathematics.
2. Therefore, mathematics includes more subject matter than geometry.
3. Mathematics is a branch of logic.
4. So logic includes still more subject matter than mathematics.
5. Furthermore, logic must therefore include far more subject matter than

geometry.

Group b
1. All prime numbers are odd.
2. So, no even numbers are prime.
3. Some odd numbers are divisible by 3.
4. So, not all odd numbers are prime.

-
CHAPTER 2

LOGIC, COMPUTERS,
AND ALGORITHMS

The historical connections between logic
and computers run long and deep. It is now easy to
think of the history of computers only in terms of the
increasing speed and efficiency they acquired at per-
forming mathematical computations. Looking back, we
tend to see only the progression of calculating tools
such as the abacus, slide rules, adding machines, pocket
calculators, and computers, all of which seem to have
been designed primarily to perform mathematical cal-
culations.

But historically, this picture of computers as math-
ematical calculators is not entirely complete. Some of
the first designs for computing machines were intended
not to perform mathematical calculations but to perform
the essentially logical task of determining correct de-
ductive reasoning. That is, a number of early computers
were designed to generate the logically valid conclu-
sions from premises, or to "test" reasoning to determine
whether or not it was valid.

13

14

CHAPTER 2

Mechanical Reasoning

The application of machines to the determination of correct reasoning was a very natural
development. First, the evolution of symbolic methods of writing logical problems allowed
the posing of such problems: Without having ways of clearly and concisely symbolizing
reasoning, in the form of "symbolic" logic, the communication of such problems to ma-
chines would have been impossible. Similarly, the development of mathematics and the
communication of mathematical problems to computers would have been impossible
without concise, systematic ways of symbolizing mathematical problems-using arabic
numerals and such symbols as '+' and ' - ', for example.

Second, the question of what constitutes sound reasoning is an age-old and vitally
important question in philosophy and other disciplines. With a revival of the study of this
question in the seventeenth century (by Descartes, Leibniz, and others) and some
tentative speculations about what good reasoning consisted of, the question naturally
arose as to whether machines could be constructed to "reason," or at least whether they
could determine the validity of reasoning produced by humans. Machines that could
evaluate the correctness of human reasoning-even if they could not creatively reason
themselves-would be of considerable use in mathematics and other fields. They could
check long or complicated reasoning for validity. Because of these two factors, the history
of computers is full of attempts to build machines that could reason or that could test
reasoning.

One of the most fanciful and amazing attempts to make reasoning a "mechanical"
matter is to be found in the work of the Spanish mystic and priest Ramon Lull, who lived
in the thirteenth century. Nothing in the life of this fantastic figure was dull-except
perhaps his numerous and voluminous books. (For more material on Lull's life and work,
the reader is urged to read the first chapter of Martin Gardner's Logic Machines and
Diagrams.) Lull is usually regarded as one of the earliest writers to attempt to construct
a notation for solving logical problems-as well as perhaps the first to attempt to build
a mechanical device to solve logical problems. The machines he constructed to perform
the task were composed of concentric dials; by turning one of the dials, one obtained
various combinations of symbols. (The dials perhaps most resembled what we see today,
in "wheels" to combine soil, location, or other parameters in order to determine when
best to plant certain seeds.)

The German philosopher, mathematician, and diplomat Gottfried Wilhelm Leibniz
(1646-1716) was very impressed by Lull's ideas. Leibniz was a thinker with grand plans
for improving the way we reason. He proposed, for example, the use of a universal
"logical" language. This language would be designed so that every sentence would show
clearly its logical content, much as equations in mathematics are universally understood,
and display logical relationships among sentences clearly and unambiguously.

Coupled with Leibniz's pians for a universal logical language were proposals to
discover the methods according to which good reasoning proceeds. These methods
would be gathered together in what Leibniz called a calculus ratiocinator (a "calculus
of reasoning"). Using this calculus of reasoning, thinkers could reason and come to the
same conclusions in a virtually mechanical way, just as two accountants always even-
tually agree on the result of an addition. Leibniz even suggested that machines could
then be used to take some of the drudgery out of long or complicated chains of reasoning.

15

LOGIC. COMPUTERS. AND ALGORITHMS

(Leibniz did not build this reasoning machine, but he did build, in 1673, a mechanical
calculator for doing arithmetical computations.) Leibniz himself did not make much prog-
ress with his twin goals of a universal logical language and a "calculus of reasoning."
But his ambitious goals served for centuries as an inspiration to philosophers, mathe-
maticians, and, more recently, computer scientists.

The first working "logic machine" can perhaps be credited to the eighteenth-century
British writer, politician, and tinkerer Charles Stanhope (1753-1816). Stanhope invented
a mechanical contraption that he called a "Demonstrator." Like most early logic com-
puters, it was operated by moving knobs or levers to set certain premises "true." One
then read from indicators exactly which conclusions logically followed from these prem-
ises. (One could also use the Demonstrator to determine conclusions made probable
by the premises.)

A far more complex logic machine was invented by the British economist and logician
William Stanley Jevons (1835-1882). Jevons's computer was popularly known as the
"logical piano" because of its input keyboard. Jevons, living almost a century after Stan-
hope, had the advantage of being able to use a sophisticated system of logical notation
created by George Boole in the 1830s and 1840s (now known, in its modified form, as
"Boolean algebra"). Jevons's logical piano, although representing a considerable ad-
vancement over Stanhope's Demonstrator, was nevertheless restricted in several key
respects: it could handle so-called "particular" statements of the form 'Some A's are B's'
(such as 'Some evergreens are pines') only with great difficulty and could not deal with
arguments referring to more than four distinct classes.

Our discussion up to this point has separated the idea of a logic machine-a machine
to solve logical problems-from a calculating machine to perform additions, multiplica-
tions, and so on. We have thus not considered some of the often quite sophisticated
machines designed strictly for arithmetical calculations (such as an adding machine
invented by the French philosopher Blaise Pascal). One machine, however, deserves
mention in spite of the fact that it was designed primarily for solving arithmetical problems:
the "analytical engine" of Charles Babbage, an Englishman who developed his ideas in
the 1830s and 1840s. Babbage's analytical engine was never completed in his lifetime.
(It was partially completed after his death by his son.) What is remarkable about Bab-
bage's engine, however, is that its overall design had certain similarities to modern
computers. Like modern computers, the analytical engine was to be an "all-purpose"
computer, capable of performing whatever task its operator wished it to; it was "pro-
grammable" by cards, it had a "memory," and it could make decisions about what
operation to perform next.

Babbage did not receive much support for his ideas from the British intellectual
community, but he found a tireless defender in Lady Ada Lovelace-the beautiful and
illegitimate daughter of the English Romantic poet Lord Byron. A recently developed
computer language, Ada, has been named after this famous defender of the power and
future of computers.

The late nineteenth century saw the improvement of mechanical logic computers
like Jevons's, as well as designs for the first electric logic machines. It also saw the
entrance of American ingenuity, with machines and designs by the philosopher Charles
S. Peirce (1839-1914) and by his student Allan Marquand (1853-1924). But the de-
elopment of sophisticated computers to solve general logical problems awaited the
apid evolution of electronic switching circuitry after World War II. The background of

16

CHAPTER 2

this history is the well-known, and amazingly rapid, evolution of switches from mechanical
devices to electric ones (such as relays), then to electronic ones (such as vacuum tubes),
and finally to compact electronic devices (such as transistors and chips).

While the forces behind all these modern developments were undoubtedly motivated
by efforts to speed up arithmetical calculations and data processing (as opposed to the
essentially logical goals of identifying correct reasoning), a deep interest has remained
in "logical" uses of computers. Indeed, it rapidly became apparent that aspects of the
design of electronic computers were virtually the same as certain types of logical analysis.
Modern computers operate by controlling the flow of electric signals in various parts of
their circuitry. The question of whether an electric signal is on or off parallels the question
of whether a sentence is TRUE or FALSE-since here, too, there are only two possible
values. The exploration of the close relationships between the on-off control of electric
signals and the TRUE-FALSE operations of logic falls within a branch of engineering
called "switching theory," which was extensively studied in 1937 and 1938 by Claude
Shannon. (Appendix A treats this subject at greater length.)

In the 1950s and after, computer scientists moved quickly into the area that had
originally interested earlier philosophers and logicians: determining whether arguments
were deductively valid and, if they were, giving proofs. In fact, one of the first programs
in the field of artificial intelligence was the Logic Theorist, which was capable of proving
theorems in sentential logic. (For more information on this and other recent programs,
see Slagle, 1971, and Rich, 1983.)

Any modern computer-a large, or mainframe, computer or even a microcomputer-
can be programmed, in most cases, to determine whether an argument is valid. It can
also be programmed to show why the conclusion validly follows from the premises. In
addition, a computer can be programmed to check whether a proof you have produced
obeys the accepted rules of inference. But for extremely interesting reasons (discussed
in Chapter 14 and in Appendix B), it appears that computers cannot generally decide
whether a given conclusion does or does not validly follow from given premises. At the
end of many of the chapters of this book, we give some practical advice on how to go
about transforming what we say into an actual computer program.

Computers and Reasoning

Do existing computers think? Is it possible for computers to think? These are difficult
and inevitably asked questions to which we cannot do full justice here. They are dealt
with in the area of computer science called Artificial Intelligence and in an overlapping
area of philosophy, the philosophy of mind.

A question related to-and some even say identical to-the question of whether
computers can think is the question of whether they can imitate some of the behavior
we typically identify as being the product of "thinking." The behavior that could tempt us
to say that computers can think might be responding appropriately to ordinary questions
("What time is it?" "How are you today?") or carrying on a conversation.

Another type of behavior that might tempt us to say that a computer can think is
. some evidence of "reasoning." Behavior we take as evidence of reasoning includes:

17

LOGIC, COMPUTERS, AND ALGORITHMS

1. Deciding correctly whether an argument is, or is not, valid.
2. Deducing from a sentence other sentences that follow validly from it.
3. Producing a derivation showing that an argument is valid-if indeed it is.

In this book, we shall address the question of how to instruct a computer to perform
these activities and shall thus examine some respects in which computers might be said
to be capable of reasoning.

The question of whether computers are capable of thought (or of emotion) is a
difficult and controversial one. But part of what we consider to be "thought" is reasoning,
and reasoning might be just the kind of activity computers can do-as we shall see in
coming chapters.

For a more complete discussion of these fascinating questions, the reader is urged
to consult any of the following books on Artificial Intelligence:

Alan Ross Anderson (ed.}, Minds and Machines (Englewood Cliffs, N.J.: Prentice-Hall,
1964).

Margaret Boden, Artificial Intelligence and Natural Man (New York: Basic Books, 1977).
Daniel C. Dennett, Brainstorms: Philosophical Essays on Mind and Psychology (Mont-

gomery, Vt.: Bradford Books, 1978).
Hubert Dreyfus, What Computers Can't Do: The Umits of Artificial Intelligence, rev. ed.

(New York: Harper and Row, 1979).
John Haugeland (ed.), Mind Design: Philosophy, Psychology, Artificial Intelligence

(Cambridge, Mass.: M.I.T. Press, 1981).
Douglas A. Hofstadter, Godel, Escher, Bach: An Eternal Golden Braid (New York: Basic

Books, 1979).
Pamela McCorduck, Machines Who Think: A Personal Inquiry into the History and

Prospects of Artificial Intelligence (San Francisco: W. H. Freeman, 1979).
Bertram Raphael, The Thinking Computer: Mind Inside Matter (San Francisco: W. H.

Freeman, 1976).
Elaine Rich, Artificial Intelligence (New York: McGraw-Hill, 1983).
Joseph Weizenbaum, Computer Power and Human Reason: From Judgment to Cal-

culation (San Francisco: W. H. Freeman, 1976).
Patrick Henry Winston, Artificial Intelligence (Reading, Mass.: Addison-Wesley, 1977).

How Computers Work

The modern electronic digital computer (see Figure 2-1) was devised to perform cal-
culations and process information with incredible speed. The calculations a computer
can perform range from the simple addition of two numbers to a sequence of hundreds
of operations, such as multiplication, taking square roots, and finding the sines of angles.
As we are all aware from the bills and "personalized" notices we receive in the mail,
computers are also adept at storing, manipulating, and selecting information contained
in what may be millions of records. This second set of tasks computers perform is often
called data processing, or information processing.

18

CHAPTER 2

11 I 111
I I I I I

•1111~

Punched cards

.-----------,

00-
Magnetic tape COMPUTER

(Central Processing
Unit)

Floppy disk

LJ
Disk pack

I W/illW! I
Keyboard '\ ~

Memory

Magnetic tape

Input Devices

Figure 2-1 The structure of a typical computer system.

D
'\~

0 0
Monitor

(cathode ray
Output Devices tube)

Computer Languages

It is practically a cliche that computers have no "imagination"; without proper instructions,
they cannot perform the calculations or operations we would like them to. Thus the main
activity of human beings who work with computers is to provide these instructions.

Once we are connected electronically to the computer, what do we say (or type)?
This stage of communication with computers is fascinating, but complex. If we want the
computer to perform some operation for us, we must tell it what to do in great detail.
The computer would in most cases understand very little of what we mean when we
talk to each other in ordinary English. -

If we were to type "Add these numbers: 5 and 8," a computer would almost certainly
not know what to do-unless it had been prepared for just this kind of sentence. It would
probably respond with an "error" message or fail to do anything. So our next observation
is that computers (at present) will not understand just any sentence of English, even if
the sentence were clear to any human being who knew English. Instead, computers are
prepared by their designers to understand only small, and frequently odd-sounding,
portions of English. These are the so-called "computer languages." In many cases, they

19

LOGIC, COMPUTERS, AND ALGORITHMS

resemble English to some degree but use only a small portion of the words and con-
structions an English speaker would know.

What a computer will do when instructed in a computer language is often surprising.
It does exactly what the instruction tells it to do-nothing more and nothing less. A
computer will not stop doing what you have told it to do because what you told it to do
has no end or no point or couldn't reasonably have been what you meant it to do. But,
as we all know, human beings sometimes ignore, correct, or change instructions they
receive.

Machine Languages

The most cumbersome of the languages in which we can communicate with computers
are called "machine languages." They direct the computer to perform exactly the elec-
tronic operations it would actually have to perform to come up with a result. In particular,
we must specify in maximum-and usually excruciating-detail exactly what has to be
done to perform an operation. For example, consider the addition of decimal numbers.
If we were communicating with the computer in machine language, we would not be
able to say anything like "Add the integers 18 and 37." The computer would not recognize
what "addition" is, it would not know what an "integer" is, and it would have no idea what
to do with the symbols '18' and '37'.

Preparing our instructions for a computer-what is usually called a "program"-in
machine language, we would have to describe how to add two integers. This sounds
simple enough. But remember, the computer knows nothing about addition. Some glim-
mer of what we would have to tell the computer to do might arise if we begin to recall
how we add. We put numbers in neat columns, like so:

18
37

Then we begin at the right. ... Suddenly, our description of this "simple" operation would
get complicated indeed.

Higher-Level Computer Languages

To explain in machine language how to add two numbers requires a very long expla-
nation. You can perhaps begin to see that if we had to tell each other, or tell computers,
exactly what to do in this kind of detail every time we wanted a calculation performed,
life would be very unpleasant and all too short. We humans solved this problem long
ago. We came up with a word that describes this procedure in a kind of shorthand. That
word is "addition." Related to it is the command "Add ... !" which tells us to perform the
procedure we just began to examine a moment ago. Rather than saying:

__,

20

CHAPTER 2

Put numbers n and m in columns, with the last digits of each number lined up with
each other

we instead say to one another:

Add n and m.

We all know what this means, and many of us are reasonably proficient at performing
the procedure that is abbreviated by this incredibly useful shorthand.

Computer scientists have developed ways of communicating with computers that
avoid the intimidating detail we would otherwise have to use in order to communicate
with computers in machine language. These are the higher-level languages. These
higher-level languages perform a trick human beings long ago hit upon: certain words
or symbols are used to abbreviate rather complicated but frequently used procedures.
Almost all higher-level computer languages have abbreviations for the most commonly
used arithmetical operations, such as addition, multiplication, and division, as well as
for other operations.

There are now a large number of computer languages available. (We shall use
"computer language" from now on to refer to higher-level languages.) All perform the
same function of abbreviating certain often-used procedures, which are cued by certain
symbols (*, /, +, $, %, etc.) or words (called "reserved words") that resemble their
ordinary-language counterparts (DIV, IF, NOT, etc.). These languages differ a great deal
from one another, usually because each is designed for ease of writing certain types of
programs.

Algorithms

The key to communicating with computers-whatever language one chooses-is the
notion of an algorithm: a detailed, step-by-step description of a process a computer or
a person would use to solve a problem or perform a task. To get a better idea of what
an algorithm is, consider this seemingly simple instruction:

Cook frozen peas.

This general instruction can be refined into a sequence of more specific instructions:
Boil some water in a pot, add the peas, cover the pot, and simmer for a few minutes.
But how much water? How many peas? How hot is "simmer"? How many minutes?
Different cooks will answer these questions differently.

Similarly, different musicians following the same score will perform the same piece
of music in different ways-often producing very different results. The missing precision
and detail in the recipe or the score-the instructions-must be supplied by the cook or
the performer. A sequence of instructions that is completely precise in all details would
not allow the performer to deviate from the procedure. Such a sequence of instructions
for performing a task is a mechanical procedure.

21

LOGIC, COMPUTERS, AND ALGORITHMS

Mechanical Procedures

A special type of mechanical procedure is an algorithm. An algorithm is a detailed, step-
by-step, finite sequence of instructions for performing a task that satisfies the following
two properties: (1) given any required irlformation, the task must be completable in a
finite number of steps with finite resources, and (2) it must be completely mech_anical
and unambiguous, in the sense that no creativity or extra information need be used by
whoever or whatever carries out the instructions.

Sometimes, problems that seem very complex or that seem to require some kind
of interpretive judgment can be expressed in surprisingly simple algorithms. On the other
hand, tasks that are so simple that we perform them every day without careful thought
can be enormously difficult to express algorithmically. As we have seen, the single
instruction "Add n and m" is an instruction that isn't explicit enough if the person or
machine that is supposed to carry it out doesn't know what 'add' means. To produce a
more explicit algorithm for adding, we need to provide instructions that are more precise
and more detailed. Such an algorithm would consist of a detailed sequence of instructions
that someone with no creativity and no understanding of "addition" could follow to produce
the correct sum. Finding out what to tell the computer to do will often consist of first
examining how we make such calculations. It will consist of making explicit what has
long ago become second nature to most of us: the process by which we add numbers.

One very useful way of creating an algorithm is called the "top-down" approach,
and we shall use it often. To employ this method, one first sketches in broad strokes
and in their proper order the steps that seem to be necessary for performing the task.
One then returns to these steps and makes them sufficiently precise and detailed so
that whoever (or whatever) is following the instructions will know what to do at each
step. This phase of designing an algorithm is called "stepwise refinement."

As a first step in a top-down analysis, we could refine the single instruction "Add n
and m" into four instructions:

1. Write down n.
2. Write down m.
3. Calculate their sum.
4. Write down that sum.

-..,s is our "broad" view of what needs to be done. Such a broad view of what needs
be done is called the "main procedure." Each step of a main procedure frequently

s to be made more explicit. Each of these main steps, when spelled out in detail,
es a subprocedure.

Instruction 1 is precise enough, but 2 can be further refined:

2.1. Write the ones digit of m directly beneath the ones digit of n.
2.2. Write the tens digit of m directly beneath the tens digit of n.

on.

22

CHAPTER 2

Instruction 3, of course, is the crucial one. It can be refined as follows:

3.1 . Look up the sum of the ones digits in a table (which contains such facts as
0 + 0 = 0, 0 + 1 = 1, ... , 2 + 3 = 5, ... , 9 + 9 = 18).

3.2. Write down the ones digit of that sum beneath the ones digits of n and m.
3.3. If there is a tens digit of that sum, then write it down above the tens digit of n.
3.4. Find the sum of the digits in the next column to the left.

and so on. Instruction 3.4 needs to be refined too, since the table referred to in 3.1
presumably only gives sums of two numbers, and if step 3.3 must be performed, there
will be three numbers in the tens column.

Step 3.3 is an example of a decision that must be made in following the algorithm,
but it is not the sort of decision that requires creativity or extra information-it is completely
specified.

Flowcharts

The algorithm above was written in English. A program is a way to communicate an
algorithm to whoever or whatever will carry it out. For humans, giving the instructions
in English (or some other natural language) is probably best. But for a computer, a
program in a computer language (such as BASIC or Pascal) must be used.

Before a program is actually written, the algorithm can be presented in "flowchart
language." A flowchart is a graphic presentation of an algorithm. A flowchart is a "graph"
consisting of points connected by arrows. The points, or "nodes," represent steps of the
algorithm, and the arrows represent the order in which the steps are to be performed.
(This is sometimes called the "flow of control," whence the name "flowchart.")

Two especially important nodes in a flowchart are a "start" point and-if the pro-
cedure is ever to terminate=-a "stop" point. The most common portrayal of these points
in a flowchart is with the words 'START' and 'STOP' enclosed in rounded shapes:

C START)

Figure 2-2 ST ART and STOP nodes.

Other important nodes in a flowchart are "operations": points at which we give
instructions for something to be done, such as an addition. These instructions are sur-
rounded by rectangles. Figure 2-3 shows examp!es of operation nodes.

23

LOGIC, COMPUTERS, AND ALGORITHMS

INPUT the value
of A

Let k be the sum
of m andn

OUTPUT the value
of B

Figure 2-3 Operation nodes.

(With some systems of drawing flowcharts, certain operations are contrasted through
the use of different shapes-especially for "input" and "output" operations. We shall keep
things simple, however, and use one shape for all operations.)

Finally, there are "test," or "decision," nodes, which contain sentences that are either
TRUE or FALSE (or, sometimes, questions that have yes or no answers). These tests
are surrounded by diamonds and have two routes flowing out of them: their TRUE (or
"yes") branch and their FALSE (or "no") branch. Figure 2-4 shows examples of test
nodes.

FALSE TRUE NO YES

i
YES NO TRUE FALSE

Figure 2-4 Test nodes.

use there are two routes leaving test nodes, the flow of control through the flowchart
~ said to "branch" at these points. Such branches are important not because they make
=-,J calculation or take any important observable action but because they determine

of two alternative steps comes next.
A flowchart consists of a ST ART node and STOP nodes and a number of operation

gles and test diamonds in between, all connected with lines that have a direction

24

CHAPTER 2

indicated by an arrow. The simplest possible such flowchart is one that does absolutely
nothing other than start and stop:

START

STOP

Figure 2-5 The simplest possible flowchart.

Consider this slightly more glamorous flowchart:

Letnbe2

Letmbe3

Letk=(n+m)

OUTPUT k

STOP

Figure 2-6 A flowchart for adding 2 and 3.

This procedure adds 2 to 3 and displays '5'. Note that the flowchart assumes that we
have a procedure for adding two numbers; it does not describe how to do this. It is
common in flowcharts, as it is in English and in computer languages, to assume that
such simple arithmetical procedures are already available.

Two very common operation rectangles contain 'INPUT .. .', where the instruction
gets some information from the operate, or from a place where information is stored,
and 'OUTPUT .. .', where the instruction communicates some information.

25

LOGIC, COMPUTERS, AND ALGORITHMS

In the example just given, the procedure eventually communicates the value that
is the result of adding 2 to 3. We could modify the previous procedure so that it takes
any two numbers and communicates their sum. Consider:

START

IN PUT a value for n

INPUT a value form

Letk=(n+m)

OUTPUT k

STOP

Figure 2-7 A flowchart for adding any two numbers.

ow the procedure will "ask" the operator for information whenever we have an input
peration. This procedure will do so twice. If we program a computer to follow this

,wchart, the computer will stop at the first 'INPUT .. .', waiting for information about
at value the variable n should receive. When given a value, it will then proceed to

e third step, "asking" us what the value of m should be. It will then, without further
• toring, compute the value of k-the sum of n and m-and communicate the result.

There is a possible flaw in the procedure we have just given. Let us assume that
e are at a computer terminal. The computer that is following this algorithm is connected
cur terminal and pauses to ask us what the value of variable n should be. The entire

edure is written to expect a number, of course. But our terminal has letters too, and
decide to input the expression 'This is'. The computer then pauses to ask us what
value of m should be. Still playing our pranks, we type 'fun'. Now the computer

es the fourth step: it must calculate the sum of 'This is' and 'fun'. But what is the
metical) sum of 'This is' and 'fun'? The question does not have a clear answer. If

~ •• ere to try this on a real computer programmed to follow the flowchart, various things
_ d happen. The computer might stop altogether, or it might give an "error" message,

26

CHAPTER 2

or it might even output some unusual expression that it "thinks" is the sum of the two
expressions. No damage would have been done to the computer, for it is almost im-
possible to break computers by doing such things.

To improve the procedure and to prevent pranksters from misusing it, we can modify
it as follows:

Figure 2-8 A flowchart for adding any two numbers, with error messages.

START

INPUT a value for n

NO

YES

INPUT a value form

NO

YES

Letk=(m+n)

OUTPUT k
OUTPUT" Not

a number! "

STOP

27

LOGIC, COMPUTERS, AND ALGORITHMS

If n or m is not given a numerical value, a computer following the flowchart now informs
us of this fact by outputting 'Not a number!' and halts. If both n and m are numbers, the
appropriate sum is output. Note the way we used our tests (in diamonds) to handle
undesired possibilities; tests can, of course, be used to handle differing desired possi-
bilities as well.

At this point, you should have some idea of what an algorithm is and of how a
flowchart can be used to present one. The question of whether a flowchart does indeed
present an algorithm is a difficult one. By intuition, we can say that a flowchart does not
present an algorithm if there is a possible flow of control through the flowchart that does
not ever reach a STOP node.

Although we cannot here give all the rules for determining when a flowchart presents
an algorithm, we can give four guidelines for proper flowcharts:

1. Any operation rectangle must have one and only one path leading away from it.
2. Every test diamond must have two and only two paths leading away from it, one

labeled TRUE (or "yes") and the other labeled FALSE (or "no").
3. All nodes (with the exception of ST ART and STOP) must have at least two lines

connecting them to other nodes.
4. The paths connecting nodes are "one-way streets." The flow of control from one

node to another can only go in in one direction.

The language of flowcharts unfortunately has its limitations. When the task to be
performed is complex, requiring a lengthy algorithm, the flowchart presentation of this
algorithm might cover many pages and be nearly unreadable. Flowcharts are useful and
enlightening only when they are relatively simple. Another problem with flowcharts is
that they do not closely resemble what is often the "final product" of our work with
algorithms, namely a computer program. A computer program is a sequence of instruc-
tions without the boxes, branches, and arrows of flowcharts connecting them.

A Program Design Language

An alternative to using flowchart language to portray an algorithm is using a "program
design language." An algorithm presented in program design language looks much more
ike a computer program would. We shall, in fact, use this approach when an algorithm
sat all complex or lengthy. Using a program design language (rather than a flowchart)
o portray an algorithm will allow the reader easily to convert the algorithm into a computer

ogram or into a perfectly understandable sequence of instructions in ordinary English.
The program design language we shall use in this book has the following features:

1. Every algorithm will be portrayed through the use of a numbered sequence of
instructions.

28

CHAPTER 2

2. The form of these instructions will be restricted to a handful of basic patterns.
3. Subsidiary or dependent operations will be indented.
4. Large sections of the algorithm for performing some clear but subsidiary task

will be separated and labeled.

This last feature is often called "modular design," and it is the essence of what is
considered good programming style. In practice, modular design requires us first to
perform a top-down analysis of the task and then to divide our algorithm into subpro-
cedures, each of which singles out some distinct and clearly identified task. We shall
use names in capital letters to label our algorithms in program design language, as well
as to label the subprocedures that make them up.

Our program design language will allow just two basic kinds of instructions: operation
statements (or "operations" for short) and control statements. An operation statement
indicates an operation or action the person or computer following the algorithm is to
perform. Control statements are instructions concerning how often, under what condi-
tions, or in what order operations are to be performed. They "control" the performance
of operations.

An important part of many control statements is the test, or condition. A condition
is a sentence that is either TRUE or FALSE. It can never be an instruction itself. For
instance, '4 > 2' is a TRUE sentence and thus could be a condition. One could not
order, or direct, anyone to make 4 greater than 2, so it is not an operation. What follows
the condition in a conditional control statement is an instruction (or a sequence of
instructions).

Consider the following example of a control statement:

IF the amount in your checking account is less than $20.00,
THEN pay a service fee of $1.00.

The control portion of this instruction is the control pattern: IF <condition>. In this
example, the condition is 'the amount in your checking account is less than $20.00'. The
instruction portion contains a single operation: pay a service fee of $1.00. That is, the
condition of an instruction tells us when to do something, and the operation portion tells
us what to do.

Operation Statements

Ideally, the operations contained in an algorithm should be very simple ones. Certainly
they should be ones that the person or computer following the algorithm could reasonably,
and without further instruction, be expected to understand. More complex operations
should be described by listing a sequence of several simpler operations. Because com-
puters-other than robots-do not do much besides asking for, and giving, information
to human users, two common operations are:

29

LOGIC, COMPUTERS, AND ALGORITHMS

INPUT ...

and

OUTPUT ...

The first instruction, INPUT ... , tells the person or computer following the algorithm to
obtain some information from its environment; it looks in its own records or asks the
user to give it some information. The second instruction, OUTPUT ... , tells the follower
of the algorithm to write, or in some other way communicate, some information. Because
these two operations require the user of the algorithm to react with some "outside"
environment-that is, with a world outside the computer-they are often called "external"
operations or, even more descriptively, "input-output" operations.

There are operations, however, that the algorithm uses for its own purposes. These
might be called "internal" operations. Chief among these is the operation of assigning
certain information to a name. This information can then be recalled later in the algorithm
by using that name. This operation is frequently called an "assignment," and the name
given to the information is most frequently called a variable. Examples of assignment
statements are:

Let n be 5.
Set n to the old value of n plus 1.
Let THISSTRING be the string 'Logic is simple'.

Each of these instructions "assigns" certain information to an expression (here, to the
letter 'n' and to the word 'THISSTRING'). This information can be a number, a truth
value, or a sequence of characters (called a "string"). It is common in computer pro-
gramming languages to restrict the type of information that can be assigned to kinds of
variables. The categories of information are called the "data type" of the information (and
of the variable). We shall not worry in this book about the kind of information associated
with names and shall instead let any name refer to any type of information. We shall
also have no restrictions on what expression can serve as a variable, but we shall often
pick a name, such as 'THISSTRING', that helps us to remember what information is
stored there. The form of the assignment statement will be rather free, including such
expressions as 'Let .. .', 'Set ... to .. .', and 'Call .. .'.

Control Statements

The control statements in an algorithm are just as important as the operation statements,
'or knowing when to do something, and how often, is just as important as knowing what
o do.

One important feature of our program design language is this: Unless otherwise
icated, instructions are to be performed in the order in which they occur. For example,

• we had the algorithm

30

CHAPTER 2

1. Let n have the value 5.
2. Let the new value of n be 1 plus its old value.
3. OUTPUT the value of n.
4. STOP.

its application would be as follows. After step 1, 'n' refers to this information: 5. After
step 2, 'n' has the value of its former value, 5, plus 1-that is, 6. Finally, the value of n
is output, and at this point in the algorithm, 'n' refers to this information: 6. So this
algorithm has the final, observable result of simply outputting '6'.

Another very useful control statement in an algorithm is (as we mentioned) the
conditional instruction:

IF <some condition>
THEN <instruction>

Here is an example of an algorithm that uses a conditional instruction:

1. Let n have the value 7.
2. Let m have the value 5 + 2.
3. IF the value of n is the same as the value of m,

THEN (a) OUTPUT "n and m have the same value."
4. STOP.

Since the condition in step 3 is in fact TRUE (once the first two operations have been
performed), the operation indicated by step 3(a) would be performed. The sentence 'n
and m have the same value' would be written or displayed. If the condition had been
FALSE, the sentence would not be displayed.

Other useful control statements are:

FOR <some sequence of values>
<instructions>

WHILE <some condition>
<instructions>

GO TO <some step in the algorithm>
STOP

The first type of control statement, usually called a FOR-loop, says that the indicated
instructions are to be repeated as many times as the sequence of values indicates. Here
is an example of an application of the FOR-loop:

1. INPUT a sentence.
2. FOR every character in the sentence

(a) IF the character is 'e'
THEN OUTPUT "Letter 'e'."

3. STOP.

31

LOGIC, COMPUTERS, AND ALGORITHMS

If the sentence we had input to the algorithm at step 1 were

This is a sentence.

then in step 2 of the algorithm each character in this sentence would be examined
(letters, spaces, and punctuation). Every time we encountered the letter 'e', step 2(a)
would direct us to output the phrase "Letter 'e'." The procedure would move to the last
step (3) only after every character in the sentence had been examined. In other words,
step 2(a) is repeated as many times as there are characters in the input sentence. Only
then does control move to step 3.

A WHILE statement tells us to repeat the indented instructions as long as a certain
condition remains TRUE. When the condition becomes FALSE, we move to the next
nonindented instruction. Both the FOR statement and the WHILE statement tell us, in
differing ways, how many times to repeat (indented) instructions.

A GO TO statement tells us to go to some other step in the algorithm. Since it is
reasonably common to have each step in an algorithm labeled in some way, a frequent
form of the GO TO statement is, for example, 'GO TO step 4'. GO TO statements are
widely frowned upon by enlightened algorithm writers because of the confusion they
produce: when reading an algorithm, we must jump back and forth from one place to
another. Consequently, we shall use them rarely. (Their use can be eliminated altogether,
but in several of our informally described algorithms, it is simpler and clearer to use GO
TO's than to avoid them.)

The most obvious control statement is STOP, which tells us that we have completed
the algorithm.

Consider this algorithm presented in our program design language:

1. INPUT the value n.
2. INPUT the value m.
3. IF n is not a number, or m is not a number,

THEN (a) OUTPUT "Input values not both numbers."
(b) STOP.

4. IF mis O
THEN (a) OUTPUT "Division by O is impossible."

(b) STOP.
5. Let k be nlm.
6. OUTPUT k.
7. STOP.

is algorithm was designed for the task of simply dividing one number by another. It
as also designed to avoid difficulties caused by not having numerical values assigned

•n the names 'n' and 'm' (step 3) and by division by O (step 4). Several features about
e algorithm are important to note.

First, when the algorithm is applied, it must be followed step-by-step, jumping over
ented steps if a condition is FALSE, until a STOP is encountered. One does exactly
at each step says. If a statement is a conditional one and the condition is TRUE, one
rforms the indicated (indented) instructions. If a statement is a conditional one and

32

CHAPTER 2

the condition is FALSE, one does not perform the indicated instructions. Instead, one
simply goes on to the next step that is not further indented. (In the jargon of algorithms,
this is often called "falling through" to the next step.)

Second, it often happens that if a condition is TRUE, several operations should be
performed. When we have more than one operation dependent on a condition being
TRUE, these operations will always be indented from the condition itself. We have this
arrangement in steps 3 and 4. ,

Summary

Computers can be used to solve "logical" questions (such as "Is this argument valid?"),
or they can be used to give proofs that demonstrate why an argument is valid. A notion
important for directing computers to answer these logical questions is the idea of an
algorithm: a sequence of instructions for performing a task such that given any required
information, the task can be completed in a finite number of steps; in addition, the
instructions are completely mechanical and unambiguous, in the sense that no creativity
or extra information needs to be used by whoever or whatever carries out the instructions.
A computer program is the presentation of an algorithm in a way that allows a specific
computer to follow it properly.

We shall present algorithms in one of two ways: in a flowchart or in a program
design language. An algorithm presented in our program design language will visually
more closely resemble an actual computer program than does one presented in flowchart
form.

Either in flowchart form or in program design language, every instruction in an
algorithm is of one of the following kinds:

Operation Statements
1. External

a. INPUT
b. OUTPUT

2. Internal
a. Assignments: Let <variable> be assigned <information>

Control Statements
1. Unconditional control

a. STOP
b. GO TO

2. Conditional control
a. IF <condition>

THEN <instructions>
b. FOR <sequence of values>

<instructions>
c. WHILE <condition>

<instructions>

33

LOGIC, COMPUTERS, AND ALGORITHMS

Exercises

A. An important test for determining whether computers can "think" was proposed
by the British mathematician and computer scientist Alan Turing and is known
as the Turing test (see Turing, 1950 in Anderson, 1964). A simplified version of
the test he proposed is as follows. Suppose you are seated at a terminal or
some other communication device. You have no idea who or what is at the other
end. You begin a "conversation" on the terminal, asking questions, receiving
answers to these questions, receiving and answering questions about yourself,
about your beliefs, and about the world. You might play games, ask for advice,
and do all the other things we do when we communicate with other human
beings.

If you have every reason to believe that you are communicating with a
human being, then whatever is at the other end-even if it's a computer-must
be admitted to be thinking. In other words, we should count as having the ability
to think whatever can converse as a thinking human being can.

Answer the following questions concerning the Turing test:
1. Is it possible that we could be communicating with another thinking human

being yet not be able to determine that this human being was indeed thinking?
One possibility: The person at the other end can't type. Yet this surely does
not necessarily mean that he or she cannot think. What are other possible
reasons why a thinking human being might not give us, or be able to give
us, evidence of his or her thinking?

2. In the light of the first question, consider these two statements:
a. If a person or computer passes the Turing test, then he or she or it can

think.
b. If a person or computer fails the Turing test, then he or she or it cannot

think.
Are both statements reasonable? (The computer program ELIZA is supposed
to be a counterexample to statement (a); see Weizenbaum, 1976.)

3. Imagine yourself at a terminal administering the Turing test to someone (or
something). Construct three questions (and their answers) that you think
would be sufficient to determine if the test taker could think. Hint: At least
one question should require reasoning and not just knowledge.

8. The following algorithm written in our program design language is for adminis-
tering and grading a short quiz on state capitals.

1. LET A be 0.
2. Answer TRUE or FALSE: "The capital of California is Sacramento."
3. LET V(CA) be your response.
4. Answer TRUE or FALSE: "The capital of Ohio is Toledo."
5. LET V(OH) be your response.
6. Answer TRUE or FALSE: "The capital of New York is Albany."
7. LET V(NY) be your response.
8. IF V(CA) = TRUE

THEN LET A be the former value of A plus one.

34

CHAPTER 2

9. IF V(OH) is not TRUE
THEN LET A be the former value of A plus one.

10. IF V(NY) is not FALSE
THEN LET A be the former value of A plus one.

11. IF A= 3
THEN OUTPUT "Perfect Score."

12. IF A= 2
THEN OUTPUT "Better luck next time."

13. IFA<2
THEN OUTPUT "Terrible!"

14. STOP.
a. Take the quiz. What are your answers at steps 3, 5, and 7? What would

the procedure do after step 1 0?
b. If you had answered the questions perfectly, what would the procedure have

output?
c. Suppose your answers at steps 3, 5, and 7 had been:

TRUE
I DON'T KNOW
FALSE

What would be the value of A at step 4? after step 8? after step 9? after
step 1 0? What evaluation of the answers would the procedure have output?

d. Answer the same questions in (c), but suppose the input responses had
been:

FALSE
I FORGET
THIS IS A STUPID TEST

e. Redesign steps 9 and 10 so that the test is always scored correctly.
C. Consider the following algorithm for administering and grading a quiz on the

planets.
1. Answer: "What is the planet just beyond the earth?"
2. LET P4 be your answer.
3. Answer: "What is the closest planet to the sun?"
4. LET P1 be your answer.
5. Answer: "What is the farthest planet from the sun?"
6. LET P9 be your answer.
7. Answer: "What is the largest planet?"
8. LET PS be your answer.
9. LET A have the value 100.

10. IF PS is not 'JUPITER'
THEN LET A be 25 less than its former value.

11. IF P9 is not 'PLUTO'
THEN LET A be 25 less than its former value.

12. IF P1 is 'MERCURY'
THEN GO TO step 14.

13. LET A be 25 less than its former value.
14. IF P4 is 'MARS'

THEN GO TO step 16.

35

LOGIC, COMPUTERS, AND ALGORITHMS

15. LET A be 25 less than its former value.
16. OUTPUT "Your grade is:
17. OUTPUT A.
18. STOP.
a. If your answers at steps 2, 4, 6, and 8 were MERCURY, MERCURY, PLUTO,

and JUPITER, respectively, what would your score be?
b. If your answers at steps 2, 4, 6, and 8 were VENUS, SATURN, PLUTO,

and JUPITER, respectively, what would the value of A be after step 1 0?
after step 11 ? after step 13?

D. The refinement of step 2 of the "algorithm" for adding given in the text on page
21 is incomplete: it doesn't tell you when to stop. Revise this step so that someone
following the algorithm will know when to stop.

E. Write a brief algorithm for performing some simple task. Have another student
attempt to follow the algorithm, and report back on whether he or she was able
to follow your algorithm without using any creativity or imagination.

F. Symbolic logic usually deals with expressions that are mixtures of letters ('A',
'B', ...) and other symbols, such as),(, v, and+-. Consider the following tasks
for which an algorithm can be written.

1. A question that sometimes arises is the question of how often a symbol
occurs in a string of symbols. For example, it is easy to see that in the string

ASFAHDA$%123
the letter 'A' occurs three times. Write an algorithm for determining how
often, in an input string, the letter 'A' occurs.

2. Another question that arises about strings (and which we shall later use) is
the question of how many distinct symbols occur in a string. For example,
in the string

ASDF%$121 AD$% 1
there occur eight distinct symbols: A, S, D, F, %, $, 1, and 2. Write an
algorithm for inputting a string and outputting the number of distinct symbols
in that string.

. Consider the following alleged algorithm for buying milk:
1. Go to the supermarket.
2. IF they have milk,

THEN buy some.
3. IF they do not have milk,

THEN (a) Go to another supermarket.
(b) GO TO step 2.

4. Go home.
5. STOP.

Answer the following questions:
a. Draw a flowchart for this "algorithm."
b. What happens if there are an indefinite number of supermarkets, and none

have milk?
c. Revise the algorithm to deal with the contingency in (b).
d. Draw a flowchart for your revised algorithm.

.
CHAPTER·3

SENTENTIAL LOGIC:
The Connectives 'Not',

'And', and 'Or'

One of the most important and basic
branches of logic is the logic of sentences, also called
sentential logic. Sentential logic examines arguments
by looking at parts no finer or more detailed than dec-
larative sentences.

We shall regard a sentence as a linear sequence,
or string, of symbols that expresses a proposition. Two
or more distinct sentences can express the same prop-
osition. Consider the following strings:

The earth is round.
Round is the earth.
Die Erde ist rund.

Each line contains a string of symbols (in this case,
letters, spaces, and periods). The first sentence, for
example, is composed of the sequence of symbols 'T',
'h', 'e\ '' (space), 'e', and so forth.

The three lines above are in fact three distinct strings:
the symbols are arranged in a different order in each
line, and the last line-in German-even lacks a letter
that the other two have. They all, however, express
roughly the same thought or proposition. Some strings
are apparently not sentences: they do not clearly ex-
press propositions in any language we know. Examples
of strings that do not express propositions (and hence
are not sentences) are:

Egl%! Oglrn.%
Glub af noc.

37

38

CHAPTER 3

As an example to work with, consider the proposition that Richard mailed Alison a
book. We would normally express this proposition in English by the sentence:

1. Richard mailed Alison a book.

There are grammatical rules for transforming this sentence into other English sentences
that express the same proposition. For example, the sentence

2. Richard mailed a book to Alison.

expresses the same proposition as sentence (1). Note that (1) and (2) are different
sentences, since they are different strings of symbols.

Negation

Now, it could be false that Richard mailed Alison a book. There are many ways for this
proposition to fail to be true:

It may not have been Richard who mailed a book.
He may not have mailed it yet.
He may not have mailed it but rather delivered it personally.
It may not have been Alison to whom Richard sent a book.
And it may not have been a book that he mailed.

Any combination of these facts would also make the original proposition false. Each of
the examples in this list could be expressed with different phrasing. But since, for the
purposes of sentential logic, we are only interested in the truth or falsity of propositions,
we shall be satisfied with the very general and nonspecific proposition that it is not the
case that Richard mailed Alison a book. This is called the "denial" of the original prop-
osition, and it can be expressed in English by this sentence: It is not the case that Richard
mailed Alison a book.

We see, then, that if we wish to construct a sentence in English expressing a denial
of a proposition, we can simply take a sentence expressing the original proposition and
prefix that particular string of symbols with the string 'It is not the case that'. The resulting
sentence is the negation of the original sentence. ·

To avoid writing sentences over and over again, and to simplify the visual presen-
tation of what we have just discussed, we shall follow our convention from Chapter 1
and use the boldface capital letters 'P', 'Q', 'R', ... ,'Z' to designate any possible strings
that are sentences. So, we can now say that the standard way to form a negation of a
sentence P is to write:

It is not the case that P.

39

'NOT', 'AND', 'OR'

We can simplify matters further by letting the string 'It is not the case that' be replaced
by a single symbol: -. Thus we represent a negation of a sentence Pas:

-P

Some concrete examples are shown in Table 3-1.
Propositions are either true or false. A sentence has the truth value TRUE if the

proposition it expresses is true, and a sentence has the truth value FALSE if the prop-
osition it expresses is false. As we discussed in Chapter 1 , we shall use the capitalized
words TRUE' and 'FALSE' to designate the two possible truth values of sentences. It
is useful to have different, but related, symbols for sentences and for their truth values.
We shall continue our practice of using upper-case letters to indicate sentences and of
using the 'V()' notation to represent the truth value of a sentence. For example:

C = 'The earth is flat.'
V(C) = FALSE

How would we describe, in general, when the negation of a sentence is TRUE?
When, for example, is the following sentence TRUE?

It is not the case that Richard mailed Alison a book.

This answer should come to mind: The negation of a sentence is TRUE just when the
sentence itself is FALSE. In the present case,

It is not the case that Richard mailed Alison a book.

is TRUE just when

Richard mailed Alison a book.

is FALSE. In addition, the negation of a sentence is FALSE just when the original
sentence is TRUE. We see, then, that the truth value of a negation depends just on the
truth value of the original sentence.

TABLE 3-1. Negations of Sentences.

Sentence Colloquial Negation Standard Negation Symbolic Negation

Fido barks. Fido doesn't bark. It is not the case that
Fido barks. -(Fido barks.)

John is singing. John isn't singing. It is not the case that
John is singing. -(John is singing.)

2+2=4 2 + 2 4' 4 It is not the case that
2+2=4 -(2 + 2 = 4)

7 < 10 7 is not less than 10. It is not the case that
7 < 10. -(7 < 10)

40

CHAPTER 3

The Truth Function FNEG

The dependency relationship between a sentence and its negation can be expressed
more precisely and clearly by saying that the truth value of the negation of a sentence
is a "function" of the truth value of the original sentence. A function produces just one
unique output for a given input (or inputs). Negation is called a "truth function" because
it outputs a truth value (the truth value of the negation) from an input that is the truth
value of the original sentence.

As an example of a function, the distance covered by a moving object depends on
its speed and the length of time it has been moving at that speed. We describe this
situation by saying that distance is a function of speed and time. Similarly, the value of
a simple arithmetic sum (m + n) depends on the values of the numbers-called "sum-
mands"-being added.

Mathematicians and scientists have developed a well-known notation for expressing
these dependency, or functional, relationships. We might write, for example,

Distance = FDIS(Speed, Time)

to express that the distance covered by a moving object is a function of both its speed
and the time it has been traveling at that speed. Similarly, we might write

Sum = FSUM(Summand 1, Summand 2)

to express the obvious fact that the value of a sum is a function of both of the numbers
being added.

We have used names for these functions that begin with 'F': FDIS and FSUM. This
helps us to remember when something is a function. The remaining letters distinguish
one function from another, but they should also be chosen to help us remember what
the function is for. In these two cases, FDIS and FSUM seem to be obvious choices for
the distance-covered function and the sum function.

In describing truth functions, such as negation, we shall also follow these conven-
tions. The names of truth functions will begin with 'F', and the letters that follow will be
ones that help us remember what the function is for. We shall let FNEG be the name
of the negation function. So when we write

V(-P) = FNEG(V(P))

we are simply saying that the truth value of a negation, -P, is a function (FNEG) of the
truth value of P.

There are two ways of characterizing functions. First, we can list all the possible
inputs and corresponding outputs of a function. When we do so, we are characterizing
a function extensionally. For example, the following tables partly characterize the func-
tions FDIS and FSUM extensionally:

41

'NOT', 'AND', 'OR'

Inputs
Speed, mi/h Time, h

Output
FDIS (Speed, Time)

10
1 10

20 3
and so on

10
10
60

Inputs Output
m n FSUM (m, n)

0 0 0
0 1

3 2 5
and so on

It is easy to see that this way of characterizing a function is often very clumsy. In the
above two examples, the lists would go on indefinitely before the functions were ever
completely described.

Another way of characterizing a function is intensionally: we give an algorithm for
calculating the output of a function from its inputs. The algorithm gives us a method-
a recipe-for generating the output of a function from its inputs. The algorithm is said
to compute the function when its inputs and outputs agree with those of the function.
(This is not to say that the algorithm is identical to the function.) For example, an algorithm
for FSUM is

1. INPUT m.
2. INPUT n.
3. OUTPUT m + n.
4. STOP.

and an algorithm for FDIS is

1. INPUT speed.
2. INPUT time.
3. OUTPUT speed x time.
4. STOP.

The method of giving an algorithm that computes a function is often easier than listing
all the possible inputs and outputs. In fact, giving an algorithm is often the only way to

aracterize a function completely. A function is characterized when its output is specified
or any of the possible inputs it might take. Naturally, there can be several different
algorithms that compute the same function.

42

CHAPTER 3

Truth Tables and Algorithms for FNEG

We can in fact characterize the truth function FNEG with almost equal ease by making
an input-output listing or by giving an algorithm. This is so because while numerical
variables can take an indefinite number of values-1, 2, 3, ... -truth values can only
be one of two values: TRUE and FALSE.

The complete extensional characterization of the FNEG function is as follows:

Input

V(P)
Output
FNEG(V(P))

FALSE
TRUE

TRUE
FALSE

An extensional characterization of a truth function, like the one above, is a truth table.
In writing truth tables, we shall always list the inputs on the left of the vertical line and
the output on the right (though we shall not always use the labels "Input" and "Output").

We can also characterize the FNEG function by giving an algorithm that produces
the same results displayed by the truth table. Informally, we can say that FNEG "reverses"
the truth value of its input. But this is probably uselessly informal, because the idea of
"reversing" a truth value, while intuitively clear, is not a concept rigorously employed by
people or computers.

We can, moreover, draw a flowchart that presents an algorithm for computing the
FNEG function for some arbitrary truth value of a sentence P taken as input.

START

INPUT V(P)

OUTPUT
"TRUE"

NO OUTPUT
"FALSE"

STOP

YES

Figure 3-1 Flowchart for computing FNEG.

43

'NOT', 'AND', 'OR'

Or we can use an algorithm written in our program design language to characterize the
FNEG function:

1. INPUT V(P).
2. IF V(P) = TRUE

THEN OUTPUT "FALSE."
3. IF V(P) = FALSE

THEN OUTPUT "TRUE."
4. STOP.

Up to this point, we have talked about the truth values of sentences as being either
TRUE or FALSE. If we recall our earlier mention of associating the number 1 with TRUE
and O with FALSE, we can see that a very compact algorithm for characterizing the
FNEG function is possible. We should first note that if we use the numbers O and 1, the
truth table for FNEG is

V(P) FNEG(V(P))

0 1
0

Since we are working with numbers now, if we wish to find an algorithm for FNEG, we
might look for simple arithmetical operations that behave like this.

Here is one simple arithmetical algorithm that does the trick:

1. INPUT V(P).
2. OUTPUT 1 - V(P).
3. STOP.

We can show very simply that this arithmetical operation behaves exactly the way FNEG
is supposed to behave. If V(P) = 1 (that is, if Pis TRUE), then 1 - V(P) = 0. If V(P) = 0
(that is, if P is FALSE), then 1 - V(P) = 1. In other words, the algorithm consisting of
only the simple operation 1 - V(P) does the job of "reversing" the truth values, exactly
as FNEG is supposed to.

Double Negation

We have seen that there is a functional relationship between a negated sentence and
the original sentence: the truth value of the neqatlon depends entirely on the truth value
of the original sentence. That is:

V(~P) = FNEG(V(P))

We might wonder about the relationship between a sentence that is twice negated and
the original sentence. For example, consider this sentence:

It is not the case that it isn't raining.

44

CHAPTER 3

What is the relationship of the truth value of this sentence to the sentence 'It is raining'?
If we let A = 'It is raining', then the symbolization of 'It is not the case that it isn't raining'
is:

~~A

Since the truth value of a singly negated sentence is related to the truth value of the
original sentence by FNEG, a double negation (like '~~A') must be related to the original
by two applications of FNEG. In other words,

V(~~A) = FNEG(FNEG(A))

It so happens that the truth value of '~~A' is the same as the truth value of A. In
sentential logic, in other words, two "negatives" make a "positive." Informally, this is easy
to see, since each application of FNEG reverses the truth value. Two applications of
FNEG would reverse the truth value twice, bringing us back to the original truth value.
We could obviously continue the pattern:

V(~P) = FNEG(V(P))
V(~~P) = FNEG(FNEG(V(P))) = V(P)
V(~~~P) = FNEG(FNEG(FNEG(V(P)))) = V(~P)

and so on.
We can make several observations about this process. First, the output of a truth

function can be the input of another truth function. This possibility allows us to chain
truth functions together, as in FNEG(FNEG(FNEG ...)).

Second, no matter how complex a sentence is, the truth value of that sentence is
a function of the truth values of the sentences that are its "truth-functional parts." Some-
times, this functional relationship is expressed by a single truth function. For example,
the relationship of V(~P) to V(P) is just:

V(~P) = FNEG(V(P))

But other times, the functional relationship might be expressed by more than one use
of a truth function. For example, the relationship of V(~~P) to V(P) is:

V(~~P) = FNEG(FNEG(V(P)))

That is, the truth value of a twice-negated sentence is obtained by applying FNEG twice
to the truth value of the sentence, P. More generally, in expressing the functional re-
lationship of the truth value of a complex sentence to the truth values of its parts, there
will occur one application of a truth function for every occurrence of a sentence "con-
nective." Besides negation, we shall consider two other sentence connectives in this
chapter: conjunction and disjunction.

45

'NOT', 'AND', 'OR'

Atomic and Molecular Sentences

Some sentences seem to be quite simple, sometimes containing only a single word for
the subject and a second word for the verb (for example, 'Fido barks'). But merely
counting the words in a sentence will not always reveal whether the sentence is simple
or more complicated. A clue to one way of dealing with this question can be found by
examining negated sentences. These sentences, for instance:

It is not the case that Q.
-Q

are strings of symbols explicitly containing a simpler sentence within the whole string-
in this case, Q. So, an initial characterization of a simple sentence is that it is a sentence
that does not contain any simpler sentences. Molecular sentences, on the other hand,
contain one or more simpler sentences. In sentential logic, we shall only consider com-
pound sentences that are composed of sentences linked together by truth-functional
connectives.

To represent the simplest sentences, it is convenient to reserve the initial letters of
the alphabet (possibly with numerals):

A, B, C, ... , 0, A1, 81, ... , A2, ...

We call these atomic sentences. Any sentences built up out of atomic sentences by
means of truth-functional connectives will be called molecular sentences.

With the distinction between atomic and molecular sentences in mind, let us begin
to explore the many different ways in which molecular sentences can be formed from
atomic ones or from simpler molecular ones.

Conjunction

We begin with one of the simplest and most common types of molecular sentences.
The sentence

Tom is happy and I'm in love.

is a conjunction of two simpler sentences, each of which is called a conjunct. The first
conjunct is the atomic sentence

Tom is happy.

and the second conjunct is

I'm in love.

46

CHAPTER 3

In this example, both conjuncts happen to be atomic sentences; we shall see later that
this need not be the case.

There are a few other ways in English to construct conjunctions. Instead of using
the word 'and', we might have written:

Tom is happy but I'm in love.

This sentence is also a conjunction. In our standard representation of conjunctions, it
will be represented by 'Tom is happy and I'm in love'. (The two English sentences do
not mean exactly the same thing; the use of 'but' usually indicates that what follows is
somehow the more important or contrasting conjunct. For example, I might say 'Tom is
happy but I'm in love' if I thought that my condition-being in love-was a better or more
important one that Tom's being happy.)

Even a semicolon can be used to construct a conjunction:

Tom is happy; I'm in love.

(English teachers properly complain, by the way, when you use a comma here instead
of a semicolon.) Finally, some other variants of conjunction in English are

While Tom is merely happy, I'm in love.

and

Although Tom is happy, I'm in love.

Just as we used a special symbol for negation, we shall also use a special symbol
for conjunction. We have a great deal of freedom in this choice, although perhaps the
symbol that is used most often is the ampersand, &, which occurs on all typewriters.
Some logicians use a period, others use the symbol /\ and still others use different
symbols for conjunction. For convenience we shall use only &. Our choice of letters for
sentences is also quite free-so long as we assign distinct letters to distinct sentences.

A proper symbolization of our initial example, 'Tom is happy and I'm in love', is:

(A & B)

Here

A= 'Tom is happy.'
B = 'I'm in love.'

and the special symbol & stands for the 'and' that connects them. We shall say that &
is a two-place connective because it connects two sentences to form a new, molecular
sentence.

47

'NOT', 'AND', 'OR'

The Truth Function FCNJ

How would we describe when the truth value of a conjunction is TRUE? When, for
example, is the conjunction

Tom is happy and I'm in love.

TRUE? When is it FALSE? The general answer to this question is:

A conjunction is TRUE just when both conjuncts are TRUE.

In the case at hand, 'Tom is happy and I'm in love' is TRUE just when 'Tom is happy'
is TRUE and 'I'm in love' is also TRUE.

If both conjuncts are TRUE, then the conjunction is TRUE. If even one conjunct is
FALSE, then the conjunction is FALSE. The truth value of a conjunction is a function of
the truth values of its parts (its conjuncts). Since the relationship between the truth value
of a conjunction and the truth values of its parts is again a functional one, we can talk
about this new truth function exactly as we talked about the negation truth function
before.

Let us call this function FCNJ. The truth value of a conjunction of two sentences P
and Q is the result of applying the function FCNJ to the truth values of the conjuncts.
In symbols,

V(P & Q) = FCNJ(V(P), V(Q))

But how does this conjunction function behave? We know that FCNJ(V(P), V(Q)) equals
TRUE if P and Q both have the value TRUE. And it equals FALSE if either P or Q has
the value FALSE, or if both P and Q have the value FALSE. In other words:

FCNJ(FALSE, FALSE) = FALSE
FCNJ(FALSE, TRUE) = FALSE
FCNJ(TRUE, FALSE) = FALSE
FCNJ(TRUE, TRUE) = TRUE

This is a complete extensional characterization of the conjunction function.
We can also display this information in a truth table:

V(P) V(Q) V(P& Q)

FALSE
FALSE
TRUE
TRUE

FALSE
TRUE
FALSE
TRUE

FALSE
FALSE
FALSE
TRUE

48

CHAPTER 3

The conjunction function, FCNJ, can also be computed by an algorithm, such as
the one portrayed by the following flowchart.

START

INPUT V(P)

INPUT V(Q)

YES NO OUTPUT
"FALSE "

OUTPUT
"TRUE"

STOP

Figure 3-2 Flowchart for computing FCNJ.

49

'NOT', 'AND', 'OR'

Many other algorithms also compute FCNJ, for instance:

START

INPUT V(P)

INPUT V(Q)

OUTPUT
"TRUE"

OUTPUT
"FALSE"

STOP

Figure 3-3 Another flowchart for computing FCNJ.

It is also possible to give an algorithm for FCNJ in our program design language:

1. INPUT V(P).
2. INPUT V(Q).
3. IF V(P) = TRUE

THEN IF V(Q) = TRUE
THEN GO TO Step 6.

4. OUTPUT "FALSE."
5. STOP.
6. OUTPUT "TRUE."
7. STOP.

50

CHAPTER 3

Many other correct algorithms for FCNJ can also be written in our program design
language. For example, the following algorithm for FCNJ is also correct (note that it
does not use a GO TO instruction):

1. INPUT V(P).
2. INPUT V(Q).
3. IF V(P) = TRUE

THEN IF V(Q) = TRUE
THEN (a) OUTPUT "TRUE."

(b) STOP.
4. OUTPUT "FALSE."
5. STOP.

Another algorithm is possible if we return to associating 1 with TRUE and 0 with
FALSE. To see this; we first rewrite the extensional characterization of FCNJ, using 1
and 0. We obtain

FCNJ(0, 0) = 0
FCNJ(0, 1) = 0
FCNJ(1, 0) = 0
FCNJ(1, 1) = 1

That is, FCNJ is 1 only when both of its inputs are 1, and it is 0 otherwise. Since we
are working with numbers now, we might ask ourselves which arithmetical functions
behave like this for values of 0 and 1.

There are in fact many simple arithmetical functions that "mimic" FCNJ, given the
values of the conjuncts as inputs. We are going to adopt a particular algorithm that may
not be familiar to you but is easy to follow. We take the value of FCNJ(V(P), V(Q)) to
be the lesser of the values V(P) and V(Q). This is usually written as the minimum function:

MIN(V(P), V(Q))

For example,

MIN(2, 5) = 2
MIN(5, 2) = 2
MIN(5, 5) = 5

So the algorithm is:

1. INPUT V(P).
2. INPUT V(Q).
3. OUTPUT MIN(V(P), V(Q)).
4. STOP.

51

'NOT', 'AND', 'OR'

The relevant inputs for MIN are given below:

MIN(0, 0) = 0
MIN(0, 1) = 0
MIN(1, 0) = 0
MIN(1, 1) = 1

Since the MIN function works exactly the way the FCNJ function should, we can con-
veniently use the MIN function to compute the FCNJ function.

When employing one of these procedures, we would probably want to generalize
the initial steps slightly so that we could (1) determine that the compound sentence we
are evaluating is a conjunction and (2) write a procedure that identifies and then asks
for the truth values of the appropriate atomic sentences. We shall give the full procedure
in a later chapter.

If we are dealing with a conjunction of two atomic sentences, we can refer imme-
diately to a characterization of FCNJ to find the value of the conjunction. But how do
we deal with a conjunction of conjunctions? Or what if some of our sentences are
negations? Take, for instance, a conjunction of the form

((P & Q) & R)

Its two conjuncts are (P & Q) and R. The first of these conjuncts is itself a conjunction,
(P & Q), while the second conjunct appears to be atomic, R. An English sentence with
this logical structure is:

Both Tom and Mary will be coming to the party, as well as Bill.

To evaluate the truth value of such a conjunction, we naturally need to know the truth
values of the two conjuncts: (P & Q) and R. But to determine the truth value of (P & Q),
we must first know the truth values both of P and of Q. So, to find the truth value of
((P & Q) & R), we must first find the truth value of the conjunction (P & Q) and then find
the truth value of the conjunction of that sentence with R. The relationship of the truth
value of ((P & Q) & R) to the truth values of P, Q, and R, as described above, is:

V(P & Q) = FCNJ(V(P), V(Q))

V((P & Q) & R) = FCNJ(V(P & Q) , V(R))
= FCNJ(FCNJ(V(P), V(Q)) , V(R))

Consider another example:

(-P & Q)

An English sentence with this logical structure is 'I'm not a Democrat, but Bill is'. To find
the truth value of this sentence-which is also a conjunction-we first find the truth value
of -P and then find the truth value of the conjunction of that with the truth value of Q
[which is V(Q)]. The result is:

V(-P & Q) = FCNJ(FNEG(V(P)), V(Q))

52

CHAPTER 3

Finally, look at this example:

~(P & Q)

This is the negation of the entire conjunction (P & Q). An English example is 'It is not
the case that Napoleon was both a genius and mad'. To find the truth value of such a
sentence, we first find the truth value of the conjunction and then the truth value of the
negation of that:

V{~{P & Q)) = FNEG(FCNJ(V(P), V(Q)))

The previous two examples should alert us to the importance of parentheses and to the
fact that we shall have to analyze the logical structure of sentences carefully.

Let us state carefully some of the kinds of strings that are sentences, paying more
attention to the use of parentheses. Here, we assume that sentences are not actual
sentences in English but rather their representations by single letters and certain com-
binations of single letters.

Rules

1. A string consisting of one of the single letters {possibly with a numeral),
'A', 'B', ... , 'O', 'A1', 'A2', 'A3', ... is a sentence.

2. If a string P is a sentence,
then its negation, ~P, is a sentence.

3. If strings P and Q are sentences,
then their conjunction, (P & Q), is a sentence.

So far, these are the only sentences we have. Rules 2 and 3 have clear parallels in
English. The English parallel to rule 2 would say that given any sentence (for example,
'All apples are fruit'), its negation ('It is not the case that all apples are fruit') is also a
sentence. The English parallel to rule 3 would say that given any two sentences, we
can form a new conjunctive sentence using them-for instance, by placing the word
'and' between them.

Disjunction

We shall examine another common, two-place sentence connective in this chapter, the
one usually expressed in English by the word 'or'. A sentence composed of two other
sentences connected by 'or' is a disjunction. The two sentences which make up a
disjunction are called its disjuncts. To create a disjunction in English, take any two
sentences and write 'or' between them.

As before, we shall employ a special symbol for this connective. For disjunction,
we shall use a wedge (v). Thus if the sentences

53

'NOT', 'AND', 'OR'

1. Interest rates level off.
2. The price of gold rises.

are represented by 'A' and 'B', respectively, then

(AV 8)

represents 'Interest rates level off or the price of gold rises'.
Disjunctions are FALSE just in those situations where both disjuncts are FALSE.

They are TRUE if even one disjunct is TRUE. Disjunctions are thus relatively more
generous than conjunctions: they are TRUE in comparatively more situations than con-
junctions. To take a concrete example, the sentence 'Interest rates level off or the price
of gold rises' is FALSE only when inflation fails to level off and when the price of gold
does not rise. That is, the disjunction is FALSE only when both disjuncts are FALSE-
and it is TRUE otherwise. Using our notation,

V(A v B) = FALSE only if V(A) = FALSE and V(B) = FALSE

In the cases where V(A) = TRUE or V(B) = TRUE or both, then V(A v B) = TRUE.

The Truth Function FDSJ

Associated with the sentence connective v is another truth function, which we shall call
FDSJ. The function FDSJ takes as inputs the truth values of the two disjuncts and
outputs the truth value of the entire disjunction. Its extensional characterization is:

FDSJ(FALSE, FALSE) = FALSE
FDSJ(FALSE, TRUE) = TRUE
FDSJ(TRUE, FALSE) = TRUE
FDSJ(TRUE, TRUE) = TRUE

Or, displayed as a truth table:

V(P) V(Q) FDSJ(V(P), V(Q))

FALSE
FALSE
TRUE
TRUE

FALSE
TRUE
FALSE
TRUE

FALSE
TRUE
TRUE
TRUE

Again, we can also compute this truth function by giving an algorithm. In flowchart
language, an algorithm that computes FDSJ is:

54

CHAPTER 3

START

INPUT V(P)

INPUT V(O)

NO OUTPUT
"TRUE"

OUTPUT
"FALSE"

STOP

Figure 3-4 Flowchart for computing FDSJ.

In our program design language, an algorithm is:

1. INPUT V(P).
2. INPUT V(Q).
3. IF V(P) = TRUE

THEN (a) OUTPUT "TRUE."
(b) STOP .

. 4. IF V(Q) = TRUE
THEN (a) OUTPUT "TRUE."

(b) STOP.
5. OUTPUT "FALSE."
6. STOP.

55

'NOT', 'AND', 'OR'

be:
Returning to the arithmetical associations, we see that the truth table for FDSJ would

V(P) V(Q) FDSJ(V(P), V(Q))

0
0
1

0
1
0

0

There are several arithmetical functions that would take these inputs and generate
the same outputs as shown in this truth table. We are going to give an algorithm for
computing FDSJ that uses an arithmetical function, the "maximum" function. The max-
imum function selects the larger of the values it operates on. That is,

MAX(2, 5) = 5
MAX(S, 2) = 5
MAX(S, 5) = 5

Thus the algorithm is:

1. INPUT V(P).
2. INPUT V(Q).
3. OUTPUT MAX (V(P), V(Q)).
4. STOP.

Applied to our truth values O and 1, this algorithm does exactly what FDSJ does.

Inclusive and Exclusive Disjunction

Frequently, disjunctions in English have to be rewritten so that their status as disjunctions
of two sentences is revealed. Consider:

Helen or Mary is the winner.

This must be rewritten as

Helen is the winner or Mary is the winner.

so that we can see that it is a disjunction of two sentences.
A sentence such as the one above is frequently, however, understood in the ex-

clusive sense, namely, as asserting that either Mary or Helen is the winner but not both.
Our discussion of disjunctions in this section has addressed only the inclusive sense,
because ii includes the possibility of both disjuncts being TRUE. For instance, our use

56

CHAPTER 3

of disjunction in the sentence above allows for the possibility that both Helen and Mary
have won. In the next chapter, we shall consider a special connective for the exclusive
sense of disjunction.

Sentences with Several Connectives

Now is the time to work a few examples to make sure that we understand how to deal
with sentences that are mixtures of negation, conjunction, and disjunction. Before we
do some examples, though, we need to add another rule to our rules for determining
which strings are sentences:

4. If strings P and Q are sentences,
then their disjunction, (P v Q), is a sentence.

According to this new rule (and also rules 2 and 1 from page 52)

(-Av 8)

is a sentence, because:

'A' and 'B' are both sentences (by rule 1).
So, '-A' is a sentence (by rule 2).
Therefore, '(-Av B)' is a sentence (by rule 4).

Its truth value can be calculated by this expression:

FDSJ(FNEG(V(A)), V(B))

We have obtained this by reasoning as follows: For every sentence connective, there
is a truth function uniquely associated with it. For - it is FNEG, for & it is FCNJ, and
for v it is FDSJ. Working from the "inside" of the original sentence "out," we first find the
truth value of '-A':

V(-A) = FNEG(V(A))

Next, we see that

V(-A v B) = FDSJ(V(-A), V(B))

Substituting our previous result, we get

V(-A v B) = FDSJ(FNEG(V(A)), V(B))

Consider this sentence: ((A v B) & -C). (You should verify that this is indeed a
sentence according to rules 1 to 4.) A step-by-step analysis of this sentence leads to
the expression:

57

'NOT', 'AND', 'OR'

V((A v B) & -C) = FCNJ(FDSJ(V(A), V(B)), FNEG(V(C)))

We arrived at this formula by reasoning as we did in the previous example, associating
the appropriate truth functions with every sentence connective. You should evaluate this
expression for various truth values of A, B, and C.

For instance, when V(A) = TRUE, V(B) = FALSE, and V(C) = TRUE, the value
is FALSE. We arrived at this answer in the following way. When V(A) = TRUE and
V(B) = FALSE, the output of the function FDSJ(V(A), V(B)) is TRUE. So, replacing
'FDSJ(V(A), V(B))' with 'TRUE', we would have

FCNJ(TRUE, FNEG(V(C)))

When V(C) = TRUE, then FNEG(V(C)) is FALSE. So, replacing 'FNEG(V(C))' with 'FALSE',
we have:

FCNJ(TRUE, FALSE)

With these inputs (TRUE and FALSE), the output of the FCNJ function is FALSE. But
when V(A) = TRUE, V(B) = FALSE, and V(C) = FALSE, the truth value of the sentence
is TRUE.

Another example is:

(A & -(B v C))

The truth value of (B v C) is FDSJ(V(B), V(C)). And the truth value of -(B v C) is:

FNEG(FDSJ(V(B), V(C)))

Thus the whole sentence has the truth value

FCNJ(V(A), FNEG(FDSJ(V(B), V(C))))

Other Connectives

The three connectives we have examined are not the only possible ones. There are
many other ways to form new sentences from old ones. Some of these ways use truth-
functional connectives, but others don't. An example of a connective that is not truth-
functional is the one-place connective 'My friend believes that. . .'. This may seem like
a strange connective, but it behaves very much like the truth-functional, one-place con-
nective 'It is not the case that'. To see why 'My friend believes that' is not truth-functional,
consider the sentence A = 'My friend believes that our team will win the game'. Its truth
value is not a function of the truth value of B = 'Our team will win the game', because
V(A) might be TRUE whether V(B) = TRUE or V(B) = FALSE. That is, the truth value
of A does not depend solely on the truth value of 8. More precisely, there is no algorithm
that outputs V(A) when only V(B) is input.

58

CHAPTER 3

However, there are many connectives besides those discussed in this chapter that
can be associated with a truth function. Most important among these new connectives
are 'if ... then .. .' and, especially for computer science, 'NAND' and 'NoR'. Just as with
'not', 'and', and 'or', each of these connectives can be expressed in English by many
different words. We have not sought to make the translation from English into symbolic
notation, or from our symbolic notation back into English, a "mechanical" matter. Perhaps
it would not be possible. Here is one province that seems, for now, best reserved for
nonmechanical processes. (But for an attempt to make it mechanical, see Otto, 1978;
and for a discussion of related research in "computational linguistics"-a branch of
computer science dealing with natural-language understanding-see Winograd, 1983.)

There is a sense, however, in which our discussion of the three connectives intro-
duced in this chapter is complete. Namely, it can be shown that any proposition that
one might wish to express can be expressed by a sentence that uses only negation,
conjunction, and disjunction. In fact, only negation and one of the other two connectives
are sufficient. Further discussion of this fact must await a later chapter, however.

Summary

In this chapter, we began our study of sentential logic. We viewed a sentence as a
string of symbols that expresses a proposition, and we saw how to construct complex
molecular sentences from simpler molecular ones or from atomic sentences by using
three connectives: negation, conjunction, and disjunction.

While there are many ways to negate English sentences, a standard way is by
prefixing the phrase 'It is not the case that' to a sentence. If P is a sentence in our
symbolic notation, then -P is its negation. The truth value of a negation is TRUE (or
FALSE) if the truth value of the nonnegated sentence is FALSE (or TRUE).

A function associates a single output with given inputs. Negation is a truth-functional
connective, and FNEG is the function that outputs TRUE (FALSE) when its input is
FALSE (TRUE). Functions can be characterized extensionally by listing all possible inputs
and corresponding outputs. In the case of a truth function such as FNEG, the inputs
and outputs can be displayed in a truth table. Functions can also be characterized
intensionally by giving an algorithm for computing the output that corresponds to each
set of inputs. In the case of FNEG, we looked at algorithms that use the arithmetical
operation of subtracting the input (0 for FALSE, 1 for TRUE) from 1.

Our standard way of forming a conjunction in English is to connect two sentences
with the word 'and': symbolically, if P and Qare sentences, then (P & Q) is a sentence.
The truth value of a conjunction of two sentences is TRUE if the truth values of both
conjuncts are TRUE, and it is FALSE otherwise. FCNJ is the truth function that outputs
TRUE when both of its inputs are TRUE and outputs FALSE otherwise. We looked at
algorithms for FCNJ that use the arithmetical function MIN.

If P and Q are sentences, then their disjunction is the sentence (P v Q)-in English,
we would use the word 'or'. The truth value of a disjunction of two sentences is TRUE
if at least one of the two disjuncts has the truth value TRUE, and it is FALSE otherwise.
This is the inclusive sense of disjunction, since it allows for the possibility that both
disjuncts are TRUE. The truth function FDSJ outputs FALSE when both of its inputs are

59

'NOT', 'AND', 'OR'

FALSE and outputs TRUE otherwise. Our algorithms for characterizing FDSJ inten-
sionally used the arithmetical function MAX.

Finally, we presented four rules to help us in determining whether a string is a
sentence, and we discussed how to find the truth values of molecular sentences con-
taining more than one connective.

Exercises

A. Using the following abbreviations, think of an English sentence that as clearly
as possible says what each formula expresses.

A = 'It is raining.'
B = The sky is clear.'
C = 'It is snowing.'
D = 'It is cold.'

Example: -(A & B)
Answer: It is not the case both that it is raining and that the sky is clear.

1. -c
2. --D
3. (A & C)
4. (8 v D)
5. (-B & D)
6. (B & -D)
7. -o.» C)
8. -(B & C)
9. (A & (8 v C))

10. (-8 v (C & D))
11. (C & (-D v A))
12. ((A v 8) & (C v D))
13. -(8 v D)
14. (-8 & -D)

B. For each of the formulas 1 to 14 above, state whether the sentence is TRUE
or FALSE, assuming:

V('lt is raining.')
V('The sky is clear.')
V('lt is snowing.')
V('lt is cold.')

= V(A) = TRUE
= V(B) = FALSE
= V(C) = TRUE
= V(D) = FALSE

Example: -(A & B)
Answer: TRUE [The truth value of (A & B) is FALSE because B is FALSE.
So the truth value of -(A & B) is the opposite value, which is to say, TRUE.]

C. Symbolize the sentences below using the following abbreviations:
A = 'Computers think.'
B = 'Computers feel.'

60

CHAPTER 3

C = 'Animals think.'
D = 'Animals feel.'

Example: Computers do not think.
Answer: -A

1. Computers both think and feel.
2. Animals feel but computers don't.
3. Either computers think or animals do.
4. It is not the case that animals don't feel.
5. Either computers both feel and think or animals do.
6. Either animals think, or computers don't think but do feel.
7. Neither animals nor computers think.
8. Either animals feel or computers don't.
9. Computers and animals both think and feel.

10. Either computers think, animals do, or computers feel, or animals do.
11. Neither animals nor computers think or feel.
12. Neither animals nor computers both think and feel.

D. Determine the truth value of each of the above sentences, assuming:
V('Computers think.') = TRUE
V('Computers feel.') = FALSE
V('Animals think.') = FALSE
V('Animals feel.') = TRUE

Example: Computers do not think.
-A

Answer: FALSE, since the truth value of -A is the opposite of the truth value
of A.

E. Sometimes we do not know in advance the truth values of the atomic sentences
in a molecular sentence. We can nevertheless give an algorithm for determining
the truth value of a molecular sentence from inputs consisting of the truth values
of the atomic sentences.
Example: -(A & B)
Answer: Using a flowchart and arithmetical functions, see Figure 3-5.

Using our program design language, but without using arithmetical func-
tions:

1. INPUT V(A).
2. IF V(A) = FALSE

THEN (a) OUTPUT "TRUE."
(b) STOP.

3. INPUT V(B).
4. IF V(B) = FALSE

THEN (a) OUTPUT "TRUE."
(b) STOP.

5. OUTPUT "FALSE.''
6. STOP.

Construct an algorithm for each of the following formulas. (Your instructor will
tell you whether to use flowchart language or program design language.)

61

'NOT', 'AND', 'OR'

START

INPUT V(A)

INPUT V(B)

Let V(C) = MAX (V(A), V(B))

Let V(D) = 1 - V(C)

OUTPUT V(D)

STOP

Figure 3-5 Flowchart for Exercise E.

1. --A
2. (A & -8)
3. (-Av8)
4. ((A & 8) v C)
5. (-A & (8 v C))
6. ((A & -8) v (-C v D))

62

CHAPTER 3

7. ~(Av B)
8. (~AvA)
9. (B & ~B)

F. Given the molecular sentences below, determine the truth functions that would
allow one to Calculate their truth values.
Example: (A v. ~B)
Answer: FDSJ(V(A), FNEG(V(B)))
Explanation: Work from the "inside" out; that is, begin with the innermost subfor-
mula. In this case, the innermost sentence is '~B'. The truth value of '~B' is
given by:

FNEG(V(B))
But '~B' is part of a disjunction, whose truth value is calculated by:

FDSJ(V(A), V(~B))
Since V(~B) = FNEG(V(B)), we have by substitution:

FDSJ(V(A), FNEG(V(B)))
1. ~(Av B)
2. ~(~Av B)
3. (A & B)
4. (~A&B)
5. ~(A & B)
6. ~(~A & ~B)
7. (A & (8 v C))
8. (~B v (C & ~D))
9. (~B & (~C & ~D))

10. ~(A & (~B v C))

G. Given the following truth-value assignments:
V(A) = 1
V(B) = 0
V(C) = 0
V(D) = 1

calculate the output of each of the functions listed below.
Example: MAX(V(A), 1 - (1 - V(B)))
Answer: 1 (that is, TRUE)
Explanation: The value of A is 1. So if we substitute 1 for V(A), the expression
becomes:

MAX(1, 1 - (1 - V(B)))
But since we are looking for the maximum value of this expression, it must be
1-we don't really have to go any further. If we did go further, we would substitute
0 for V(B), and the result would be:

MAX(1, 1 - (1 - 0))
This is:

MAX(1, 1 - 1)
which is nothing but

MAX(1, 0)
and the maximum of 1 and 0 is

1
just as we had earlier concluded.

63

'NOT', 'AND', 'OR'

1, 1 - (1 - V(B))
2. 1 - MAX(V(A), V(B))
3. FCNJ(V(A), V(B))
4. MIN(1 - V(A), V(B))
5. FCNJ(1 - V(B), 1 - V(C))
6. MAX(V(B), 1 - V(D))
7, FCNJ(V(A), FDSJ(V(B), V(C)))
8. MAX(V(B), MAX(V(C), V(D)))
9. FCNJ(1 - FDSJ(V(A), V(B)), V(A))

10, MIN(1 - MAX(V(B), V(C)), MIN(V(A), 1 - (V(D))
11. 1 - FDSJ(1 - V(B), FCNJ(FDSJ(V(B), V(C)), 1 - V(D)})
12. 1 - (1 - (1 - (FCNJ(V(A), V(B))))

H. For each of the expressions in the above problem, determine the sentence that
corresponds to it.
Example: 1 - MIN(V(A), V(B))
Answer: -(A & B)
Explanation: Work from the outside in. A formula beginning with '1 - ' is certain
to be a negation, so we can write a negation sign:

The next function we encounter is
MIN(V(A), V(B))

The sentence that corresponds to this is
(A& B)

So we can add this to our lonely negation sign, obtaining
-(A & B)

I. Negation,
Write an algorithm for computing the truth value of a negation, using a different
arithmetical function from the one given in the text [that is, a function other than
1 - V(P)].

J. Conjunction.
1, Write two algorithms for computing the truth value of a conjunction, using

arithmetical functions other than the one given in the text.
2. Rewrite either of the algorithms for FCNJ given on pages 49-50, with the

first test being V(P) = FALSE.

K. Disjunction.
1. Write an algorithm for computing the truth value of a disjunction, using an

arithmetical function other than the one given in the text.
2, Rewrite the algorithm for FDSJ given on page 54, with the first test being

V(P) = FALSE.

L. We have defined the notions of conjunction and disjunction for only two sen-
tences. Similarly, we have spoken of 'and' and 'or' as connecting just two English
sentences. But we might sometimes wish to speak of a more general truth
function or connective that can take as input two or more truth values or connect
two or more sentences, Consider this sentence:

Thomas Jefferson was an American, a Virginian, and a slaveholder.

64

CHAPTER 3

When is it TRUE? What arithmetical function (other than the one given in the
text) would be suitable for use in an algorithm for computing the truth value of
such a sentence with more than two conjuncts?

M. 1. Construct a sentence using just conjunction and negation that is FALSE in
the single case where A, B, and C are all TRUE.

2. Construct a sentence using only negation and conjunction that is TRUE
whenever just one of A and B is TRUE and that otherwise is FALSE.

3. Construct a sentence using only negation and conjunction that is FALSE
whenever A and B are either both TRUE or both FALSE.

4. Construct a sentence using just conjunction and negation that is TRUE when-
ever exactly two of A, B, and C are FALSE and that is otherwise FALSE.

Suggestions for Computer Implementation

Although the creation of algorithms for computing FNEG, FCNJ, and FDSJ is neither
especially complicated nor, at this point, especially useful, these algorithms will later be
of great importance. Without them, we would not be able to determine the truth value
of an arbitrary molecular sentence.

Depending on the computer and programming language available, there are several
ways to design a program to compute these truth functions. For instance, in Pascal and
in dialects of BASIC in which definitions of functions are permitted to be spread over
several lines (so-called "multistatement function definitions"), matters are at their sim-
plest: FNEG, FCNJ, and FDSJ can be defined almost exactly as indicated by our program
design language algorithms in the text.

If multistatement function definitions are not permitted, then more careful planning
must be employed. Perhaps the simplest way would then be to resort to the arithmetical
association of 1 with TRUE and O with FALSE. This convention will usually allow the
definition of a truth function to be placed on a single line.

Sometimes, the Boolean operations, NOT, AND, and OR can be used directly.
Otherwise, one can resort to the arithmetical functions we mentioned in the text. Let p
and q be the arithmetic truth values of P and Q, respectively. Then:

Let FNEG(p) be 1 - p.
Let FCNJ(p, q) be MIN(p, q).
Let FDSJ (p, q) be MAX(p, q).

The MIN and MAX functions might in turn have to be defined, or we could use other
arithmetical functions that behave in the appropriate manner for FCNJ and FDSJ. For
example, two functions are:

Let FCNJ(p, q) be (p * q).
Let FDSJ (p, q) be (p + q) - (p * q).

(As is usual in computer science, * is the multiplication operator.) This identification of
a conjunction function with multiplication and of a disjunction function with a special kind

65

'NOT', 'AND', 'OR'

of addition was discovered by George Boole iri the 1830s and 1840s and is the heart
of an area of mathematics known as Boolean algebra.

Instead of a definition of functions, some sort of explicit subroutine can be used-
such as GOSUB in BASIC or procedures in Pascal. Whenever we would want to apply
a truth function, we would instead switch control to some other point in the program,
which would then perform the necessary operations and return control to the original
place in the program. For example, in a limited microcomputer BASIC, to calculate the
truth value of a conjunction, (A$ & 8$)-where A$ and 8$ are the conjuncts and A and
8 are their respective truth values-we might have:

100 INPUT A
200 INPUT 8

300 LET P = A
400 LET Q = 8

500 GOSUB 1000

[Inputting and storing truth values of A$ and 8$ in variables
A and BJ

["Passing off" the truth values of A and B to variables P
and Q used in the subroutine]
[Switching control to line 1000 if we encounter a conjunc-
tion]

1000 IF P = 0 THEN GOTO 1400
1100 IF Q = 0 THEN GOTO 1400
1200 LET R = 1 [Value of entire conjunction is TRUE, i.e., 1]
1300 RETURN
1400 LET R = 0 [Value of entire conjunction is FALSE, i.e., OJ
1500 RETURN

The value of the conjunction when the subroutine returns control is stored in the variable
called R. Line 500 would actually be more involved in a real program, because we would
want to know that we had encountered a conjunction, and only then would we apply the
subroutine beginning at 1000. The variables P and Q are necessary if we wish to apply
the subroutine to any two conjuncts-A$ and 8$, C$ and D$, and so on-anywhere in
the program. So the information about the truth values of the two conjuncts-whatever
they were originally called-is temporarily stored in P and Q.

CHAPTER 4

SENTENTIAL LOGIC:
The Connective

'If ... Then ... ' and
Additional Connectives

In the previous chapter, we looked at the
one-place connective 'not' (~) and the two-place con-
nectives 'and' (&) and 'or' (v). We now turn to an ex-
amination of several other two-place connectives:
'if ... then ... ' (-), 'if and only if' (-), exclusive dis-
junction (xos), 'neither ... nor ... ' (NOR), and 'not
both ... and .. .' (NAND). Finally, we shall present a
complete listing of all possible two-place connectives.

These additional connectives are not strictly
speaking required. The two connectives ~ and & are
sufficient to express any sentence in sentential logic.
Yet these additional connectives we are about to dis-
cuss correspond to phrases commonly used in English,
and so the addition of special symbols for these con-
nectives allows us to translate English sentences very
smoothly into symbolized ones. We are, however, faced
with a trade-off when we decide whether to introduce
such additional connectives. When the number of con-
nectives we are using is very small, the resulting ac-
count of logic is compact, elegant, and easy for a com-
puter to "understand"-but it is not always convenient
for us human users, accustomed as we are to thinking
in a natural language like English. On the other hand,
when we introduce a full range of special symbols that
correspond to commonly used English connectives, the
resulting account makes us humans feels very "at

67

68

CHAPTER 4

home"-but the account is then repetitive, certain truth-functionally synonymous expres-
sions are not easy to identify, and the amount of work that is required to program a
computer to understand our notation will have multiplied. We shall in later chapters see
similar decisions that will have to be made and that also involve trade-offs between
human and computer convenience, and even between algorithmic convenience of one
sort and algorithmic convenience of another.

The Conditional

In ordinary conversation, we sometimes wish to qualify our statements by using an "if"
clause. Such qualified statements are called conditionals. Rather than promise you
outright a bag of peanuts, I might say:

If you go to the hockey game with me, then I'll give you a bag of peanuts.

What is important about this example is that the only circumstance under which I have
broken my promise is when you do go to the hockey game with me, but I do not give
you a bag of peanuts. Suppose, on the other hand, that you do not go to the hockey
game with me. In that case, I will not have broken my promise-whether or not I give
you a bag of peanuts anyway-because my promise was a conditional one. Since the
condition (your going to the hockey game with me) was not met, there is no way for me
to break my promise.

Sentences about future events are typically phrased in conditional form:

If the Red Sox win the pennant, then the first play-off game is in Boston.

When would this sentence be FALSE? Clearly, it would be FALSE when the Red Sox
do win the pennant, but (it turns out) the first play-off game is not in Boston. What if the
Red Sox do not win the pennant? Is the conditional TRUE, or is it FALSE, or have we
found a kind of sentence that is neither TRUE nor FALSE?

If the Red Sox do not win the pennant, there are several reasons for taking the
whole conditional sentence to be TRUE. One reason involves making this conditional
analogous to a conditional promise-which, as we have seen, is considered broken only
when the "if" clause is TRUE (and the promised action is not done).

Keeping things tidy, and insisting that all our sentences be TRUE or FALSE de-
pending only on the truth or falsity of their components, we shall stipulate that all sen-
tences of the form

If P, then Q.

will be FALSE whenever both P is TRUE and Q is FALSE. In any other case, the
conditional will be TRUE. A conditional that obeys this stipulation is called a material
conditional. A conditional sentence has two parts that are themselves sentences Oust
like conjunctions and disjunctions, but unlike negations, which have only one component
sentence). The sentence setting the condition, which usually follows immediately after
the word 'if', is called the antecedent of the conditional. The second part of a conditional,
often following the word 'then', is called the consequent of the conditional.

69

ADDITIONAL CONNECTIVES

In logic, we are primarily concerned with those conditionals whose consequents are
declarative sentences, rather than those whose consequents are promised actions,
threats, or commands. In computer science, on the other hand, the most frequently
encountered conditional is one whose consequent is an instruction: If <something is
TRUE>, then do <some action>.

We have already seen a conditional whose consequent is a promise. Other variations
include conditionals with threats or commands as consequents:

If you take my book, I will report you.
If you cannot keep from laughing, leave the room.

So there are at least three other kinds of conditionals besides material conditionals
(which, remember, are composed entirely of declarative sentences): conditional prom-
ises, conditional threats, and conditional commands. An examination of them can help
us see more clearly when material conditional sentences are TRUE or FALSE. Consider
the following claims about promises, threats, and commands:

A conditional promise is broken exactly in those cases when the antecedent is
TRUE, but the action described in the consequent is not done; otherwise, the
promise is not broken.

A conditional threat is not carried out exactly in those cases when the antecedent
is TRUE, but the action described in the consequent is not performed; otherwise,
the threat is still in force.

A conditional command is disobeyed exactly in those cases when the antecedent
is TRUE, but the action described in the consequent is not performed; otherwise,
the command is not disobeyed.

The truth conditions for a material conditional sentence follow this pattern exactly:

A material conditional sentence is FALSE exactly when the antecedent is TRUE,
but the consequent is FALSE; otherwise, the material conditional is not FALSE.

Sentences, however, are either TRUE or FALSE. So, if a material conditional sentence
is not FALSE, then it is TRUE.

Besides the material conditional, there are several other types of conditional sen-
tences in English. Conditional sentences can be used to express causal connections
between two events, as in 'If the temperature of water reaches 100°C, then the water
will boil.' They can also be used to express counterfactual situations: 'If the match had
not been wet, then it would have lit when you struck it.' And they sometimes are used
to express temporal connections: 'If it was 3 P.M. five minutes ago, then it is now 3:05
P.M.' In material conditionals, there is not considered to be any such "connection" between
the antecedent and the consequent. A good example of a "pure" material conditional
might be 'If our team wins, then I'm a monkey's uncle'. From now on, the only conditional
sentences we shall study will be material ones-even if they look like one of the other
kinds.

Perhaps the most important thing to keep in mind when evaluating a conditional is
that one must differentiate between the truth value of the antecedent and the truth value
of the whole conditional. In other words, one must distinguish between sentences such
as

70

CHAPTER 4

Horses have wings.

and

If horses have wings, then they fly.

The first, atomic, sentence is FALSE: horses do not have wings. This is not to say,
however, that the conditional ('If horses have wings, then they fly') is FALSE. The
conditional is TRUE precisely because its antecedent is FALSE. The truth value of a
material conditional depends not on any causal, counterfactual, or temporal "connection"
between its antecedent and its consequent but only on their truth values. Whenever its
antecedent is FALSE, a material conditional is TRUE.

Conditional sentences can be expressed in English in a number of ways. We have
already seen these patterns:

If P, Q.
If P, then Q.

A few other forms for conditionals are:

Q, if P.
Q, provided that P.
When P, Q.

The special symbol we shall use for symbolizing conditional sentences is -- Thus,
if we wanted to symbolize a sentence such as 'If the sunset tonight is especially pretty,
then the weather will be bad tomorrow', where

A = The sunset tonight is especially pretty.'
B = The weather will be bad tomorrow.'

we would write:

(A-B)

In general, for any sentences P and Q,

(P-Q)

is a conditional sentence. (Of course, '(Q - P)' is also a conditional sentence, but a
different one.)

The Truth Function FCND

Corresponding to the sentence connective - is a truth function we shall call FCND.
This function describes the way that the truth value of a conditional depends on the truth
values of its antecedent and consequent. Its extensional characterization is as follows:

FCND(FALSE, FALSE) = TRUE
FCND(FALSE, TRUE) = TRUE
FCND(TRUE, FALSE) = FALSE
FCND(TRUE, TRUE) = TRUE

71

ADDITIONAL CONNECTIVES

The first of the pair of truth values that FCND is applied to is the truth value of the
antecedent, and the second member of the pair is the truth value of the consequent.
Looking at this characterization of FCND, we notice that its output is TRUE if the truth
value of the antecedent is FALSE or if the truth value of the consequent is TRUE (or
both). Put another way, the output of FCND is FALSE if (and only if) the truth value of
the antecedent is TRUE and the truth value of the consequent is FALSE.

As we have done for the other sentence connectives, we present the truth conditions
for a conditional in tabular form:

V(P) V(Q) V (P- Q)

FALSE
FALSE
TRUE
TRUE

FALSE
TRUE
FALSE
TRUE

TRUE
TRUE
FALSE
TRUE

With this information about the behavior of the FCND function, we can construct
algorithms to compute it. A flowchart for computing FCND is:

Figure 4-1 Flowchart for computing FCND.

START

INPUT V(P)

INPUTV(Q)

OUTPUT
"FALSE"

OUTPUT
"TRUE"

STOP

72

CHAPTER 4

An algorithm in our program design language is:

1. INPUT V(P).
2. INPUT V(Q).
3. IF V(P) = FALSE

THEN (a) OUTPUT "TRUE."
(b) STOP.

4. IF V(Q) = TRUE
THEN (a) OUTPUT ''TRUE."

(b) STOP.
5. OUTPUT "FALSE."
6. STOP.

Using our arithmetical associations, we find that one arithmetical expression for
computing FCND is:

MAX(1 - V(P), V(Q))

At this point, you should take the four possible pairs of truth values for P and Q and
compute MAX(1 - V(P), V(Q)) to verify that this expression can indeed be used for
computing FCND(V(P), V(Q)) as the truth table shows.

Symbolizing Conditionals

Working with conditionals requires a little more care than working with conjunctions or
disjunctions. The examples of conditionals that we have examined so far have all had
atomic antecedents and' atomic consequents. But this is not always the case. The
antecedent or the consequent can itself be a molecular sentence. For example, consider:

If yesterday was Tuesday or tomorrow is Thanksgiving, then today is Wednesday.

Here, the antecedent of the conditional is itself a disjunction:

Yesterday was Tuesday or tomorrow is Thanksgiving.

If we had to call attention to this fact in print, we could write something like this:

If (yesterday was Tuesday or tomorrow is Thanksgiving), then today is Wednesday.

We shall similarly clarify this sentence in our notation by using parentheses. If we use
the abbreviations

73

ADDITIONAL CONNECTIVES

A = 'Yesterday was Tuesday.'
B = 'Tomorrow is Thanksgiving.'
C = 'Today is Wednesday.'

then to express the above conditional, we write:

((Av B)- C)

The parentheses are absolutely necessary where they are, as the following remarks
show. If we had written

(Av (B- C))

we would be symbolizing a quite different sentence, namely:

Either yesterday was Tuesday or (if tomorrow is Thanksgiving, then today is
Wednesday).

You should evaluate the truth values of

((Av B)- C)

and

(Av (B- C))

for various truth values of A, B, and C to see that these different sentences sometimes
have different truth values. You may use any method of evaluation you wish: truth tables
with TRUE and FALSE, truth tables with O and 1, or any of the algorithms.

Deciding where the parentheses are to be placed in a symbolization of an English
sentence containing 'if ... then .. .' is a delicate and sometimes difficult matter. We can
give only some general hints here. If the sentence begins with 'If' and what follows a
'then' (or a comma) is said naturally in one breath, then-assuming that our sentence
has the pattern

If P, then Q.

-its correct symbolization is probably

(P-Q)

Here are some examples:

Sentence:
If gold is valuable and portable, then it should be hidden or securely stored.

Symbolization:
((A & B) - (C v D))

74

CHAPTER 4

Sentence:
If a nation's enemies have the means, then if they have the will to use those
means, they may disrupt the balance of power.

Symbolization:
(E - (F - G))

However, when the sentence does not begin with 'If' or when the consequent-
what follows the 'then'-is broken by a comma, or a natural pause, the conditional might
actually be buried within another sentence. Here are some examples:

Sentence:
It's just not true that if I take a shortcut by walking through the grass, then everyone
will do so.

Symbolization:
-(H- J)

Sentence:
If we pay our taxes, then we shall have less to spend, but if we don't pay our
taxes, then we shall live in fear.

Symbolization:
((A- 8) & (-A- C))

Only if

Another way to express a conditional uses the phrase 'only if'. The sentence

1. Combustion occurs only if oxygen is present.

is also a conditional sentence. But what is the antecedent? And what is the consequent?
There are two possible candidates for this conditional sentence:

2. Combustion occurs - oxygen is present.
3. Oxygen is present - combustion occurs.

With some thought, you should realize that the first representation is correct. So, the
sentence following 'only if' is the consequent of (1). As a general rule, one should directly
replace 'only if' with - in symbolizing English sentences.

Another example is:

I'll take the test only if my brother feels better.

When someone who has said this comes for the test, I know that her brother feels better,
because if her brother had not felt better, then she would not have taken the test.

75

ADDITIONAL CONNECTIVES

· Necessary and Sufficient Conditions

Another way to say that combustion occurs only if oxygen is present is to say:

The presence of oxygen is a necessary condition for combustion to occur.

That is, if combustion occurs, then oxygen is present, for if oxygen is not present, then
combustion does not occur. Thus P is a necessary condition for Q when the absence
of P guarantees the absence of Q. (Notice that 'the presence of oxygen' is not a sentence.
However, such phrases can easily be converted into sentences, and vice versa. So, for
convenience, we shall use the same notation for both.)

A correlative notion is that of a "sufficient condition": P is a sufficient condition for
Q when the presence of P guarantees the presence of Q. When P is a sufficient condition
for Q, we write 'If P, then Q'. For example,

Cessation of blood flow for an hour is a sufficient condition for death in a human
being.

can be translated into:

If a person's blood ceases to flow for an hour, then he or she will die.

When Pis a necessary condition for Q, we write 'If Q, then P'. For example,

Breathing is a necessary condition for being alive.

can be translated into:

If something is alive, then it is breathing.

Notice that

P is a sufficient condition for Q.

means the same as

Q is a necessary condition for P.

and that both of these are written in the form

If P, then Q.

76

CHAPTER 4

The Biconditional

It sometimes happens that P is both a necessary and sufficient condition for Q. In this
case, we would say:

If Q then P, and if P then Q.

This is the same as:

If P then Q, and if Q then P.

This expression could be symbolized as:

((P- Q) & (Q- P))

and is frequently read as:

P if and only if Q

Now, in principle, we have nothing new here. We can symbolize the "if and only if"
sentence as we did here, using & and-, and by careful use of FCND and FCNJ, we
can evaluate the truth value of any such sentence. But because the expression 'if and
only if' occurs so often in logical studies, we shall call it the biconditional connective
and use a special symbol for it, namely, the double-headed arrowr-». So, 'P if and only
if Q' will be written like this:

(P-Q)

There are other ways to express the biconditional in English. One common way
that often appears in logical and mathematical writings is to abbreviate 'if and only if'
with 'ift', Other phrases that are sometimes used are 'just when', 'just in the case that',
and 'exactly when'. You should also pay special attention when you read a sentence of
the form 'P, if Q' or 'P only if Q', because the author often means 'P if and only if Q',
even though that is not what he or she wrote. (And when an author does write a sentence
of the form 'P if and only if Q', make sure that both 'If P, then Q' and 'If Q, then P' are
meant!)

When '(P - Q)' is understood as '((P- Q) & (Q - P))', one algorithm for computing
its truth value might be:

1. INPUT V(P).
2. INPUT V(Q).
3. Let V1 = FCND (V(P), V(Q)).

(That is, V1 = V(P - Q).)
4. Let V2 = FCND(V(Q), V(P)).

(That is, V2 = V(Q - P).)
5. OUTPUT FCNJ(V1, V2).
6. STOP.

77

ADDITIONAL CONNECTIVES

If we follow this algorithm, we can produce the following extensional characterization of
the truth function, which we shall call FBIC:

FBIC(FALSE, FALSE) = TRUE
FBIC(FALSE, TRUE) = FALSE
FBIC(TRUE, FALSE) = FALSE
FBIC(TRUE, TRUE) = TRUE

If we now examine just how the truth value of '(P ~ Q)' is determined by the truth
values of P and of Q, we see that V(P ~ Q) = TRUE if and only if V(P) = V(Q). That
is, if V(P) = V(Q), then V(P ~ Q) = TRUE, and if V(P) icV(Q), then V(P ~ Q) = FALSE.
We can use this fact, and the trivial arithmetical observation that subtracting a number
from itself leaves a remainder of zero, to construct an arithmetical algorithm for computing
FBIC.

To do this, we shall use the absolute-value function, ABS, which can be defined as
follows:

ABS(n) = n, if n ;;a, 0
ABS(n) = -n, if n < 0

For example, ABS(5) = 5, ABS(0) = 0, and ABS(- 5) = 5. ABS will provide the infor-
mation we need aboutwhetherV(P) = V(Q), since-using 1 for TRUE and 0forFALSE-
V(P) ic V(Q) iff ABS(V(P) - V(Q)) = 1 and V(P) = (VQ) iff ABS(V(P) - V(Q) = 0. But
since V(P ~ Q) = 1 iff V(P) = V(Q) and V(P ~ Q) = 0 iff V(P) ic V(Q), we need to
"reverse" the output of ABS. Here, then, is the algorithm for computing FBIC:

1. INPUT V(P).
2. INPUT V(Q).
3. OUTPUT 1 - ABS (V(P) - V(Q)).
4. STOP.

Exclusive Disjunction

In Chapter 3, we said that disjunction could be understood in two senses: an inclusive
sense and an exclusive sense. You should recall that the truth value of a sentence that
is an inclusive disjunction can be calculated by means of the truth function FDSJ. In
truth-table form, this was:

V(P) V(Q) V(PvQ)

FALSE
FALSE
TRUE
TRUE

FALSE
TRUE
FALSE
TRUE

FALSE
TRUE
TRUE
TRUE

78

CHAPTER 4

This sense of disjunction is said to be "inclusive" because it includes the possibility that
both disjuncts are TRUE. For instance, suppose you are asked how you are doing in
school and you reply by saying "I'll pass French or math." No one would accuse you of
being incorrect if in fact you passed both French and math. It's certainly possible to pass
both courses, and if you think you'll pass at least one of them, then your use of the word
'or' in 'I'll pass French or math' is in the inclusive sense.

Often, however, we want to exclude the possibility of both disjuncts being TRUE.
Sometimes this possibility is excluded automatically: if you ask someone what today's
date is and the reply is "It's either the 21st or the 22d," you know it can't be both. This
is an example of an exclusive disjunction.

At other times, however, it's not clear whether an English disjunction is exclusive
or inclusive. For instance, if a college adviser says that you can major in the sciences
or the humanities, this might mean that you must choose which one area to major in.
But it might mean that you can have a double major. In the first case, the adviser's offer
was an exclusive disjunction; in the second case, the offer was an inclusive disjunction.
Given only the information in this example, there is no way to know which kind of
disjunction is involved. In a real situation, if it is not immediately obvious which is meant,
you will need more information to decide. Sometimes the phrase 'and/or' is used as the
connective in English to specify the inclusive sense. Similarly, the phrase 'but not both'
is often added to specify the exclusive sense. In other cases, the best strategy is to
assume that the inclusive sense is intended, unless you have evidence to the contrary.

There are several symbols that can be used to represent exclusive disjunction; we
shall simply use the three-letter abbreviation xon. Thus

(P XOR Q)

will be our way of symbolizing a sentence of the form

P or Q, but not both.

When we connect two sentences by an exclusive disjunction, we mean that at least one
of them is TRUE and at most one of them is TRUE. We shall use the truth function
FXOR for exclusive disjunction:

V(P XOR Q) = FXOR (V(P), V(Q))

This function can be extensionally characterized as follows:

FXOR(FALSE, FALSE) = FALSE
FXOR(FALSE, TRUE) = TRUE
FXOR(TRUE, FALSE) = TRUE
FXOR(TRUE, TRUE) = FALSE

To make sure you understand this, consider the sentence

Today is the 22d or the 23d.

79

ADDITIONAL CONNECTIVES

If we let

A = Today is the 22d.' B = Today is the 23d.'

then our sentence can be symbolized as

(A XOR B)

Suppose both A and B are FALSE. Then surely '(A xos B)' must be FALSE. But if A is
TRUE, then B can't be TRUE, so '(A XOR B)' is TRUE. Similarly, when B is TRUE and
A isn't, then '(A XOR B)' is TRUE. In the case of this sentence, it really doesn't make
much sense to suppose that both A and B are TRUE, but you should note that if they
were, somehow, both TRUE, then '(A XOR B)' would indeed be FALSE! A more plausible
example to illustrate the fourth possibility is this: Suppose your logic professor says at
the beginning of the semester that you will have a final exam or a midterm, but not both.
If you are then given both tests, your professor was not truthful.

An algorithm for computing FXOR can be written using the arithmetical function
ABS, which we also used in, the algorithm for FBIC. Once again, we can use the fact
that V(P) = V(Q) if ABS(V(P) - V(Q)) = 0:

1. INPUT V(P).
2. INPUT V(Q).
3. OUTPUT ABS (V(P) - V(Q)).
4. STOP.

XOR can be expressed in terms of conjunction and inclusive disjunction, as follows:

(P XOR Q)

just means:

1. P or Q but not both.

Remembering that 'but' is represented logically as conjunction, and noting that 'both' is
short for 'both P and Q', we can symbolize (1) as

((P v Q) & (P & Q))

Unless

In ordinary English, we often express propositions with sentences containing the con-
nective 'unless'. As we shall see in this section, 'unless' is not really a "new" connective,
since it can be expressed in terms of the connectives that we are already familiar with.

80

CHAPTER 4

Consider the sentence

1. I'll take the test, unless my sister is sick.

Sentence (1) means that if my sister is not sick, then I will take the test. Letting

A = 'I'll take the test.'
B = 'My sister is sick.'

we can symbolize (1) as

2. (-8----+ A)

You should also notice that we could have paraphrased (1) as meaning that if I do not
take the test, then my sister is sick, which would be symbolized as

3. (-A-+ B)

Fortunately, these two symbolizations can be shown to be TRUE in exactly the same
situations and FALSE in exactly the same situations; so, both (2) and (3) are proper
ways to symbolize (1).

You may be wondering why we didn't symbolize (1) as

4. (8----+ -A)

that is, if my sister is sick, then I will not take the test. But very often a person who uses
a sentence such as (1) is simply expressing what he or she will do if the sister is not
sick, leaving open the options of what to do if the sister is sick. After all, one might take
the test anyway.

Let us call the interpretation of (1) in which we symbolize it as (2) the ''weak"
interpretation. An "unless" sentence always means at least the weak interpretation. In
some contexts, it also means (4). We call the interpretation in which (1) means both (2)
and (4) the "strong" interpretation. Deciding which interpretation is meant is a matter of
context, just as with dedding whether the English word 'or' should be symbolized by v
or by XOR. In fact, the parallel is exact, as we'll shortly see.

For another example, consider

5. We'll eat dinner at 8, unless we go to a movie.

Letting

E = 'We'll eat dinner at 8.'
F = 'We'll go to a movie.'

the weak interpretation of (5) is

6. (-F----+ E)

81

ADDITIONAL CONNECTIVES

But suppose the context in which (5) was used made it clear that what was meant was:

7. We'll eat dinner at 8, unless we go to a movie, in which case, we'll eat dinner
at 6.

The reasonable assumption is that if we eat dinner at 6, then we do not eat dinner at
8. Thus (5) in this context is to be understood as meaning that if we don't go to a movie,
then we'll eat dinner at 8, but if we do go to a movie, then we won't eat dinner at 8. In
other words, we'll eat dinner at 8 iff we don't go to a movi~which is the strong inter-
pretation:

8. (E ~ -F)

Simple calculations with truth tables reveal that on the weak interpretation, (5) could
also be expressed by the inclusive disjunction

9. (Ev F)

and on the strong interpretation, it could be expressed by the exclusive disjunction

10. (EXOR F)

NOR

Yet another common connective in English is expressed by the word 'nor', as in the
sentence

1. Neither Ann nor Bob was at the party.

This simply means that Ann was not at the party and Bob was not at the party. Suppose
that someone asks whether Ann or Bob was at the party. If (1) is true, then the answer
is no: in other words, (1) is the negation of

Ann or Bob was at the party.

Thus a "neither ... nor ... " sentence is the negation of a disjunctive sentence. For this
reason, one common symbol for 'nor' is the disjunction sign with a bar through it, often
called a "dagger": J . But for convenience we shall just use the three-letter symbol NOR.
Using obvious abbreviations, we can symbolize (1) as follows:

(A NOR B)

We can easily see that the truth value of a NOR sentence is calculated by the function
FNOR, extensionally characterized as follows:

82

CHAPTER 4

FNOR(FALSE, FALSE) = TRUE
FNOR(FALSE, TRUE) = FALSE
FNOR(TRUE, FALSE) = FALSE
FNOR(TRUE, TRUE) = FALSE

You should notice that V(P NOR Q) = V(-(P V Q)).

NANO

If NOR is the negation of an (inclusive) disjunction, then it seems reasonable to consider
what the negation of a conjunction is. Unfortunately, there is no ordinary English word
for this, but computer scientists have coined the word 'nand'. Thus

(P NAND Q)

means:

-(P & Q)

There is also a common logical symbol for this, the stroke: 1- But we shall use the four-
letter symbol NAND both because it is more common in computer use and because the
stroke has another meaning in some programming-language contexts-confusingly, it
stands for disjunction! Because of the possibility of expressing NAND in terms of - and
&, we shall leave the development of the truth function FNAND, together with its exten-
sional characterization and appropriate algorithms, to the exercises (specifically, Exercise
Fon page 86).

The Two-Place Truth-Functional Connectives

We should now add the following to our rules for sentences:

5. If strings P and Q are sentences,
then the conditional, (P- Q), is a sentence.

6. If strings P and Q are sentences,
then the biconditional, (P ~ Q), is a sentence.

7. If strings P and Qare sentences,
then their exclusive disjunction, (P xoa Q), is a sentence.

8. If strings P and Q are sentences,
then (P NOR Q) is a sentence.

9. If strings P and Q are sentences,
then (P NAND Q) is a sentence.

83

ADDITIONAL CONNECTIVES

We have looked at seven two-place truth-functional connectives so far (not including
'unless'):&, v, ~. ~, xoa, NOR, and NAND. Two reasonable questions to ask at this stage
are: How many such connectives are there? Are they related to each other in any
interesting ways?

The best way to answer these questions is by finding a systematic way of listing
all the connectives. To see how to do this, consider what any two-place truth function
must be like: It must have as an output either O or 1 (that is, FALSE or TRUE) for all
possible pairs of truth values as inputs. Since there are only four such pairs (namely
00, 01, 10, 11), we can list all possible outputs as shown in Table 4-1.

We have only discussed the seven functions to which we gave names beginning
with 'F', but each of the sixteen functions whose extensional characterizations are given
in the table can be dealt with in a similar fashion. That is, there are algorithms for
computing them, arithmetical functions that can be used in such algorithms, and ways
of expressing them in English (although some ingenuity may be needed to do this!).

Summary

In this chapter, we finished our introduction to the two-place truth-functional connectives.
We looked at extensional characterizations of the corresponding truth functions, and we
presented algorithms for computing each of them.

We discussed conditionals, paying special attention to material conditional sen-
tences-'lf P, then Q'-and the different ways they can be expressed in English, including
the language of necessary and sufficient conditions. We then turned to the biconditional
('P if and only if Q'), exclusive disjunction, xoa ('P or Q, but not both'), and the two
connectives NOR and NAND. We also looked at the connective 'unless'. Finally, we gave
a complete list of all sixteen two-place truth functions.

Exercises

A. Symbolize the following sentences using the indicated symbolic abbreviations:
A = 'Arthur is innocent.' B = 'Barbara is innocent.'
C = 'Charles is innocent.' D = 'Charles tells the truth.'

1. If Arthur is innocent, then so is Barbara.
2. Charles is innocent only if Arthur is too.
3. If neither Arthur nor Barbara is innocent, then Charles is innocent.
4. Only if Charles tells the truth is Arthur innocent.
5. Unless Charles tells the truth, Barbara is not innocent.
6. Arthur is innocent, unless Charles does not tell the truth.
7. Barbara is innocent in case Charles tells the truth.
8. If Barbara and Charles are innocent, then Arthur isn't.
9. If, but only if, Charles tells the truth, then Arthur is innocent.

00

.I>
,

TA
B

LE
 4

-1
.

Th
e

Tw
o-

Pl
ac

e
Tr

ut
h

Fu
nc

tio
ns

IN
P

U
T

S

V(
P)

V(

Q
)

V(
P)

V(

Q
)

V(
P)

V(

Q
)

V(
P)

V(

Q
)

0
0

0
1

1
0

1
1

N
am

e
Fu

nc
tio

n
Sy

m
bo

l
En

gl
is

h
ex

pr
es

si
on

N

o.

O
U

T
P

U
T

S

0
0

0
0

0
(n

on
e)

(n

on
e)

(n

on
e)

(n

on
e)

0

0
0

1
Co

nj
un

ct
io

n
FC

N
J

&
P

an
d

Q

2
0

0
1

0
M

at
er

ia
l

(n
on

e)

~

P
bu

t
no

t Q

No
n-

C
on

di
tio

na
l*

3
0

0
1

1
(n

on
e)

(n

on
e)

(n

on
e)

(n

on
e)

4

0
1

0
0

C
on

ve
rs

e
(n

on
e)

~

Q

 b
ut

 n
ot

 P

No
n-

C
on

di
tio

na
l*

5
0

1
0

1
(n

on
e)

(n

on
e)

(n

on
e)

(n

on
e)

6

0
1

1
0

Ex
cl

us
iv

e
FX

O
R

XO

R
P

or
 Q

, b
ut

 n
ot

 b
ot

h
Di

sj
un

ct
io

n
7

0
1

1
1

(In
cl

us
iv

e)

FD
SJ

V

P
o
rQ

Di

sj
un

ct
io

n
8

1
0

0
0

No
r

FN
O

R

NO
R

Ne
ith

er
 P

 n
or

 Q

9
1

0
0

1
Bi

co
nd

iti
on

al

FB
IC

-

P
if

an
d

on
ly

 if
 Q

10

1

0
1

0
(n

on
e)

(n

on
e)

(n

on
e)

(n

on
e)

11

1

0
1

1
C

on
ve

rs
e

(n
on

e)

<
-

p
if

Q

C
on

di
tio

na
l*

12

1
1

0
0

(n
on

e)

(n
on

e)

(n
on

e)

(n
on

e)

13

1
1

0
1

M
at

er
ia

l
FC

N
D

-

If
P,

 t
he

n
Q

C

on
di

tio
na

l
14

1

1
1

0
Na

nd

FN
A

N
D

NA
NO

No

t b
ot

h
P

an
d

Q

15

1
1

1
1

(n
on

e)

(n
on

e)

(n
on

e)

(n
on

e)

*N
am

es
 s

ug
ge

st
ed

 in
 C

hu
rc

h
(1

95
6)

85

ADDITIONAL CONNECTIVES

10. Barbara is innocent if and only if Arthur is innocent and Charles tells the
truth.

11. Charles is innocent if either Barbara or Arthur is.
12. Charles tells the truth when, and only when, he is innocent.
13. Charles tells the truth and is innocent if and only if Arthur is not innocent.
14. Whenever Charles tells the truth, he is innocent.
15. If Charles tells the truth, then Arthur and Barbara are innocent.
16. Arthur is innocent if and only if it is not the case that both Barbara and

Charles are innocent.
B. Symbolize the following sentences, using your own abbreviations for the atomic

sentences.
1. If you want to get a good grade, you will be successful if you study hard.
2. If you want to get a good grade, and if you study hard, you will be successful.
3. If you want to get a good grade, you will be successful only if you study

hard.
4. Unless you have a credit card, you can rent the car if and only if you leave

a deposit of $100.
5. You are not responsible for damages unless, of course, the accident is your

fault, in which case, the company will pay if and only if you pay the first
$100.

6. You cannot beat the stock market if you are not lucky, unless you have
inside information.

C. Calculate the truth value of each of the following sentences, using the given
truth values of the atomic sentences:

V(A) = TRUE
V(B) = TRUE
V(C) = FALSE
V(D) = FALSE

1. (A - (B v C))
2. (B - (A & D))
3. ((Av C)- D)
4. ((C v D) - (Av C))
5. (A- (B- -C))
6. ((C & D) - -A)
7. (B - -(Av C))
8. (A- (D- -(B & C)))
9. ((8 - (Av C)) - (D & B))

10. ((B & D) - (C v (A & 8)))
11. (A - (B v C))
12. (C - (A- D))
13. (8 - (C NORD))
14. (C - -(ANAND D))
15. (-(A & C) - (ANAND C))
16. ((Cv(A-D))-(A-C))

86

CHAPTER 4

17. (-A~(ANORA))
18. ((8 NANO 8) - (8 NOR 8))
19. ((C NOR C) ~ (C NANO C))
20. ((A NANO A)~ (-Av C))
21. ((A XOR 8) XOR C)
22. ((A XOR C) XOR D)
23. ((D XOR A) NANO C)
24. (C NOR (A XOR 8))
25. -(A XOR 8)
26. (-A XOR -8)
27. (-A XOR 8)
28. (A XOR -8)
29. ((A XOR 8) & C)
30. (A XOR (8 & C))
31. ((A XOR 8) & -(A XOR 8))
32. ((-A XOR 8) & (-8 XOR A))

D. Exclusive Disjunction
1. Consider the following sentence:

"If a college adviser says that you can major in the sciences or the human-
ities, this might mean that you must choose which one area to major in, or
it might mean that you can have a double major."
Is the italicized occurrence of the word 'or' in this sentence inclusive or
exclusive? Why?

2. Write an algorithm for computing FXOR in terms of MAX and MIN.
3. Write an algorithm for computing FXOR using F8IC.
4. Write an algorithm for computing FBIC using FXOR.
5. Use the fact that '(P xos Q)' can be expressed as '((P v Q) & -(P & Q))' to

write an algorithm for computing FXOR.

E. NOR
1. Write an algorithm for computing FNOR in terms of FDSJ.
2. Write algorithms to evaluate (P NOR Q) and -(P v Q) showing that the out-

puts are identical for given inputs.
F. NANO

1. Give an extensional characterization of a truth function FNAND for the
connective NANO.

2. Write an algorithm for FNAND using an appropriate arithmetical function.
3. Show how xos can be expressed in terms of - , &, and NANO.

[Hint: '(P NANO Q)' is TRUE if at most one of P, Q is TRUE.]
4. Write an algorithm for computing FXOR in terms of the arithmetical functions

for - ' &, and NANO.

G. Find appropriate English sample sentences using connectives O, 3, 5, 10, 12,
and 15 in Table 4-1.

The Logic of the Ternary Sentential Connective “If-Then-Else”
William J. Rapaport

Department of Computer Science & Engineering and Center for Cognitive Science
State University of New York at Buffalo, Buffalo, NY 14260

rapaport@cse.buffalo.edu
http://www.cse.buffalo.edu/ rapaport/

2 July 1997

Abstract

This document was originally intended to be a section of Schagrin, Morton L.; Rapaport, William J.; & Dipert,
Randall R. (1985), Logic: A Computer Approach (New York: McGraw-Hill).

This document discusses the ternary (i.e., 3-place) if-then-else sentential connective, which is based on the if-then-else
instruction of computer programming languages.

Before we begin, however, we should look closely at an important difference between the use of if-then
(and of if-then-else) in programming languages and its use in sentential (i.e., propositional) logic. In most logic texts
(e.g., Shagrin et al. 1985) that are about the logic of declarative sentences—i.e., sentences, expressing propositions,
that can be either true or false—the antecedent and consequent of a conditional sentence are themselves declarative
sentences. But in an “imperative” programming language such as Basic or Pascal, an if-then statement is really a
conditional instruction or command whose antecedent is a delcarative sentence but whose consequent is an instruction
or command, i.e., an imperative sentence. Thus, whereas in sentential logic we are interested in conditional sentences
such as:

If Ann goes to the party, then Bob will go to the party

in many programming languages, we would be interested in conditional instructions such as:

IF a < b THEN print "yes"

Instructions, or commands, are neither true nor false. (It is possible to devise analogies to truth and falsity for
commands, but we won’t do that here. If you are interested, see Rescher 1966, Castañeda 1975.)

The if-then-else command is similar to the if-then command. In general, it has the form:

IF P, THEN X ELSE Y

where the antecedent, P, is some sentence that is either true or false (in the exclusive sense of “or”!) and where the
“then-consequent” (X) and the “else-consequent” (Y) are instructions. The meaning of the if-then-else command is
this:

If P is true, then do X, but if P is false, then do Y.

What we shall do here is study the logic of the if-then-else conditional sentence, where both consequents (as
well as the antecedent) are sentences that are either true or false, e.g.:

If Ann goes to the party, then Bob will, else Cal will.

(Actually, such a sentence would more likely be expressed in ordinary English using the word ‘otherwise’ rather than
‘else’.)

How would we decide whether such a sentence is true? We can compute its truth values by realizing that

1

if P then Q else R

is really a conjunction of two conditionals:

P Q P R

So we can construct the following truth table:1

V(P) V(Q) V(R) V(P) V(P Q) V(P R) V(if P then Q else R)
0 0 0 1 1 0 0
0 0 1 1 1 1 1
0 1 0 1 1 0 0
0 1 1 1 1 1 1
1 0 0 0 0 1 0
1 0 1 0 0 1 0
1 1 0 0 1 1 1
1 1 1 0 1 1 1

To see if this is a reasonable interpretation, we can try to find a sentence that expresses the result of performing
a conditional command. The command:

IF P THEN X

seems to correspond to the sentence

if P, then X will be done.

Similarly, the command:

IF P THEN X ELSE Y

seems to correspond to the sentence:

if P, then X will be done, else Y will be done.

The action is indicated by ‘X’, but ‘X will be done’ is a sentence. So we let:

Q = “X will be done”
R = “Y will be done”

where ‘Q’ and ‘R’ are sentences. Now, if you study our truth table carefully, you will see that it can be understood as
saying the following:

if P is true, then at least Q (i.e., Q and possibly R)
else at least R (i.e., R and possibly Q)

You may or may not find this a plausible interpretation of the corresponding command:

IF P THEN X ELSE Y

which suggests to some people that if P is true, then Y will definitely not be done (as a result of this command), and,
further, if P is false, then X will not be done (as a result of this command).

Of course, there is nothing wrong with the following program:

IF P THEN BEGIN X;Y END
ELSE BEGIN Y;X END

1The notation ‘V(P)’ means: “the truth value of P”; ‘0’ represents the truth value false; ‘1’ represents the truth value true.

2

But this appears to be a redundant set of instructions: If both X and Y are going to be done anyway, why bother
testing if P is true? Well, one reason is that the programming-language “control structure” known as sequencing is not
commutative: The sequence X;Y does not necessarily compute the same function as the sequence Y;X, since the first
instruction might change the environment in such a way that the second instruction would not be using the same input
as it would in the other case.

Thus, in both cases, it seems more reasonable to use the if-then-else command when you want to perform X
or Y but not both (i.e., in the exclusive sense of “or”).

This suggests the following, “stronger” interpretation of the sentential connective if-then-else:

if P then Q else R (in the “strong” sense)

means:

if P, then Q but not R, and if not P, then R but not Q.

Note.
After this document was written, I learned of the following reference that deals with the logic of if-then-else: Manna
& Waldinger 1985: 12–13.

3

Exercises.
1. Symbolize “if P then Q else R” in the strong sense using , , and .

2. Construct a truth table (using 0 and 1) for the strong sense of if-then-else. (If you do this correctly, you will see
that V(if P then Q else R) = 1 in only two situations: when either V(P) = V(Q) = 0 and V(R) = 1, or when V(P)
= V(Q) = 1 and V(R) = 0.)

3. (a) Construct an arithmetical truth-function for the weak sense of if-then-else (i.e., a function that
arithmetically computes the truth value of an if-then-else sentence; see Schagrin et al. 1985 for more
discussion of arithmetical truth functions).2

(b) Construct an arithmetical truth-function for the strong sense of if-then-else.

4. (a) Construct a flowchart for computing the truth value of if-then-else in the weak sense.
(b) Construct a flowchart for computing the truth value of if-then-else in the strong sense.

5. In programming languages, the sequence of instructions:

IF P THEN X;
Y

means:

if P is true, then do X and then do Y, else do Y but not X.

What would a “weak” interpretation of ‘if-then’ be? What would a “strong” interpretation of ‘if-then’ be?

6. (a) Using the weak sense of if-then-else, determine the truth values of the following sentences with the
indicated atomic truth-values.

(b) Using the strong sense of if-then-else, determine the truth values of the following sentences with the
indicated atomic truth-values.

V(A) = TRUE V(C) = TRUE
V(B) = FALSE V(D) = FALSE

i. (if (A D) then (A D) else D)
ii. (if (A D) then (A D) else D)
iii. (if (A D) then A else D)
iv. (if (A D) then D else A)
v. (if (A D) then A else D)
vi. (if A then A else A)
vii. ((if A then B else B) B)
viii. ((if B then A else B) A)
ix. ((if A then B else C) (if A then C else B))

References
1. Castañeda, Hector-Neri (1975), Thinking and Doing: The Philosophical Foundations of Institutions (Dordrecht:
D. Reidel).

2. Manna, Zohar, & Waldinger, Richard (1985), The Logical Basis for Computer Programming, Vol. I: Deductive
Reasoning (Reading, MA: Addison-Wesley).

3. Rescher, Nicholas (1966), The Logic of Commands (London: Routledge & Kegan Paul; New York: Dover).

4. Schagrin, Morton L.; Rapaport, William J.; & Dipert, Randall R. (1985), Logic: A Computer Approach (New
York: McGraw-Hill).

2E.g., the arithmetical truth function FNEG(V(P)) 1 V(P).

4

View publication statsView publication stats

https://www.researchgate.net/publication/2581914

CHAPTER 5

SENTENTIAL LOGIC:
Algorithms for

Calculating Truth
Values and
Determining

Well-Formedness

Up to this point, we have not extensively
considered how to calculate the truth values of relatively
complex molecular sentences from the truth values of
the atomic sentences that compose them. Instead, we
have concentrated on rather simple molecular sen-
tences, which demonstrated the behavior of our main
sentence connectives:~,&, v, and-».

There are, however, more complicated examples
than these, and we must find an algorithm for calcu-
lating their truth values. Having such a procedure, as
we shall see later, will prove to be extremely useful in
determining whether an argument in sentential logic is
valid or invalid.

Our method for discovering an algorithm for cal-
culating the truth value of a molecular sentence will
follow a familiar pattern. We shall first examine how we
would do it Uust as we first considered how we add in
order to discover an algorithm for addition). Then we
shall refine the procedure so that anyone-even a com-
puter-could follow it, knowing nothing about logic or
truth values.

87

88

CHAPTER 5

An Informal Method for Calculating Truth Values

Consider these assignments of truth values to atomic sentences:

V(A) = 1
V(B) = 0
V(C) = 1
V(D) = 0

Note that we shall assume for convenience in this and the next chapter that TRUE and
FALSE are represented by the numbers 1 ang 0. Next, consider a molecular sentence
composed of these atomic sentences, say:

(A- (-8 & (C v 0)))

What is the truth value of this molecular sentence, given the assignment of truth values
to the atomic sentences?

To calculate this truth value, we can begin by replacing the atomic-sentence letters
('A', 'B', 'C', and 'D') with their truth values. Making these substitutions, we would have:

(1 - (-0 & (1 V 0)))

It is important to note that this is not itself a sentence according to our rules. It is a hybrid
creation, which we shall call a "hybrid formula," formed by mixing truth values (1, 0) and
sentence connectives. To say "If TRUE, then both not FALSE and either TRUE or FALSE"
does not make any sense in English-but it is a useful creation, as we shall see.

But now what do we do? We should look for something in this formula that we do
know something about from our reading in the previous chapters, namely, simple com-
binations of truth values and sentence connectives. Our eye should spot two such
combinations in the above formula. They are: '

-o

and

(1 V 0)

We shall call these subformu/as of the formula that we are considering, because they
are parts of the whole formula and because they have the patterns of the simple molecular
sentences that we saw in the last two chapters.

The first subformula, ·-o·, can be replaced by the truth value 1, since the logical
function (FNEG) associated with negation "reverses" the truth value of the sentence
following it. That is, we can replace ·-o• in the formula with the output of FNEG(0),
namely, 1. Similarly, '(0 v 1)', we should know, can be replaced by the truth value 1. To
see this, we need only consult the truth table for v or apply FDSJ to the truth values 0
and 1. Informally, we may recall, a disjunction is TRUE if even one of its disjuncts is
TRUE. So we'can replace '(1 v 0)' with the truth value 1.

89

TRUTH VALUES AND WELL-FORMEDNESS

If we had been writing down these reflections, we would now have:

(A- (-8 & (C v D)))
(1 - (-0 & (1 V 0)))
(1 - (1 & (1 V 0)))
(1 - (1 & 1))

[Replacing ·-o· with '1']
[Replacing '(1 v O)' with '1 ']

Our next step is again to apply what we know about truth values and sentence con-
nectives to the simplest parts of this last formula. We see that '(1 & 1)' is a subformula
of it, and we should recognize from our study of conjunction that this can be replaced
by the truth value 1. (We could determine this by examining the truth table for & or by
applying the FCNJ function.) So our next steps would be:

(1 - (1 & 1))
(1 - 1)

1

The last line, a single truth value, was arrived at by reasoning that the hybrid formula
'(1 - 1)' can be replaced by the truth value 1. (Again, we could consult our truth tables
or apply FCND to determine this.) The last line tells us that the truth value of our original
molecular sentence is 1 (that is, TRUE) given our original assignment of truth values to
the atomic sentences.

Observations about the Informal Method

Several observations on what we just did are in order. Notice, first, that in order to
determine the truth value of a molecular sentence, we need only look at the last line.
That is, we don't need to look at the calculations that led up to it, unless we are checking
the whole calculation for errors after we are done. Second, at each step after the
replacement of atomic sentences by truth values, our eye looks for those parts of the
formula to which we can directly apply the truth functions for-,&, v, and-. such as
'-1', '(0 & 0)', '(1 v 0)', or '(1-1)'. Once we find such subformulas, we replace each
one and its immediately surrounding parentheses (if any) with the single truth value as
given by the appropriate truth function. Finally, we stop this process when we are left
with only a single truth value.

Let's look at another example. Consider the molecular sentence

(-A & (A-((C v D)- D)))

and the atomic truth-value assignments:

V(A) = 0
V(B) = 1

V(C) = 1
V(D) = 0

To find the truth value of the molecular sentence, we would proceed as follows (omitting
explanations):

90

CHAPTER 5

(-A & {A- {{C v D) - D)))
(-0 & (0 - ((1 V 0) - 0)))
(1 & {0 - ((1 V 0) - 0)))
(1 & (0 - (1 - 0)))
(1 & (0 - 0))
(1 & 1)

1

Let us look at one last example, carefully keeping the replacing truth value directly
under the sentence connective of the replaced subformula. Consider:

(8 v {C - ((D & -D) - A)))

with the truth values

V(A) = 1
V(8) = 0

V{C) = 1
V{D) = 0

Our calculation would proceed as follows:

(8 v (C - ((D & -D) - A)))
(0 V (1 - ((0 & -0) - 1)))
(0 V (1 - ((0 & 1) - 1)))
(0 V (1 - { 0 - 1)))
(0 V (1 - 1))
(0 V)

1

Innermost Subformulas

We are now almost in a position to give an algorithm for what we have just done. One
important concept is necessary, namely, that of an "innermost subformula." This concept,
when made precise, will allow us to state explicitly the procedure that we earlier described
as looking for the subformula to which we could straightforwardly apply what we know
about the simple truth functions.

After replacing atomic-sentence letters with truth values, and after replacing '-0'
with '1' and '-1' with '0', we obtain a formula having no negation signs in front of atomic
parts. Suppose that we have such a formula that has no negated atomic parts. Then
the innermost subformulas {there may be more than one) of this formula can be identified
as those subformulas of the given formula that are surrounded by the most parentheses.
For example, in

(1 - ((0 & (1 V 0)) & 1))

91

TRUTH VALUES AND WELL-FORMEDNESS

the innermost subformula-here, there is only one- is '(1 v O)'. It is the part of the formula
most deeply "buried" in parentheses. Four sets of parentheses surround it, including the
set that is part of the subformula itself. In the formula

((O- 1) v (1- 0))

the innermost subformulas are '(O - 1)' and '(1 - O)', which are each enclosed by just
two sets of parentheses. Note that the innermost subformula of '(1 v O)' is '(1 v O)' itself.

The Algorithm: TRUTH-VALUE CALCULATOR

Using this notion of the innermost subformula, we can give the full algorithm for calculating
the truth value of a complex molecular sentence:

ALGORITHM TRUTH-VALUE CALCULATOR

1. INPUT a sentence P.
2. INPUT the truth values of P's atomic sentences.
3. Replace each atomic sentence in P with its assigned truth value to produce

a hybrid formula.
4. Reading the hybrid formula from left to right, delete all occurrences of~~

(that is, delete all double negation signs).
5. WHILE the formula has more than 1 character,

(a) Reading the formula from left to right, replace all occurrences of '~1'
with 'O'.

(b) Reading the formula from left to right, replace all occurrences of '~O'
with '1'.

(c) IF a single truth value remains,
THEN

(i) OUTPUT it.
(ii) STOP.

(d) Find the innermost subformulas.
(e) FOR each innermost subformula:

(i) IF the middle symbol in the subformula is &,
THEN

(1) Apply FCNJ to the two truth values in the subformula.
(2) Replace the subformula with the output.

(ii)-(iv) Do similarly for v, -, and -.

6. OUTPUT the single truth value.
7. STOP.

92

CHAPTER 5

This algorithm has a "loop" in step 5 that allows us to whittle down our formula until
only a single truth value remains. The algorithm describes in most respects what we
were doing in our previous, informal evaluations of the truth value of a molecular sen-
tence. Note the difficulties created by negation in TRUTH-VALUE CALCULATOR, since
it is a one-place connective; it requires its own steps: 4, 5(a), and 5(b}.

Steps 5(d) and 5(e) remain at a somewhat abstract level, so let us refine them.

Refining Step 5(d): Finding the Innermost Subformulas

The essential idea, as we have already observed, is simply to determine which parts of
the formula are most deeply buried in parentheses. But how do we mechanically de-
termine this?

Suppose that we number the characters in our string (other than blanks). For ex-
ample, numbering the (nonblank) characters in a sample formula, we would have:

((1-0)-0)
1234 567 89

Now imagine a "counter" passing from left to right over the numbered characters
in the string. The counter starts with a value of 0. When it encounters a left parenthesis,
it adds 1 to its value. When it encounters a right parenthesis, it subtracts 1 from its
value. Otherwise, it does not change its value. The counter has a value of O before it
begins, and it should have a value of O after it ends. (If it does not, there are an unequal
number of right and left parentheses. This indicates that the original string was not a
sentence according to our rules.)

Let us record the highest value that this counter achieves when passing from left
to right. After the highest value of this counter has been recorded, let us start with a
second counter, also set initially to O and passing from left to right with the same rules:
'(' adds 1, ')' subtracts 1.

1. The first innermost subformula begins at the position where the second counter
first equals the highest value of the first counter.

2. This innermost subformula ends at the first position where the second counter
becomes less than this value.

· Because there may be more than one such innermost subformula, the second counter
should continue sweeping right through the string, recording the positions that mark the
beginnings and endings of innermost subformulas. These recorded positions can then
be used to "extract" the subformulas for the analysis and evaluation that the next step,
step 5(e), requires.

One example should suffice to demonstrate the workings of these two counters.

Formula:
Position:

First Counter: 0

1 -
2 3

1 1

0 &

4 5 6

2 2 2

0 V

7 8 9

3 3 3

1

10
3

11

2

12 13

0

93

TRUTH VALUES AND WELL-FORMEDNESS

The highest value of the first counter is 3. So the second counter will record that the
innermost subformula begins at position 7 and ends at position 11. (You should be aware
that some of the extraordinary lengths that we had to go to with regard to parentheses
can be avoided by adopting a notatlonat system without parentheses. We shall look at
one such system, Polish notation, in Chapter 7.)

Refining Step S(e): Replacing Innermost Subformulas
with Truth Values

Every innermost subformula should have the form

(<truth value 1 > * <truth value ~>)

where <truth value 1 > and <truth value 2> are either 0 or 1, and where * is the symbol
for a two-place sentence connective (such as &, v, or-). Step S(e) will tell us what
truth value to replace the entire subformula with, including its parentheses. A flowchart
for the procedure of step S(e) is ·given in Figure 5-1. In other words, every innermost
subformula is replaced by a truth value, according to the truth functions studied in the
previous chapters.

For example:

(1 & 1)

is replaced by the output of

FCNJ(1, 1)

which is just

Similarly:

(1 - 0)

is replaced by the output of

FCND(1, 0)

which is just

0

94

CHAPTER 5

START

Let S be an
innermost subformula

of the form
(<truth value1 > * <truth value 2>)

Let V1 = (truth value 1)

Let V2 = (truth value 2)

Replace S by
FCNJ (V1, V2)

Replace S by
FDSJ (V1, V2)

Replace S by
FCND (V1, V2)

FALSE

STOP

Figure 5-1 Flowchart for replacing innermost subformulas with truth values.

95

TRUTH VALUES AND WELL-FORMEDNESS

Formulas and Sentences

There is a topic that we have not yet dealt with in detail: the relationship between
sentences and our hybrid formulas. A string, you should recall, is any sequence of
characters. We have defined a sentence as any string satisfying our rules 1 to 9 from
Chapters 3 and 4:

1. A string consisting of one of the single letters
'A', 'B', ... ,'O' (possibly with numerals) is a sentence.

2. If P is a sentence,
then ~Pis a sentence.

3. If P and Q are sentences,
then (P & Q) is a sentence.

4. If P and Q are sentences,
then (P v Q) is a sentence.

5. If P and Q are sentences,
then (P - Q) is a sentence.

6. If P and Q are sentences,
then (P ~ Q) is a sentence.

7. If P and Q are sentences,
then (P xos Q) is a sentence.

8. If P and Q are sentences,
then (P NOR Q) is a sentence.

9. If P and Q are sentences,
then (P NANO Q) is a sentence.

10. Only strings constructed from rules 1 to 9 are sentences.

Rule 1 O is called a "closure" clause. In the future, for convenience, we shall usually omit
the last few connectives, and we shall usually not explicitly state the closure clause.

We can then define a hybrid formula as a string obtained from a sentence by
replacing all sentence letters with truth values.

But how do we determine when a formula could not have arisen in this way, and
hence was not originally a sentence? A string that is a sentence will be called "well-
formed."

One answer conveniently lies in what we have just been considering, namely, the
algorithm for calculating the truth values of molecular sentences. Before we examine
this, however, we should perhaps look at some of the ways strings can "go wrong" and
ail to be sentences. Here are some examples of strings that are not sentences, along

with their diagnoses:

(((A & B) v C)
((A- B)) & C)
((AB) & C)
)A&B(
(A-- B)
(A~ v B)
A&

Too many left parentheses.
Too many right parentheses.
Run-on: needs a connective between 'A' and 'B'.
Left and right parentheses in wrong order.
Two connectives together.
Two connectives together.
The & requires two sentences.

96

CHAPTER 5

An Algorithm for Determining Well-Formedness

With a little practice, it becomes possible to detect non-well-formed strings just by looking
at them. But how can we be sure that a string we are looking at is well-formed? This
question requires us to construct an algorithm that, when we apply it to a suspect string,
correctly outputs-after a finite time-a message such as either "No, not well-formed"
or "Yes, well-formed." Fortunately, we have already done most of the work and need
only to insert some steps in our algorithm TRUTH-VALUE CALCULATOR.

Problems with parentheses are easiest to detect. Recalling the first counter from
our procedure for finding innermost subformulas [step 5(d)], we can observe:

If the count after the final character is greater than 0, then there are too many left
parentheses.

If the count after the final character is less than O, then there are too many right
parentheses.

If the count is ever negative in the process of sweeping from left to right, then the
parentheses are incorrectly matched.

If any one of these conditions arose, then we could add a step in the original procedure
that would output "Not well-formed" and bring the procedure to a halt immediately.

But what about the many things that could go wrong in a string but that do not
involve mistakes with parentheses? To answer this question, we must examine in still
more detail what we said about step 5(e). When we were examining innermost subfor-
mulas in a gradually dwindling formula, we mentioned that every innermost subformula
should have the form

(<truth value 1 > * <truth value 2>)

where <truth value 1 > is O or 1, <truth value 2> is O or 1, and * is &, v, ~, or-.
Examples are '(1 & O)' and '(0- 1)'. If an innermost subformula ever does not have
this form, then the original string was not well-formed. Furthermore, if the innermost
subformulas always have this form down to the last, single truth value, then the origirial
string was well-formed.

In other words, at each stage in our analysis of the innermost subformula, the
subformula under consideration must be such that:

1. It has precisely five symbols.
2. The first symbol is '(',

the second symbol is a truth value ('0' or '1 '),
the third symbol is a two-place connective(&, v, -, or~),
the fourth symbol is a truth value ('0' or '1 '), and
the fifth symbol is ')'.

A procedure in our program design language for determining whether an innermost
subformula satisfies these two criteria is as follows:

97

TRUTH VALUES AND WELL-FORMEDNESS

PROCEDURE CHECK-SUBFORMULA

FOR each innermost subformula (from step 5(d),

(a) IF the subformula does not contain exactly five symbols,
THEN OUTPUT "Not well-formed" and STOP.

(b) IF the first symbol is not'(',
THEN OUTPUT "Not well-formed" and STOP.

(c) IF the second symbol is not '0' or '1',
THEN OUTPUT "Not well-formed" and STOP.

(d) IF the third symbol is not a two-place connective (such as&, v, -, ~),
THEN OUTPUT "Not well-formed" and STOP.

(e) IF the fourth symbol is not '0' or '1 ',
THEN OUTPUT "Not well-formed" and STOP.

(f) If the fifth symbol is not ')',
THEN OUTPUT "Not well-formed" and STOP.

This procedure should be inserted between steps 5(d) and 5(e) of TRUTH-VALUE
CALCULATOR.

The idea behind the insertion of this procedure is actually quite simple. It will test
each subformula, as identified by step 5(d), to see if it is of the proper form, and it will
repeat this test as the formula is whittled down by the replacement and loop process.
But the insertion of this procedure will detect only some features of a string that disqualify
it from being well-formed. To modify TRUTH-VALUE CALCULATOR so that it can find
all errors, we must modify TRUTH-VALUE CALCULATOR more drastically. We will call
the resulting algorithm "SENTENCE-CHECKER."

ALGORITHM SENTENCE-CHECKER

1. INPUT a string, S.
2. IF S contains other than sentence letters or connectives

THEN OUTPUT "Not well-formed" and STOP.
3. Replace all atomic sentence letters in the string with arbitrary truth values

(all O's and 1 's, for example).
4. Reading the string from left to right, delete all occurrences of - - (that is,

delete all double negation signs).
5. WHILE the string has more than one character,

(a) Reading the string from left to right, replace all occurrences of '-1'
with 'O'.

(b) Reading the string from left to right, replace all occurrences of ' - 0'
with '1'.

(c) IF a single truth value remains
THEN OUTPUT "Well-formed" and STOP.

98

CHAPTER 5

(d) IF there are no innermost subformulas
THEN OUTPUT "Not well-formed" and STOP.

(e) FOR each innermost subformula:
(i) CHECK-SUBFORMULA.
(ii) Replace the subformula with 'O'.

6. OUTPUT "Well-formed".
7. STOP.

Observe that to apply SENTENCE-CHECKER we do not need to input an assign-
ment of truth values for atomic sentences. At step 3, absolutely any arbitrary assign-
ment-such as O to each atomic sentence-would suffice for our purposes in SEN-
TENCE-CHECKER. This is the case because in SENTENCE-CHECKER we are con-
cerned only with whether the input string is well-formed and not with its truth value (if it
is a sentence at all).

Summary

In this chapter, we presented algorithms for calculating the truth value of a molecular
sentence, given truth values for its atomic parts. Informally, the method consists of
replacing the sentence with a formula having truth values in place of atomic sentences
and then applying our truth functions to the subformulas in order to reduce each of them
to a single truth value. Repeating this until there are no subformulas left, we finally arrive
at the truth value of the original sentence. The crucial notion needed to make this
procedure precise is that of innermost subformulas-the subformulas surrounded by the
most parentheses.

The main algorithm is TRUTH-VALUE CALCULATOR. Two important procedures,
for which we gave refinements, are a procedure for finding the innermost subformula of
a string by counting parentheses and a procedure for replacing an innermost subformula
with a truth value by using the truth functions from Chapters 2 and 3.

We gave rules that characterize a sentence as a well-formed string: it must either
be a single letter ('A', ... ,'0') or have the form ~P or the form (P * Q), where P and
Qare themselves sentences and c- is any two-place connective. We also gave algorithms
for testing these criteria.

Exercises

A. Consider the following task (which is a "miniature" version of the project in this
chapter).

A formula is given to you. It comes from either a conjunction or a disjunction,
and each of its conjuncts (or disjuncts) has the truth value O or 1. Examples of
such a formula are:

99

TRUTH VALUES AND WELL-FORMEDNESS

(1 & 0)
(0 V 1)
(0 & 1)

In other words, you know beforehand that the given string is five symbols long,
that the first symbol is'(', that the second is a truth value (0 or 1), that the third
is a connective (& or v), that the fourth is a truth value (0 or 1), and that the fifth
is')'. Write an algorithm to determine the truth value of the entire expression.

For example, if the input is
(1 & 0)

then the output should be
0

Hint: One of your first instructions should be to INPUTthe formula. Your algorithm
should then promptly decide whether the input formula comes from a conjunction
or a disjunction (that is, whether the middle symbol is & or v) and branch ac-
cordingly.

Do not use the FCNJ and FDIS functions, but instead write a section of the
algorithm to do what they would do.

B. Consider the "first counter" described in the refinement of step 5(d) of TRUTH-
VALUE CALCULATOR.
1. With the string

(A- (B v (-C & D)))
what is the value of the first counter at the following positions?
(a) 2
(b) 4
(c) 5
(d) 7
(e) 10
(f) 11

(g) 12
2. With the string

(((A & -8) - -C) v (C & (D & -E)))
what is the value of the first counter at the following positions?
(a) 3
(b) 5
(c) 7
(d) 9
(e) 12
(f) 15

(g) 23
(h) 24

C. Apply the "second counter" described in the refinement of step 5(d) to the fol-
lowing strings.
Example: (A & (B & C))
Answer: 4, 8
since the innermost subformula begins at position 4 and ends at position 8.

100

CHAPTER 5

1. (((A- B) & C) v -0)
2. ((A & B) & C)
3. ((A & B) & (C & 0))
4. ((A & (B v -C)) - (C & (D v E)))
5. (-(Av -C)- (F - (F & F)))
6. ((A- -(B & C)) - 0)

0. Step 3 of TRUTH-VALUE CALCULATOR ("Replace each atomic sentence with
its assigned truth value") was left at an intuitive level. Let us, however, consider
the limited case of strings with only two distinct atomic-sentence letters, 'A' and
'B' ..

Write an algorithm for inputting a string and replacing each of the two
sentence letters with its associated truth value, V(A) or V(B).

E. Some of the following formulas do not come from well-formed strings. Apply
SENTENCE-CHECKER, stopping when an error has been discovered. Explain
what is wrong with the formula.

1. (1-0)
2. (1 & (0 V & 1))
3. ((0 & 1)(1 - 1))
4. -(-0&1)
5. ((0-1)v(0(0&1)))
6. (((0 V 1) & 1)
7. V (0)
8. (& (1 V 0))
9. (1 - (0 V (1 & 1)))

10. (((1 & -0) V -(0 & 0)- 1)

F. Using TRUTH-VALUE CALCULATOR and the indicated truth values below,
determine the truth value of each of the following sentences. Display the resulting
truth value, and the calculation leading up to it, as on pages 89 and 90.
1. Using the truth values

V(A) = 0 V(C) = 1
V(B) = 1 V(0) = 1

determine the truth values of (a) to (r) below.
2. Using the truth values

V(A) = 1 V(C) = 0
V(B) = 0 V(0) = 1

determine the truth values of (a) to (r) below.
a. -(A- (B & (C v 0)))
b. (C & -(B & 0))
c. (--0 & (A- (8 V C)))
d. (8 v (C v -0))
e. (A & (B & C))
f. ((A & B) & C)
g. (A & (B v C))
h. ((A & B) v C)
i. ((A & (B - A)) - B)

101

TRUTH VALUES AND WELL-FORMEDNESS

j. ((A & (A - B)) - B)
k. (B-A)
I. (-B- -A)
m. (A- B)
n. (-Av B)
o. (A & -B)
p. -(A & B)
q. (-Av -B)
r. (-A & -B)

Suggestions for Computer Implementation

The initial steps of any computer program implementing TRUTH-VALUE CALCULATOR
would begin by inputting a string: the sentence to be tested. The program should then
input for every distinct sentence letter contained in the initial input string, the truth values
(either as TRUE and FALSE or as 1 and 0). Because of the later importance of having
every significant symbol occupy just one position, and because of the necessity of using
symbols on a standard keyboard, the conditional should be represented by a single
symbol, such as >. That is, let - be >. Where there is a choice, it will often prove
useful to use only capital letters for atomic sentences.

The conversion of the algorithm described in this chapter into a computer program
might require the extensive use of "string manipulation" functions. The available such
functions vary widely from computer language to computer language. Consequently,
very little of a specific nature can be said about how to write an actual program.

But consider step 1 of TRUTH-VALUE CALCULATOR. Suppose the name of the
input string is INPUTSTRING. Suppose also that we have already identified the atomic
sentences in INPUTSTRING and determined that they are stored in an array ATOMIC(n).
For instance, ATOMIC(1) == 'A', ATOMIC(2) = 'B', etc. The truth value of each of these
atomic sentences can be stored in a parallel array, TRUTH(n). For example, TRUTH(1) = 1,
TRUTH(2} = 0, etc. Naturally, ATOMIC(n) will have just as many elements as TRUTH(n).
(If you are working in a language such as Pascal or PUI, such parallel arrays can be
implemented as a single '.'record" with two "fields.")

It will also be useful to have two string functions:

LENGTH(STRING)

will determine the length of the string STRING-that is, the number of symbols in it-
and

MID(STRING, n)

will find the nth symbol in the string STRING. Thus if STRING = 'LOGIC', then

102

CHAPTER 5

LENGTH(STRING) = 5

because

LENGTH('LOGIC') = 5

And

MID(STRING, 3) = 'G'

since the third symbol in 'LOGIC' is 'G'.
Here is a refinement of step 1 using these arrays and functions:

1.1. INPUT INPUTSTRING.
1.2. Let k = the number of atomic sentences in INPUTSTRING.
1.3. FOR n = 1 to LENGTH(INPUTSTRING)

(a) FOR m = 1 to k
i. IF MID(INPUTSTRING, n) = ATOMIC(m)

THEN OUTPUT TRUTH(m).
ii. IF MID(INPUTSTRING, n) = (

or MID(INPUTSTRING, n) =)
or MID(INPUTSTRING, n) = &
or MID(INPUTSTRING, n) = v
or MID(INPUTSTRING, n) = >

THEN OUTPUT MID(INPUTSTRING, n).

The two OUTPUT statements in steps 1.3(a)i and 1.3(a)ii should be used to create a
new string, NEWSTRING, which is exactly like INPUTSTRING, except that it contains
truth values in the places of atomic-sentence letters. Where '+' indicates a "concaten-
ation" operation of putting strings together to form longer strings (for example,
'LO' + 'GIG' = 'LOGIC'), these OUTPUT steps can be refined as follows (NEWSTRING
must first be initialized to a blank: ' '):

1.3(a)i. IF MID(INPUTSTRING, n) = ATOMIC(m)
THEN let NEWSTRING be NEWSTRING + TRUTH(m).

1.3(a)ii. IF MID(INPUTSTRING, n) = (
or MID(INPUTSTRING, n) =)
or MID(INPUTSTRING, n) = &
or MID(INPUTSTRING, n) = v
or MID(INPUTSTRING, n) = >

THEN let NEWSTRING be NEWSTRING + MID(INPUTSTRING, n).

Although this program sketch might at first appear intimidating, the procedure it
describes is not all that difficult. The "outer" FOR-loop in step 1.3 has the effect of looking,
symbol-by-symbol, at INPUTSTRING. The "inner" FOR-loop in step 1.3(a) has the effect
of checking every atomic-sentence letter, 'A', 'B', The test in step 1.3(a)i asks whether
the symbol in INPUTSTRING currently under consideration is an atomic-sentence letter.

103

TRUTH VALUES AND WELL-FORMEDNESS

If it is, then its corresµonding truth value is concatenated to NEWSTRING. If it is not
(step 1.3(a)ii), then that symbol is copied dutifully into NEWSTRING, unless it is a blank
or some other irrelevant symbol. The entire procedure has the desired effect of converting
INPUTSTRING into NEWSTRING by copying symbols into NEWSTRING-unless they
are sentence letters, in which case their truth values are copied into NEWSTRING.

The first counter described in the refinement of step 5(d) of TRUTH-VALUE CAL-
CULATOR can be implemented as follows. Here, we use our LENGTH and MID functions
from before, but now> and + have their normal arithmetical meanings:

1. Let m initially be 0.
2. FOR n = 1 to LENGTH(NEWSTRING)

(a) IF MID(NEWSTRING, n) ~ (
THEN let m be m + 1.

(b) IF MID(NEWSTRING, n) =)
THEN let m be m - 1.

(c) IF m > r
THEN let r be m.

The FOR-loop sweeps through NEWSTRING from left to right, and step 2(c) stores the
highest value of m in variable r.

If we want the program also to decide whether parentheses are correctly used, we
might add the following steps:

2(b)ii. IF m < 0
THEN OUTPUT "Error in parentheses."

3(a). IF m > O
THEN OUTPUT "Too many left parentheses."

3(b). IF m < 0
THEN OUTPUT ''Too many right parentheses."

CHAPTER 6

SENTENTIAL LOGIC:
Algorithms for

Truth Tables and
Determining Validity

In Chapters 3 and 4, we frequently used
truth tables: extensional characterizations of truth func-
tions. These were two-dimensional displays showing
the functional relationship between the truth value of a
molecular sentence and the truth values of its parts. In
mathematics, such a table would be called a "matrix";
in computer science, it would be called a two-dimen-
sional "array."

For disjunction, we wrote:

V(P) V(Q) V(Pv Q)

0
0

0
1
0

0

The two columns on the left display the possible com-
binations of truth (1) and falsity (0) that the sentences
P and Q may take in various "situations." We might
think of each row as describing a situation. Up until
now, the right-most column has displayed the truth val-
ues of a single molecular sentence in the situations
described by the truth values of the sentences that are
its parts. For example, in the above table, the first row
describes the situation in which both P and Qare FALSE;
in that situation, the disjunction (P v Q) is also FALSE.

105

106

CHAPTER 6

The second row describes the situation in which the disjunction (P v Q) is TRUE; and
so on for the other rows.

Since we have already fully described in Chapter 5 how to calculate the truth value
of a molecular sentence, no matter how complex, given the truth values of its atomic
parts, we can now produce truth tables of more complexity, such as:

V(P) V(Q) V(P - (P - (P & Q)))

0 0
0 1

0
1
0

We calculate each of the values in the last column by using the algorithm from Chapter
5. To do so for the first row, we replace each occurrence of P with '0' and each occurrence
of Q with ·o· and then calculate the value of the resulting hybrid:

(0 - (0 - (0 & 0)))

which will turn out to be 1. We could also have seen that this is the case by observing
that V(0 - n) = 1 no matter what the value of n is.

We can also use a truth table to show how several molecular sentences are de-
pendent on the truth values of their atomic parts. This kind of truth table will turn out to
be very useful in determining the validity or invalidity of arguments in the logic of sen-
tences, as we shall soon see.

Consider this truth table:

V(P) V(Q) V(R)

0 0 0
0 0 1
0 0
0 1

0 0
0

0
1

V(P-Q) V(Q-R) V(P-R)

0

0
0
1

1
0

1
0
1
0

The first row shows that whenever Pis FALSE, Q is FALSE, and R is FALSE, then the
truth value of (P- Q) is TRUE, the truth value of (Q - R) is TRUE, and the truth value
of (P- R) is TRUE. In the whole truth table, we have a display of the truth values of
(P- Q), (Q- R), and (P- R) as functions of all the combinations of truth values of
their atomic parts.

107

TRUTH TABLES AND VALIDITY

General Truth Tables

The previous large table suggests the following generalization of the format of a truth
table.

Truth Values of
Atomic Sentences

Truth Values of Sentences Dependent
on These Atomic Sentences

Situations:
All Possible Combinations
of Truth Values
for the Atomic Sentences

There are some general observations that can be made about truth tables:

1. The atomic sentences in which we are interested-displayed in the left columns-
are just those that are contained in the dependent sentences. Thus if the sen-
tences we are considering are (P- Q), (Q- R), and (R- S), then the atomic
sentences to be displayed are P, Q, R, and S.

2. If there are n atomic sentences in which we are interested, then there are 2 ** n
possible combinations of truth values for these atomic sentences. The reason
for this is that there are only two possible values that each atomic sentence can
have. So for two atomic sentences, there are 2 ** 2 = 2 x 2 = 4 combinations
(00, 01, 10, 11); for three, there are 2 ** 3 = 2 x 2 x 2 = 8; and so on. (We
use 'a ** n' for a raised to the nth power.)

3. An orderly way to place truth values in the rows under each atomic sentence,
so as to exhaust all 2 ** n combinations, is as follows. In row 1, place the binary
numeral for 0, beginning at the far right. In row 2, place the binary numeral for
1, also at the far right. In general, in row k, place the binary numeral for k - 1
at the far right. The last row will be a string of n '1 's. Finally, fill in all remaining
blanks under the atomic sentences with 'O's.

As an example, suppose we have three atomic sentences, P, a, and R. We thus
need 2 ** 3 = 8 rows for our truth table. The first row has 'O' squeezed as far right as
possible, the second has '1 ', the third has '1 O', the fourth has '11 ', and so on. The result
is:

V (P) V(Q) V (R)

0
1
0

1 1
0 0
0 1

0

10 8

CHAPTER 6

We then complete the procedure by filling in the blanks with 'O's, obtaining:

V(P) V(Q) V (R)

0 0 0
0 0
0 1 0
0 1 1

0 0
0 1

0

We finish the truth table by displaying the sentences whose truth values we are interested
in at the top of other columns to the right. We then fill in the rows under these sentences
with the results of our calculations of their truth values (using TRUTH-VALUE CAL-
CULATOR), using the truth values of the atomic sentences indicated at the beginning
of each row.

The Algorithm: Truth-Table Generator

Having just informally described the construction of a truth table, we can now give an
algorithm for generating one.

ALGORITHM TRUTH-TABLE GENERATOR

1. INPUT the sentences whose truth-functional relationships we are investi-
gating.

2. Let m = the number of these sentences. (For an argument, m will be the
number of premises plus one (for the conclusion).)

3. Let n = the number of distinct atomic sentences occurring in these sen-
tences.

4. Create a table with n + m columns and 2 .. n rows.
5. FOR each atomic sentence S

(a) Write 'V(S)' at the top of the columns, beginning at the left.

6. FOR each sentence S whose truth-functional relationships we are investi-
gating

(a) Write 'V(S)' at the top of the remaining columns, beginning with column
n + 1.

109.

TRUTH TABLES AND VALIDITY

7. (a) Count in the binary system from o to (2 ** n - 1).
(b) Place these binary numerals, one to each row, squeezed right under

the first n columns, one digit to a box. (That is, in the first row, the
nth column will have ·o·. In the second row, the nth column will have
'1'. In the third row, the (n - 1)th column will have '1' and the nth
column will have 'O'-and so on.)

(c) When the last row has been filled, return to earlier rows, placing 'O'
in any of the spaces in the first n columns that were left blank.

8. FOR each column c from n + 1 to n + m
(a) FOR each row r from 1 to 2 ** n

i. OUTPUT the truth value produced by TRUTH-VALUE CAL-
CULATOR, using as input the sentence at c and the truth values
at r.

9. STOP.

For example, if our three initial sentences are (P- Q), (Q- R), and (P- R), this
algorithm will output the following truth table:

V(P) V(Q) V(R)
I V(P-Q) V (Q- R) V(P-R)

0 0 0
0 0
0 1 0 1 0
0 1 1 1 1
1 0 0 0 1 0

0 1 0 1 1
0 1 0 0

Determining Validity

Truth tables can be used in the logic of sentences for determining the validity or invalidity
of an argument. To see this, you should recall what an argument is and what a valid
argument is. An argument is a set of sentences, one sentence of which is identified as
the conclusion-which is claimed to follow from the other sentences (the premises). An
argument is valid iff

In every situation where the premises are all TRUE, the conclusion is also TRUE.

110

CHAPTER 6

or, equivalently,

There is no situation where the premises are all TRUE and the conclusion is FALSE.

An argument is invalid iff

There is some situation where the premises are all TRUE and the conclusion FALSE.

The "situations" in the logic of sentences are just different combinations of the truth and
falsity of atomic sentences (as described by the first n columns). Our truth tables have
been constructed to exhaust all possible situations: Each row represents a different
situation, and, all together, the different rows exhaust all possible situations.

If we had reserved the right-most columns except for the last-that is, the (n + 1)th
through the (n + m - 1)th columns-for the premises of an argument and the last, or
(n + m)th, column tor the conclusion, then we could use this truth table to decide whether
that argument is valid or invalid. Our reasoning would be as follows:

If there is any row containing a '1' (TRUE) in every premise-column and a 'O' (FALSE)
in the conclusion-column, then the argument is invalid.

If there are no such rows, then the argument is valid.

Consider the following argument:

1. If the Soviet Union rejects the proposed treaty, then a final agreement will be
postponed.

2. The Soviet Union rejects the proposed treaty.
So,

3. A final agreement will be postponed.

We could symbolize this argument as follows:

1. (A-B)
2. A

:. 3. B

We use :. as a sign for 'So' or 'Therefore', standard conclusion indicators.
Is this argument valid? Using the truth-table method we have just proposed, we

answer this question as follows. We construct a truth table, using some of the procedures
described in TRUTH-TABLE GENERATOR.

Step 1 : There are three sentences in the argument: two premises and a conclusion.
So, m = 3.

Step 2: These sentences contain just two atomic sentences (A, B). So, n = 2.
Step 3: Thus our table will have n + m = 2 + 3 = 5 columns, and

2 ** n = 2 .. 2 = 4 rows.
Steps 4-7: Labeling the columns and filling in the rows, we have:

111

TRUTH TABLES AND VALIDITY

V (A) V (B) V (A-B) V(A) V (B)

0 0 1 0 0
0 1 1 0 1

0 0 1 0
1 1 1 1

This display contains a great deal of information. The first row tells us that in the
situation where the sentences The Soviet Union rejects the proposed treaty' and 'A final
agreement will be postponed' are both FALSE, the sentence 'If the Soviet Union rejects
the proposed treaty, then a final agreement will be postponed' is TRUE. In this situation,
the first premise is TRUE, the second premise is FALSE, and the conclusion is FALSE.
Each of the last three rows describes a different situation and indicates whether the
premises and conclusion are TRUE or FALSE in that situation.

We can use this information to determine whether the argument is valid or invalid.
If there is a row where both premises are TRUE and the conclusion is FALSE, then the
argument is invalid; if there is no such row, then the argument is valid. Inspection of the
above truth table will show that there are no rows where the premises are TRUE and
the conclusion is FALSE. Hence, the argument is valid.

In fact, not only is this argument (involving a treaty and the Soviet Union) valid, but
any argument of the same form is also valid. That is, any argument of the form

If <Sentence 1 > then <Sentence 2>
<Sentence 1 >

:. <Sentence 2>

is valid. Arguments of this form are said, in traditional Latin terminology going back to
the Middle Ages, to have used the inference pattern modus ponens. Any instance of
modus ponens is valid.

Let us consider another argument:

1. If Harry uses heroin, then Harry once smoked marijuana.
2. Harry once smoked marijuana.

Therefore,
3. Harry uses heroin.

Symbolized, the argument becomes:

1. (H- M)
2. M

:. 3. H

Before continuing, you should notice the difference between the pattern in this example
and the pattern in the previous example. In this example, the second premise is the
consequent of the conditional (the first premise). And the conclusion is the antecedent
of that conditional. That is, the pattern of this new argument is:

112

CHAPTER 6

If <Sentence 1 > then <Sentence 2>
<Sentence 2>

:. <Sentence 1 >

Fallacies are patterns of invalid arguments that unfortunately are often used in everyday
life. This particular fallacy is called "affirming the consequent." In the earlier example,
the second ,premise was the antecedent of the conditional, and the conclusion was the
consequent of the concittonat.

Our truth table for this new argument would be:

V(H) V(M) V (H--+ M) V(M) V(H)

8
0

0

0

0
1
0

0
0

0
1

Here, we can see that there is a row in which the premises are both TRUE but the
conclusion FALSE: the second row. The second row describes the situation in which
Harry does smoke marijuana but does not use heroin. In this situation, both premises
are TRUE, but the conclusion is FALSE. Since there is such a row, the argument is
invalid. In a valid argument, the truth of the premises "guarantees" the truth of the
conclusion. However, as we have just seen, the truth of the premises of this argument
does not guarantee the truth of the conclusion.

The Algorithm: Validity/Invalidity Determiner

The truth-table method we have just been exploring provides the basis for an algorithm
for determining whether or not an already symbolized argument in the logic of sentences
is valid. Applied properly, it will always yield the correct answer in a finite amount of
time, and applying it requires no guesswork or special imagination.

Described in full, our method for evaluating the validity of an argument in the logic
of sentences would consist of the following steps:

ALGORITHM VALIDITY /INVALIDITY DETERMINER

1. INPUT a symbolized argument.
2. Apply TRUTH-TABLE GENERATOR.

(Note: In step 6 of TRUTH-TABLE GENERATOR, the (n + m)th column
should contain the truth values of the conclusion.)

113

TRUTH TABLES AND VALIDITY

3. IF there is a row in which each box in a premise column (that is, the (n + 1)th
through (n + m - 1)th columns) contains '1' and the box in the last column
contains 'O'

THEN OUTPUT "Argument invalid" and STOP.
4. IF there is no such row

THEN OUTPUT "Argument valid" and STOP.

Step 3 is, of course, the critical step, since it is here that we actually obtain the
result of whether the argument is, or is not, valid. It can be refined as follows:

3.1. FOR each row
(a) Let COLUMN = n + 1.
(b) WHILE COLUMN ,;:; n + m - 1 and '1' occurs in this row and column

Let COLUMN be COLUMN + 1.
(c) IF COLUMN = n + m

THEN IF 'O' occurs in this row and column
THEN OUTPUT "Argument invalid" and STOP.

This procedure begins by scanning across the first row (step 3.1), starting in the first
premise-column, n + 1 (step 3.1 (a)). As long as there are still premises and each one
is TRUE, the scanning continues (step 3.1 (b)). If a FALSE premise is found, then the
next row is scanned from the first premise. If all premises are TRUE, then the conclusion
(in column n + m) is examined (step 3.1.(c)). If the conclusion is FALSE, then the
argument is invalid (step 3.1 (c)i) and the algorithm stops; otherwise, the next row is
scanned from the first premise. If all rows are examined and a row with all TRUE premises
and a FALSE conclusion is not found, then the argument is valid (step 4).

Alternative Methods

If the number of atomic sentences involved in our premises and conclusion is relatively
large, the resulting truth table may approach awesome proportions. For the following
straightforward-and invalid-argument:

1. (A- B)
2. (B- C)
3. (C- D)
4. (D- E)
5. E

:. 6. A

114

CHAPTER 6

the truth table has 2 ** 5, or 32, rows, and 11 columns are required. Since the truth
table has 32 x 11 boxes, there are 352 truth values to be written into them. In other
cases, some molecular sentences may be quite complex, such as:

((A- (-8 v (C & -D))) v -(-D- A))

The truth value of each such sentence must be recalculated for every row, using TRUTH-
VALUE CALCULATOR. In short, the truth-table method may consume large amounts
of paper, ink, and our valuable time.

If we program a computer to perform this procedure, then TRUTH-VALUE CAL-
CULATOR presents no serious difficulties. The computer will not use paper and ink in
its calculations; instead it will use electrical states in memory locations as its "truth table."
And even arguments containing many atomic sentences or having long, complicated
sentences would not consume our time-although they would consume computer time.

So, in principle, we could use a computer to apply the truth-table method of deter-
mining validity to arguments of normally intimidating size or complexity. Of course, we
may not always have a computer available, or we might not have the skill or patience
to program it properly. Furthermore, the full truth-table method, with its maze of truth
values, seldom resembles the way we actually reason. It is unlikely that a person pro-
posing an argument used the truth-table method to devise it. And it is very unlikely that
most people hearing the argument-even logicians-would think it to be valid (or invalid)
because of a full truth table they were doing in their heads. Are there, we might ask,
quicker, easier, or more natural ways of determining whether an argument is valid or
invalid?

There are indeed such ways, but they are not as powerful as we might desire. We
can, in what is called a "formal deduction system," construct a "proof" of a valid argument.
If we can find a correct proof, we then know that the argument is valid. Unfortunately,
if we cannot find a proof, we cannot conclude that the argument is invalid. Our failure
to find a proof might have been due to our own inability, or perhaps we didn't try hard
enough. In this case, the argument might still be valid; we could then fall back on the
full truth-table method to determine if it is valid or invalid. In Chapters 8 and 9, we shall
discuss the method of showing an argument to be valid by giving a proof.

WANG'S ALGORITHM

Another algorithm to determine whether or not a symbolized argument is valid is WANG'S
ALGORITHM, named after the logician Hao Wang (1921-). WANG'S ALGORITHM,
like the truth-table algorithm VALIDITY/INVALIDITY DETERMINER, will always deter-
mine whether a symbolized argument in the logic of sentences is valid or invalid. But
unlike the truth-table algorithm, it does not require us to create large tables.

The idea behind WANG'S ALGORITHM is very simple. In constructing a truth table
to determine the validity of an argument, we are searching for a sltuation.ln which the
premises are all TRUE but the conclusion is FALSE. If there is such a situation, then
the argument is invalid. If there is no such situation, then the argument is valid. In terms

115

TRUTH TABLES AND VALIDITY

of the truth table, we look for the row where the premises are all TRUE and the conclusion
FALSE. WANG'S ALGORITHM is designed to find this situation (row) without having to
examine all situations. The algorithm will also tell us if there exists no such situation.

Before we introduce WANG'S ALGORITHM in full detail, we shall look at some
examples showing the principles that lie behind it. Consider this argument:

1. A
2. B

:. 3. A

Let us consider an attempt to make the premises TRUE and the conclusion FALSE. To
do so, we shall write the sentences of this argument in a new way. On the left, we shall
write a list of the sentences we are trying to make TRUE, and on the right, we shall
write a list of the sentences we are trying to make FALSE. We shall draw a vertical line
to separate the two columns. In the case of this argument, we write:

A I A
B

In other words, we are trying to make the sentences A and B TRUE and, in the same
situation, make A FALSE. But it should be easy to see that we cannot make the same
sentence both TRUE and FALSE in the same situation. Since sentence A appears on
both the list of sentences we are trying to make TRUE and the list of sentences we are
trying to make FALSE, it should be clear that this attempt will fail. This result leads us
to our first observation about these lists:

If the same sentence occurs on both the left and right lists of sentences, then we
shall fail in the attempt to make the sentences in the left list TRUE and those in the
right list FALSE. When this occurs, we shall say that this attempt has failed.

Let us consider another, more unusual argument:

1. C
2. -c

:. 3. D

Using the technique of left and right lists of sentences, we would now write:

C I D
-c

meaning that we are trying to make C and -C TRUE and D FALSE. But trying to make
-C TRUE is the same as trying to make C FALSE. A situation in which -C is TRUE
is the same situation as one in which C is FALSE. So, we could transform the lists in
the following way. We could move -c from the left to the right list, removing its outer
negation sign as we do so. The result would be:

116

C HA PTER 6

C D
C

But this is a case we have seen before: The same sentence occurs on both lists. We
have already seen that such an attempt fails. Seeing what occurred to the negation sign,
we can make a second observation:

If a negated sentence occurs on a list, move it to the other list and drop its outer
negation sign.

Now consider this argument:

1. (A & 8)
:. 2. 8

Transformed into our pair of lists, the argument becomes:

(A & 8) I 8

But how could '(A & B)', the first sentence on the left list, be made TRUE? It is a
conjunction, and there is only one way. The two conjuncts, A and 8, must both be TRUE.
In other words, the above lists can be transformed into:

A 8
8

We then see that this attempt, too, fails, because the same sentence occurs on both
lists. What we just saw happen to a conjunction leads us to our third observation:

If a conjunction appears on the left list, then remove that conjunction and add its
two conjuncts separately to the left list.

There is a similar operation that we may perform on a sentence on the right list:

If a disjunction appears on the right list, then remove that disjunction and add its
two disjuncts separately to the right list.

The justification for this operation is not difficult to find. The right list contains the sen-
tences we are trying to make FALSE. But how can we make a disjunction FALSE?
There is only one way: both of its disjuncts must be made FALSE.

We are accumulating rules for manipulating our pair of lists. We have three rules
so far for creating new list-pairs from old ones. They are:

1. If a negated sentence occurs on a list, then move it from that list to the other
list and drop its outer negation sign.

2. If a conjunction occurs on the left list, then replace that conjunction with its two
conjuncts, listed separately.

117

TRUTH TABLES AND VALIDITY

3. If a disjunction occurs on the right list, then replace that disjunction with its two
disjuncts, listed separately.

We also have made a generalization that "passes judgment" on a pair of lists:

If there is a sentence that occurs on both lists, then the attempt has failed.

Before we go further, let's apply these principles to another argument:

1. ~~(A & (B v C))
:. 2. (Av D)

The first list-pair we form is:

~~(A & (B V C)) I (AV D)

Since '~~(A & (B v C))' on the left list is a negation, we move it to the right side, being
careful to drop only its outer negation sign. The result is:

I
(AvD)
~(A & (B v C))

The left list is temporarily empty. But '~(A & (B v C))' on the right list is also a negation,
so applying rule 1 again, we have:

(A & (B V C)) I (AV D)

The sentence now on the left list is a conjunction, so we can apply rule 2, which deals
with conjunctions on the left list. The result is:

A
(B v C)

(Av D)

The sentence on the right list, '(Av D)', is a disjunction. According to rule 3, we obtain:

A I A
(B v C) D

At this point, we should see that one sentence, A, occurs on both lists. Employing our
generalization that passes judgment on list-pairs, we see that our attempt to make the
sentences on the left list TRUE and on the right list FALSE has failed. Because we
began by trying to make the premises of the argument TRUE and the conclusion FALSE,
and because making these successive list-pairs is the only way to do so, we can conclude
that this argument must be valid. That is, there is no situation where the premises are
each TRUE and the conclusion is FALSE.

So far, we have looked only at valid arguments. Consider this argument:

118

CHAPTER 6

1. (A & ~B)
:. 2. (8 v C)

Our first list-pair is:

(A & ~B) I (B V C)

Because '(A & ~B)' is a conjunction on the left list, we get:

A (B v C)
~B

And because '(B v C)' on the right list is a disjunction, we obtain:

A B
~B C

Finally, since '~B' on the left list is a negation, applying rule 1 produces:

A B
C
B

No sentence occurs on both lists. Furthermore, all the sentences on both lists are atomic
sentences.

When all the sentences on each list are atomic, and when no atomic sentence
occurs on both lists, we shall say that we have succeeded in our attempt to make the
sentences on the left list TRUE and on the right FALSE. Whenever this occurs, we know
that the original argument is invalid. When each list is composed of only atomic sen-
tences, and when no sentence occurs on both lists, we have found the situation in which
the premises are TRUE but the conclusion FALSE. Looking at the last pair of lists for
the preceding argument, we note that that situation is:

V(A) = TRUE
V(B) = FALSE
V(C) = FALSE

since A is on the "Make TRUE" list and Band Care on the "Make FALSE" list.
Let us consider another argument:

1. ~A
2. (Av 8)

:. 3. B

The first list-pair based on the argument is:

~A B
(Av 8)

119

TRUTH TABLES AND VALIDITY

Applying rule 1, we obtain these lists:

(AV B) I B
A

But now what do we do? Rule 2 applies only to conjunctions on the left list, and rule 3
applies only to disjunctions on the right list. Here we have a disjunction on the left list.

The occurrence of a sentence on the left list means that we are trying to make it
TRUE. In order to make a disjunction TRUE, at least one of the disjuncts must be TRUE.
But we have a choice of which one. In the above example, '(Av B)' must be made
TRUE, and this can be accomplished in either of two ways: either one disjunct, 'A', is
made TRUE, or the other disjunct, 'B', is made TRUE.

In other words, there are at least two ways to make '(Av B)' TRUE. This means
that we should now create two new pairs of lists. To do this, we duplicate the original
pair and then replace each disjunction with a disjunct-a different one for each duplicate:

1. (Av B) I B
A

2(a). (Av B) I B (Av B) B
A A

2(b). A B B I B
A A

Our attempt to make '(Av B)' TRUE "branches" into two new attempts. One of these
new attempts makes '(Av B)' TRUE by making A TRUE, the other by making B TRUE.

But notice that both of these two attempts have a sentence occurring on both lists.
On the new left branch, the sentence letter 'A' occurs on both lists. On the new right
branch, the sentence letter 'B' occurs on both lists. So both of these attempts fail, and
the argument is therefore valid.

We now add four new rules for transforming lists:

4. If a disjunction occurs on the left list, create two new list-pairs by duplicating the
original pair. On one of the new pairs, replace the disjunction with its first disjunct.
On the other new pair, replace the disjunction with its second disjunct,

5. If a conjunction occurs on the right list, create two new list-pairs by duplicating
the original pair. On one of the new pairs, replace the conjunction with its first
conjunct. On the other new pair, replace the conjunction with its second conjunct.

6. If a conditional occurs on the left list, create two new list-pairs by duplicating the
original pair. On one of the new pairs, replace the conditional with the negation
of its antecedent. On the other new pair, replace the conditional with its con-
sequent.

7. If a conditional occurs on the right list, replace it with two sentences: the negation
of its antecedent and also its consequent.

Rule 6 is based on the idea that for a conditional to be made TRUE, either the antecedent
must be made FALSE or the consequent made TRUE. On the other hand, if a conditional
appears on the right list (rule 7), for it to be made FALSE, its antecedent must be made

120

CHAPTER 6

TRUE and its consequent FALSE. To make its antecedent TRUE, we make the negation
of that antecedent FALSE.

Whenever we encounter a rule that requires us to "branch" into two attempts, we
shall always continue working on the first attempt. We shall put the second attempt "on
hold" and turn to it later. In the terminology of computer science, we place these other
list-pairs resulting from branching onto a "stack." WANG'S ALGORITHM is now virtually
complete. We need only to add two generalizations for evaluating these lists. These two
ger:ieralizations are:

If every attempt to make the sentences on the left lists TRUE and those on the right
lists FALSE fails-including all branched attempts-then the argument is valid.

If a single attempt succeeds, then the argument is invalid.

We have already described what it is for fin attempt to "fail" or "succeed." An attempt
has failed when a sentence occurs on both lists. An attempt has succeeded when only
atomic sentences occur on each list and no sentence occurs on both lists.

We are now in a position to give the full algorithm.

WANG'S ALGORITHM

1. INPUT a symbolized argument.
2. Create two lists: Place the premises of the argument on the left list and the

conclusion on the right list.
3. FOR every sentence on both lists:

(i) IF the sentence is a negation
THEN

(a) Move it from that list to the other list, and drop its outer negation
sign.

(b) TEST the lists. (TEST is a procedure described below.)

(ii) IF the sentence is a conjunction on the left list
THEN .

(a) Replace that conjunction with its two conjuncts, listed sepa-
rately.

(b) TEST the lists.

(iii) IF the sentence is a disjunction on the right list
THEN

(a) Replace that disjunction with its two disjuncts, listed separately.
(b) TEST the lists.

(iv) IF the sentence is a disjunction on the left list
THEN

121

TRUTH TABLES AND VALIDITY

(a) Create two new list-pairs by duplicating the original pair.
(b) On one of the new pairs, which will remain the current attempt,

replace the disjunction with its first disjunct.
(c) TEST the lists.
(d) On the other new pair, to be put on the "stack" for later manip-

ulation, replace the disjunction with its second disjunct.
(e) TEST the lists.

(v) IF the sentence is a conjunction on the right list
THEN

(a) Create two new list-pairs by duplicating the original pair.
(b) On one of the new pairs, which will remain the current attempt,

replace the conjunction with its first conjunct.
(c) TEST the lists.
(d) On the other new pair, to be "stacked," replace the conjunction

with its second conjunct.
(e) TEST the lists.

(vi) IF the sentence is a conditional on the left list
THEN

(a) Create two new list-pairs by duplicating the original pair.
(b) On one of the new pairs, which will remain the current attempt,

replace the conditional with the negation of its antecedent.
(c) TEST the lists.
(d) On the other new pair, to be "stacked," replace the conditional

with its consequent.
(e) TEST the lists.

(vii) IF the sentence is a conditional on the right list
THEN

(a) Replace it with two sentences: the negation of its antecedent
and also its consequent.

(b) TEST the lists.

4. STOP.

The output and the use of the stack are handled by the procedure TEST:

PROCEDURE TEST

1. IF the current attempt has a sentence on both lists
THEN

(a) Mark that attempt "failed."
(b) IF there is a list-pair remaining in the stack

122

C HA PTER 6

THEN

(i) Consider the last such pair that was added to be the current
attempt.

(ii) Delete it from the stack.
(iii) Proceed to the next step in the main procedure.

(c) IF there is not such a list-pair remaining in the stack
THEN OUTPUT "Argument valid" and STOP.

2. IF an attempt does not have a sentence occurring on both lists
THEN

(a) IF the sentences on both lists are all atomic
THEN OUTPUT "Argument invalid" and STOP.

(b) IF the sentences on both lists are not all atomic
THEN proceed with the next step in the main procedure.

Main Connectives

One idea used in step 3 of WANG'S ALGORITHM is the notion of a sentence being
a negation, a disjunction, a conjunction, or a conditional. How can this be determined
in a mechanical way? A sentence is a conditional if its "main connective" is - (and so
on for the other connectives).

The main connective of a sentence is the connective that is surrounded by the
fewest parentheses. This makes the notion of a main connective almost the opposite
of the notion of an "innermost subformula" (see Chapter 5).

The following procedure can be used to find what the main connective of a sentence
is:

PROCEDURE MAIN-CONNECTIVE

1. INPUT a sentence.

2. IF the sentence consists of only one character
THEN
(a) The sentence is atomic and has no main connective.
(b) STOP.

3. IF the first character is -
THEN
(a) The main connective is - .
(b) STOP.

4. Let n = 0.

123

TRUTH TABLES AND VALIDITY

5. FOR every character in the sentence:
(a) IF that character is '('

THEN let n be n + 1.
(b) IF that character is ')'

THEN let n be n - 1.
(c) IF that character is v and n = 1

THEN
(i) The main connective is v.
(ii) STOP.

(d) IF that character is & and n = 1
THEN

(i) The main connective is &.
(ii) STOP.

(e) IF that character is - and n = 1
THEN

(i) The main connective is-».
(ii) STOP.

Observe that steps 5(a) and 5(b) of this procedure are just the "first counter" of TRUTH-
VALUE CALCULATOR from Chapter 5. The "first counter" measures how deeply a
character is buried in parentheses. If the sentence is neither atomic nor a negation, then
the least deeply a character can be buried is 1. So the 'n = 1' clauses in step 5 tell us
when a character is surrounded by the fewest parentheses.

Some Examples

Let's apply WANG'S ALGORITHM to several arguments.
Consider this argument:

1. A
2. (A- (B & C))

:. 3. C

Applying WANG'S ALGORITHM, after steps 1 and 2, we have:

A I C
(A- (B & C))

Note that step 3 does not modify atomic sentences, such as A and C, so the next step
to take action is step 3(vi). The result is that we "branch" to two attempts. Here, and in
later examples, we duplicate list pairs and replace in one step.

124

CHAPTER 6

A
-A

C A
{B & C)

C

We continue work on the first pair of lists, applying now step 3(i):

A C
A

FAILED

That is, applying TEST, we see that a sentence occurs on both lists. We then return to
the other branch, which we had temporarily put aside:

A C
{B&C)

Applying step 3(ii):

A
B
C

C

FAILED
ARGUMENT VALID

That is, the test of this list-pair shows that the attempt has failed. Since there are no
more attempts to consider (that is, no more list-pairs in the stack), the argument is shown
to be valid.

Consider another argument:

1. -A
2. {A-B)

:. 3. -B

We first have:

-A -8
{A-B)

Then:

-B
{A- B) A

125

TRUTH TABLES AND VALIDITY

But now we branch to:

-A -8
A

B -8
A

Continuing work on the first branch:

-8
A
A

Then:

B I A
A

But since only atomic sentences occur on each list, and no sentence occurs on both
lists, TEST tells us the argument is invalid.

Summary

This chapter began with a review of truth tables, showing how to construct them for any
molecular sentence, no matter how complex. We gave an algorithm for doing this--
TRUTH-TABLE GENERATOR (which calls on TRUTH-VALUE CALCULATOR as one
of its procedures). We then showed how to use a truth table to determine whether or
not an argument is valid. The key ideas here are (1) to generate a truth table whose
left-most columns are for the atomic sentences occurring in the argument and whose
right-most columns are for the premises and conclusion, and (2) that the rows of this
truth table provide the information needed to determine the situations, if any, in which
the premises are TRUE and the conclusion FALSE. The algorithm VALID-
ITY/INVALIDITY DETERMINER (which calls on TRUTH-TABLE GENERATOR as one
of its procedures) does this. While efficient enough for computers, this latter algorithm
can rapidly get out of hand (by growing quite large). WANG'S ALGORITHM is an elegant
and more efficient procedure for determining validity. '

Exercises

A. For each of the arguments given below:
(a) State how many rows are required for a truth table for the argument.
(b) State the truth values in the columns for each of the atomic sentences.

126

CHAPTER 6

Example:
(A- (8 & -C))
(-B & -C)

:. -A

Answer:
(a) Eight rows are necessary.

[There are three distinct atomic sentences, A, B, and C, and 2 ** 3 = 8.]

{b) V(A) V(B) V(C)

0 0 0
0 0 1
0 1 0
0 1 1

0 0
0 1
1 0

1 1
1. -(A-8)

-8
.-. A

2. (CvD)
(-C & (D- 8))

:. (D & 8)
3. (A & -A)

B
,', -8

4. A
B

:. (Cv-C)
5. (A- (8 & C))

(8-D)
A

:. D
6. (A-8)

(-8 v C)
-A

,', -c
7. {-D & (8 v -C))

(-D- 8)
:. C

8. (B- -(C & D))
(C&D)

,', ---8

127

TRUTH TABLES AND VALIDITY

9. (A-B)
(B-C)

:. (A- C)
10. (A-B)

:. (-B- -A)
11. (A-B)

(A-C)
:. (B- C)

12. (Av B)
-A

:. B

B. Examine the following right-hand fragments of truth tables. Answer these ques-
tions: (1) Is the argument valid or invalid? (2) If the argument is invalid, which
row(s) show it to be so?
1. Prem. 1 Prem. 2 I Conclusion

0
1
0
1
1

2. Prem. 1

1
0
1
0

3. Prem. 1
-
0
1
0
0
1
0
1
0

4. Prem. 1

0

1 1
0 0
1 0
0 0

Prem. 2 Prem. 3 Conclusion

0 1 1
0 0 0

Prem. 2 Conclusion

1
0

Prem. 2

0
1
0
1
0
0
0

Prem. 3 Prem. 4 Conclusion

1
0

0
0
0

C. Apply TRUTH-TABLE GENERATOR to the arguments given in Exercise A.
Indicate whether each argument is valid or invalid.

128

CHAPTER 6

D. Steps 2 and 3 of TRUTH-TABLE GENERATOR tell us that the size of the truth
table needed to test an argument is a function of (1) the number of premises
and (2) the number of distinct atomic sentences in the premises and conclusion.
Calculate the size of the truth table, measured in rows and columns, needed for
arguments that have:

1. 3 premises, 2 atomic sentences
2. 2 premises, 3 atomic sentences
3. 4 premises, 3 atomic sentences
4. 3 premises, 5 atomic sentences

E. In the algorithm VALIDITY/INVALIDITY DETERMINER, we first filled in all the
blanks in a truth table (as part of step 2) and only then examined each row to
see if it showed the argument to be invalid (step 3). We might, however, consider
an alternative that first fills in only the first row of truth values and then immediately
examines this row to see' if it shows the argument to be invalid. If it does, the
procedure outputs "Invalid" and stops. If it doesn't, the procedure goes to the
next row and repeats the process.

What are the advantages and disadvantages to this method?

F. Apply WANG'S ALGORITHM to the following arguments to determine which are
valid and which are invalid.
1. (A&(CvD))

-c
(D-E)

:. E
2. (B- -C)

(Av (D & 8))
:.(DvA)

3. (A & C)
(D-A)
(D-E)

:. (D& E)

4. -(A- -8)
-(C v E)

:. (C-A)

5. (-A&(C-D))
(D-A)
((F & E)- C)

:. (-F v -E)

G. Determine a formula for calculating how large the left and right lists might become
for a given argument. (Hint: Consider the number of atomic sentences.)

H. Determine a formula for calculating the maximum number of branches an ap-
plication of WANG'S ALGORITHM might take.

129

TRUTH TABLES AND VALIDITY

I. Write a program to apply WANG'S ALGORITHM to a list-pair that contains &
and - as main connectives on the left list and -'>, -, and v on the right list.
(You will not have to consider branching and the resulting stacks.)

J. Write a program that applies WANG'S ALGORITHM in its entirety to an input
argument and prints out all the list-pairs, such that every branch of this "tree"
ultimately ends with either "ATTEMPT FAILS" or "ATTEMPT SUCCEEDS, AR-
GUMENT INVALID."

Suggestions for Computer Implementation

The design of a program to implement WANG'S ALGORITHM requires the following
considerations. First, something must be created to store the main list-pair ("the current
attempt"). Provisions must also be made for the list-pairs that are put "on hold"-that is,
for the stack. Second, a procedure, or function, must be created to input a sentence
and determine whether the sentence is atomic, a negation, a conditional, a conjunction,
or a disjunction. We might call this procedure MAIN-CONNECTIVE, since its principal
task is to determine the main connective in a sentence. And third, a procedure must be
designed to test the list-pairs: the procedure TEST.

In most programming languages, the list-pairs would be stored in string arrays. (In
languages that accept genuine lists, such as LISP and LOGO, the list-pairs can be stored
as lists.) LUST and RUST would be convenient names for the left and right lists currently
under consideration. It might also prove convenient to have a variable that remembers
how many sentences are stored in LUST and RUST at any given time: we might call
these two variables LCOUNT and RCOUNT.

The procedure MAIN-CONNECTIVE inputs a string and might output:

A If the input sentence is atomic.
If a negation.

v If a disjunction.
& If a conjunction.
> If a conditional.

For the manipulation of strings, we would also need to construct some functions or
procedures to perform the following tasks:

1. Remove the first character (usually a negation sign) from a string. We can call
this 'NEGOFF' for "NEGation OFF."

2. Generate from an input sentence the sentence to the left of the main connective.
We might call this the 'LEFTSEN' function.

3. Generate from an input sentence the sentence to the right of the main connective.
We might call this the 'RIGHTSEN' function.

130

CHA PTER 6

Here are some examples of the way these three functions work:

NEGOFF [--(A & B)]
LEFTSEN [((A & B) v (C v D))]

= -(A & B)
= (A & B)

RIGHTSEN [((A & B) v (C v D))] = (C v D)

Using these procedures, and using our program design language in a very detailed
way, the program might begin:

1. INPUT LUST [the premises].
2. INPUT RUST [the conclusion].
3. Let LCOUNT be the number of sentences on LUST.
4. Let RCOUNT be 1 [since only the conclusion is initially on RUST].
5. FOR every sentence on LUST, from I = 1 to LCOUNT:

(a) IF MAINCONNECTIVE(LUST(I)) = -
THEN

(i) Let RUST(RCOUNT + 1) be NEGOFF(LUST(I)).
(ii) Let LUST(I) be " " [a space, which serves as a placeholder].

(iii) Let RCOUNT be RCOUNT + 1.
(iv) TEST the list-pair.

(b) IF MAINCONNECTIVE(LUST(I)) = &
THEN

(i) Let LUST(LCOUNT + 1) be LEFTSEN(LUST(I)).
(ii) Let LUST(I) be RIGHTSEN(LUST(I)).

(iii) Let LCOUNT be LCOUNT + 1.
(iv) TEST the list-pair.

and so on for the RUST as well.
The branching that results from disjunctions or conditionals on LUST and conjunc-

tions on RUST requires some special considerations. One list-pair at a time is put on
a stack. Two stacks are needed; we can call them 'LSTACK' and 'RSTACK'. LSTACK
will store the stacked left lists, and RSTACK will store the stacked right lists. It is extremely
handy if both LSTACK and RSTACK are two-dimensional arrays whose first index in-
dicates when a list was stacked (first, second, and so on) and whose second index
indicates the sentence on the list. For example, LSTACK (2,3) would refer to the third
sentence on the second left list that was previously stacked. We shall put the lists onto
the stacks in the order of when we branch, and we shall take them off and make them
the "main attempt" in reverse order. That is, we shall first take the last list-pair that was
stacked. This is called the "last in, first out" method. A good reason for using stacks
rather than, say, a "first in, first out" organization (a queue) is that the last list-pair put
on the stack is probably more highly "digested"-that is, broken into simpler strings-
than the first and so might allow us to reach a "failed" attempt with minimal manipulation.
It is' also useful to have counters to keep track of how many sentences are in each
"level" of each stack.

131

TRUTH TABLES AND VALIDITY

One advantage of WANG'S ALGORITHM is that its implementation does not require
the sometimes huge arrays that VALIDITY/INVALIDITY DETERMINER does. If there
are not too many premises (no more than, say, 6) and not too many atomic sentences
(no more than, say, 10), then the arrays LUST and RUST need not be larger than 1 O,
or LSTACK and RSTACK larger than 10 x 10.

,--::-~ .. _..- ·,_·:~~;_.- ... ~: __ , .·~ ; .. _-;_~ .. -"· . :.;--~---::·-
.. .:C-.:H~A·;P.~T, E··R~ 7 .. ·,; ,,_;.. ;{\.'· ... ·':.: ".;

SENTENTIAL LOGIC:
Logical Equivalence,
Normal Forms, and

Polish Notation

Having answered one major question in
sentential logic, namely, how one can mechanically de-
termine whether an argument is valid or invalid, we now
turn to other topics of importance to logical theory. Some
molecular sentences are so constructed that they al-
ways have the truth value TRUE. These logically true
sentences are important in their own right, but they also
permit us to develop additional ways of determining
when arguments are valid or invalid.

We shall also in this chapter examine sen-
tences that, from the point of view of sentential logic,
have the same "meaning." Because of the huge range
of patterns that even these truth-functionally synony-
mous sentences can exhibit-especially when we per-
mit so many different connectives-we might wonder if
there are any "standard" ways to express a proposition
with certain sentences. This question takes us to the
topic of "normal forms," which are very useful for the
computerized analysis of properties of sentences such
as validity (as we shall see in Chapter 14).

Finally, a very different system of notation
from the one we have been using is examined. This
notational system, Polish notation, cleverly avoids the
use of all parentheses and has widespread use in com-
puter applications. Moreover, it enormously simplifies
some of the string-processing tasks we have consid-
ered earlier (although it complicates others).

133

134

CHAPTER 7

Tautologies and Arguments

We have been assuming-and shall continue to assume-that sentences can have one
of two truth values, either TRUE or FALSE; that is, if P is a sentence, then either
V(P) = TRUE or V(P) = FALSE. To decide whether a molecular truth-functional sen-
tence P is TRUE or FALSE, we usually need to find out the truth values of its atomic
constituents. However, two kinds of truth-functional sentences are such that we can
determine their truth value without knowing the actual truth values of their atomic con-
stituents; they are called "tautologies" and "contradictions."

A sentence Pis a tautology it and only it V(P) = TRUE tor all possible combinations
of truth values of its atomic constituents. A sentence is a contradiction if and only if it
is a conjunction of a sentence P and its negation, -P. It is evident that V(P & -P) = FALSE
in all situations. So, a tautology is a sentence that is always TRUE, and a contradiction
is a sentence that is always FALSE.

The third kind of sentence-the kind whose truth value varies with the particular
truth values of its atomic constituents-is called a contingent sentence.

Since the truth value of a tautology is TRUE and the truth value of a contradiction
is FALSE no matter what truth values their atomic constituents have, it follows that the
truth value of a tautology or a contradiction does not vary with the truth values of its
atomic constituents.

For example, 'It is raining or it is not raining' is a tautology. It we symbolize it as

(Av -A)

and look at its truth table,

V(A) V(-A) V(Av -A)

FALSE
TRUE

TRUE
FALSE

TRUE
TRUE

we see that V(A v -A) = TRUE no matter what V(A) and V(-A) are. That is, 'It is raining
or it is not raining' is TRUE whether or not it is, in tact, raining. It is always TRUE no
matter what the weather is; hence, it gives us no information about the weather.

Consider, next, the sentence 'It is raining and it is not raining'. This is a contradiction,
and an examination of its truth table shows that it is always FALSE:

V(A) V(-A) V(A & -A)

FALSE
TRUE

TRUE
FALSE

FALSE
FALSE

This sentence is FALSE, whether or not it is raining. Thus it also gives us no information
about the weather.

In general, it is claimed that no tautologies or contradictions provide any information.
Only contingent sentences do. The sentence 'It is raining and I have an umbrella' is
contingent. It we symbolize it as

135

EQUIVALENCES AND POLISH NOTATION

(A & H)

its truth table is:

V(A) V(H) V(A & H)

FALSE
FALSE
TRUE
TRUE

FALSE
TRUE
FALSE
TRUE

FALSE
FALSE
FALSE
TRUE

Thus sometimes it is TRUE (when it is raining and I have an umbrella), and sometimes
it is FALSE (when it is not raining or when I don't have an umbrella).

Since whether a sentence is a tautology or a contradiction depends on its structure
and the behavior of the logical truth functions, it is evident that no atomic sentence is
either a tautology or a contradiction. In the logic of sentences all atomic sentences are
contingent.

Arguments and Corresponding Conditionals

One important use of tautologies is in determining whether an argument is valid or
invalid. Any argument has a set of premises and a conclusion. First, consider an argument
with one premise, P, and a conclusion, Q:

1. p
2. Q

This argument is valid iff it is impossible for Q to be FALSE while Pis TRUE. But those
are precisely the circumstances under which the sentence

(P-Q)

is a tautology.
Next, consider an argument with two premises, P and Q, and conclusion R:

1. p
2. Q
3. R

This argument is valid iff it is impossible for R to be FALSE while P and Q are both
TRUE. In other words, this argument is valid iff the sentence

((P & 0)- R)

is a tautology.

136

CHAPTER 7

In general, for every argument with n premises (P1, P2, ... ,Pn) and conclusion Q:

n. Pn
:. n + 1. Q

there corresponds a conditional sentence, R, whose antecedent is the conjunction of
the argument's premises and whose consequent is the argument's conclusion:

(R) (((... ((P, & P2) & P3) & ...) & Pn)- Q)

An argument and its corresponding conditional sentence satisfy the following principle:

An argument is valid iff its corresponding conditional is a tautology.

Logical Equivalence

Often, two different sentences will be TRUE or FALSE in precisely the same situations.
That is, for any combination of truth values of their atomic constituents, both sentences
will have the same truth value. As a simple example, consider an atomic sentence P
and its double negation --P. They both have the same atomic constituent, P, and
V{P) = TRUE if and only if V(--P) = TRUE. We say that P and --Pare "logically
equivalent."

As another example, consider a conditional, (P - Q), and its "contrapositive,"
(-Q- -P). Let us look at their truth tables (using 1 and O for TRUE and FALSE,
respectively):

V(P) V(Q) V(P-Q)

0
0

0
1
0

1
0

V(P) V(Q) V(-P) V(-Q) V(-Q- -P)

0 0 1
0 1 0 1
1 0 0 1 0

0 0

137

EQ U IVA LEN C E S A N D PO LI SH N OT A T IO N

We see that V(P- Q) = V(-Q- -P) for all possible combinations of truth values of
P and Q. So (P - Q) and (-Q - -P) are logically equivalent.

In general, a sentence P is logically equivalent to a sentence Q if and only if
V(P) = V(Q) for all possible combinations of truth values of their atomic constituents.

What about '(Av -A)' and '(B v -B)'? Are they logically equivalent? They share
no atomic constituents, so you might think that they couldn't be. Yet they are both
tautologies, so they are both always TRUE. Hence V(A v -A) = V(B v -B) for all possible
combinations of truth values of their atomic constituents. So they are logically equivalent.
So are '(A & -A)' and '(B & -B)', since they are both contradictions, hence always
FALSE. In fact, all tautologies are logically equivalent to each other, and all contradictions
are logically equivalent to each other (but, of course, no tautology is logically equivalent
to any contradiction).

There is another important relationship between tautologies and logical equivalence.
Consider a biconditional, (P - Q). According to its truth table, V(P - Q) = TRUE if and
only if V(P) = V(Q). That is, a biconditional is TRUE if and only if its left-hand side has
the same truth value as its right-hand side. This suggests the following principle:

A sentence P is logically equivalent to a sentence Q
if and only if (P ~ Q) is a tautology.

As an example, consider (P- Q) and (-Q- -P)" again. Instead of constructing
two separate truth tables to show that they are logically equivalent, we could, in effect,
combine the tables by constructing a single truth table for their biconditional:

((P- Q) - (-Q - -P))

and show that this sentence is a tautology.
There are a number of important logical equivalences. We shall leave many of these

as exercises, but three will be singled out for discussion here.
The first two are known as De Morgan's laws:

1. (-(P&Q)-(-Pv-Q))
2. (-(P v Q) - (-P & -Q))

Sentences (1) and (2) are tautologies, so their respective left- and right-hand sides are
logically equivalent. It is important to see what this means. Consider De Morgan's law
1 . It says that the negation of a conjunction is logically equivalent to a disjunction-in
particular, the disjunction of the negations of the original conjuncts. Similarly, De Morgan's
law 2 says that the negation of a disjunction is logically equivalent to a conjunction-in
particular, the conjunction of the negations of the original disjuncts.

The left-hand side of law 1 is also logically equivalent to (P NAND Q). Thus (P NAND
Q) is logically equivalent to a disjunction. You should check each of these facts by
constructing appropriate truth tables.

Another important logical equivalence is called exportation. The sentence

(((P & Q) - R) - (P - (Q - R)))

is a tautology, so the two sides of the biconditional are logically equivalent.

138

CHAPTER 7

When you are writing computer programs, these rules can be especially helpful in
finding efficient ways of expressing conditions that need to be tested. For instance, some
computers will not allow you to use a conditional instruction of the form

IF P and Q
THEN do X

If P is FALSE and Q has not been assigned a value yet, it may give you a run-time
error. This can be avoided by using the logically equivalent command

IF P
THEN IF Q

THEN do X

Since P is FALSE, the command is not executed, and so the illegal value for Q is never
encountered.

Normal Forms

Suppose you wanted to prove some claim about all sentences. It would be helpful if
there were some uniform way to express them. Such a uniform method of expressing
sentences is called a normal form. In particular, we devise normal forms so that every
sentence is logically equivalent to a sentence in a normal form. In this section, we shall
describe one kind of normal form: conjunctive normal form. Another important kind,
disjunctive normal form, is dealt with in Exercise G.

To define conjunctive normal form, it will prove helpful first to define another kind
of sentence called a basic disjunction:

1. If P is an atomic sentence or the negation of an atomic sentence,
then P is a basic disjunction.

2. If P and Q are each basic disjunctions,
then (P v Q) is a basic disjunction.

3. Nothing else is a basic disjunction.

So, for example,

A
-A
-B
(Av B)
(Av -A)
((Av B) v C)
((Av B) v (D v -E))

are all basic disjunctions.

139

EQUIVALENCES AND POLISH NOTATION

We can now define what it means for a sentence to be in conjunctive normal form
(CNF):

1. If P is a basic disjunction,
then P is in CNF.

2. If P and Q are each in CNF,
then (P & Q) is in CNF.

3. Nothing else is in CNF.

So, for example, all the basic disjunctions listed above, as well as

((Av B) & (-Av B))
(A & -A)
(((Av B) & (Av C)) & -B)

are in CNF. You will note that a sentence in CNF is always a multiple conjunction of
disjunctions (if you include atomic sentences and their negations standing alone as trivial
cases of conjunctions and disjunctions).

There are several algorithms for turning any sentence P into an equivalent sentence
Qin CNF. One requires the use of truth tables:

ALGORITHM CNF-1

1. INPUT sentence P.
2. Apply TRUTH-TABLE GENERATOR to construct a truth table for P.
3. IF P is a tautology

THEN let Q = (R v -R), where R is the alphabetically first atomic sen-
tence in P.

4. IF P is not a tautology
THEN
(a) FOR each row ROW of the truth table such that V(P) = o

(i) Form a set NEG-ATOM(ROW) of atomic sentences and their
negations as follows:

(1) FOR each atomic constituent R
(a) IF V(R) = 1

THEN put -R in the set.
(b) IF V(R) = 0

THEN put R in the set.
(ii) Let BASIC-DISJ(ROW) = the disjunction of the members of

NEG-ATOM(ROW). (Note that BASIC-OISJ(ROW) is a basic
disjunction.)

(b) Let Q = the conjunction of all the BASIC-DISJ(ROW)s.
5. OUTPUT CNF sentence Q.
6. STOP.

140

CHAPTER 7

Another method for transforming a sentence into a CNF does not require the use
of truth tables:

ALGORITHM CNF-2

1. INPUT sentence P.
2. Replace all subformulas of the form (R - S) with sentences of the form

((R-+ S) & (S-+ R)). (Question: What principle allows you to do this?)
3. Replace all subformulas of the form (R-+ S) with sentences of the form

(~R v S).
4. Repeat the following until the only negated sentences are atomic sentences:

(a) Replace all subformulas of the form ~(R & S) with sentences of the
form (~R v ~S).

(b) Replace all subformulas of the form ~(R v S) with sentences of the
form (~R & ~S).

(c) Replace all subformulas of the form ~~R with sentences of the form
R.

5. Repeat the following until a sentence in CNF is reached:
(a) Replace all subformulas of the form (R v (S & T)) with sentences of

the form ((R VS) & (R VT)).
(b) Replace all subformulas of the form ((R & S) v T) with sentences of

the form ((R V T) & (S V T)).
6. Call the result Q.
7. OUTPUT CNF sentence Q.
8. STOP.

One useful feature of CNF is that it makes it easy to identify tautologies. In fact, if
you use Algorithm CNF-2 to transform a sentence into a logically equivalent CNF sen-
tence, you can decide whether it is a tautology without using truth tables. The principle
is:

A sentence in CNF is a tautology if and only if each conjunct contains both an
atomic sentence and its negation.

For example, consider the sentence

((A & (A- B))- B)

We shall find logically equivalent CNF sentences using both algorithms, and we shall
also check for tautologousness.

Algorithm CNF-1: First, we construct the truth table (you should be sure to do this!).
You should see right away that the sentence is a tautology, so

141

EQUIVALENCES AND POLISH NOTATION

(Av -A)

is an equivalent CNF sentence.
Algorithm CNF-2:

Step 2 is inapplicable.
Step 3: We transform the sentence first into

((A & (-Av 8))- B)
and then into

(-(A & (-Av 8)) v 8)
Step 4(a): ((-Av -(-Av B)) v B)
Step 4(b): ((-Av (--A & -B)) v B)
Step 4(c): ((-Av (A & -8)) v B)
Step 5(a): (((-Av A) & (-Av -B)) v B)
Step 5(b): (((-Av A) v 8)) & ((-Av -8) V 8))

This is in CNF, since it is a conjunction of basic disjunctions. (Each conjunct is a basic
disjunction, since each is a disjunction of atomic sentences and negations of atomic
sentences.) Moreover, since each conjunct contains both an atomic sentence and its
negation, we see that our original sentence is a tautology.

You might be puzzled about why the two algorithms produced different CNF sen-
tences. In general, there are infinitely many CNF sentences equivalent to a given sen-
tence. (Can you prove this?) All that matters is that the sentence be in CNF and be
logically equivalent to the original sentence.

Consistency and Satisfiability

Let us say that a sentence whose truth value is TRUE in some situation (that is, for
some values of its atomic constituents) is a satisfiable sentence.

A contradiction is a sentence whose truth value is always FALSE, regardless of the
truth values of its atomic components. Because of this, contradictions are not satisfiable.
Because tautologies and contingent sentences can have the value TRUE, they are
satisfiable. The notion of satisfiability enables us to investigate some important properties
of sets of sentences, and it also gives us another powerful tool for determining the validity
of arguments.

Let us explore some simple examples before we discuss the general notion of
satisfiability. Consider:

(A) 1. The car starts only if it has gas in its tank.
2. It has gas in its tank, but the car doesn't start.

We can see this more clearly by symbolizing with obvious abbreviations:

(A) 1. (C- G)
2. (G & -C)

142

CHAPTER 7

Now it is easy to show that (A1) is satisfiable [take V(C) = FALSE], and it is almost as
easy to show that (A2) is also. We now raise a new question: Are they "simultaneously"
satisfiable? By this we mean: Is there a single assignment of truth values to all the
atomic components such that both molecular sentences have the truth value TRUE? In
this case, V(C) = FALSE and V(G) = TRUE results in both (A 1) and (A2) having the
truth value TRUE.

Here is an example where the sentences are each satisfiable, but the two of them
are not simultaneously satisfiable.

(B) 1. If the fish are biting, then it's not the time to swim.
2. It's time to swim, and the fish are biting.

We can symbolize this as:

(8) 1. (F- -H)
2. (H & F)

In this example, notice that

V(F - -H) = TRUE when V(F) = FALSE, and
V(H & F) = TRUE when V(H) = V(F) = TRUE

so each sentence is satisfiable. But there is no single value for V(F) and for V(H) for
which V(F - -H) and V(H & F) are both TRUE simultaneously.

We can easily generalize this for any number of sentences.

If there is a single assignment of truth values to all the atomic components of all
the sentences in a set such that each of the sentences in the set has the truth value
TRUE, then the set of sentences is simultaneously satisfiable.

Here is how we can use this notion to investigate the validity of arguments. Re-
member that if an argument is valid, then whenever all the premises are TRUE, the
conclusion must be TRUE. Thus if we add the negation of the conclusion to the premises,
we shall have a set of sentences that is not simultaneously satisfiable, if the argument
is valid. And in some ways it is easier to show that a set of sentences (especially a finite
one) is not simultaneously satisfiable than it is to show that an argument is valid.

One simple way of showing that a set of sentences is not simultaneously satisfiable
is to conjoin all the sentences in the set into a gigantic conjunction. Then transform this
conjunction into disjunctive normal form (see Exercise G). If each of the disjuncts contains
a contradiction, then the original set was not simultaneously satisfiable.

So far, we have used the notion of simultaneous satisfiability (or its absence) to
show the validity of arguments. Can we reverse this? That is, can we use the notion of
a valid argument to show that a set of sentences is (or is not) simultaneously satisfiable?
Again, we return to the notion of a valid argument: when the premises are TRUE, the
conclusion must be TRUE. But what if the conclusion of a valid argument can't be TRUE?
What if the conclusion of a valid argument is a contradiction? In this case, we can reason

143

EQUIVALENCES AND POLISH NOTATION

"backward" and claim that not all the premises can be TRUE or, more precisely, that
the set of premises is not simultaneously satisfiable.

With a little more terminology, we can put all this together.

If the sentences in a set are used as the premises of a valid argument whose
conclusion is a contradiction, then that set of sentences is called inconsistent.

If there is no such valid argument using the sentences in this set as premises, then
the set is consistent.

If we put the negation in different places, we can say that if no contradiction is a valid
conclusion from a set of premises, then this set is consistent.

The key notions we have used in this section are those of a (sentence that is a)
contradiction, a consistent set of sentences, an inconsistent set of sentences, a set of
sentences that is simultaneously satisfiable (or that is not simultaneously satisfiable),
and a valid argument. Let us consider some ways in which these notions are related.

1. A valid argument can have a conclusion that is a contradiction
iff

The premises are inconsistent
iff

The premises are not simultaneously satisfiable.
2. The premises of an argument and the negation of the conclusion are

not simultaneously satisfiable
iff

This enlarged set is inconsistent
iff

The original argument is valid.
3. The set of premises of an argument is inconsistent

iff
The set of premises is not simultaneously satisfiable

iff
Any argument with these premises is valid.

This last claim requires some comment. If a set of premises of an argument is not
simultaneously satisfiable, there will be no occasion when the premises are each TRUE
and the conclusion FALSE. Hence the argument is valid.

For practical problem solving, the most important relation is 2 above. For instance,
to show that

1. (Av B)
2. -A
3. B

is a valid argument, conjoin each of the premises and then the negation of the conclusion:

(((Av B) & -A) & -B)

144

CHAPTER 7

Transforming this to disjunctive normal form (using the techniques of Exercise G), we
get:

(((A & -A) v (8 & -A)) & -8)

and then:

(((A & -A) & -8) v ((13 & -A) & -8))

We now see that each disjunct contains a contradiction, and so the original argument
was valid.

Polish Notation

The use of parentheses, while needed in order to avoid ambiguities, is cumbersome.
Often, by the adoption of conventions about "precedence" of logical connectives, the
number of parentheses can be reduced, making formulas more readable. A somewhat
different system of notation avoids the use of parentheses altogether.

The notation we have been using is sometimes called "infix" notation, since the two-
place, truth-functional connectives(&, v, -, ~, NAND, NOR, xoa) are written "in" between
the sentence letters. The negation sign, however, is "prefixed" to its sentence. If "prefix"
notation is used for all the connectives, then parentheses are not needed, as we shall
see.

The most common kind of prefix notation for logic is called Polish notation. Instead
of using the symbols we have been using for connectives, Polish notation uses certain
capital italic letters, as shown below:

N (for "Negation")
v A (for "Alteration")
& K (for "Konjunction")
- C (for material "Conditional") ~ E (for "is Equivalent to")

We can define a well-formed sentence in Polish notation as follows:

1. Any atomic sentence is well-formed in Polish notation.
2. If P and Q are each well-formed in Polish notation, then so are

NP
APQ
KPQ
CPQ
EPQ

3. Nothing else is well-formed in Polish notation.

145

EQUIVALENCES AND POLISH NOTATION

The five sentence-forms in clause 2 of the definition correspond to

-P
(P V Q)
(P & Q)
(P-->Q)
(P-Q)

in infix notation.
Let's look at some other sentences in both notations:

Infix Polish

(1) (P&(Q&R))
(2) ((P & Q) & R)

KPKQR
KKPQR

In (1), the first and second occurrences of K correspond to the first and second
occurrences of &, respectively. The string in Polish notation may be read as follows:
The conjunction of P with (the conjunction of Q with R).

In (2), the first occurrence of K corresponds to the second occurrence of &, and
the second occurrence of K corresponds to the first occurrence of &. The Polish-notation
string may be read as follows: The conjunction of (the conjunction of P with Q) with R.

As you can see, parentheses are not needed in Polish notation (although they can
sometimes be useful) because the Polish-notation strings are not ambiguous. Perhaps
this can be made clearer with the following examples:

Infix Polish

(3) (P v (Q & R))
(4) ((P v Q) & R)

APKQR
KAPQR

To test your understanding of Polish notation, make sure you can see why the following
strings are equivalent:

(P v (Q--> R))
(-(P & Q) - (-P v -Q))

APCQR
ENKPQANPNQ

A simple and elegant algorithm for determining if a string in Polish notation is well-
formed illustrates the fact that to solve some problems you need not always pay attention
to the usual meanings of symbols.

146

CHAPTER 7

ALGORITHM WFP

1.INPUT string Pin Polish notation.
2.FOR each sentence letter Q in P

(a) Let RANK(Q) = 1.
3.Let RANK(N) = 0.
4.Let RANK(A) = -1.
5.Let RANK(K) = -1.
6.Let RANK(C) = -1.
7.Let RANK(E) == -1.
8.Let SUM = 0.
9.FOR each symbol Sin P, beginning at the right and moving to the left,

(a) Let SUM = SUM + RANK(S).
(b) IF SUM <i;; 0

THEN OUTPUT "Not well-formed."
10.IF SUM= 1

THEN OUTPUT "Well-formed."
11.IF SUM> 1 .

THEN OUTPUT "Not well-formed."
12.STOP.

Two other useful algorithms would be the ones for translating from infix to Polish
notation and from Polish to infix. Let us consider the former. As a rough beginning, we
want to replace all occurrences of -P with NP, (P v Q) with APQ, etc. Consider ((P &
Q) v (R & S)). Where do we begin? We could work from the inside out; that is, we could
begin with the innermost subformulas, first getting the hybrid (KPQ v KRS), then getting
AKPQKRS.

Or we could proceed by identifying the main connective (in this case: v), forming,
first, the hybrid A(P & Q)(R & S), and then taking each remaining molecular sentence
and repeating the process: identifying the main connective and translating into Polish
notation. The result is AKPQKRS.

An algorithm for the second way proceeds as follows:

ALGORITHM INFIX-TO-POLISH

1. INPUT a sentence P in infix notation.
2. IF P is atomic

THEN OUTPUT P and STOP.
3. IF P is not atomic

THEN
(a) Apply ALGORITHM MAIN-CONNECTIVE (from Chapter 6).
(b) Let* be the main connective of P.

147

EQ U IVA LEN C E S A N D PO LI SH N OT A T IO N

4. IF P has the form -Q (that is, IF * = -)
THEN transform Pinto NQ.

5. IF P has the form (Q * R)
THEN transform P into AQR, KOR, CQR, or £QR, as appropriate.

6. Repeat steps 3 to 5 for each subformula of the transformed sentence until
there are no more occurrences of infix connectives.

7. OUTPUT the result.
8. STOP.

One other advantage of Polish notation, besides the elimination of parentheses, is
that it becomes extremely easy to identify the main connective of a sentence, hence
extremely easy to apply WANG'S ALGORITHM. The ease with which the main connective
can be identified also makes it easy to figure out the structure of a sentence in Polish
notation. Consider, for instance,

(5) CKNBCGBNG

The main connective is always the first one, so sentence (5)'s main connective is C.
Since C is a two-place connective, sentence (5) has the form CPQ. What are P and Q?
Since P must immediately follow C, it must begin with K. Similarly, since K is a two-
place connective, P must be of the form KRS, for some sentences R and S. Also, R
must begin with N. But N is a one-place connective; hence R must be NB. Hence S
must be CGB; hence Q must be NG. Using parentheses to clarify this, we get

C(K(NB) (CGB)) (NG)

or, in infix notation,

((-8 & (G- 8))- -G)

Summary

We began this chapter by considering sentences that are TRUE in all situtations (tau-
tologies), sentences that are FALSE in all situations (contradictions), and sentences
whose truth values vary from one situation to another (contingent sentences). This
enabled us to point out an interesting relationship between an argument and its corre-
sponding conditional sentence (a conditional sentence whose antecedent is the con-
junction of the premises of the argument and whose consequent is the conclusion of
the argument): An argument is valid iff its corresponding conditional is a tautology.

Many sentences have the same truth values as other sentences in the same situ-
ations. Such pairs of sentences are logically equivalent. Thus any two tautologies are

148

CHAPTER 7

logically equivalent, and any two contradictions are logically equivalent. Two other im-
portant logical equivalences that we covered are De Morgan's laws and Exportation.

A third important logical equivalence is the one between any sentence and its
conjunctive normal form (CNF): a sentence whose form is a conjunction of disjunctions.
We gave two algorithms for finding a CNF sentence that is logically equivalent to a given
non-CNF sentence.

We then used these concepts to explore sets of sentences. When there is a situation
in which all the sentences in some set are TRUE, we say that they are simultaneously
satisfiable. If the sentences in a set are taken as the premises of an argument, then the
set is consistent if no contradiction can be validly concluded from it.

Finally, we looked at Polish notation, which uses different symbols for the connec-
tives and has a different way of representing molecular sentences. Polish notation com-
pletely eliminates the need for parentheses, and it facilitates such procedures as iden-
tifying the main connective of a sentence.

Exercises

A. Determine whether each of the following sentences is tautologous, inconsistent,
or contingent:
1. (((A- 8) & A)- 8)
2. (((A- 8) & A)- -8)
3. (((A- 8) & -8) - -A)
4. (((A- 8) & -8) - A)
5. (((A- 8) & -A) - -8)
6. (((A- 8) & 8)-A)
7. (((Av 8) & -A)- 8)
8. (((Av 8) & -A)- -8)
9. (((A- 8) & (8- C))- (A- C))

10. (((A- 8) & (A- en- (8- C))
11. ((A & -A) - 8)
12. ((A & -A)- -8)
13. (((A- 8) & A) & -8)
14. ((Av 8) & (-A & -8))
15. (A&(-A&8))
16. (A & (-A & -8))
17. (A~A)
18. (A~ -A)
19. (((A~ 8) & A)~ 8)
20. ((A NANO A) V A)
21. ((A NANO 8) NANO (A NANO 8))
22. ((A NOR A) NOR (8 NOR 8))
23. (A NANO (8 NANO 8))
24. ((A NOR A) & A)
25. ((A & (A NANO (8 NANO C)))- C)
26. ((A & (A NANO (8 NANO 8))) - 8)

149

EQUIVALENCES AND POLISH NOTATION

27. ((ANAND 8) NOR A)
28. ((A NOR 8) NANDA)
29. (A XOR A)
30. ((A XOR 8) & -A)
31. (((A XOR 8) & -A) - 8)
32. -(A XOR -A)

B. Construct the truth table for
((A- B) ~ (-B- -A))

and show that it is a tautology.
C. Corresponding Conditionals

1. What are the conditional sentences corresponding to the following arguments?
a. 1. A

2. B
3. C
4. D

:. 5. E
b. 1. (Av 8)

2. C
:. 3. D

c. 1. A
2. B
3. C

:. 4. -(D & C)
d. 1. (A & B)

2. C
:. 3. D

2. Determine whether the following arguments are valid or invalid by determining
whether their corresponding conditionals are tautologies.
a. If Sally goes to the zoo, she will see an elephant. Sally saw an elephant

today, so she must have gone to the zoo.
b. If Sally goes to the zoo, she will see an elephant. Sally went to the zoo

today, so she must have seen an elephant.
3. What are the arqurnents that correspond to the following conditional sen-

tences?
a. (A- B)
b. (((A & B) & C)- D)
c. ((A & (B & C))- D)
d. (((Av B) & C)- D)
e. ((Av (8 & C))- D)

D. Decide which of the following pairs of sentences are logically equivalent:
1. (-Av 8), (A- 8)
2. -(A & -8), (A - B)
3. A, (A & A)
4. A, (Av A)
5. (A & (B & C)), ((A & B) & C)

150

CHAPTER 7

6. (Av (B v C)), ((Av B) v C)
7. -(A- B), (-A & -B)
8. -(A & B), (-A & -B)
9. -(Av 8), (-Av -B)

10. (A- B), (B-A)
11. (A - B), ((A---c> B) & (8---c> A))
12. (A - B), ((A & B) v (-A & -B))
13. (Av (B & C)), ((Av B) & (Av C))
14. (A & (B v C)), ((A & B) v (A & C))
15. --A, ----A
16. ((Av -A) & C), ((B v -B) & C)
17. ((Av -A) & C), C
18. ((A & -A) v C), C
19. (A XOR 8), -(A - 8)
20. -(A - B), (A - -B)
21. (A XOR 8), ((Av B) & -(A & 8))
22. (A NAND A), (A NOR A)
23. ((A NANDA) NAND (8 NAND 8)), (A & 8)
24. (A---c> 8), (((A NOR A) NOR 8) NOR ((A NOR A) NOR 8))
25. ((A NOR 8) NOR (A NOR 8)), (AV 8)

E. Let P be a sentence. Construct another sentence Q as follows:
1. Replace all occurrences of (S - T) in P by (-S v T), and all occurences of

(S-T) by ((-S v T) & (-T v S)).
2. Replace all atomic sentences in P with their negations.
3. Interchange all occurrences of v and &.
4. Negate the result.
5. Eliminate double negations (that is, replace all occurrences of --R with R).
For instance, if P = '-(-A & B)', then steps 1 to 4 yield '--(--Av -B)', and
so, by step 5, Q = '(A v -B)'. For any sentence P, we call Q constructed as
above the dual of P.
1. Construct the dual of each of the following:

a. -(A & B)
b. (Av 8)
c. ((Av B) ---c> C)
d. (-A- (B & C))

2. Show that for any sentence P, Pis logically equivalent to its dual.

F. Using either ALGORITHM CNF-1 or CNF-2, find sentences in conjunctive normal
form (CNF) that are logically equivalent to:
1. (Av A)
2. (A & A)
3. (A-B)
4. ((A & B) v (A & C))
5. ((Av B) & (A & C))

151

EQUIVALENCES AND POLISH NOTATION

6. ((A & (A - B)) - B)
7. ((A & B) v (A & C) v (A & B & -C))
8. ((A v B) & (A v C) & (A v B v -C))
9. ((A & B) & (-Av -B))

10. ((-A & B) & (Av -B))
11. ((-A & B) v (A & -B))

G. Disjunctive Normal Form
1. Define disjunctive normal form (DNF). (Hint: Just as a sentence in CNF is a

conjunction of disjunctions, so a sentence in DNF will be a disjunction of
conjunctions.)

2. Write an algorithm for finding an equivalent DNF sentence for any given
sentence.

3. Turn the following sentences into DNF:
a. (A & A)
b. (A- B)
c. ((Av B)- C)
d. (A & -(B v C))
e. (A- (B & C))

H. Polish Notation
1. Translate these sentences from infix to Polish notation:

a. (((D- B) & D)- B)
b. (((D - B) & (B - E)) - (D - F))
c. ((D- B) ~ (-B- -0))
d. (D & (B & (F & G)))
e. -(0 & (B v (-F & G)))
f. (((0 & B) & F) & G)

2. Translate each of the following from Polish into infix notation:
a. ABCDEFG
b. CKCBDBD
c. CBABD
d. CKBDKBD
e. ENNBB
f. EBNNB

3. Write an algorithm for translating from Polish to infix notation.
4. Postfix notation (also called reverse Polish notation, or RPN) can be defined

as follows:
I. Any atomic sentence is well-formed in RPN.

II. If P and Q are each well-formed in RPN,
then so are
PN
PQK
PQA
PQC
PQE

152

CHAPTER 7

Ill. Nothing else is well-formed in RPN.
Here, PN = -P

PQK = (P & Q)
PQA = (P v Q)
PQC = (P- Q)
PQE = (P-Q)

a. Write an algorithm for translating from infix to RPN.
b. Write an algorithm for translating from RPN to infix notation.
c. Apply your algorithm for translating from infix to RPN to the sentences in

Exercise H-1 .

SENTENTIAL LOGIC:
A Natural Deduction

System

The methods and procedures for deciding
whether an argument is valid are complete and work-
able-as the algorithms show. They can be used to
determine in a finite amount of time whether any sym-
bolized argument in the logic of sentences is valid or
invalid.

However, we might have some reservations about
these methods. First, they require us to busy ourselves
with the truth or falsity of sentences in quite explicit
terms. We must calculate when all the relevant sen-
tences are TRUE in various situations. The result is a
table showing when certain sentences are TRUE and
when they are FALSE. Second, it is especially difficult
by these methods to show that an argument is valid.
That is, the truth-table method takes the longest time
to apply when the argument is a valid one, and a shorter
time if the argument is invalid. Finally, it is unlikely that
anyone actually reasons explicitly using the compli-
cated relationships between truth and falsity that we
have investigated. It would be nice to have an easier
way to reason and to check reasoning for validity-a
way, for example, which requires fewer calculations and
less writing.

For these and many other historical reasons, most
practicing logicians, mathematicians, and computer sci-
entists prefer to do their reasoning, and to demonstrate

153

154

CHAPTER 8

the validity of reasoning, in what are called "formal deduction systems." A formal de-
duction system has its main mission in showing an argument to be valid; it is usually
not concerned with showing an argument to be invalid.

A formal deduction system shows an argument to be valid in a way that does not
require a use of the concepts TRUE and FALSE. Instead, a formal deduction system
deals with the "form" or "pattern" of an argument without considering, even temporarily,
whether the sentences involved are TRUE or FALSE, or to what things in the real world
these sentences refer. It is in this sense that a formal deduction system is formal. It
deals only with the form (pattern) of an argument, not with its subject matter.

The main vehicle of a formal system is a derivation. A derivation is often called a
"deduction" or, slightly misleadingly, a "proof." A derivation shows that certain strings of
symbols follow from other strings according to permitted rules. A derivation in a formal
deduction system is a deduction of logical consequences from premises. It does not
consider the meaning of the terms in a sentence or even the truth values of the sentences.
The sole question in a derivation is whether a sentence, considered as a pattern of
symbols, follows from other sentences by permitted rules. In deductive logic, these rules
are usually called rules of inference, because their task is to change some sentences
into others that can be validly inferred. We can think of the rules of any formal system
as preestablished ways for transforming some strings into others.

Because a formal system has rules that must be followed, it is natural to think of a
deduction or derivation as being much like a game. The pieces, cards, plays, or moves
of a game do not usually have any significance outside of the game, but a game must
be played according to certain rules. So, too, the "playing pieces" of a derivation do not
have any clear meaning-or, rather, it is not worthwhile in constructing the derivation to
consider their meaning-but they must be handled according to preestablished rules.

A Simple Formal System:
The Game of Stars and Slashes

To begin, let us consider some games that can be played with four kinds of symbols as
playing pieces. The available symbols will be the two letters 'A' and 'B', stars, and slashes:

A B * /
These symbols can be combined, or "strung together," in many ways, and we may use
as many copies of these symbols as we wish. For example,

are all strings of these symbols. To create a game, some of these strings will be called
"winning" strings, and the others will all be "losing" strings. The object of one game might

155

NATURAL DEDUCTION

be to construct as many winning strings as possible. (To make this game more interesting,
you might want to add some constraints, such as a time limit, but we won't do that here.)
Another game might be to decide whether a given string is a winning string or a losing
string. For instance, an opponent might challenge you to decide whether

S /////A*B/*Al*Al*Bf*B//

is a winning string.
Of course, as in any other game, there will have to be some rules, and clearly, we'll

need rules that precisely specify which strings are winning strings and which are losing
strings. For both the "construction" game and the "decision" game, there will be three
rules:

1. The symbol
A

by itself is a winning string.
2. The symbol

B
by itself is a winning string.

3. If S, and S2 are winning strings, then
/S,*S2'

is a winning string. That is, to make a new winning string, we connect one winning
string to another with the symbol '*' and sandwich the result between a pair of
slashes.

It is usually understood that nothing else is a winning string except the strings that result
from applying rules 1 to 3.

To see how these rules work, we can start playing the first, "construction," game.
According to the first two rules, the string

A

and the string

B

are winning strings-they have been "given" to us by rules 1 and 2. Now that we have
two winning strings, rule 3 can be applied. To apply it, we just have to consider the
special case where S, is 'A' and S2 is 'B'. Then, according to rule 3,

/A*B/

is a winning string. According to another application of rule 3, this time taking S, as 'B'
and S2 as 'A',

/B*AI

156

CHAPTER 8

is a winning string. We now have four winning strings, and it is clear that we can continue
to apply the third rule to produce many more of them. For instance, letting S, be 'A' and
S2 be '/B*AI', we see that

is a winning string. But

is a losing string: it is understood that if a string is not producible by rules 1, 2, and 3,
then it is a losing string.

How can we show that '/A*/B*AI' is a losing string? Unfortunately, it's not enough
to try to produce it from the rules but fail, because-especially with longer, more complex
strings-there are always two possible reasons for failure: the string is indeed a losing
string, or else it really is a winning string, but we just didn't try hard enough (or weren't
clever enough) to produce it.

To show that '/A*fB*AI' is a losing string, notice that all winning strings either consist
only of the symbol 'A' or 'B' or else have the following structure:

1. The first and last symbols are slashes.
2. If you remove the first and last symbols, you will have a star between two winning

strings.

Now, the string we are considering fails to satisfy the second of these two conditions.
To see that it fails, remove the outer pair of slashes, leaving

We can see that this is not a string formed by joining two winning strings with a star.
The string to the right of the first star is

which violates the first condition. And the string to the left of the second star is

which also violates the first condition. Since there is no other way to analyze the string,
it must be a loser: there is no way to analyze it such that it consists of two winners
joined by a star.

157

NATURAL DEDUCTION

Formal Systems

The game of stars and slashes illustrates the basic components of the simplest kind of
formal system. A formal system consists of three features:

1. A set of symbols out of which strings may be formed, together with rules specifying
what constitutes a well-formed string. (In our game, the symbols were 'A', 'B',
*, and/. Any string was considered well-formed, so long as it was some string
of these symbols.)

2. A set of "winning" strings that is given to you. This set is called the set of axioms.
(In our game, the axioms were given by rules 1 and 2.)

3. A set of methods for constructing new winning strings. This set is called the set
of rules of inference. (Our game had only one rule in this sense.)

A winning string is then understood to be a well-formed string, such that the string is an
instance of an axiom or comes from previous winning strings by applications of any of
the rules.

A more common name for a winning string in mathematics and logic is theorem. In
our game,

/A*B/

was a theorem. It can be seen to be a winning string from rule 1, rule 2, and one
application of rule 3.

The formal deduction system we shall develop in the next sections will look much
like the game of stars and slashes-at least in its broad outline. It will have well-formed
strings, and it will have rules for generating new winning strings. And it will be understood
that there are no winning strings except those that arise from the rules. But there will
be no axioms. That is, no strings will be given that are automatic winners. A deduction
system without axioms is called a natural deduction system.

A Natural Deduction System

Our game of stars and slashes is a good example of a formal system. !t has rigorous
rules for generating winning strings, and it has procedures for constructing derivations
using the rules. But it is not a formal deduction system. A formal deduction system has
two additional features. First, all the strings of a formal deduction system are sentences.
Second, the rules by which we derive some sentences from others are not arbitrary. A
proper rule of inference should allow us to derive only those sentences that logically
follow from earlier sentences. Additionally, a formal natural deduction system has no
axioms.

The special quality a rule in a deduction system must have is that of being truth-
preserving. Truth-preserving rules never lead us from TRUE sentences to FALSE ones.

158

CHAPTER 8

The quality of being truth-preserving is the central concern of logic, as we saw in Chapter
1. It is also the idea that is so perfectly captured by the concept of "validity." A good
argument is first and foremost an argument that is truth-preserving. If the premises are
all TRUE, then the conclusion cannot help but be TRUE too.

All the rules of a formal deduction system should, then, be truth-preserving. It should
never be the case that we could begin with TRUE sentences and move, using correct
applications of our rules, to a FALSE sentence. Note that there is nothing at all wrong
with having rules that might take us from FALSE sentences to TRUE ones. Similarly,
perhaps, we would frown upon a machine that turned gold into mud, although we would
be quite happy with one that turned mud into gold!

As we mentioned before, and saw demonstrated in the game of stars and slashes,
the most important application of a formal system is in producing a derivation. A derivation
is a sequence of steps, all of which are legitimate according to the rules of the formal
system. To help someone reading a derivation see that it is correct, we shall number
each step in the derivation and state whatever justifies our making that step.

Conjunction Introduction

Let us consider the first rule of our formal deduction system for sentential logic which
we shall call "conjunction introduction," or &INTRO for short:

&INTRO If P and Q are any two previous sentences in a derivation,
then you may derive their conjunction:

(P &Q)

In other words, if sentence P had been permitted by the rules earlier in a derivation,
and so had sentence Q, then you may "put them together," so to speak, joined by the
conjunction connective.

Most deductions have the task of showing that a sentence (the conclusion) follows
from other sentences by the permitted rules of inference. Accordingly, the premises are
"given" to you, and you may accept them as permitted sentences, without being disturbed
by the fact that they are not otherwise justified.

A deduction will then typically begin with sentences that have no justification other
than their being the premises of the argument given to you. When we write the justification
for such sentences in a deduction, we shall say, simply, PREMISE. For example, if an
argument had the premises

A
(B- C)

then the natural start of a deduction using these premises might look like this:

1. A
2. (B- C)

:PREMISE
:PREMISE

159

NATURAL DEDUCTION

But how can the deduction continue? Aside from listing the premises of the argument,
which we have now exhausted, we only have one rule so far, &INTRO. The rule &INTRO
permits us to combine any two previous sentences with &. We should see that 'A' and
'(B - C)' are two previous sentences, the first corresponding to the P of the rule, the
second corresponding to the Q. We could then continue our deduction:

1. A :PREMISE
2. (B - C) :PREMISE
3. (A & (B - C)) :&INTRO applied to lines 1 and 2

In fact, the rule &INTRO can be applied over and over again:

1. A :PREMISE
2. (B - C) :PREMISE
3. (A & (B - C)) :&INTRO, 1,2
4. ((8 - C) & A) :&INTRO,2, 1
5. (A & A) :&INTRO, 1, 1
6. ((A & A) & (A & (B - C))) :&INTRO,5,3

It should be clear that we could keep on going, applying &INTRO to any two of our
accumulating sentences. Notice also that the "two" previous lines to which the rule
&INTRO is applied can even be the same line. In the above deduction, we have:

1. A :PREMISE

5. (A & A) :&INTRO, 1, 1

The main quality we aim for in formulating our rules in a formal deduction system
is that they are truth-preserving. Is the rule &INTRO truth-preserving? That is, if previous
sentences in a derivation were all TRUE, then does the rule &INTRO allow us to derive
only other TRUE sentences?

A way to see that &INTRO is truth-preserving is to look at the pattern of the sentences
in an application of &INTRO and compare it with the truth table for &.

1. P :PREMISE
2. Q :PREMISE
3. (P & Q) :&INTRO, 1,2

Is there any possible way sentences P and Q could be true and yet in the same situation
sentence (P & Q) be FALSE? This is, of course, impossible, as we have seen in Chapter
3. Looking at the truth table, we find:

160

C HA PTER 8

V(P) V(Q) V(P&Q)

0
0

0
1
0

0
0
0

There is no situation where both P and Q are TRUE but (P & Q) is FALSE. So the rule
&INTRO is truth-preserving.

If a rule such as &INTRO is truth-preserving, then we can apply it over and over
again to TRUE sentences without peing afraid that a FALSE sentence could somehow
creep in. If &INTRO preserves truth once, it will do it twice, or any number of times. If
the premises are all TRUE, then applying truth-preserving rules any number of times
and in any order never allows a FALSE sentence to creep in. This fact lies behind the
security we should feel with derivations. If a derivation uses only truth-preserving rules,
then the derivation as a whole will be truth-preserving. The derivation will never allow
us to go from TRUE premises to a FALSE conclusion.

The Format of a Derivation

Observe carefully that we shall always present a derivation in a certain format. We shall,
for example, number the lines of the derivation, write a sentence on each line, and then
explain why we are permitted to write that sentence. The explanation of why we are
permitted to write a sentence will be called the justification for that sentence.

So far, we have only two possible justifications for writing a sentence in a derivation:

1. The sentence was given to us by the terms of the original argument and so has
the justification PREMISE.

2. The sentence was derived from the sentences in two previous lines by the rule
&INTRO.

More generally, every line of a derivation will have the following features:

1. The line will begin with a number (a positive integer) followed by a period. We
shall call the number of a line the line number. No two distinct lines of a derivation
begin with the same line number. (We shall shortly modify this requirement slightly
and allow certain symbols to be written before the line number.)

2. Next in the line must appear a sentence, that is, a string that is well-formed
according to the rules developed in Chapters 3 to 5.

3. Last in the line must appear a colon(:) followed by a justification for the sentence.
This justification is either PREMISE or a rule of the deduction system according
to which we are permitted to write the sentence. If the justification is the result
of applying a rule to previous lines of the derivatiqn, then we must also identify

161

NATURAL DEDUCTION

the line numbers of these previous lines. Thus we can have as a justification of
a line

:PREMISE
which does not require us to cite previous lines of the derivation, or (for example)

:&INTRO, 1,2
which cites lines 1 and 2.

Conjunction Elimination

Let us now introduce the companion rule to &INTRO: conjunction elimination, or &ELIM
for short:

&ELIM If (P & Q) is a previous sentence in a derivation, then you may derive
either the first conjunct:

p
or the second conjunct:

Q

The following short derivation shows a correct application of this new rule.

1. (A & B) :PREMISE
2. C :PREMISE
3. A :&ELIM, 1

Here, the sentence, 'A' plays the role of P, and 'B' plays the role of Q. Sometimes the
derived sentence may be more complex. Consider this derivation:

1. (D & (E - F)) :PREMISE
2. E :PREMISE
3. (E - F) :&ELIM, 1

Here, the sentence 'D' plays the role of P in the rule, and the molecular sentence
'(E - F)' plays the role of Q. In other words, the rule &ELIM says, "From any conjunction

(<sentence 1 > & <sentence 2>)

you may derive

<sentence 1 >

by itself or, if you wish,

<sentence 2>

162

CHAPTER 8

by itself." These derived sentences may be atomic or molecular. The single requirement
is that the original sentence must be a conjunction, a sentence whose main connective
is&.

It is easy to see that &ELIM is truth-preserving. If

(P & Q)

is TRUE, then

p

is also TRUE, as well as

Q

We can consult our truth tables in Chapter 3 to see this. So the rule &ELIM, like the
rule &INTRO, will never take us from TRUE sentences to FALSE ones.

Observe that the rule &INTRO converts two previous sentences into one new sen-
tence, while the rule &ELIM converts one sentence into another sentence. (Although the
&ELIM rule says that you are permitted to derive either conjunct, you must in every
application derive just one of these conjuncts.) This means that the justification for a
sentence using the &ELIM rule must refer only to one previous line number, while a
sentence justified by &INTRO must cite two previous line numbers. Here are some
sample justifications:

:&ELIM,3
:&INTR0,2,4
:&INTRO,1,1
:&ELIM,7

But the following "justifications" would always be mistaken.

:&ELIM,1,2

:&INTRO,3
:PREMISE,3

[Incorrect, because &ELIM must cite one and only one previous
line.]
[Incorrect, because &INTRO must cite two previous lines.]
[Incorrect, because with the justification PREMISE, we do not cite
any previous lines.]

The two rules &INTRO and &ELIM have a certain symmetry, as their names suggest.
The rule &INTRO introduces a new conjunction, a sentence whose main connective is
&. The rule &ELIM, on the other hand, takes us from a sentence that is a conjunction
to one that has one less conjunction sign in it.

The names of these two rules provide some clues to when they should be applied.
The rule &INTRO should usually be applied when we want to obtain a sentence with an
& in it. And the rule &ELIM should usually be applied if we want to eliminate an & or
reduce the number of &'s in our earlier sentences. Most of our rules will, in fact, have

163

NATURAL DEDUCTION

this symmetry of either introducing a connective or eliminating one. Each rule will thus
come with some advice on when it might wisely be applied.

Demonstrating the Validity of an Argument
with a Derivation

We are now in a position to relate a derivation to an argument. The derivation of the
conclusion of an argument from the premises of that argument will have these features:

1. Every sentence of every line is justified by either (a) its being a premise of the
given argument or (b) its having been correctly derived from previous lines by
the application of permissible rules.

2. The sentence in the last line of the derivation is the conclusion of the given
argument.

So, if you are given the valid argument

A
B

:. (A & B)

a correct derivation of the conclusion from the premises would be:

1. A :PREMISE
2. B :PREMISE
3. (A & B) :&INTRO, 1 ,2

The last line of this derivation is the conclusion of the given argument. And the only
justifications are PREMISE and a permissible rule. We shall speak of "deriving the
conclusion," or "showing the argument to be valid."

If you were given the valid argument

(C & D)
C

then a correct derivation of the conclusion from the premises would be:

1. (C & D) :PREMISE
2. C :&ELIM, 1

For the first argument [A, B, :.(A & B)], it should be easy to see that &INTRO must
be used, since the conclusion contains an ampersand, but the premises do not. And for
the second argument [(C & D), :.CJ, it should be easy to see that &ELIM must be used,
since the premise contains an ampersand, but the conclusion does not.

164

CHAPTER 8

We now give several more examples of derivations.

Argument 1.
(A & B)

.-. (B & A)
Derivation

1. (A & B)
2. A
3.B
4. (B & A)

:PREMISE
:&ELIM,1
:&ELIM,1
:&INTRO,3,2

Observe carefully that the correct application of &INTRO in line 4 requires us to cite
where the first conjunct, 'B', comes from (line 3) and then where the second conjunct,
'A', comes from (line 2).

Argument 2.
A

.-. A
Derivation

1. A :PREMISE

This is admittedly a strange proof, but it conforms to the requirements for a correct
derivation: we have used only the justification PREMISE, and the "last" line-which is
also the first line-is the conclusion.

Argument 3.
(A & B)
C
(C &A)

Derivation
1. (A & B)
2. C
3. A
4. (C & A)

:PREMISE
:PREMISE
:&ELIM,1
:&INTRO,2,3

Argument 4.
((A & B) & C)

.-. (A & C)
Derivation

1. ((A & B) & C)
2. (A & B)
3. A
4. C
5. (A & C)

Argument 5.
(A & (C- D))
(-AvB)

:PREMISE
:&ELIM,1
:&ELIM,2
:&ELIM,1
:&INTRO,3,4

165

NATURAL DEDUCTION

Derivation
1. (A & (C - D))
2. (-Av B)
3. (C- D)

:PREMISE
:PREMISE
:&ELIM,1

Before continuing with the introduction of the next pair of rules, you should reflect
on what a derivation shows. A derivation shows that a sentence-the last line of the
derivation-can be derived from earlier sentences by the application of rules of inference.
These rules are known to have the property of being truth-preserving. Consequently,
we know that if the sentences introduced by the only justification other than a rule (namely,
PREMISE) were all TRUE, then the last line of the derivation would also be TRUE. But
then, the argument is valid. So a correct derivation of a conclusion from premises shows
that the argument is valid. In most cases, this will be a far easier way to show an
argument to be valid than constructing a truth table. A derivation will also usually give
us a clearer understanding of why an argument is valid than does a cluttered truth table.

Subproofs and Negation Introduction

Consider the following argument.

I can't both look at TV all night and get my homework done. I will watch TV all night.
Therefore, I won't get my homework done.

When symbolized, this argument becomes:

Argument 6.
-(L & H)
L
-H

where

L = 'I will look at TV all night.'
H = 'I will get my homework done.'

As reasoning to defend the validity of my argument I might offer:

I can't both look at TV all night and get my homework done.
I will watch TV all night.

But suppose I do get my homework done too.
Then I would watch TV all night and (somehow) get my homework done.
But this contradicts my first statement that I cannot do both of these things.
So my supposition that I do get my homework done must be mistaken.

That is, I will not get my homework done.

166

CHAPTER 8

If we had used symbolized sentences, we might have reasoned:

-(L & H)
L

:PREMISE
:PREMISE

Suppose H.
Then (L & H).
But -(L & H) is the first premise.
So the supposition H must be mistaken.

Therefore, -H.

The steps going from "Suppose H" to "Therefore, -H" have the effect of introducing a
negation sign. They exhibit the central reasoning behind the new rule, negation intro-
duction, or -INTRO for short. In this reasoning, which is not quite in our required form
for derivations, there are two new, important ideas. One is the idea of "supposing"
something. A supposition such as 'I will get my homework done' is not a PREMISE. We
are not told to accept it as TRUE by the given argument. But neither is it derivable from
previous lines by a rule like &ELIM or &INTRO. Instead, we are introducing this sentence
as if it were legitimate in order to see what follows from it. We shall call these suppositions
"assumptions." Because assumptions are "trial balloons"-neither given as PREMISES
nor derivable from previous lines-they must be used with extraordinary care.

Subproofs

A subproof is a digression from the main proof. A subproof is also a proof within a proof.
The supposition that begins a subproof may be thought of as a "temporary premise."
This assumption is a "premise" only for the duration of the subproof-not for the entire
derivation.

We shall require subproofs to be distinguished from the rest of the proof by two
features:

1. Subproofs have asterisks before their line numbers to indicate that these lines
depend on an assumption.

2. The sentences in a subproof will be indented proportionally to the number of
asterisks.

Thus our full proof of '-H', with some gaps in the justifications, would be:

1. -(L & H)
2. L
* 3. H
* 4. L
* 5. (L & H)
* 6. -(L & H)
* 7. -H
8. -H

:PREMISE
:PREMISE
:ASSUMPTION

:&INTRO,4,3

:-INTRO,3,5,6

167

NATURAL DEDUCTION

Lines 3 to 7 are the subproof in this derivation. A subproof can be identified because
each line will have the same number of asterisks, and that section of the derivation will
not be broken by a line with fewer asterisks. A subproof will also always begin with the
justification ASSUMPTION, which we have in line 3. The main proof, containing lines
without any asterisks, includes lines 1, 2, and 8.

Negation Introduction

What follows in Argument 6 from the assumption of 'H' is a sentence that could not
possibly be TRUE, namely

(L & H)

It could not be TRUE if the premises are all TRUE, because its negation,

-(L & H)

was also asserted as the first premise. When one sentence is the exact negation of
another sentence, we shall say that the sentences contradict one another. This is the
second new idea introduced in this reasoning. In the language of Chapter 7, these two
sentences are not "simultaneously satisfiable" and thus are "inconsistent." More impor-
tant, since our rules are truth-preserving, when contradictory sentences are derived from
premises and an assumption, the premises plus the assumption are not simultaneously
satisfiable either. And this means that if the premises are satisfied, then the assumption
is not satisfied. Thus, finally, if the premises are satisfied, then the negation of the
assumption is also satisfied.

Therefore, when we have derived two sentences that contradict one another, such
as '(L & H)' and its negation, '-(L & H)', in a subproof that begins with an assumption,
we are then permitted to derive the negation of that assumption, the justification being
-INTRO. The reasoning behind this rule has been frequently employed in philosophy,
mathematics, theology, and other fields such as law and the natural sciences. Its tra-
ditional Latin name is reductio ad absurdum, or, translating the expression, "reduction
to an absurdity." The reductio ad absurdum principle is that if we correctly reason to
two sentences that cannot both be TRUE, then at least one of our earlier claims must
be mistaken.

The use of the new rule -INTRO in line 7 is our special concern at this point.

-INTRO If from an assumption P both a sentence Q and its negation -Q can
be derived in the same subproof, then
-P

may be derived in that subproof.

Notice that the rule refers to three previous lines, all in the same subproof: line 3
(the assumption) is cited first, then line 5, and finally line 6, which contains the negation
of the sentence on line 5.

168

CHAPTER 8

The missing elements in this derivation are the justifications for lines 4, 6, and 8.
We can see that the sentence of line 4 in the subproof is the same as the sentence of
line 2. And the sentence of line 6 is the same as that of line 1. Furthermore, the sentence
of line 8 is the same as that of line 7.

SEND and RETURN

We require that a subproof be a proof in its own right (with ASSUMPTION serving a
role much like that of PREMISE) and that the subproof be distinct from the main proof
and from other subproofs. Because they are independent sections of the derivation, the
subproof and the main proof must "communicate" with each other. The flow of information
between a subproof and the main proof can be in one of two directions. Information can
be sent from the main proof into the subproof-as we seem to have in the derivation
for Argument 6 from line 2 to line 4 and from line 1 to line 6. Or information can be
returned from the subproof to the main proof, as occurs between lines 7 and 8.

We shall justify information legitimately flowing into a subproof with a new rule SEND
plus the citation of the earlier line number outside of the subproof. The justification SEND
can be used, provided:

1. We are in a subproof with more asterisks than the cited line.
2. The sentence being "sent" is exactly the sentence in the cited line.
3. Every line between the SEND line and the cited line has at least as many asterisks

as the cited line.

We shall justify information legitimately flowing out of a subproof with a new rule
RETURN plus the citation of a line in the subproof. The justification RETURN can be
used, provided:

1. We are outside of the subproof, with one less asterisk than the cited line.
2. The sentence being returned is exactly the sentence in the cited line.
3. There is no line between the present line and the cited line with fewer asterisks

than the cited line.
4. The cited line has the justification -INTRO.

This last proviso is to ensure that the returned information is not "contaminated" with
any specific information stemming from the assumption.

With these newly available justifications, our proof of '-H' becomes a complete,
correct derivation of '-H' from premises '-(L & H)' and 'L'.

1. -(L&H)
2. L
* 3. H
* 4. L
* 5. (L & H)
*6. -(L&H)
* 7. -H
8. -H

:PREMISE
:PREMISE
:ASSUMPTION
:SEND,2
:&INTRO,4,3
:SEND,1
:-INTRO,3,5,6
:RETURN,?

169

NATURAL DEDUCTION

The lines 3 to 7 are the subproof of this derivation. The subproof begins with an as-
sumption, as all subproofs do. Information is "sent into" the subproof at lines 4 and 6.
Information is "returned from" the subproof to the main proof in line 8.

Rules such as SEND and RETURN are little more than "repetition" rules, which
allow us to repeat a sentence that occurs earlier in a proof. But these repetitions have
a twist: They are really communications between sections of the proof that are at different
"levels"-between a main proof and a subproof, or between a subproof and a more
deeply nested subproof.

The rules SEND and RETURN, which allow communication between different levels
of a derivation, are included in our formal deduction system for several reasons. One is
that the communication between a main proof and a subproof is very much like the
communication that occurs between a main procedure and a subprocedure in an al-
gorithm or a computer program. Recent developments in good programming style have
emphasized the importance of explicitly declaring what information is being transferred
into and out of subprocedures.

The information contained in sentences of the main proof is much like the information
stored in so-called "global" variables in a program. A global variable is the name for
information that can be accessed or changed at any point in the entire program. Hence
it is "global" information. Analogously, the information contained in the sentences of the
main proof of a derivation-the lines without asterisks-can be used anywhere in a proof,
in a subproof, in sub-subproofs, and so on, provided that it is first sent. On the other
hand, so-called "local" variables are names for stored information which can only be
used in restricted sections of an algorithm. Outside of these restricted sections, the
variables cannot be used at all; if they are used, they may have undesirable values. The
information contained in our assumptions and the sentences dependent on them are
much like local variables. The information such sentences contain cannot, in general,
be used outside of the subproofs that contain the sentences. The only exceptions to
this; are those situations that allow the use of the RETURN rule.

More metaphorically, we can think of the information in subproofs as being "im-
pounded" because it is known to be "contaminated" by a dubious sentence, the as-
sumption. Because of these suspicions, information in a subproof is not allowed to "leak
out" to the outside world. The restrictions on communication with the outside world are
policed by the rules SEND and RETURN.

Using Subproofs

Before we continue, several observations must be made. First, if you are attempting to
show that the conclusion of an argument can be derived from the premises, then the
conclusion must be in the main proof. That is, the conclusion must be the sentence on
the last line of the derivation, and that line cannot have any asterisks. This condition is
necessary to ensure that the conclusion is not dependent on any assumption we might
have made.

Second, no rule except SEND or RETURN is permitted to cite a line in another
subproof or outside of that subproof. In practice, this implies that no line can ever cite
a line that has more or fewer asterisks-unless the justification is SEND or RETURN.
In the above example, we might have been tempted to create this "derivation":

170

1. -(L & H)
2. L
* 3. H
* 4. (L & H)
* 5. -H
6. -H

CHAPTER 8

:PREMISE
:PREMISE
:ASSUMPTION
:&INTRO,2,3 [Incorrect]
:-INTRO,3,4, 1 [Incorrect]
:RETURN,5

Lines 4 and 5 are incorrect for the following reason. The &INTRO rule cannot cite a line
which is outside of its own subproof. (In line 4 it is used incorrectly to cite line 2.) The
information concerning 'L' must be sent into the subproof. Similarly, the information
concerning '-(L & H)' must also be sent into the subproof before the -INTRO rule can
refer to it.

Finally, notice two facts about asterisks. An asterisk is added to a line only by the
justification ASSUMPTION. And an asterisk is removed from a line only by the justification
RETURN.

Using -INTRO

Is the -INTRO rule truth-preserving? Suppose that the premises of a derivation are all
TRUE. Suppose further that -INTRO is used to derive -P but that -P is somehow
FALSE. If -P is FALSE, then the assumption P of the subproof for -INTRO must be
TRUE. But if the assumption P is TRUE, then how could the contradictory sentences
arise? There are only two ways that two contradictory sentences can arise if the as-
sumption is TRUE:

1. SEND is not truth-preserving.
2. The other available rules, &INTRO and &ELIM, are not truth-preserving.

But SEND is surely the most truth-preserving of all our rules: it merely copies a previous
sentence. And we have already seen that &INTRO and &ELIM are truth-preserving.

So two contradictory sentences cannot arise in a subproof if all previous sentences
are TRUE, unless the assumption is FALSE. And if the assumption P is FALSE, then
its negation, -P, must be TRUE. Thus with premises that are TRUE, the subproof using
-INTRO results in a sentence -P that is also TRUE. So, the -INTRO rule is truth-
preserving.

Before introducing the next rule, let us consider some applications of -INTRO,
SEND, and RETURN.

Argument 7
A

:. --A
Derivation

1. A
* 2. -A
* 3. A

.* 4. --A
5. --A

:PREMISE
:ASSUMPTION
:SEND,1
:-INTRO,2,3,2
:RETURN,4

171

NATURAL DEDUCTION

This is a proof that from a sentence, P, its double negation, --P, can be derived. Notice
that the -INTRO rule requires us to add a negation sign to the assumption. This results
in P's acquiring two negation signs. Notice also that line 4 cites line 2 twice: once because
it must cite the assumption, and again because the sentence in line 2 is the negation
of the sentence in line 3. Check carefully, and you will see that asterisks, indenting, the
SEND rule, the RETURN rule, and the -INTRO rule are all correctly used.

Argument 8
A

:. -(-A & B)
Derivation

1. A
*2. (-A&B)
* 3. -A
* 4. A
* 5. -(-A & -8)
6. -(-A&-8)

:PREMISE
:ASSUMPTION
:&ELIM,2
:SEND,1
:-INTR0,2,4,3
:RETURN,5

Negation Elimination

The rule negation elimination, or -ELIM, enjoys an even closer relationship to -INTRO
than &ELIM does to &INTRO. As a result, there are virtually no ideas in -ELIM that we
have not seen in -INTRO.

-ELIM If from an assumption -P both a sentence Q and its negation -a can
be derived in the same subproof, then

p
may be derived in that subproof.

The parallelism between the two rules, -INTRO and -ELIM, can be seen when we
compare the steps to be used in applying each.

-INTRO -ELIM

In a subproof:
Assume P.
Derive a sentence, Q.
Derive the negation

of that sentence, -a.
Derive, by -INTRO,

the negation of the
assumption, -P.

In a subproof:
Assume -P.
Derive a sentence, Q.
Derive the negation

of that sentence, -Q.
Derive, by -ELIM, the

assumption without
its negation, P.

In other words, -INTRO adds (introduces) a negation sign to the assumption, while
-ELIM removes (eliminates) a negation sign from the assumption. The names of the

172

CHAPTER 8

rules give us a hint about when they are appropriately applied. If we wanted to derive
a sentence that has a negation sign in front of it, we might consider assuming the
sentence without its negation sign, then use -INTRO. If we want to derive any sentence,
we might consider assuming the sentence with a negation, then use -ELIM.

The same conditions governing subproofs, SEND, and RETURN that applied to
-INTRO also apply to -ELIM. In particular, the rule RETURN must be modified to allow
citation of a -ELIM line as well as a -INTRO one. So, there is very little new in -ELIM.

Let us consider some examples.

Argument 9
--A

:. A
Derivation

1. --A
* 2. -A
* 3. --A
* 4. A
5. A

:PREMISE
:ASSUMPTION
:SEND,1
:-ELIM,2,2,3
:RETURN,4

Notice carefully what our strategy was. We wanted to derive the conclusion, 'A', using
-ELIM. So we assumed '-A' and searched for two contradictory sentences.

Argument 10
-(-A&-B)
-A

:. 8
Derivation

1. -(-A&-B)
2. -A
* 3. -8
* 4. -A
*5. (-A&-B)
* 6. -(-A & -8)
* 7. 8
8. B

:PREMISE
:PREMISE
:ASSUMPTION
:SEND,2
:&INTRO,4,3
:SEND,1
:-ELIM,3,5,6
:RETURN,?

Notice again our strategy. We wanted to derive the conclusion, 'B'. So we assumed its
negation, '-8', and sought two contradictory sentences.

Comment Lines in a Derivation

In longer proofs such as the one above, we will occasionally write notes to ourselves
on what we are trying to do. These notes will help enormously in the creation of proofs.
These notes to ourselves will be called comments and will look like the following:

173

NATURAL DEDUCTION

/BEGIN: ~ELIM to derive B/
/END: ~ELIM to derive B/

These lines are not "officially" part of the derivation, and so they do not have line numbers.
Comments will start and finish with slashes (/). With comments added, the previous
derivation would look like this:

1. ~(~A&~B)
2. ~A

* 3.
* 4.
* 5.
* 6.
* 7.

/BEGIN:
~B
~A
(~A& ~B)
~(~A & ~B)
B
/END:

:PREMISE
:PREMISE

8. B

~ELIM to derive B/
:ASSUMPTION
:SEND,2
:&INTRO,4,3
:SEND,1
:~ELIM,3,5,6

~ELIM to derive B/
:RETURN,?

Because these comments are very useful, we should develop some guidelines, or
suggestions, for when they are properly used.

1. Every /BEGIN .. ./ comment should have a corresponding /END .. ./ comment.
2. Such comments are strongly recommended when rules using subproofs are

applied, such as ~INTRO and ~ELIM. They remind us of our target, or goal,
when we begin a subproof.

3. When these comments are used to state the goal of a subproof, indent them the
same amount the subproof would be indented.

4. In creating a derivation, one should always work toward the goal of the last
/BEGIN .. ./ comment that lacks a matching /END .. ./ comment.

The purpose of such comments should always be to help us keep in mind where we
are going and what rule we are about to apply. For this reason, a few such comment
lines are helpful, but too many would obscure the goal of our derivation.

The following derivation shows an elaborate use of ~INTRO and ~ELIM, as well
as of our optional comments.

Argument 11
~(~A& ~B)
~(A & ~C)
~(B & ~C)

:. C
Derivation

1. ~(~A&~B)
2. ~(A& ~C)
3. ~(B & ~C)

:PREMISE
:PREMISE
:PREMISE

174

CHAPTER 8

/BEGIN: -ELIM to derive Cl
*4_ -C :ASSUMPTION

/BEGIN: Derive (- A & - B) and - (- A & - 8)/
/BEGIN: - INTRO to derive - A/

**5. A :ASSUMPTION
**6. - C :SEND,4
**7. (A & - C) :&INTRO,5,6
**a. - (A & - C) :SEND,2
**g_ - A : - INTRO,5,7,8

/END: - INTRO to derive - A/
* 10. - A :RETURN,9

/BEGIN: - INTRO to derive - 8/
** 11. B :ASSUMPTION
** 12. - C :SEND,4
**13. (B & - C) :&INTRO, 11, 12
**14. - (B & - C) :SEND,3
**15. - B : - INTRO,11,13,14

/END: - INTRO to derive - 8/
*16. - B :RETURN,15
*17. (-A&-8) :&INTRO,10,16
*1a. - (-A & - B) :SEND,1

/END: Derive (- A & - B) and - (- A & - 8)/
*19. C :- ELIM,4,17,18

/END: - ELIM to derive C/
20. C :RETURN, 19

The basic strategy here, as our first comment tells us, was to apply -ELIM in the hope
of deriving the conclusion, ·c·. But once we have assumed '-C', we must then look for
our two contradictory sentences. An early guess was made that these two might be

(-A & -B)

and

-(-A & -B)

The second sentence is, of course, just the first premise. But to derive '(-A & -8)' we
might first derive '-A', then derive '-8'-and then put them together later with &INTRO.
We can use our comments alone to sketch our strategy.

/BEGIN:-ELIM to derive C/
/BEGIN: Derive (-A & -8) and -(-A & -8)/

/BEGIN: &INTRO to derive (-A & -8)/
/BEGIN: -INTRO to derive -A/
/END: -INTRO to derive -Al

175

NATURAL DEDUCTION

/BEGIN:
/END:

/END:
/END:
/END:

~INTRO to derive ~B/
~INTRO to derive ~B/

&INTRO to derive (~A & ~B)/
Derive (~A & ~ B) and~ (~A & ~ 13)./
~ELIM to derive Cl

Completeness

There is a sense in which the formal deduction system we have given so far, with only
the justifications or rules

PREMISE
ASSUMPTION

SEND
RETURN

&INTRO
&ELIM

~INTRO
~ELIM

is complete. First, notice that any sentence using the sentence connectives&, ~, v, -.
NOR, NAND, and so on, is logically equivalent to a sentence using only the connectives
~ and &. For example:

(P v Q) is logically equivalent to ~(~P & ~Q).
(P - Q) is logically equivalent to ~(P & ~Q).

So we can translate any sentence using these connectives into a logically equivalent
sentence that contains only ~ and & as connectives. There is even an algorithm to make
this translation-although we will not give it here. (See Exercise F.)

Furthermore, our paired rules

&INTRO
&ELIM

and

~INTRO
~ELIM

are sufficient to derive any conclusion that validly follows from a set of premises, so long
as the premises and conclusion are expressed using only ~ and &, though we shall not
prove that here.

But because the derivations using only these rules would often be very long and
difficult to construct-mainly because of the cumbersome ~INTRO and ~ELIM rules-
we shall proceed in the next chapter to introduce additional rules of inference which
apply directly to sentences containing v, -. and --

176

CHAPTER 8

Summary

The notion of a iormal system was introduced. Then we said that a natural deduction
system is a formal system whose elements are sentences and whose rules are truth-
preserving. The natural deduction system developed so far has the following rules. (We
list the names of the rules with a brief, informal statement of each rule.)

PREMISE-P.remises are placed at the beginning of a derivation.
ASSUMPTION-Any sentence may be assumed as the first line of a subproof.
&INTRO-If P and Q are earlier lines,

then (P & Q) is derivable.
&ELIM-If (P & Q) is an earlier line,

then P and Q are each derivable.
-INTRO-If the assumption Pleads to a contradiction,

then -Pis derivable.
-ELIM-If the assumption -Pleads to a contradiction,

then Pis derivable.
SEND-Any earlier line in a proof may be sent to a subproof.
RETURN-The last line of a subproof may be returned out of the subproof

under certain restrictions.

A derivation in our system is a numbered sequence of lines containing sentences
and justifications. We distinguish between the main proof and subproofs. Finally, we
use comments to help ourselves to structure the derivation, but such comments are not
formally a part of the derivation.

Exercises

A. Stars and Slashes
1. Why is '/B*A' a losing string?
2. Why is 'A*B' a losing string?
3. Is string S on page 155 a winning string? If so, how can it be constructed?

If it's a losing string, why is it a losing string?
B. Formal Systems

1. Suppose that we describe a new game, Left and Right, where we want to
distinguish left and right slashes. In this game, winning strings with a '/' on
the left will now have'(', and those with a'/' on the right will now have')'.
a. What would be an appropriate modification of rule 3?
b. Construct two winning strings and two losing strings in the game of Left

and Right. Show how the winning strings can be derived and why the
losing strings cannot be derived.

2. a. Write down a complete set of rules for a further modification in which the

177

NATURAL DEDUCTION

symbol * is replaced by symbols for addition, multiplication, subtraction, and
division. (Call the new system the game of Arithmetical Formulas.)
b. Construct two winning strings and two losing strings in the game of Arith-
metical Formulas. Show how the winning strings can be derived and why the
losing strings cannot be derived.

3. Modify the system still further by adding a new symbol that represents a
"prefix" operation (for instance, a symbol V to represent the square-root
operation, or a symbol - to represent the "forming the negative of" operation).

C. Natural Deduction System
Use the natural deduction system developed in this chapter to give derivations
of the conclusions of the following arguments:
1. (A & 8)

-(A & -C)
:. C

2. A
-(-8 & 8)

3. -(A & -8)
-8
-A

4. (A & -A)
.-. 8

5. -(A & -8)
A
8

D. Symbolize the following arguments, and give derivations of them:
1. It's not the case that both Alfred is an artist and Carol is a scientist. Since

Alfred is an artist, Carol isn't a scientist.
2. It's not the case that both David is hungry and Evelyn isn't. But Evelyn isn't

hungry. So David isn't hungry.

E. A conclusion of a derivation with no premises is a theorem. To show that a
sentence is a theorem, begin with an assumption, so that the only line of the
main proof is the last one. Give derivations of the following theorems.
[Hint: Use -INTRO for each of these.]
1. -(A & -A)
2. -((A & 8) & -(A & 8))
3. -((-(A & -8) & A) & -8)

F. Logical Equivalences
1. Give an algorithm for replacing each of the following sentences with a logically

equivalent sentence whose only connectives are - and &.
(P-Q)
(P V Q)
(P ~ Q)
(P NOR Q)
(P NANO Q)

178

CHAPTER 8

2. Consider an arbitrary sentence whose only connectives are (possibly) - , &,
v, -, and-». Construct an algorithm for finding a logically equivalent sentence
whose only connectives are - and &.

3. a. Show how (P & Q) can be expressed using only NOR.
b. Show how -P can be expressed using only NOR.
c. Show how (P & Q) can be expressed using only NAND.
d. Show how -P can be expressed using only NAND.

In view of the fact (shown in 1, above) that all sentences can be expressed in
terms of - and &, and in view of the fact (shown in 3) that all sentences that
use only - or & can be expressed using only NOR or using only NAND, you should
be able to see that all sentences can be expressed using only one two-place
connective, namely, NOR, or else NAND.

CHAPTER 9

SENTENTIAL LOGIC:
Additional Rules

of Inference

In the previous chapter, we studied two
pairs of rules for deriving sentences from other sen-
tences. As we mentioned, these four rules-&INTRO,
&ELIM, -INTRO, and -ELIM-are sufficient to derive
all sentences that can be validly inferred from given
premises. There are, however, two factors that make
using only these four rules somewhat inconvenient. One
factor is that two of the rules, -INTRO and -ELIM,
require us to discover contradictory sentences, but there
does not seem to be any easy way of finding out in
advance what these contradictory sentences will be.
Consequently, in applying -INTRO and -ELIM, we
must make guesses concerning what these contradic-
tory sentences might be----or we might even have to
wade into a subproof hoping accidentally to run across
two contradictory sentences.

179

180

CHAPTER 9

The second factor is even more of a hindrance, if we were to apply just the four
rules we have so far studied. These four rules are sufficient for deriving other sentences
if these sentences are expressed only as negations and conjunctions. As we saw in
Chapters 3 and 4, it is useful to have other connectives, such as v, -, ~, and even
others. We could translate any sentences containing these additional connectives into
logically equivalent sentences containing only the negation and conjunction connectives.
But this is not so handy as, say, permitting the symbols v and - to have their own rules.
In this chapter we shall broaden our deduction system to include additional rules. These
rules are not really needed, but they will often make the job of constructing a derivation
considerably easier than trying to work only with the four rules of Chapter 8.

Conditional Introduction and Elimination

One of the most frequently used patterns of reasoning has this form:

If P, then Q.
P.
Therefore, a.

For example:

If the butler had a motive, then the butler committed the crime.
The butler did have a motive.
Therefore, the butler committed the crime.

This pattern of correct reasoning was recognized as such from earliest times. Its Latin
name is modus ponens. When symbolized, the pattern of such arguments is:

(P-Q)
p
Q

Because the sentence (P- Q) is logically equivalent to the sentence -(P & -Q), the
above argument is valid iff the argument

-(P&-Q)
p
Q

is valid. In the previous chapter, we gave a derivation of an argument having just this
pattern. It is:

181

ADDITIONAL RULES

1. -(P & - Q) :PREMISE
2. P :PREMISE

/BEGIN: - ELIM to derive Q/
*3_ -Q :ASSUMPTION
* 4. P :SEND,2
*s. (P & - Q) :&INTR0,4,3
*6. - (P & - Q) :SEND, 1
*7_ Q :- ELIM,3,5,6

/END: - ELIM to derive Q/
8. Q :RETURN,7

Since (P- Q) is logically equivalent to -(P & -Q), and since the argument pattern
-(P & -Q), P .-.Q is truth-preserving, then the pattern (P- Q), P .-.Q must also be truth-
preserving. This observation forms the basis of our next rule: conditional elimination, or
-ELIM for short.

-ELIM From a sentence of tHe form
(P-Q)

and a sentence of the form
p

you may derive the sentence
Q

A more direct way of seeing that this rule is truth-preserving would be to examine the
truth table for (P - Q). There will be no situation where P and (P - Q) are both TRUE
but Q is FALSE.

Let us now look at several applications of the -ELIM rule in derivations.

Argument 1

(A- (B- C))
A

.-. (B- C)

Derivation

1. (A- (B- C))
2. A
3. (B- C)

:PREMISE
:PREMISE
:-ELIM,1,2

Here, the conclusion is itself a conditional, '(B - C)'.
Be sure that the two sentences have the required pattern before applying the rule

-ELIM. That pattern is:

(<sentence 1 > - <sentence 2>)
<sentence 1 >
Therefore, <sentence 2>

182

CHAPTER 9

That is, the derived sentence is the consequent of the conditional. And the antecedent
of that conditional must also be a distinct sentence on a separate line.

It is quite easy to become momentarily confused and to think of this pattern:

(<sentence 1 > - <sentence 2>)
<sentence 2>
Therefore, <sentence 1 >

As we saw in Chapter 6, this argument pattern is not valid, and a rule based upon it
would not be truth-preserving. This non-truth-preserving pattern of reasoning is so often
employed that it is termed a fallacy, specifically, the fallacy of "affirming the consequent."

The companion rule of -ELIM is the rule conditional introduction, or -INTRO for
short.

If from an assumption of the form
p

a sentence
Q

can be derived in the same subproof, then you may derive
(P-Q)

The rule -INTRO, like the earlier rules -INTRO and -ELIM, requires a subproof
beginning with an assumption. The intuitive reasoning behind the rule is not difficult to
understand. Suppose a sentence, P, were TRUE. Consider a sentence, Q, that can be
derived from the assumption of P. If Q can be derived from the assumption of P, then
we have shown Q on condition that P-that is, if P then Q.

The rule -ELIM is used when we wish to reduce the number of conditional con-
nectives. The rule -INTRO, however, is used when we wish to derive a sentence whose
main connective ls-».

Here are some applications of the rule:

Argl!ment 2

(A-B)
(B- C)
(A-C)

Derivation

1. (A- B)
2. (B- C)
*3. A
*4. (A- B)
*5. (B-C)
*6. B
*7. C
*a. (A- C)
9. (A- C)

:PREMISE
:PREMISE
:ASSUMPTION
:SEND,1
:SEND,2
:-ELIM,4,3
:-ELIM,5,6
:-INTRO,3,7
:RETURN,8

183

ADDITIONAL RULES

Before beginning the derivation, we observe that the conclusion, '(A- C)', is a condi-
tional. Normally, when we wish to derive a conditional, we should proceed so that
-INTRO can be applied. In order to apply -INTRO, we must first begin with an as-
sumption, and this assumption should be the antecedent of the conditional we are trying
to derive. Once a subproof is begun with this assumption, our goal should then be to
derive the consequent of the desired conditional. Once we have an assumption and the
consequent of this conditional, we may then apply -INTRO-and the result will be
exactly what we wanted. Note that -INTRO cites two previous line numbers, which
must both be in the same subproof: first the assumption, then another sentence (the
consequent of the desired conditional). Observe also that the rule RETURN is now
expanded to permit the citation of a line where -INTRO was applied.

We can perhaps better see the strategy in this derivation if we add our comments:

1. (A- B) :PREMISE
2. (B - C) :PREMISE

/BEGIN: -INTRO to derive (A- C)/
*3. A :ASSUMPTION

/BEGIN: -ELIM to derive Cl
* 4. (A- B) :SEND, 1
*s. (B - C) :SEND,2
*s. B :-ELIM,4,3
*7. C :-ELIM,5,6

/END: -ELIM to derive C/
*a. (A- C) :-INTRO,3,7

/END: -INTRO to derive (A- C)/
9. (A - C) :RETURN,8

Let's consider another example.

Argument 3

(A&B)
:. (C-A)

Here, it should be clear that -INTRO should be used. The conclusion contains an-,
while the only premise does not. To apply-INTRO and have the result turn out correctly,
we must assume the sentence 'C', then work toward the sentence 'A' in that subproof.

Derivation

1. (A & B) :PREMISE
/BEGIN: - INTRO to derive (C - A)/

*2. C :ASSUMPTION
*3. (A & B) :SEND, 1
* 4. A :&ELIM,3

184

CHAPTER 9

*5_ (C - A) : - INTR0,2,4
/END: - INTRO to derive (C - A)/

6. (C - A) :RETURN,5

We observe that the conclusion is a conditional, probably to be reached by -INTRO.
If we are to apply-INTRO to obtain '(C- A)', we must assume 'C', then (somehow)
derive 'A'. In line 2, we assume 'C'. Practically the only reasonable step open to us at
this point is to "send" the single premise into the subproof. Once we do this, it is, of
course, easy to derive 'A'.

Argument 4

A
:.(B- (C- A))

Derivation

1. A :PREMISE
/BEGIN: - INTRO to derive (B - (C - A))/

*2. B :ASSUMPTION
/BEGIN: - INTRO to derive (C - A)/

**3. C :ASSUMPTION
**4. A :SEND,1
**s. (C - A) : - INTR0,3,4

/END: - INTRO to derive (A- A)/
*6. (C - A) :RETURN,5
*7. (B - (C - A)) :-INTR0,2,6

/END: - INTRO to derive (B - (C - A))/
8. (B - (C - A)) :RETURN,7

This derivation uses two applications of-INTRO, with the result that there is a subproof
within a subproof. The desired conclusion is '(B - (C - A))'. Since the conclusion is a
conditional, the appropriate rule to use seems to be-INTRO. To arrive at this conclusion
we must assume

B

which is the antecedent of the conclusion, and work toward

(C-A)

But '(C- A)' is itself a conditional, which suggests another use of -INTRO. To reach
'(C - A)', we again apply-INTRO, beginning with the assumption of sentence 'C' and
working toward sentence 'A'. The overall strategy is:

185

ADDITIONAL RULES

/BEGIN: -INTRO to derive (B - (C - A))/
/BEGIN: -INTRO to derive (C - A)/
/END: -INTRO to derive (C - A)/

/END: -INTRO to derive (B - (C - A))/

This plan of attack virtually dictates the final form of our derivation. For example, the
remark

/BEGIN: -INTRO to derive (B - (C - A))/

dictates that the next step should be the assumption of the antecedent, 'B'.

Disjunction Introduction and Elimination

We have two paired rules for dealing with sentences involving disjunctions. They are
disjunction introduction, or vlNTRO for short, and disjunction elimination, or vELIM for
short.

The first rule, vlNTRO, is a rule of deceptive simplicity.

vlNTRO From any sentence of the form
p

you may derive
(PvQ)

or you may also derive
(Qv P)

It states that from any sentence, P, you may derive a sentence that has another sentence,
Q, "added" to P. For this reason the rule is occasionally called "addition." The sentence
added to the sentence we already have may be any sentence whatever. Thus lines 2
to 5 are all legitimate applications of vlNTRO:

1. A
2. {Av B)
3. {Av (C & D))
4. ((E - {F v G)) v A)
5. ((Av B) v (Av B))

:PREMISE
:vlNTRO,1
:vlNTRO,1
:vlNTRO,1
:vlNTRO,2

In the second line, 'B' is the added sentence. In the third line, it is the molecular sentence
'(C & D)'. In the fourth line, the molecular sentence

(E- (F v G))

is added to the sentence 'A', but 'A' is the second disjunct. In the fifth line, we added
'(AV B)' to itself.

186

CHAPTER 9

Because the rule vlNTRO is extremely generous and can be applied to any sentence
whatever, the stumbling block is not in learning what the rule is but rather in learning
when and how to use it and what sentence to add. As with our other rules, some hint
of when the rule vlNTRO should probably be used is given by its name. The rule vlNTRO
should usually be used when we have a disjunction to derive. For example, consider
the following valid argument:

Argument 5

(A&B)
:. (C- (Av D))

The desired conclusion is a conditional: (C- (Av D)). This suggests that the major
strategy should probably be -INTRO. We would begin by assuming sentence 'C'. But
observe that once we have done this, we should then derive '(Av D)'. This sentence is,
of course, a disjunction and suggests that vlNTRO should then be used. Our strategy,
then, is sketched as follows:

/BEGIN: -INTRO to derive (C- (Av D))/
/BEGIN: vlNTRO to derive (Av D)/
/END: vlNTRO to derive (Av D)/
/END: -INTRO to derive (C - (Av D))/

The resulting derivation is:

1. (A & B) :PREMISE
/BEGIN: - INTRO to derive (C - (Av D))/

*2. C :ASSUMPTION
/BEGIN: vlNTRO to derive (Av D)/

*3. (A & B) :SEND, 1
* 4. A :&ELIM,3
*s. (Av D) :vlNTRO,4

/END: vlNTRO to derive (Av D)/
*6. (C - (Av D)) :-INTRO,2,5

/END: - INTRO to derive (C - (Av D))/
7. (C - (Av D)) :RETURN,6

At step 5, absolutely any sentence could have been "added" to sentence 'A'. But since
we were aiming for '(Av D)', the natural addition was the sentence 'D'.

Here is another application of vlNTRO:

Argument 6

((Av B)- C)
A

:. C

187

ADDITIONAL RULES

Derivation

1. ((AvB)-C)
2. A
3. (Av 8)
4. C

:PREMISE
:PREMISE
:vlNTR0,2
:-ELIM,1,3

The rule vELIM is also simply stated:

vELIM From a sentence of the form

(PvQ)

and one of the form

-P

you may derive

Q

Or, alternatively, from a sentence of the form

(PvQ)

and one of the form

-a
you may derive

p

In other words, from a disjunction and a sentence that is the negation of one of the
disjuncts, you may derive the other disjunct.

The simplest example showing the application of this rule is as follows:

Argument 7

(AvB)
-A
B

Derivation

1. (Av 8)
2. -A
3. B

:PREMISE
:PREMISE
:vELIM,1,2

188

CHAPTER 9

Observe that the rule vELIM cites the line with the disjunction first, and the second
citation is the line with the negated sentence.

Here is another application of vELIM:

Argument 8

(BvC)
(A- -C)

:. (A- B)

At first, this argument might not look too promising for an application of vELIM. We have
a disjunction, '(8 v C)', and one conditional, '(A- -C)'. The desired conclusion is a
conditional, and so we might try an -INTRO strategy by assuming 'A'. We now try to
derive 'B' in the subproof.

Derivation

1. (Bv C)
2. (A- -C)

Argument 9

1. (Bv- C)
2. C
3. 8

:PREMISE
:PREMISE

/BEGIN: - INTRO to derive (A- 8)/
*3. A :ASSUMPTION
* 4. (A - -C) :SEND,2
*5. - C : - ELIM,4,3
*6. (B v C) :SEND, 1
*7. 8 :vELIM,6,5
*a. (A- B) :- INTR0,3,7

/END: - INTRO to derive (A - 8)/
9. (A- B) :RETURN,8

Please note that the next example is an incorrect use of vELIM:

:PREMISE
:PREMISE
:vELIM, 1,2 [Incorrect]

Later in this chapter, we will see how to derive '--C' from C and so correctly derive
the conclusion:

1. (Bv-C)
2. C
3. --c
4. B

:PREMISE
:PREMISE
:RR DN,2 (see "Rules of Replacement")
:vELIM,1,3

189

ADDITIONAL RULES

Truth Preservation

Are the last four rules of inference we have introduced- -ELIM, -INTRO, vlNTRO,
and vELIM-truth-preserving? There are two methods we can use in answering this
question. We might, for example, try to show directly that such a rule will never produce
FALSE sentences out of TRUE ones. We could examine a truth table to see if there is
a possible situation where the earlier sentences are TRUE but the derived sentence is
FALSE. Another, and usually easier, method is to show that the new rule is derivable
from rules that we already have and which are known to be truth-preserving. By "derivable
from" we mean here that the new rule can only derive sentences that earlier rules could
also have derived.

We can readily see that the rule vlNTRO is derivable from a combination of other
previously introduced rules which are all known to be truth-preserving. The pattern of
inference we see with vlNTRO is:

p
:. (P v Q)

where Q can be any sentence. Is such a rule truth-preserving? If we intend to apply the
second method of showing that it is truth-preserving, we ask: Are there steps using
previous rules that would get us from P to (P v Q)? The answer is yes, as the following
derivation (repeated from the previous chapter) shows:

1. p
*2. (-P & - Q)

*3, p
*4, - p
*5, - (- p & - Q)
6. -(-P&-Q)

:PREMISE
:ASSUMPTION [- (- P & - Q) is

logically equivalent to (P v Q)]
:SEND,1
:&ELIM,2
:- INTRO,2,3,4
:RETURN,5.

In other words, wherever we have a derivation that has already reached the sentence,
P, we could insert the above derivation (with line numbers altered) and arrive at
-(-P & -Q), without ever having to use vlNTRO.

A similar demonstration is possible to show that vELIM is truth-preserving. To show
that -INTRO is truth-preserving is difficult using the second rnsthqd but rather easy
using the first method.

Biconditional Introduction and Elimination

The last of the frequently used connectives for which we have not yet given truth-
preserving rules of inference is s-. One rule for the biconditional is:

190

C HA PT ER 9

~INTRO From a sentence of the form
(P- Q)

and another of the form
(Q- P)

you may derive
(P~Q)

Note that the application of the ~INTRO rule requires two previous sentences. Both
must be conditionals, and the antecedent of each one is the consequent of the other.

The other rule for the biconditional is:

~ELIM From a sentence of the form
(P~Q)

you may derive either
(P-Q)

or
(Q-P)

These two rules, as their names suggest, are usually applied when we need to
derive a sentence containing ~, or when we need to derive a sentence that does not
contain ~ from sentences which do. The application of these two rules is shown in the
following two derivations.

Argument 10

(A~ 8)
A

:. B

Derivation

1. (A~ B)
2. A

:PREMISE
:PREMISE

/BEGIN: ~ELIM to obtain (A - 8)/
3. (A - B) :~ELIM, 1

/END: ~ELIM to obtain (A - 8)/
4. B :-ELIM,3,2

Observe that the use of ~ELIM in a derivation requires citing one previous line, and
that line must contain a biconditional. In the above argument, it should be apparent that
~ELIM would probably have to be applied. One of the premises contains a biconditional,
while the conclusion does not-therefore, the~ must be "eliminated."

191

ADDITIONAL RULES

Argument 11

(A & (B - C))
(C-B)
(A & (B - C))

Derivation

1. (A & (B- C))
2. (C- B)
3. A
4. (B- C)
5. (B- C)
6. (A & (B - C))

:PREMISE
:PREMISE
:&ELIM,1
:&ELIM,1
:-INTR0,4,2
:&INTR0,3,5

These two rules can easily be shown to be truth-preserving.

Rules of Replacement

All the rules we have seen so far are what might be termed "one-way" rules. They permit
us to derive a sentence from earlier sentences:

<sentence 1 >
<sentence 2>

Derive:
<sentence 3>

But this does not mean that from <sentence 3> we could have derived <sentence 1 >.
For example, from (P & Q) we can derive P; but from P alone we cannot derive (P & Q).
Furthermore, these rules can be applied only when the entire sentence on a line has
the appropriate form. For example, from

1. (A- B)
2. A

:PREMISE
:PREMISE

we can derive by -ELIM
3. B :-ELIM, 1,2

since the sentences on lines 1 and 2 are of the proper form. But note that the following
derivation is not correct:

192

1. ((A - 8) v C)
2. A
3. B

CHAPTER 9

:PREMISE
:PREMISE
:-ELIM, 1,2 [Incorrect]

The difficulty lies with the fact that even though line 1 contains a conditional, '(A- B)',
the entire sentence is not a conditional. (It is, in fact, a disjunction.) In brief, then, all our
earlier rules can be applied to earlier sentences in a derivation, but not to parts of these
sentences.

For example, it is quite tempting to try the following derivation:

1. ((A & B) - C)
2. (A- C)

:PREMISE
:&ELIM, 1 [Incorrect]

The difficulty here lies in the fact that &ELIM can be applied only to a sentence that is
a conjunction, not to one containing a conjunction.

In this last section, we shall introduce rules that are "two-way" and which allow us
to make alterations in parts of previous sentences. The general name for such rules is
rules of replacement, or RR for short.

RR From any sentence containing another sentence, P, as a part:
(... p ...)

if you know that P is logically equivalent to Q, then you may derive the same
sentence with P replaced by Q:

(... Q ...)

In other words, a sentence with a sentence part replaced by a logically equivalent
sentence may be derived.

In theory, the application of the replacement rule, RR, would require us always first
to show that two sentences are logically equivalent before we derive a sentence in which
one is replaced by the other. But there are a handful of logically equivalent pairs that
are so frequently used that we can give them names and then appeal to them whenever
we wish, without having to demonstrate that they are logically equivalent.

These logically equivalent pairs, along with the names we shall give to them, are:

p
(P& Q)
(P V Q)
p
p
(P & (Q & R))
(P v (Q V R))
(P & (Q v R))
(P v (Q & R))
-(P& Q)
-(P v Q)
(P-> Q)
(P-,,Q)
(P-> Q)
((P & Q) -,, R)

--P
(Q& P)
(Q VP)
(P & P)
(P v P)
((P & Q) & R)
((P V Q) V R)
((P & Q v (P & R))
((P v Q) & (P v R))
(-P v -Q)
(-P & -Q)
(-Q-> -P)
(-P V Q)
-(P & -Q)
(P-> (Q-> R))

ON (Double-negation)
CM (&-Commutativity)
CM (v-Commutativity)
ID (&-ldempotency)
ID (v-ldempotency)
AS (&-Associativity)
AS (v-Associativity)
DIS (&-over-v-Distributivity)
DIS (v-over-&-Dlstributivity)
OM (De Morgan)
OM (De Morgan)
CN (Contraposition)
EQ (->/vEquivalence)
EQ (->/&Equivalence)
EXP (Exportation)

193

ADDITIONAL RULES

When applying one of these replacement rules in a derivation, you should write 'RR'
(for "rule of replacement"), then the abbreviation for the particular rule (listed above),
then the line number of the previous line undergoing a replacement.

The following short derivations show the correct application of several of these rules.

Argument 12

(A & (8 v C))
(A & (C v 8))

Derivation

1. (A & (8 v C))
2. (A & (C v 8))

:PREMISE
:RR CM,1

The only difference between the premise and the conclusion is the second conjunct: the
second conjunct of the premise is '(B v C)', while the second conjunct of the conclusion
is '(C v 8)'. Since '(8 v C)' is logically equivalent to '(C v B)', we may replace one with
the other in the premise, directly obtaining the conclusion.

Argument 13

(~A-" 8)
:. (8 v A)

Derivation

1. (~A-'> 8)
2. (~~Av 8)
3. (Av 8)
4. (8 v A)

:PREMISE
:RR EQ,1
:RR DN,2
:RR CM,3

Argument 14

(A & ~(8-" ~C))
:. ((A & B) & C)

Derivation

1. (A & ~(B-" ~C))
2. (A & ~(~B v ~C))
3. (A & (~~8 & ~~C))
4. (A & (B & ~~C))
5. (A & (B & C))
6. ((A & 8) & C)

:PREMISE
:RR EQ,1
:RR DM,2
:RR DN,3
:RR DN,4
:RR AS,5

194

CHAPTER 9

Argument 15

((A v -8) -->- -E)
(Av(-B&C))

:. -E

Derivation

1. ((Av -8)-->- -E)
2. (Av (-8 & C))
3. ((A v -8) & (A v C))
4. (AV -8)
5. -E

:PREMISE
:PREMISE
:RR DIS,2
:&ELIM,3
:->-ELIM, 1 ,4

Throughout all these lines, the main justification for a sentence is "rule of replace-
ment." We then cite how we know the replacement sentence is logically equivalent to
the original sentence. One way is to cite by abbreviation one of the logically equivalent
pairs given in the above list.

Is the rule RR truth-preserving? That is, if we begin with TRUE sentences, will we
derive only TRUE sentences, even if we use RR repeatedly? The truth value of a
compound sentence is a function of the truth values of its parts. This fact was made
abundantly clear in Chapters 3 through 6. If one of these parts is replaced by a sentence
having the same truth value, the truth value of the entire sentence will not be changed.
If the sentence was TRUE before, then replacing a part of that sentence with a part
known to have the same truth value will result in a sentence which is also TRUE. Logically
equivalent sentences are just sentences that have the same truth value in all situations.
Thus the rule RR is truth-preserving: replacing a subformula of a sentence with a sen-
tence logically equivalent to the part will not change its truth value.

Sometimes we might not have available the list of logically equivalent sentences
given above. Or perhaps we might have good reason to believe that two sentences are
logically equivalent, even though they aren't on the list, and wish to use them in RR.
What do we do?

We could demonstrate that the two sentences are logically equivalent by constructing
a truth table off to the side of the derivation, showing that the two sentences have the
same truth values in all situations. But this would often be very paper- and time-con-
suming; we would clutter our otherwise neat derivation with a long digression into what
derivations are supposed to avoid: considerations of the truth and falsity of sentences.

Instead of writing a truth table, we shall make use of an earlier observation. Two
sentences, P and Q, are logically equivalent if and only if the biconditional (P - Q) is
a tautology. Furthermore, a sentence is a tautology if and only if it can be RETURNed
from a section of a derivation that does not use SEND on any premises or any lines
outside of that section. When -INTRO is used on two tautologies, the resulting bicon-
ditional is a tautology.

In other words, a biconditional can be shown to be a tautology if we can construct
a section of the derivation with this structure:

195

ADDITIONAL RULES

/BEGIN: -INTRO to derive (P - Q)/
/BEGIN: -INTRO to derive (P - Q)/
/END: -INTRO to derive (P - Q)/
/BEGIN: -INTRO to derive (Q - P)/
/END: -INTRO to derive (Q - P)/

/END: -INTRO to derive (P - Q)/

and within this section no SEND line is ever applied to lines before this section of the
derivation.

Consider the following argument:

Argument 16

(B & ((Av A) & A))
:. (B & A)

We might begin by observing that if we could replace ((Av A) & A) with A, the derivation
would be very simple. Furthermore, we might suspect that the sentences

((Av A) & A)

and

A

are logically equivalent, which would allow their replacement by RR. We might proceed
as follows:

1. (B & ((Av A) & A)) :PREMISE
/BEGIN: -INTRO to derive

(A - ((Av A) & A)) for RR/
/BEGIN: -INTRO to derive (A - ((A v A) & A))/

*2. A :ASSUMPTION
*3. (Av A) :vlNTRO,2
* 4. ((A v A) & A) :&INTRO,3,2
*s. (A - ((A v A) & A)) :-INTRO,2,4

/END: -INTRO to derive (A - ((Av A) & A))/
6. (A - ((A v A) & A)) :RETURN,5

/BEGIN: -INTRO to derive (((A v A) & A) - A)/
*7. ((Av A) & A) :ASSUMPTION
*a. A :&ELIM,7
*9. (((Av A) & A) - A) :-INTRO,7,8

/END: -INTRO to derive (((Av A) & A) - A)/
10. (((Av A) & A) - A) :RETURN,9
11. (A - ((A v A) & A)) :-INTRO,6, 10

/END: -INTRO to derive (A - ((Av A) & A))/
12. (B & A) :RR (2-11),1

196

CHAPTER 9

A careful inspection of lines 2 to 11 will show that no previous lines outside of the section
were cited. That section of the derivation is "self-contained." Consequently, it can be
used to show that the sentence in line 11 is a tautology and thus that the two sentences
are logically equivalent. In line 12 we apply the rule of replacement, RR, using the
information garnered in lines 2 to 11 that 'A' and '((Av A) & A)' are logically equivalent.
The replacement of '((Av A) & A)' by 'A' was applied to line 1, so we cite it.

Modus Tollens

Another rule for eliminating a conditional is commonly known by its Latin name, modus
to/lens, or MT for short. It deals with sentences that combine - and - .

MT From a sentence of the form
(P-Q)

and a sentence of the form
-Q

you may derive
-P

In other words, if we have a conditional sentence and the negation of the consequent
of that sentence, we may derive the negation of the antecedent.

Reasoning according to the rule modus to/lens is quite common in everyday affairs.
An example is:

If this is a pine tree, then it must have pine cones.
It does not have pine cones.
Therefore, this is not a pine tree.

One way to show that MT is truth-preserving is to derive the desired conclusion:

1. (P-Q)
2. -Q

/BEGIN:
*3. p
*4. (P- Q)
*s. a
*6. -Q
*7. -P

/END:
8. -P

:PREMISE
:PREMISE

-INTRO to derive -P/
:ASSUMPTION
:SEND,1
:-ELIM,4,3
:SEND,2
:-INTRO,3,5,6

-INTRO to derive -P/
:RETURN,?

So, MT is truth-preserving, since SEND, -ELIM, -INTRO, and RETURN are truth-
preserving. What we have shown is that any time we have a sentence of the form
(P- Q) and a sentence of the form -Q, we can derive a sentence of the form -P.

197

ADDITIONAL RULES

We shall call such a rule a derivable rule, because the validity of this new rule really
rests on earlier rules. (In fact, as we mentioned earlier, all the rules in this chapter are
derivable from the rules in Chapter 8.)

Thus MT (or any derivable rule) used as a justification of a line in a derivation can
be thought of as an abbreviation of its own derivation (given above). In an unabbreviated,
or "expanded," derivation, the line whose citation is MT would be replaced by a copy of
the above derivation, perhaps slightly altered: Each of the sentences P and Q would be
replaced by appropriate sentences from the abbreviated derivation; the justifications for
lines 1 and 2 might have to be replaced by the justifications for (P - Q) and -Q from
the abbreviated derivation; line numbers might have to be changed; and so on.

An example should clarify this:

Argument 17

(-A- 8)
-8

:. A

Abbreviated Derivation

1. (-A- 8)
2. -8
3. --A
4. A

:PREMISE
:PREMISE
:MT,1,2
:RR DN,3

Expanded Derivation

1. (-A-8)
2. -8
*3. :_A
*4. (-A- 8)
*5. 8
*6. -8
*7. --A
8. --A
9. A

:PREMISE
:PREMISE
:ASSUMPTION
:SEND,1
:-ELIM,4,3
:SEND,2
:-INTR0,3,5,6
:RETURN,? [instead of MT,1,2]
:RR DN,8

There are many other useful derivable rules. Some of these are explored in the
exercises. (The "expansion" of an "abbreviated" derivation that uses a derivable rule
corresponds to the expansion of "macros" in assembly-language programming: Instead
of always spelling out the details of a section of derivation to derive a sentence from
earlier rules, we give certain steps a name-such as MT-and use that name to refer
to that sequence of steps.)

198

CHAPTER 9

Summary

To make derivations simpler and more natural, additional derived rules of inference were
added to our natural deduction system: introduction and elimination rules for the con-
nectives v, -, and e-,

vlNTRO-From P, (P v Q) is derivable.
vELIM-From (P v Q) and -P, Q is derivable.
-INTRO-With P as an assumption of a subproof and Q a line of that subproof,

(P - Q) is derivable in the subproof and may be returned.
-ELIM-From (P - Q) and P, Q is derivable.
~INTRO-From (P - Q) and (Q - P), (P ~ Q) is derivable.
~ELIM-From (P ~ Q), either (P - Q) or (Q - P) is derivable.

Furthermore, the very powerful rule of replacement (RR) was discussed, along with a
number of common logical equivalences:

p
(P& Q)
(Pv Q)
p
p
(P & (Q & R))
(P V (Q v R))
(P & (Q v R))
(P v (Q & R))
-(P&Q)
-(PvQ)
(P----..Q)
(P----.. Q)
(P----.. Q)
((P&Q)----.. R

--P
(Q& P)
(Q VP)
(P & P)
(P v P)
((P & Q) & R)
((P V Q) V R)
((P & Q) v (P & R))
((P V Q) & (P V R))
(-P V -Q)
(-P & -Q)
(-Q----.. -P)
(-PvQ)
-(P & -Q)
(P----.. (Q----.. R))

ON (Double-negation)
CM (&-Commutativity)
CM (v-Commutativity)
ID (&-ldempotency)
ID (v-ldempotency)
AS (&-Associativity)
AS (v-Associativity)
DIS (&-over-v-Distributivity
DIS (v-over-&-Distributivity)
OM (De Morgan)
OM (De Morgan)
CN (Contraposition)
EQ (----../vEquivalence)
EQ (----../&Equivalence)
EXP (Exportation)

Also, one additional derived rule was introduced:

MT (modus tollens)-From (P----.. Q) and -Q, -P is derivable.

Exercises

A. Natural Deductions
Give derivations for the following arguments:

1. (A & B) 2. (A - B)
~-q ~-q

:. C (C- D)
:. (A-D)

199

3. (A- (B v C})
(D &A)
-c

.-. B
4. (Av B)

(Av -B)
:. A

5. A
:. (B v -B)

6. (Av B)
-A
(B- C)

:. C

ADDITIONAL RULES

7. A
(A--4 B)
-B

:.-A
8. (A - (B --4 C))

(A- B)
:. (A- C)

9. (- A v (B & C))
-B

:.-A
10. (A- B)

-(B"vC)
.-. -A

B. Symbolize the following arguments, and give derivations for them.

1. The dean and the chairs are in favor of the regulation, or the dean and
the faculty are in favor of it. The faculty are in favor of the regulation only
if a majority of students are in favor of it. But a majority of students are
not in favor of the regulation. Hence, the chairs are in favor of the reg-
ulation.

2. Either my son or my daughter will have the car tonight. If either my son
or my daughter has the car tonight, my wife will not be happy. I will be
happy if neither has the car tonight. But if my wife is not happy, I will not
be happy. And if I am not happy, I am grouchy. Thus I will be grouchy.

3. The sports program will be discontinued unless there is additional money.
If it is discontinued, we will attract students if and only if we are well
known. But we will attract students and we are not well known. Therefore,
there is additional money.

4. If oil supplies run out, then the price of electricity will rise, and the cost
of solar energy will increase provided that oil supplies do not run out. If
the price of electricity rises, then people will be cold. Thus people will not
be cold only if the cost of solar energy increases.

5. Evil cannot exist unless God is unwilling or unable to prevent it. If God
is omnipotent, then He is able to prevent evil. If God is omnibenevolent,
then He is willing to prevent evil. If God exists, He is both omnipotent
and omnibenevolent. Nevertheless, evil exists. Thus God does not exist.

6. If the laws are just and are strictly enforced, there will be fewer crimes.
If strictly enforced laws result in fewer crimes, then we can reduce the
size of the police force. Therefore, if we cannot reduce the size of the
police force, the laws are not just.

7. Neither Albert nor Charlene is a good student. Yet either Albert is a good
student if David is, or if David or Elizabeth is a good student, then Charlene
is a good student if and only if David is. So David is not a good student.

8. Paul is a philosopher only if Rudolph or Karl is. If Rudolph is a philosopher,
then Alfred and Ludwig are philosophers. If Alfred is a philosopher, then
Ludwig is one only if Willard is too. But not both Willard and Paul are
philosophers. So Paul is a philosopher only if Karl is also.

200

CHAPTER 9

C. The conclusion of a derivation that has no premises is called a theorem of
logic. If the rules of derivation are correct, a theorem is a tautology. To prove
a theorem, one must begin the derivation with one or more ASSUMPTIONS,
which are subsequently eliminated by RETURN. Hence, the last line of the
derivation is in the main proof and has no asterisk. Prove the following
theorems:

1. (A- A)
2. ((A- 8)- ((8- C)- (A- C)))
3. ((A- 8) - ((C - A) - (C - 8)))
4. ((A- (8- en- ((A- 8)- (A- C)))
5. ((A-(8-C))- (8- (A- C)))
6. ((A- (A- 8))- (A- 8))
7. ((A- 8)- (-8- -A))
8. (A- (-A- 8))
9. (-A- (A- 8))

10. ((-A-A)-A)
11. ((A- -A)- -A)
12. (-(A- 8)- A)
13. (-(A- 8)- -8)
14. ((A & 8) ~ (8 & A))
15. ((A & (8 & C)) ~ ((A & 8) & C))
16. (((A & 8)- C) ~ (A- (8- C)))
17. ((A- (8 & C)) ~ ((A- 8) & (A- C)))
18. (((A- 8) & (C- □))- ((A & C)- (8 & D)))
19. (((-Av 8) & A)- 8)
20. ((A- 8) ~ -(A & -8))
21. ((A & 8) ~ -(A- -8))
22. (-(A & 8) ~ (A- -8))
23. (A~ (A & A))
24. ((A & -8) - -(A- 8))
25. (-(A & 8) ~(-Av -8))
26. (-(Av 8) ~ (-A & -8))
27. (((A- 8) & (C - 8)) ~((Av C) - 8))
28. ((Av 8) ~ (8 v A))
29. ((Av (8 v C)) ~((Av 8) v C))
30. ((A- (8 v C)) ~ ((A- 8) v (A- C)))
31. ((A- 8) v (8- C))
32. (Av -A)
33. ((A & (8 v C)) ~ ((A & 8) v (A & C)))
34. ((Av (8 & C)) ~((Av 8) & (Av C)))
35. (A~ ((A & 8) v (A & -8)))
36. (A~ ((Av 8) & (Av -8)))
37. (A~ --A)
38. ((A- 8) ~(-Av 8))
39. (((A & 8) - C) ~ (A - (8 - C)))
40. ((A~ 8) ~ ((A- 8) & (8 - A)))

201

ADDITIONAL RULES

D. Define appropriate introduction and elimination rules for NANO, NOR, and XOR,
and show that they are truth-preserving.

E. Show that the following rules are derivable:
1. Hypothetical Syllogism (HS):

From a conditional of the form
(P-Q)

and another of the form
(Q-R)

you may derive a third conditional of the form
(P-R)

2. Constructive Dilemma (CD)
From a disjunction of the form

{P V Q)
and two conditionals of the form

(P-R)
(Q-S)

you may derive the disjunction
{R v S)

F. Show that the following rules are truth-preserving:

1. Hypothetical syllogism (HS)
2. -INTRO

.. ,. t - :. . :_ ~- ... '.

C H APT E l:l 10 ~ ., . n
-., • I '.' ' • --•· • ;~

SENTENTIAL LOGIC:
An Algorithm for
Checking Proofs

In Chapter 5, we gave algorithms for cal-
culating truth values and for determining whether a sym-
bolized sentence is well-formed. In Chapter 6, we gave
algorithms for producing a truth table for an argument
and for using this truth table to determine whether a
symbolized argument in the logic of sentences is valid
or invalid.

In Chapters 8 and 9, we gave the rules for showing
an argument in the logic of sentences to be valid by
giving a derivation. This method of showing how an
argument is valid is considerably less cumbersome than
the truth-table method of Chapters 5 and 6; it also re-
flects a more "natural" way of thinking about how an
argument is valid. It should, however, be kept in mind
that the "proof" method does have its weaknesses: If
an argument is valid, we can derive its conclusion.
Moreover, the proof shows us why it is valid. But if the
argument is invalid, the proof method is not useful. We
would simply get "stuck" and not be able to derive the
conclusion. Before even beginning to try to show an
argument to be valid using a derivation, we should first
have a hunch that it is valid.

In applying the "proof" method of Chapters 8 and
9, two important questions arise:

203

204

CHAPTER 10

1. If we have written a proof, how do we know it is correct? That is, how can we
be sure that it follows the rules for proofs?

2. If we know that the argument is indeed valid (perhaps we have been told that it
is valid by a reliable authority), how can we produce a proof?

The first question is one of whether a proof given to us is correct. The second question
is one of how to create proofs in the first place.

These two questions constitute the topics of the next two chapters. In this chapter
we shall address the first question-how to determine when a proof is correct-by
describing an algorithm that checks a proof to determine if it is correct. We shall call the
algorithm PROOF-CHECKER.

The second question-how to construct a proof given the premises and the con-
clusion-will be discussed in Chapter 11.

Lines of a Proof

The algorithm for checking a proof should detect any error we might make: line numbers
out of order, an improperly used rule, or a mistaken subproof. The algorithm must be
sensitive to several aspects of a line in a proof. Because a line of a derivation contains
organized information, it is customary to speak of a line as a "data structure." A line is
the basic and most important data structure in PROOF-CHECKER.

Each line in a proof should have the following structure:

(asterisks)(line number).(sentence):(rule),(line numbers)

An example is:

*4. (A & B) :&INTRO,2,3

Each line has predetermined areas that should contain special information. These areas
of the line will be called its fields.

The first field contains a string of asterisks-possibly a "null" string, that is, one with
no asterisks. The number of asterisks indicates the number of assumptions under which
we are working in that section of the proof. We shall call this section of a line the subproof-
depth field, because the number of asterisks indicates the "depth" of the subproofs at
that point.

The second field is the line-number field. It simply indicates the line number in a
proof and should contain a (positive) whole number (1, 2, 3, ...). For convenience, the
line-number field is separated from the next field by a period ('.').

The third field should contain a well-formed sentence, such as '(A & B)', '(C - D)',
and so on. We shall call it the sentence field. It is separated from the next field by a
colon(':').

The fourth field contains whatever justifies our writing the sentence in the sentence
field: PREMISE, &INTRO, vELIM, and so on. We shall call this area of the line the rule

205

CHECKING PROOFS

field. We shall call whatever occupies the rule field the rule used in that line-in spite
of the fact that two justifications (PREMISE and ASSUMPTION) are not actually rules
in our earlier terminology. If there are citations to previous lines, then following the rule
field is a comma.

Finally, the fifth field will contain the line numbers of any previous lines that might
need to be cited according to the rule we are using. Two rules (PREMISE and AS-
SUMPTION) do not need such previous lines, so this last field might be empty. We shall
call this field the citation field. It can contain up to three (positive) whole numbers,
separated by commas.

As an example, consider the following line:

*** 11 . (A - (B & C)) :- ELIM,2,4

Occupying each field in this line we have:

Subproof-depth field:
Line-number field:
Sentence field:
Rule field:
Citation field:

11
(A- (B & C))
-ELIM
2,4

You should see that the fields of a line can be uniquely identified; that is, an algorithm
could be written to identify them. Although we shall not present such an algorithm
(because it largely depends on the particular data structure chosen to represent a line),
we shall assume that it is available for use in PROOF-CHECKER.

The Algorithm: Proof-Checker

Errors in a proof cari occur in all sorts of ways. But in each case, the error will occur in
some line of the derivation:

There may be too few, or too many, asterisks.
The line number may not be correct.
What occupies the sentence field might not be a well-formed sentence.
The period ending the line-number field, or the colon ending the sentence field,

might be missing.
What occupies the rule field might not be a proper rule, or it might not correctly

justify the sentence in the sentence field-that is, the rule might be misapplied.
And, finally, what is in the citation field might not be appropriate for the sentence

in the sentence field and the rule in the rule field.

In short, there are lots of mistakes we might make and for which our algorithm must
be on the lookout. We shall divide the algorithm PROOF-CHECKER into several parts,
or "procedures," each of which corresponds to various types of mistakes in a derivation.

206

CHAPTER 10

The four procedures in PROOF-CHECKER are:

CHECK-LINE-STRUCTURE: makes sure that every line has the correct format and
provides names for the fields of each line.

CHECK-SENTENCE-STRUCTURE: determines whether what occupies the sen-
tence field is a well-formed sentence.

CHECK-RULE: makes sure that every rule in a rule field, together with the accom-
panying cited lines, correctly justifies the sentence in the sentence field.

CHECK-SUBPROOF: makes sure that every subproof uses the correct number of
asterisks and follows the rules for subproofs.

The complete algorithm is shown below.

ALGORITHM PROOF-CHECKER

1. INPUT the derivation to be tested.
2. FOR every line of the derivation

(a) CHECK-LINE-STRUCTURE.
(b) CHECK-SENTENCE-STRUCTURE.
(c) CHECK-RULE.
(d) CHECK-SUBPROOF.

3. IF there are no errors
THEN OUTPUT "Derivation is correct; argument is valid."

4. STOP.

We now turn to the task of refining each of the four procedures.

The Procedure CHECK-LINE-STRUCTURE

Let's begin with the simplest and most fundamental of the four procedures: CHECK-
LINE-STRUCTURE. What exactly must the structure of every line in a proof be? We
shall ignore our "comment" lines, which begin with '/' and end with '/', since these are
not part of the proof but just notes to ourselves. Every line must have a period (separating
the line-number and sentence fields) and a colon (separating the sentence and rule
fields). Between the beginning of the line and the period, a number must occur. But this
is only a collection of observations. We now present the algorithm for checking to see
if the requirements are met.

Recall that this procedure is repeated for each line of the derivation, so the input
for the procedure is a line, which we shall call THISLINE. Such an abbreviation will allow
us to refer to what occupies the fields of this line and other lines. For example, SUB-
PROOF-DEPTH(THISLINE) will be the subproof depth of the current line, and SEN-
TENCE(THISLINE) will be the sentence of the current line. We can also use this system

207

CHECKING PROOFS

to refer to whatever occupies a field of another line. For example, SENTENCE(line n)
is whatever occupies the sentence field of line n.

Algorithm PROOF-CHECKER, Procedure CHECK-LINE-STRUCTURE
1. IF there is no period in THISLINE

THEN OUTPUT "Error."
2. IF there is no colon somewhere after the first period in THISLINE

THEN OUTPUT "Error."
3. Let SUBPROOF-DEPTH(THISLINE) = the number of asterisks in the subproof-

depth field of THISLINE.
4. IF the line-number field of THISLINE is empty

THEN OUTPUT "Error."
5. IF the line-number field of THISLINE is not empty

THEN
(a) Let LINENUMBER(THISLINE) = the number in the line-number field of

THISLINE.
(b) IF LINENUMBER(THISLINE) is not a (positive) whole number

THEN OUTPUT "Error."
(c) IF this is the first time the procedure CHECK-LINE-STRUCTURE is being

applied and LINENUMBER(THISLINE) cf= 1
THEN OUTPUT "Error."

(d) IF this is not the first time
and LINENUMBER(THISLINE) ~1 + LINENUMBER (the previous line)

THEN OUTPUT "Error."
6. IF the sentence field of THISLINE is empty

THEN OUTPUT "Error."
7. IF the sentence field of THISLINE is not empty

THEN let SENTENCE(THISLINE) be the sentence in the sentence field of
THISLINE.

8. IF the rule field of THISLINE is empty
THEN OUTPUT "Error."

9. IF the rule field of THISLINE is not empty
THEN let RULE(T!-f lSLINE) be the rule in the rule field of THISLINE.

10. IF the citation field of THISLINE is not empty
THEN
(a) Let CIT1 (THISLINE) be the first citation in the field.
(b) IF there is a second citation

THEN let CIT2(THISLINE) be the second citation.
(c) IF there is a third citation

THEN let CIT3(THISLINE) be the third citation.
(d) IF there is a fourth citation

THEN OUTPUT "Error."
(e) IF any one of the citations is not a (positive) whole number

THEN OUTPUT "Error."
(f) IF any one of the citations is ;;;,, LINENUMBER(THISLINE)

THEN OUTPUT "Error."
End of the procedure CHECK-LINE-STRUCTURE

208

CHAPTER 10

The steps in this procedure make sure that all the basic elements of a line of a
proof are in order before a more detailed examination is begun. Steps 3, 5(a), 7, 9, and
1 0(a) to (c) also give names to the fields of the line for future reference.

The Procedure CHECK-SENTENCE-STRUCTURE

The second procedure of PROOF-CHECKER, CHECK-SENTENCE-STRUCTURE, is,
for our purposes in this chapter, very simple. The first procedure, CHECK-LINE-STRUC-
TURE, tbld us which part of the line is supposed to be the well-formed string. But in
Chapter 5, we gave an algorithm for determining whether a string is well-formed. We
need only to insert that algorithm here. So CHECK-SENTENCE-STRUCTURE is just
the algorithm SENTENCE-CHECKER from Chapter 5 that examines strings for their
well-formedness, using SENTENCE(THISLINE) as its input.

The Procedure CHECK-RULE

The third procedure in PROOF-CHECKER, CHECK-RULE, is the heart of the Algorithm
PROOF-CHECKER: It determines if the rule given as a justification in each line was
correctly applied. Because of the number of possible rules which could have been used
to justify a sentence, this procedure is somewhat lengthy: we must examine the way
each rule works. The procedure uses RULE(THISLINE) as its input.

Algorithm PROOF-CHECKER, Procedure CHECK-RULE
0. IF RULE(THISLINE) = PREMISE

THEN
(a) IF SUBPROOF-DEPTH(THISLINE) 4c 0

THEN OUTPUT "Error."
(b) IF there is a number in the citation field

THEN OUTPUT "Error."
1. IF RULE(THISLINE) = &ELIM

THEN
(a) IF there is not just one number in the citation field

THEN OUTPUT "Error."
[This is because the rule &ELIM refers back to only one previous line.]

(b) Where SENTENCE(CIT1 (THISLINE)) is the sentence in the line whose
number is CIT1 (THISLINE),
IF SENTENCE(CIT1 (THISLINE)) '4= (SENTENCE(THISLINE) & P) or to
(P & SENTENCE(THISLINE)), where P is some sentence

THEN OUTPUT "Error."
[That is, the previous line cited must be a conjunction-a sentence
whose main connective is &-and the inferred sentence,
SENTENCE(THISLINE), must be one of the conjuncts.]

2. IF RULE(THISLINE) = &INTRO
THEN

209

CHECKING PROOFS

(a) IF there are not just two numbers in the citation field
THEN OUTPUT "Error."

(b) IF SENTENCE(THISLINE) 4c
(SENTENCE(CIT1 (THISLINE)) & SENTENCE(CIT2(THISLINE)))

THEN OUTPUT "Error."

Step 2 requires that the rule cite two (and only two) previous line numbers. Step
2(b) requires that the sentence in THISLINE consist of '(', followed by the sentence in
the first line cited, followed by an ampersand(&), followed by the sentence in the second
line cited, followed by')'.

Our rule is in fact very exacting, as we have written it. Suppose we encountered
the following "proof":

1. A
2. B
3. (A & B)

:PREMISE
:PREMISE
:&INTRO,2, 1 [Mistake]

Line 3 contains a mistake (although a small one). In the citation for line 3, we cite 2
before 1. This indicates that the sentence of line 2 should be the first conjunct of the
sentence in line 3 and that the sentence in line 1 should be the second conjunct. In the
example above, they are not.

There are two ways of correcting line 3-that is, two ways of making line 3 correct
while retaining its rule as &INTRO. We could keep the rule and citations as they are but
correct the sentence:

3. (B & A) :&INTRO,2, 1 [Correct]

Or we could change the citations and keep the sentence the same:

3. (A & B) :&INTRO, 1,2 [Correct]

This example shows the extraordinary care we must exhibit in using our rules if we
want to make them subject to algorithms. We could allow ourselves more freedom in
the expression of a citation, but then our algorithm would be more complicated. For
example, if we wanted to allow ourselves the freedom of writing the cited lines in any
order, we would have to modify step 2(b) to:

2(b) [Experimental]
IF SENTENCE(THISLINE) 4' (SENTENCE(CIT1 (THISLINE)) & SEN-
TENCE(CIT2(THISLINE))) and SENTENCE(THISLINE) 4c
(SENTENCE(CIT2(THISLINE)) & SENTENCE(CIT1 (THISLINE)))

THEN OUTPUT "Error."

This example demonstrates an unfortunate trade-off we often face in writing algorithms.
If it is to be convenient and versatile for us humans, then the algorithm must be made
more complicated. On the other hand, if the algorithm is to be simple, then the rule is
rigid and not always convenient for human users.

210

CHAPTER 10

Continuing the procedure CHECK-RULE:

3. IF RULE(THISLINE) = -ELIM
THEN
(a) IF there are not just two numbers in the citation field

THEN OUTPUT "Error."
(b) IF SENTENCE(CIT1 (THISLINE)) -=I=

(SENTENCE(CIT2(THISLINE)) - SENTENCE(THISLINE))
THEN OUTPUT "Error."

Step 3(a) requires the-ELIM rule to cite two previous lines. Step 3(b) requires the
two cited lines to be "related" in a certain way. The sentence in the second cited line
must be the antecedent of the sentence in the first cited line. And the sentence in
THISLINE must be the consequent of the sentence in the first cited line. For this to be
true, the sentence in the first cited line must, of course, be a conditional: that is, it must
be a sentence whose main connective is-».

This rule, too, has a certain rigidity about it. The cited line numbers must occur in
the right order: conditional first, antecedent second. For example, in:

1. (A- 8)
2. A
3. 8

:PREMISE
:PREMISE
:-ELIM,2, 1 [Mistake]

line 3 is mistaken (and would produce an "Error"), because the sentence in line 2 (the
first citation of line 3) is not identical to:

(SENTENCE(line 1) - SENTENCE(line 3))

This mistake can be corrected by reversing the order of the cited line numbers in line
3:

3. B :-ELIM, 1,2 [Correct]

This is acceptable and would not produce an "Error," because

SENTENCE(line 1) = (SENTENCE(line 2)- SENTENCE(line 3))

is indeed true.
The next step of the procedure CHECK-RULE is:

4. IF RULE(THISLINE) = -INTRO
THEN
(a) IF there are not just two numbers in the citation field

THEN OUTPUT "Error."
(b) IF CIT2(THISLINE) < CIT1 (THISLINE)

THEN OUTPUT "Error."

211

CHECKING PROOFS

(c) IF RULE(CIT1 (THISLINE)) 4= ASSUMPTION
THEN OUTPUT "Error."

(d) IF SENTENCE(THISLINE) 4=
(SENTENCE(CIT1 (THISLINE)) - SENTENCE(CIT2(THISLINE))

THEN OUTPUT "Error."

This step governs the use of the-INTRO rule. Additional requirements for its proper
application will be discussed in the section on CHECK-SUBPROOF, since the use of
-INTRO involves the use of a subproof.

Step 4(a) requires that two lines be cited. Step 4(b) requires that the consequent
of the derived conditional be a line occurring after the assumption. Step 4(c) requires
that the rule in the first cited line must have been ASSUMPTION. (Here is where a
subproof must begin and an * introduced, if the justification was ASSUMPTION, but this
will be discussed later.) Step 4(d) requires that a conditional of a certain form be derived
on THISLINE.

Continuing with the procedure, we have:

5. IF RULE(THISLINE) = -ELIM
THEN
(a) IF there are not just three numbers in the citation field

THEN OUTPUT "Error."
(b) IF CIT2 or CIT3 < CIT1

THEN OUTPUT "Error."
(c) IF SENTENCE(CIT1 (THISLINE)) 4=

the negation of SENTENCE(THISLINE)
THEN OUTPUT "Error."

(d) IF RULE(CIT1 (THISLINE)) 4= ASSUMPTION
THEN OUTPUT "Error."

(e) IF SENTENCE(CIT3(THISLINE)) 4=
the negation of SENTENCE(CIT2(THISLINE))

THEN OUTPUT "Error."
6. IF RULE (THISLINE) = -INTRO

THEN
(a) IF there are not just three numbers in the citation field

THEN OUTPUT "Error."
(b) IF CIT2 or CIT3 < CIT1

THEN OUTPUT "Error."
(c) IF SENTENCE (CIT3(THISLINE)) 4=

the negation of SENTENCE(CIT2(THISLINE))
THEN OUTPUT "Error."

(d) IF RULE (CIT1 (THISLINE)) 4= ASSUMPTION
THEN OUTPUT "Error."

(e) IF SENTENCE(CIT3(THIS LINE)) 4=
the negation of SENTENCE(CIT2(THIS LINE))

THEN OUTPUT "Error."

212

CHAPTER 10

The steps governing -INTRO and -ELIM are identical except for (c). In -INTRO,
the sentence in THISLINE must be the negation of the sentence in the first cited line.
In -ELIM, the sentence in the first cited line must be the negation of the sentence in
THISLINE.

Step (a) requires that the rule cite three lines. Step (d) requires that the rule have
originated with an ASSUMPTION. Step (e) requires that two lines be cited that contradict
one another (that is, that could not be TRUE at the same time). And step (b) ensures
that these contradictory sentences occur in the derivation after the ASSUMPTION.

The next five steps of the procedure are:

7. IF RULE (THISLINE) = vELIM
THEN
(a) IF there are not just two numbers in the citation field

THEN OUTPUT "Error."
(b) IF SENTENCE(CIT1 (THISLINE)) is not a disjunction of the form

(i) (P v SENTENCE(THISLINE)) or
(ii) (SENTENCE(THISLINE) v Q)

THEN OUTPUT "Error."
(c) IF SENTENCE(CIT1 (THISLINE)) is of form (i)

and SENTENCE(CIT2(THISLINE)) is not of the form -P
where P is the first disjunct of SENTENCE(CIT1 (THISLINE))

THEN OUTPUT "Error."
(d) IF SENTENCE(CIT1 (THISLINE)) is of form (ii)

and SENTENCE(CIT2(THISLINE)) is not of the form -Q
where Q is the second disjunct of SENTENCE(CIT1 (THISLINE))

THEN OUTPUT "Error."
8. IF RULE(THISLINE) = vlNTRO

THEN
(a) IF there is not just one number in the citation field

THEN OUTPUT "Error."
(b) IF SENTENCE(THISLINE) -f- (SENTENCE(CIT1 (THISLINE)) v P)

and SENTENCE(THISLINE) -f- (P v SENTENCE(CIT1 (THISLINE)))
where P is a well-formed sentence

THEN OUTPUT "Error."
9. IF RULE(THISLINE) = ~ELIM

THEN
(a) IF there is not just one number in the citation field

THEN OUTPUT "Error."
(b) IF SENTENCE(CIT1 (THISLINE)) is not a biconditional of the form (P ~ Q)

THEN OUTPUT "Error."
(c) IF SENTENCE(THISLINE) -f- (P - Q)

and SENTENCE(THISLINE) -f- (Q - P)
THEN OUTPUT "Error."

10. IF RULE(THISLINE) = ~INTRO
THEN
(a) IF there are not just two numbers in the citation field

THEN OUTPUT "Error."

213

CHECKING PROOFS

(b) IF SENTENCE(CIT1 (THISLINE)) and SENTENCE(CIT2(THISLINE)) are
not conditionals having the forms

(P----'> Q)
and

(Q----'> P)
respectively, where P and Q are well-formed sentences, and where
SENTENCE(THISLINE) is of the form (P ~ Q)

THEN OUTPUT "Error."
11. IF RULE(THISLINE) is neither one of the above nor ASSUMPTION, SEND, or

RETURN
THEN OUTPUT "Error."

Step 11, the final step in CHECK-RULE, requires that the rule be one of the rules
discussed in Chapters 8 and 9. The rules ASSUMPTION, SEND, and RETURN will be
checked in the next procedure, CHECK-SUBPROOF.

The Procedure CHECK-SUBPROOF

We now turn to the last procedure in PROOF-CHECKER, CHECK-SUBPROOF. This
procedure will certify the correctness of certain rules usually involving subproofs.

Algorithm PROOF-CHECKER, Procedure CHECK-SUBPROOF
1. IF SUBPROOF-DEPTH(line 1) > 1

THEN OUTPUT "Error."
2. IF SUBPROOF-DEPTH(line 1) = 1

and RULE(line 1) 4c ASSUMPTION
THEN OUTPUT "Error."

3. IF SUBPROOF-DEPTH(THISLINE) is more than 1 different from SUBPROOF-
DEPTH(the previous line)

THEN OUTPUT "Error."
4. IF SUBPROOF-DEPTH(THISLINE) = 1 + SUBPROOF-DEPTH(the previous line)

and RULE(THISLINE) 4c ASSUMPTION
THEN OUTPUT "Error."

5. IF SUBPROOF-DEPTH(THISLINE) = SUBPROOF-DEPTH(the previous line) - 1
and RULE(THISLINE) 4c RETURN

THEN OUTPUT "Error."
6. IF RULE(THISLINE) = ASSUMPTION

THEN
(a) IF SUBPROOF-DEPTH(THISLINE) 4c

1 + SUBPROOF-DEPTH(the previous line)
THEN OUTPUT "Error."

(b) IF there is a number in the citation field
THEN OUTPUT "Error."

214

CHAPTER 10

7. IF RULE(THISLINE) = SEND
THEN
(a) IF there is not just one number in the citation field

THEN OUTPUT "Error."
(b) IF SENTENCE(THISLINE) =le- SENTENCE(CIT1 (THISLINE))

THEN OUTPUT "Error."
(c) IF SUBPROOF-DEPTH(CIT1 (THISLINE)) is not less than SUBPROOF-

DEPTH(THISLINE)
THEN OUTPUT "Error."

(d) IF there is a line number n greater than CIT1 (THISLINE) and less than
LINENUMBER(THISLINE) such that SUBPROOF-DEPTH(n) < SUB-
PROOF-DEPTH(CIT1 (THISLINE))

THEN OUTPUT "Error."
8. IF RULE(THISLINE) = RETURN

THEN
(a) IF there is not just one number in the citation field

THEN OUTPUT "Error."
(b) IF RULE(CIT1 (THISLINE)) is not one of -INTRO, -INTRO, or -ELIM

THEN OUTPUT "Error."
(c) IF SUBPROOF-DEPTH(CIT1 (THISLINE)) =/c-

SUBPROOF-DEPTH(THISLINE) + 1
THEN OUTPUT "Error."

(d) IF SENTENCE(THISLINE) =le- SENTENCE(CIT1 (THISLINE))
THEN OUTPUT "Error."

(e) IF LINENUMBER(THISLINE) =le- CIT1 (THISLINE) + 1
THEN OUTPUT "Error."

Step 1 says that the first line cannot have more than one asterisk. Step 2 says that
if the first line does have an asterisk, then the line must be justified by the rule AS-
SUMPTION. That is, it must be the beginning of a subproof. (The first two steps differ
from the remaining steps because they deal with the first line of the derivation, not with
THISLINE. We shall have more to say on this later.)

Step 3 says that the number of asterisks in a line can change at most by one asterisk
from the number in the previous line. Step 4 says that the only way a line can acquire
more asterisks (greater subproof depth) than the previous line is if it uses the rule
ASSUMPTION. Step 5 says that the only way a line can have fewer asterisks (less
subproof depth) than the previous line is if it uses the rule RETURN.

The following error-ridden proof indicates the applications of these conditions.

**1. p
***2. Q
**3. (P & Q)
***4_ ((P & Q) & Q)
**s. (P & Q)
6. p

:PREMISE
:ASSUMPTION
:&INTRO, 1,2
:&INTRO,3,2
:&ELIM,4
:&ELIM,5

[Violates step 1]

(Violates step 5]
(Violates step 4]
(Violates step 5]
[Violates step 3]

215

CHECKING PROOFS

Steps 6 to 8 govern the application of the justifications ASSUMPTION, SEND, and
RETURN. They are included as part of CHECK-SUBPROOF rather than as part of
CHECK-RULE because they are used exclusively in connection with subproofs. The
primary use of SEND and RETURN, as noted in the previous chapters, is to allow us
to "send" information into a subproof and to allow us to recover information gained
through a subproof (the information is "returned").

If the rule used in a line is SEND, then exactly one previous line must be cited. The
sentence in that line must be exactly the sentence in THISLINE: that is, SEND merely
copies the sentence. Steps 7(c) and 7(d) are cumbersome to express but have a simple
idea behind them: information from a lesser subproof level can be sent into a greater
("deeper") subproof level, but not vice versa. For example, consider the following correct
section of a proof:

1. p
*2. a
*3. p
*4_ (Q- P)

:PREMISE
:ASSUMPTION
:SEND,1
:-INTRO,2,3

Here, the information given by a premise, P, is merely duplicated in line 3 by using the
SEND rule. The subproof depth of line 1 is 0, so it is less than the subproof depth of
line 3, which is 1. Since P was given as a premise, it seems harmless to repeat it.

But consider this incorrect section of a proof:

1. a
*2. p
*3_ a
*4_ (P- Q)
5. (P- Q)
6. p

:PREMISE
:ASSUMPTION
:SEND,1
:-INTRO,2,3
:RETURN,4
:SEND,2 [Error-violates step 7 (c))

Line 6 is in error because information in a subproof cannot be sent to a line of less
subproof depth-at least not if we're using the SEND rule. We don't, after all, have any
reason to believe that P is true-except when we assumed it in the subproof in lines 2
to 4. But in line 6 we are "out of" this subproof. And thus in the context of line 6 we have
no justification for asserting P.

Step 8 tells us the restrictions governing the rule RETURN. As we noted, RETURN
extracts information from a subproof for use in a section of the proof which is of lesser
subproof depth. ;, "returns" information out of a subproof rather than sending it into one.
The rule can only be used, as step B(b) states, when the cited line is justified by-INTRO,
-INTRO, or -ELIM. Step B(c) ensures that RETURN moves information from a greater
subproof depth to a lesser one. Step B(d) requires that the line whose justification is
RETURN merely repeats, or copies, the sentence of the line it cites. And step B(e) checks
that new subproofs occur at a greater subproof depth.

• Finally, the last step of CHECK-SUBPROOF ensures that information is not sent
into or out of subproofs except by the rules SEND and RETURN:

216

CHAPTER 10

9. FOR each line L:
(a) IF SUBPROOF-DEPTH(CIT1 (L)) or SUBPROOF-DEPTH(CIT2(L)) or

SUBPROOF-DEPTH(CIT3(L)) < SUBPROOF-DEPTH(THISLINE)
and RULE(THISLINE) -4= SEND

THEN OUTPUT "Error."
(b) IF SUBPROOF-DEPTH(CIT1 (L)) or SUBPROOF-DEPTH(CIT2(L)) or

SUBPROOF-DEPTH(CIT3(L)) > SUBPROOF-DEPTH(THISLINE)
and RULE(THISLINE) -4= RETURN

THEN OUTPUT "Error."
(c) FOR any citation in L

IF there exists an intervening line n such that
SUBPROOF-DEPTH(n) < SUBPROOF-DEPTH(THISLINE)
and RULE(THISLINE) -4= SEND

THEN OUTPUT "Error."

This completes the last of the four procedures in ALGORITHM PROOF-CHECKER.

Applications and Modifications of Proof-Checker

Here, again, is the complete algorithm:

ALGORITHM PROOF-CHECKER

1. INPUT the derivation to be tested.
2. FOR every line of the derivation

(a) CHECK-LINE-STRUCTURE.
(b) CHECK-SENTENCE-STRUCTURE.
(c) CHECK-RULE.
(d) CHECK-SUBPROOF.

3. IF there are no errors
THEN OUTPUT "Derivation is correct; argument is valid."

4. STOP.

Applying this algorithm would result in some unnecessary repetition of the first two
steps of the procedure CHECK-SUBPROOF. These steps, it should be recalled, pertain

217

CHECKING PROOFS

only to the first line of the proof. So the examination of the first line would be needlessly
repeated for every line of the proof. A more efficient algorithm might be the following:

ALGORITHM PROOF-CHECKER-1

1. INPUT the derivation to be tested.
2. Apply the procedure CHECK-SUBPROOF, steps 1 and 2.
3. FOR every line of the derivation

(a) CHECK-LINE-STRUCTURE.
(b) CHECK-SENTENCE-STRUCTURE.
(c) CHECK-RULE.
(d) CHECK-SUBPROOF, steps 3 to 9.

4. IF there are no errors
THEN OUTPUT "Derivation is correct; argument is valid."

5. STOP.

If we are applying this algorithm ourselves, there are several tasks we can use it
for. We can follow it for every line of a proof we have written. If we correctly follow the
algorithm and never output "Error," then we know that our proof is correct.

Or, we might wonder if only one line is correct; we might be reasonably certain that
the other lines are correct. It is fairly quick and simple to modify the algorithm to apply
it to just one line.

Or, finally, if we are correcting a proof-noting mistakes in it-we might use the
steps in the full algorithm as a shorthand to describe how a proof goes wrong. We might,
for example, write after a mistaken line in a proof "[Error: violates CHECK-RULE 4(b)]."

For example, consider the following "proof," containing several mistakes, some of
which are marked:

1. -A
2. (B - (A & C))
*3. B
*4. -A
*s. (A & C)

*6. A
*7. -B
8. -B

:PREMISE
:PREMISE
:ASSUMPTION
:SEND,1
:-ELIM,3,2 [Violates CHECK-RULE 3(b) and

violates CHECK-SUBPROOF 8 (b)]
:&ELIM,5
:-INTR0,3,4,6 (Violates CHECK-RULE 6(c)]
:RETURN,?

218

CHAPTER 10

The proof can be corrected so that we obtain

1. -A
2. (B- (A & C))
*3. B
*4_ -A
*5. (B- (A & C))
*6. (A & C)
*7_ A
*a. -B
9. -B

:PREMISE
:PREMISE
:ASSUMPTION
:SEND,1
:SEND,2
:-ELIM,5,3
:&ELIM,6
:-INTRO,3, 7,4
:RETURN,8

We might want to add several features to the algorithm. One weakness of the
algorithm is that when it encounters an error, it outputs only "Error." It does not tell us
in which line the error occurs, nor does it tell us how the line is mistaken. In short, such
a message is uninformative and would not be especially useful in improving the proof:
We would know only that it is mistaken somewhere.

For example, if we input the mistaken proof we just examined into a computer
programmed with ALGORITHM PROOF-CHECKER, it would print out:

Error
Error
Error

-and nothing more. We would then have a difficult time determining how to correct our
proof. We would know only that there are three errors in it, somewhere. (When applying
the algorithm by hand, we see where each error is.)

So if we were really interested in turning ALGORITHM PROOF-CHECKER into a
computer program, we would surely want to make some additions-unless we were
content with it merely to count mistakes. The two additions we would probably be most
interested in are the following:

A. At every point in ALGORITHM PROOF-CHECKER where we earlier had written
OUTPUT "Error"

replace this with
OUTPUT "Error at" LINENUMBER(THISLINE).

B. In the algorithm, add to every
OUTPUT "Error"

some clarification of the nature of the error, such as:
Sentence not well-formed.
2d citation is not the negation of the 3d citation.
Sentence not the correct conjunction.
Unknown rule.
Rule &INTRO must have two citations.

and so on.

219

CHECKING PROOFS

Summary

This chapter presented an algorithm, PROOF-CHECKER, that takes as input a purported
derivation in the natural deduction system presented in Chapters 8 and 9 and outputs
one of two messages: either "Error," if the input did not follow the rules of correct proof,
or "Derivation is correct; argument is valid," if the input followed all the rules.

PROOF-CHECKER works by examining the structure of each line of the derivation,
since any error will show up as an error in the line structure. A line consists of 0 or more
asterisks (0 for lines of the main proof; 1 or more for lines of subproofs), followed by a
whole number, followed by a period, followed by a well-formed sentence, followed by
a colon, followed by a rule of our natural deduction system, followed by a comma,
followed by Oto 3 line numbers (as citations for the rule).

There are four procedures: CHECK-LINE-STRUCTURE makes sure that each line
has the correct format; if a line is incorrectly formatted, the derivation has a "grammatical"
mistake. CHECK-SENTENCE-STRUCTURE makes sure that the sentence is well-formed;
if a sentence is not well-formed, the derivation has a "grammatical" mistake. CHECK-
RULE makes sure that the rule, together with its citations, correctly justifies the sentence;
if a rule does not correctly justify the sentence, then the derivation is incorrect. CHECK-
SUBPROOF makes sure that every subproof is properly written; if there are improperly
written subproofs, then the derivation has a "grammatical" mistake.

Exercises

A. Use PROOF-CHECKER to locate errors in the following derivations.
1. (a) 1. (A---+ B) :PREMISE

2. (C & -B) :ASSUMPTION
3. -B :&ELIM,2
* 4. A :PREMISE
*5. B :---+ELIM,4, 1
6. -B :SEND,3
*7. -A :-INTRO,4,5,6
8. -A :SEND,7

(b) Taking the first two lines in (a) as premises, construct a correct derivation
of '-A'.

2. (a) 1. (A v (C & D)) :PREMISE
2. (A---+ (C & D)) :PREMISE
*3. -(C & D) :PREMISE
*4. -A :MT,1,3
*s. (C & D) :vELIM,4, 1
6. (C & D) :RETURN

(b) Taking the first two lines in (a) as premises, construct a correct derivation
of '(C & D)'.

220

CHAPTER 10

3. (a) 1. 8
2. (8 - (A & D))
*3. C
*4. 8
*5. (C- 8)
6. (C- 8)
**7. (A & D)
8. ((C - 8) & (A & D))

:&ELIM,1
:PREMISE
:ASSUMPTION
:RETURN,1
:-INTRO,4,3
:RETURN,5
:-ELIM,2,1
:vlNTRO, 7,6

4. (a)

(b) Taking the first two lines of (a) as premises, construct a correct derivation
of '((C - 8) & (A & D))'.
1.(-A~8)
2. ((-A- C) & -C)
3. (8- -A)
*4. 8
*5. (8- -A)
*6. -A
*7. (-A- C)
*a. C
*s. -c
*10. -8
11. -8
12. (C & -8}

:PREMISE
:PREMISE
:~ELIM,1,2
:SEND
:SEND,3
:-ELIM,3,4
:SEND,2
:-INTRO,6,7
:&ELIM,SEND,2
:-INTRO,8,9,4
:RETURN,10
:&INTRO,8,9

(b) Taking the first two lines of (a) as premises, construct a correct derivation
of '-8'.

8. Add steps to PROOF-CHECKER to check for correct use of these derivable
rules:
1. Modus to/lens (MT)
2. Hypothetical syllogism (HS)

Suggestions for Computer Implementation

The conversion of PROOF-CHECKER into a working program could be somewhat dif-
ficult, in some languages requiring a dazzling use of string functions (or a complicated
use of records, if you are programming in Pascal). PROOF-CHECKER would presumably
begin with the input of an entire proof-either from the user or from a file. Each line of
the proof would then be checked for correctness.

Preceding this check would be an identification of each field of each line (record)
in the proof. If you were to use string functions, this identification would be simplified if
we had reserved specific positions in each line for specific information. For example,
we might require that asterisks (or blanks) occupy the first five positions of each line-
assuming that we never have the need of six nested subproofs. We might further let the
line number (without its accompanying period) occupy the next three positions, the
sentence positions 9 through 26, the rule positions 27 through 33, and the citations of
previous line numbers positions 34 through 40. Making these changes in our format

221

CHECKING PROOFS

would complicate typing our proofs but would spare us from having to find fields by
locating periods, numbers, and colons by string functions.

Another possibly troublesome feature is the use of commas to separate cited line
numbers. Some systems perceive a comma as ending a string. Handy replacements
might be the slash (/), a plus sign (+), or even a blank.

In Pascal, each line could literally be a record whose record fields are the fields of
the line, simplifying CHECK-LINE-STRUCTURE. But this makes it more difficult to input
the derivation.

When the proof is input, it should be stored in arrays (or some other data structure)
in order to make reference to the parts of the line simpler. For example, SUBPROOF-
DEPTH(n) might be a string array. For example, it might be that ·

SUBPROOF-DEPTH(3) = **

That is, the subproof depth of line 3 is 2 (asterisks). It would be even more convenient
to store the subproof depth in a numerical array. Using this technique, it might be that

SUBPROOF-DEPTH(3) = 2

That is, the subproof depth of line 3 is 2: there are two asterisks preceding the line
number.

The sentence and rule of each line can be stored in string arrays SENTENCE(n)
and RULE(n), and the citations can be stored in three numerical arrays, CIT1 (n), CIT2(n),
and CIT3(n).

Thus the sample proof

1. 8
2. (B- C)
3. C

:PREMISE
:PREMISE
:-ELIM,2,1

would be "redigested" and stored by the program as

SUBPROOF-DEPTH(1) = 0
SUBPROOF-DEPTH(2) = 0
SUBPROOF-DEPTH(3) = 0
CIT1 (1) = 0
CIT1(2) = O
CIT1(3) = 2

CIT2(1) = 0
CIT2(2) = 0
CIT2(3) = 1

SENTENCE(1) = 8
SENTENCE(2) = (8 - C)
SENTENCE(3) = C
CIT3(1) = 0
CIT3(2) = 0
CIT3(3) = 0

RULE(1) = PREM
RULE(2) = PREM
RULE(3) = -ELIM

Data structures such as these allow very handy reference to the fields of each line of
the proof. For example, because RULE(3) = -ELIM, it should be the case that

SENTENCE(CIT1 (3)) = (SENTENCE(CIT2(3)) - SENTENCE(3))

or, in English, that the sentence referred to by the first citation of line 3 should be identical
to the string composed of the sentence referred to by the second citation of line 3,
followed by an arrow, followed by the sentence in line 3.

222

CHAPTER 10

Exercises

Those who are familiar with programming might want to attempt the following exercises.

A. Choose an appropriate data structure for a line (for example, a string, a list, a record,
or an array), and write an algorithm that takes a line as input and outputs a message
stating whether the line is properly formatted.

B. Write a program that inputs an entire proof, identifies the relevant fields of each line
using our original format (with periods and colons), and places these items into
appropriate arrays (or another data structure).

C. Write a section of a program that implements the procedure CHECK-LINE-STRUC-
TURE. You may assume that the proof has already been input into an appropriate
data structure.

D. Write a section of a program that implements the procedure CHECK-SUBPROOF.
You may assume that the proof has already been input into an appropriate data
structure.

E. Assuming that a proof has already been input into an appropriate data structure,
write a program to determine if the rule -ELIM has been appropriately applied.

F. Do the same for the rule &INTRO.
G. Do the same for the rule -INTRO.
H. Again assuming that a proof has already been input into an appropriate data struc-

ture, write a program that checks the application of the rules &ELIM, &INTRO,
-ELIM, and -INTRO. (Recall that these connectives are sufficient to express all
the logic of sentences and thus that CHECK-RULE is in a sense complete when
these four rules have been tested for correctness.)

CHAPTER 11

SENTENTIAL LOGIC:
A Method for

Producing Proofs

We now take up the second of our two
questions from Chapter 1 0: how to construct a proof of
a valid argument given the premises and the conclu-
sion. We could give an algorithm for constructing a proof,
in the logic of sentences, for any premises and any
conclusion validly following from them. But the resulting
algorithm would be either very long or "unnatural" (in
failing to follow the "natural" inferential rules we gave
in Chapters 8 and 9). Consequently, we shall not aim
in this chapter to give the full algorithm for constructing
a derivation. We shall instead content ourselves with
describing a method for constructing a proof that will
work most of the time. That is, in some cases, some
creative intervention by a human user might be re-
quired. We shall call this method PROOF-GIVER.

223

224

CHAPTER 11

General Strategies for Constructing Proofs

The task we face in constructing a derivation of a conclusion from given premises seems,
at first, like nothing we have ever done before. Consequently, the beginner might feel
somewhat lost when it comes to constructing a proof. But, in fact, the construction of a
proof in logic is a great deal like problems we regularly solve without much difficulty.
The construction of a proof also resembles tasks for which computers (and hence
algorithms) are regularly employed.

Analogous Problems

One task analogous to constructing proofs is the problem of finding our way through a
maze.

Entrance
Figure 11-1 A maze.

We all quickly recognize what the goal is: to find a path through the maze, beginning at
the entrance and coming out at the exit, without crossing a line (a "wall"). Finding our
way through a maze might not seem at first much like constructing a proof. But the two
problems have some interesting similarities. In a maze, we are always told where to
begin (at the "entrance"). In constructing a proof in logic, we are also told where to begin:
with our premises. The premises are our "entrance" to a logic puzzle. In a maze, we
are also told where we are supposed to end up (at therexlt"). In constructing a proof in
logic, our goal also lies clearly before us: the conclusion, which we must somehow reach.

In finding our way through a maze, certain methods of proceeding are allowed, and
others are forbidden to us. We may turn left or right or go straight ahead, but we are
not allowed to "jump over" or "go through" a wall. In a proof in logic, there are certain
maneuvers that are allowed: these are the rules of our natural deduction system: &ELIM,
-INTRO, and so on. But certain maneuvers are denied to us: we are not allowed to
infer any old sentence we would like.

As it will turn out, the strategies we use in finding a way through a maze and in
constructing a proof are quite similar. In finding our way through a maze on paper, we

225

PRODUCING PROOFS

might visually start at the entrance and see where we can go from there. Or we might
glance ahead to our goal, the exit, and see how we might get there. That is, we might
glance ahead to see what routes lead to the exit. In constructing a proof in logic, there
are also two basic strategies. We might look at the premises and see what follows from
them by the rules that are permitted to us. Or we might look ahead and see how the
conclusion might come about through using the known rules.

Another analogous task is a more practical problem that a computer-in the hands
of an able travel agent-is frequently used to solve. Suppose that you must fly from
Chicago to New Orleans but that, unfortunately, there are no direct flights at the time,
you want to make your trip. Suppose that the relevant flights have the following pattern:

Boston

NEW ORLEANS
Figure 11-2 Flights with connections to Chicago and New Orleans.

226

CHAPTER 11

Just as with the maze and with constructing a proof in logic, there are "dead ends" that
will not lead to our destination, and there are sometimes several ways to reach our
destination-some that are shorter and some that are longer. The strategies we might
use to solve this flight problem are like the strategies we might use to find our way
through a maze. For example, we might use a finger to trace a path beginning with
Chicago, or we might use a finger to trace a path backward from New Orleans. We
might even combine the two strategies to see where they meet.

The flight problem has some features that make it more like a logic problem than
the maze. In order to fly from Chicago to New Orleans, we might first have to fly to other
cities-Atlanta, for example. In the jargon of a travel agent, these are our "connections."
We might even have to go considerably out of our way to get to New Orleans: we might
have to fly to Seattle, for example, if there are no direct flights to New Orleans.

In constructing a proof in logic, there might also be no "direct flights." We might first
have to make "trips" to intermediate "destinations." A "direct flight" in the proof of an
argument would be one in which the conclusion follows from the premises through the
application of only one rule. For example, the argument

(A-B)
A
B

has a proof that corresponds to a direct flight:

1. (A- B)
2. A
3. B

:PREMISE
:PREMISE
:-ELIM,1,2

In a proof, however, we do not often have the luxury of a "direct flight"; we must make
"connections" by deducing intermediate sentences that eventually allow us to reach our
destination: the conclusion.

Forward-Looking and Backward-Looking Strategies

The strategy used in constructing a proof will be so remarkably similar to the strategies
we would ordinarily use to solve the maze and the flight problems that it bears repeating.

We can begin with our starting point and work forward, or we can glance ahead to
our destination and work backward.

In constructing a proof, these two methods would correspond, respectively, to

1. Considering the premises and wondering what follows from them by our rules.
2. Considering the conclusion and wondering how it could arise by our rules.

227

PRODUCING PROOFS

For several reasons, method 2-looking ahead to the destination (our conclusion) and
working backward-will turn out to be especially fruitful in logic.

There is one big difference between the logical problem of constructing a proof and
the maze and flight problems. This difference will make approaching the construction of
a proof with a strategy all the more important. The difference is that the ways we get
from our point of departure to our destination in the maze and flight problems are few
in number. In the maze problem, we move in any direction we wish, so long as we don't
cross a line; in the flight problem, we move along connecting lines. But in the logical
problem of "departing from" the premises and "arriving at" the conclusion, there are at
any point many different rules we could use. Still worse, there are in the construction of
a proof many more "intermediate destinations" than in the case of the flight from Chicago
to New Orleans. There are in fact an infinite number (so we could not even chart the
options, as we did in the Chicago-New Orleans case). And most of these intermediate
destinations are blind alleys: they do not get us any closer to our destination-the
conclusion. We must then plan our proof very carefully. And to plan our proof, we must
have a method for creating the plan-a plan for making plans, if you wish. This method
for creating plans for a proof is the purpose of PROOF-GIVER.

Consider the following argument:

A
(A- (B - C))
(B- C)

The argument is valid. But how do we produce a proof? We first begin by examining
the premises, the conclusion, and their connection. We see that the conclusion is a
conditional, '(B - C)'. Furthermore, we should observe that this very same conditional
is part of one of the premises: (A- (B - C)), the second premise. Reflecting briefly on
this premise and its main connective, -. we see that if we could somehow eliminate
this connective (and the antecedent 'A') from the premise, we would be left with the
desired result: (B- C). But, of course, to elimlnate-», we just apply the -ELIM rule.
To apply it, we need the antecedent 'A', which, conveniently, is the first premise.

The proof resulting from these observations is:

1. A
2. (A- (B- C))
3. (B-C)

:PREMISE
:PREMISE
:-ELIM,2,1

This proof resulted from our observation that the desired conclusion is a subformula of
one of the premises. We then reasoned how this subformula could be derived by itself
on a line. Obtaining a subformula by itself will typically involve the use of an ELIM rule.

But consider the following argument:

B
((A-C)-B)

228

CHAPTER 11

Here, the conclusion is not a subformula of a premise. The lengthy conclusion is not
embedded anywhere in the simple premise. What information do we have to go on in
determining our strategy for the proof? Even though we cannot see the relationship of
the conclusion to the premises (as we did in the previous example), we can examine
the structure of the conclusion itself. It is, again, a conditional. How could a condi-
tional arise in a proof? It might well come from an application of -INTRO. (In fact, it is
difficult in this example to see how a conditional could be arrived at other than through
- INTRO.)

So we might guess that one step in the proof uses -INTRO. But what previous
lines could produce '((A- C) - B)' by -INTRO? The answer is this. If '(A- C)' were
an ASSUMPTION and 'B' were a later line in the same subproof, then '((A- C) - B)'
could be inferred by-INTRO. A good guess, then, is that the proof proceeds as follows:

1. B
*2. (A- C)

:PREMISE
:ASSUMPTION

*?. B
*?. ((A - C) - B)
?. ((A - C) - B)

:?
:-INTRO,?,?
:RETURN,?

The dots and question marks indicate parts of the proof yet to be filled in. The only
mystery is how to derive 'B'. That, however, is easy to guess in this example: it was
"sent" into the subproof from the premise, 'B'. The resulting proof, with comment lines
inserted, is:

1. B :PREMISE
/BEGIN: -INTRO to derive ((A- C) - B)/

*2. (A- C) :ASSUMPTION
*3. B :SEND, 1
*4. ((A- C)- B) :-INTRO,2,3

/END: -INTRO to derive ((A- C) - B)/
5. ((A - C) - B) :RETURN,4

These two examples give us the basis of a strategy for creating proofs. An overall view
of the method we have just seen applied in devising a strategy is:

1. If the conclusion is a subformula in a previous line, then use the appropriate
ELIM rule to isolate this subformula on its own line.

229

PRODUCING PROOFS

2. If the conclusion is not a subformula of a previous line, then examine the structure
of this conclusion, and use the appropriate INTRO rule to reconstruct the con-
clusion.

These two suggestions are the basic elements in PROOF-GIVER.
In building up a derivation, we shall need two items. The first is simply the ongoing

derivation. It will be composed of the steps of the proof, as far as we have gotten. The
second item is what we shall call the task list. The task list will be our list of the steps
yet needed to complete the proof. The task list is best thought of as our notes to ourselves
on how to complete the proof. In this respect, the task list is little more than what we
have been calling "comments."

This task list can be written immediately following any portion ot the proof we have
completed {or it can be kept in a separate place) and constitutes instructions on our
"plan of attack" for how best to complete the proof. When we are first given the premises
and the conclusion that validly follows from them, the first instruction is to derive that
conclusion. We would write:

PROOF
1. A
2. (A- {B- C))

TASK LIST
Derive (B - C)

:PREMISE
:PREMISE

The last line, 'Derive (B- C)', is our first task and so is the sole item in our task list at
the beginning of our attempt to create a proof.

The rest of the method consists of replacing 'Derive <the conclusion>' with more
helpful advice; accordingly, the task list grows. Furthermore, as some of these tasks
become precise enough to be turned into lines of a proof, the proof itself also grows.

Tree-Searching Strategies

One of the main areas of research in artificial intelligence concerns the topic of a "search":
how to program computers to find solutions or reach goals by guided, or "intelligent,"
methods (including trial and error), rather than by "exhaustively" searching all possibilities.
The possession of such methods seems to be essential for anything claiming to employ
"intelligence."

We have already drawn some parallels between the problem of constructing a proof
and other problems that require a search. Let us now display with more precision what
our search looks like when we are attempting to construct a proof.

230

CHAPTER 11

Argument A
(A-->B)
:. B

... (A➔ (A&(A➔ B))) A ...

--A ((A➔ B)vE) (AvC) (AvD) ...

➔ ELIM

(A&(A v C)) --(Av C) ((Av C)v D) ...

B

Figure 11-3 Search tree for the argument A, (A - B), :. B.

Such diagrams are called "trees." Our starting point is the set of our premises. Our goal
is the conclusion. After correctly applying a rule, we call the point that we have reached
a node of the tree. At this node, we write the new sentence that the rule allowed us to
derive. We also have available at this node any of the previous sentences-the sentences
we have derived above this node. We can apply any of the rules to these available
sentences. (Another way of thinking about the proof-search tree is that at each node
there is a set of "available" sentences. This set "grows" each time a rule is applied, and
we can stop when the conclusion is included in the new set.) Such a display is called
a search tree, and what it displays is called the search space of the problem.

Acceptable means of "traveling" from the premises to the conclusion are restricted
by the available rules. Let us now introduce some terminology. We can measure the
distance of a sentence from the premises (or the conclusion) by the number of rules
used on the shortest path between the premises and the sentence. For example, all the
sentences on the first row below the premises have a distance of one unit from the
premises.

We can now make some observations about the above display of a rather typical
proof problem.

1. The number of sentences in the tree whose distance is one unit from the premises
is infinite-no matter what the premises are. The rules vlNTRO and -INTRO
can be used to add indefinitely many new nodes.

231

PRODUCING PROOFS

2. If there is one path through the tree from the premises to the conclusion, then
there are an infinite number of such paths.

3. If there is a path of length n from the premises to the conclusion, then there is
also a path of still greater length.

4. There are an infinite number of sentences whose distances are one unit from
the conclusion.

5. The tree branches endlessly into directions that are not especially close to the
premises or conclusion.

The job of PROOF-GIVER is to find a reasonably short path from the premises to
the conclusion. Two strategies for searching a tree for a particular node are the "breadth-
first" search and the "depth-first" search, illustrated in Figure 11-4.

A breadth-first search considers, first, all the nodes that are one unit distant from
the starting node. Then it considers all the nodes that are one unit distant from those
nodes, and so on until the goal is reached. It is a search which seeks its goal by first
checking out all the nearest nodes from the starting node, then the next-nearest nodes,
and so on.

Consider this analogy. In conducting a breadth-first search for a lost dollar, I might
begin by visiting all the places where I might have lost it and only then turn to more
"distant" options-for example, that I dropped it on the sidewalk, but it then blew away.

A breadth-first search of our proof tree would not be a reasonable way of discovering
a proof. The number of sentences one unit distant from our premises is infinite (as we
observed above). So we would first have to consider a// of these sentences before going
further with the search. But this first step would itself take forever. In short, a breadth-
first search is not reasonable when our search tree has "unlimited branching," which
rules such as vlNTRO and -INTRO permit.

Although an "all-out" breadth-first search would not be feasible in our case, we might
consider a limited breadth-first search. For example, we might ignore certain of the
branches. (Carrying on the "tree" metaphor, researchers in artificial intelligence speak
of this technique as "pruning" the tree.) The branches we might ignore would be:

1. Branches that use vlNTRO or -INTRO and result in a sentence containing an
atomic sentence that is contained in neither the premises nor the conclusion

2. Branches that use &INTRO and result in a sentence that is not contained as a
subformula in any of the premises or in the conclusion

3. Branches that use &ELIM and result in a sentence that is neither a subformula
of any premise or conclusion nor are the premises or conclusion a subformula
of the sentence.

The result of this limited breadth-first search would be a much-pruned search tree that
would usually reach the conclusion. But the tree would still often be quite large.

The second major search strategy is a depth-first search. In depth-first search, we
make a single, deep plunge into the search tree, hoping to catch our quarry, the goal,
in one quick thrust. This strategy contrasts with the many, equally shallow plunges (or
"guesses") of breadth-first search. The depth-first strategy might also be described as
pursuing our "best guesses" as far as we can take them.

/

232

CHAPTER 11

The Breadth-first Strategy

First Stage

Starting point

~

•GOAL
Second Stage

•GOAL

Third Stage

GOAL

The Depth-first Strategy

Starting point

/I
/ I

' I ' II J. 111 I\ ttl /11 / I
I I I / 11 / \ ,,,,,11 \

//I/ I If \
I 4 ,~: ,~l~, "' /t ,, ,\1 ,,,,\1 \'

fl : ' I ,l ' 'i• I I \ ', , .. II " 1 I ,I , I \ ,
GOAL

Figure 11-4 Breadth-first and depth-first search strategies.

The Method: PROOF-GIVER

Several concepts will be useful in our presentation of PROOF-GIVER. First, recall the
notion of subproof depth from Chapter 10. A subproof of any depth may be said to
contain itself. A subproof S of depth n may be said to contain a subproof S' of a depth
greater than n iff there is no line with fewer than n stars between the last line of S and

233

PRODUCING PROOFS

the first line of S'. In particular, the main proof (which is a subproof of depth 0) contains
itself and all subproofs of any depth.

Intuitively, proofs can be pictured as "nested boxes," as in Figure 11-5.

MAIN PROOF

LINE 1: _

SUBPROOF 1

LINE •2: _

SUB-SUBPROOF 2
LINE ••3: _

SUBPROOF 3

LINE •4: _

Figure 11-5 Diagram of a proof.

In Figure 11-5, the main proof contains itself and all three subproofs. The first subproof
contains only itself and subproof 2. The second and third subproofs contain only them-
selves.

234

CHAPTER 11

We can now say that a line L is accessible to a later line L' iff the subproof that L
is in contains the subproof that L' is in. For instance, in Figure 11-5, line 1 is accessible
to lines in all subproofs, line 2 is only accessible to lines in subproofs 1 and 2, line 3 is
only accessible to lines in subproof 2, and line 4 is only accessible to lines in subproof
3. We shall sometimes simply say that "the line is accessible." (In the terminology of
computer science, a sentence in a particular subproof is said to be "local" to that subproof
and "global" to all subproofs contained within that subproof. Thus line Lis accessible to
line L' iff the sentence on line L is global to the subproof that L' is in or L and L' are in
the same subproof, in which case the sentence is local.)

Second, an asterisk before a task will indicate that a subproof must be begun. Third,
a sentence in brackets, such as [P], will indicate that the first accessible line number
containing sentence P should be cited. Fourth, we shall always call the sentence in the
first 'Derive' statement in the task list the "desired result," sometimes representing it as
'DR'.

Finally, suppose that a sentence, Q, is on an accessible line L and that we wish to
use Q in our derivation. If the line we wish to use it on is in the same subproof as L,
then we need do nothing special. But if that line is in a sub-subproof, we need to SEND
Q into that sub-subproof. In addition, there will be some "bookkeeping" to take care of.
To make our presentation of PROOF-GIVER simpler, we shall use a procedure called
'OBTAIN Q':

PROCEDURE OBTAIN Q

1. IF the line containing Q has fewer asterisks than the desired result (that is,
Q is in a containing proof)

THEN

(a) Replace the first 'Derive' statement in the task list with: SEND,[Q].
(b) Let all subsequent references to line [DR] in the current subproof be

replaced by the line number of this SEND line. (This is the "book-
keeping.")

2. IF the line containing Q has the same number of asterisks as the desired
result (that is, Q is in the same subproof)

THEN

(a) Delete the first 'Derive' statement from the task list
(b) Let all subsequent references to line [DR] in the current subproof be

replaced with the line number of this previous line (more "bookkeep-
ing").

We now have enough background to present the method.

METHOD PROOF-GIVER:
1. INPUT the premises, with the justification 'PREMISE', in the standard format

for proofs.
2. Add 'Derive (conclusion)' to the task list.

235

PRODUCING PROOFS

3. WHILE the task list is not empty and there is a 'Derive' statement in the task
list, keep repeating (a) to (c):

(a) IF DR = a subformula of a sentence, Q, on an accessible line
THEN

(i) OBTAIN Q.
(ii) IF DR= Q

THEN GO TO step 3(c).
(iii) IF DR is a proper subformula of Q

THEN

(1) IF Q is a conditional
and the desired result is a subformula of Q's consequent

THEN replace the first 'Derive' statement in the task list
with:
Derive (antecedent of Q)
Apply -ELIM,[Q],[(antecedent of Q)]
Derive DR (if DR -4= (consequent of Q))

and GO TO step 3(c).

(2) IF Q is a conjunction
and the desired result is a subformula of one of its conjuncts

THEN replace the first 'Derive' statement in the task list
with:
Apply &ELIM,[Q] (to obtain conjunct containing DR)
Derive DR (if DR -4= the inferred conjunct)

and GO TO step 3(c).

(3) IF Q is a disjunction, (P v R),
and the desired result is a subformula of one of its disjuncts,
say R

THEN replace the first 'Derive' statement in the task list
with:
Derive -P
Apply vELIM, [Q],[-P]
Derive DR (if DR -4= R)

and GO TO step 3(c).

(4) IF Q is a negation, say -P, and DR is a subformula of P, say
R

THEN replace the first 'Derive' statement in the task list
with:
"Assume -R
*OBTAIN Q
"Derive P
* Apply -ELIM,[-R],[P],[Q]
RETURN,[R]

and GO TO step 3(c).

236

CHAPTER 11

(b) IF DR is not a subformula of a sentence on an accessible line meeting
the above conditions

THEN

(i) IF the desired result has the form (P - Q)
THEN replace the first 'Derive (P- Q)' in the task list with:

"Assume P
"Derive Q
* Apply -INTRO,[P],[Q]
Apply RETURN,[P - Q]

and GO TO step 3(c).

(ii) IF the desired result has the form (P & Q)
THEN replace the first 'Derive (P & Q)' in the task list with:

Derive P
Derive Q
Apply &INTRO,[P],[Q]

and GO TO step 3(c).

(iii) IF the desired result has the form (P v Q)
THEN replace the first 'Derive' statement in the task list either

with:
(1) * Assume -(P v Q)

"Derive R
"Derive -R
* Apply -ELIM,[-(P v Q)],[R],[-R]
RETURN,[(P v Q)]

or with:
(2) Derive P

Apply vlNTRO,[P] to obtain (P v Q)
or with:

(3) Derive Q
Apply vlNTRO,[Q] to obtain (P v Q)

and GO TO step 3(c).

(iv) IF the desired result has the form -P
THEN replace the first 'Derive -P' in the task list with:

"Assume P
"Derive R
"Derive -R
* Apply -INTRO,[P],[R],[-R]
RETURN,[-P]

and GO TO step 3(c).

(v) IF none of the previous steps have been applied
THEN replace the first 'Derive P' in the task list with:
"Assume -P
"Derive R

237

PRODUCING PROOFS

"Derive -A
*Apply -ELIM,[-P], [A], [-A]
RETURN,[P]

and GO TO step 3(c).

(c) Convert all statements in the task list that precede the first 'Derive'
statement into lines of proof, removing them from the task list.

4. STOP.

Applications of PROOF-GIVER

Let us now apply the method to an argument:

A
B
D
((A & B) & (C - D))

Following steps 1 and 2 of PROOF-GIVER, we obtain:

PROOF
1. A
2. B
3. D

:PREMISE
:PREMISE
:PREMISE

TASK LIST
Derive ((A & B) & (C - D))

The desired result is '((A & 8) & (C- D))'. At step 3(a) we can see that it does not
appear in the previous lines (the premises), so we pass on to step 3(b).

Since the desired result is a conjunction, step 3(b)(ii) applies, and we replace the
original 'Derive ((A & 8) & (C - D))' in our task list with:

Derive (A & 8)
Derive (C - D)
Apply &INTRO,[(A & B)],[(C - D)]

obtaining:

PROOF
1. A
2. B
3. D

:PREMISE
:PREMISE
:PREMISE

238

CHAPTER 11

TASK LIST
Derive (A & B)
Derive (C - D)
Apply &INTRO,[(A & B)],[(C - D)]

We now go to step 3(c), which returns us to step 3(a).
At this point, '(A & B)' becomes our "desired result." It is a conjunction, so again

step 3(b)(ii) is applied, resulting in:

PROOF
1. A
2. B
3. D

:PREMISE
:PREMISE
:PREMISE

TASK LIST
Derive A
Derive B
Apply &INTRO,[A],[B]
Derive (C - D)
Apply &INTRO,[(A & B)],[(C----'> D)]

After step 3(c), we again return to step 3(a). Now, however, the desired result is
simply 'A', and it is contained in a previous line-namely, it is identical to the first premise.
So, step 3(a)(i) requires us to delete the first 'Derive' statement and replace references
to [A] with 1. Looking at the task list only, we see that the result is:

Derive B
Apply &INTRO, 1,[B]
Derive (C - D)
Apply &INTRO,[(A & B)],[(C - D)]

Since there is a 'Derive' statement at the top of the task list, step 3(c) again returns us
to step 3(a).

Now the desired result is 'B', which is identical to the second premise. After following
the directions in the appropriate clause of step 3(a), we find that our task list looks like
this: .

Apply &INTRO, 1,2
Derive (C - D)
Apply &INTRO,[(A & B)],[(C----'> D)]

We again drop down to step 3(c), but this time we do not simply return to step 3(a). It
tells us to convert the first line in the task list, 'Apply &INTRO, 1,2', into a line of proof.
The result is:

239

PRODUCING PROOFS

PROOF
1. A
2. B
3. D
4. (A & B)

:PREMISE
:PREMISE
:PREMISE
:&INTRO, 1,2

TASK LIST
Derive (C - D)
Apply &INTRO,4,[(C - D)]

Returning to step 3(a), we see that our desired result is now, (C - D)'. It is not
contained in a previous line, including our newly acquired line 4, so we proceed to step
3(b}. The desired result is a conditional, so, applying 3(b) (i), we find that our task list
becomes:

"Assume C
"Derive D
* Apply -INTRO,[C],[D]
Apply RETURN,[(C - P)]
Apply &INTRO,4,[(C - D)]

Dropping down to step 3(c), we must convert every statement that occurs in the task
files before the first 'Derive' statement into a new line of proof. We obtain:

PROOF
1. A
2. B
3. D
4. (A& B)
*s. C

:PREMISE
:PREMISE
:PREMISE
:&INTRO, 1,2
:ASSUMPTION

TASK LIST
"Derive D
* Apply -INTRO,5,[D]
Apply RETURN,[(C - D)]
Apply &INTRO,4,[(C - D)]

Returning to step 3(a), we see that 'D' is now the desired result. It is part of a
previous sentence, so step 3(a)(i) applies. Following those directions, we have in the
task list:

*SEND,3
* Apply -INTRO,5,[D]
Apply RETURN,[(C - D)]
Apply &INTRO,4,[(C - D)]

240

CHAPTER 11

Dropping down to step 3(c), we now see that there are no 'Derive' statements left in the
task list. This means that all instructions in the task list must be converted into lines of
proof. Applying the instructions in the task list line by line, we obtain the following result:

1. A
2. B
3. D
4. (A& B)
*5. C
*s. D
*7. (C- D)
8. (C-D)
9. ((A & 8) & (C - D))

:PREMISE
:PREMISE
:PREMISE
:&INTRO, 1,2
:ASSUMPTION
:SEND,3
:-INTRO,5,6
:RETURN,?
:&INTRO,4,8

Limitations of PROOF-GIVER

PROOF-GIVER, as we have described it, falls short of being a true algorithm. The
construction of proofs for some arguments requires imagination or inspiration. The short-
comings of PROOF-GIVER fall into three major areas.

First, the application of several rules requires the user of the procedure to make
additional "guesses." Chief among these are arguments that take us to steps 3(b)(iii),
3(b)(iv), and 3(b}(v). Although many steps in PROOF-GIVER could be straightforwardly
translated into algorithms, these steps are not among them. Step 3(b)(iii) requires us to
choose among three ways of introducing a disjunction. Steps 3(b)(iv) and 3(b)(v) require
us to derive ~ contradiction: some sentence, R, on one line and its negation, -R, on
another. But which sentence and its negation should be derived? This is left to our own
invention.

The second and third parts of step 3(b)(iii) apply the rule vlNTRO. There is no
ambiguity concerning what to derive. But this technique will not always work; where it
does work, it works easily. So we find ourselves in a dilemma: the first technique, of
indirect proof, always works (and so is listed first) but requires "creativity" to find a
contradiction. The second method does not always work, but when it does, it requires
no creativity.

The. kinds of cases where the two different techniques of 3(b)(iii) are appropriate
can be illustrated by two examples.

Consider:

(A& B)
(AvC)

Using the first technique, we start with:

PROOF
1. (A& B) :PREMISE

241

PRODUCING PROOFS

TASK LIST
Derive (A v C)

Then we have (by step 3(b)(iii)(2)):

PROOF
1. (A& B) :PREMISE

TASK LIST
Derive A
Apply vlNTRO,[A] to obtain (Av C)

Going back to step 3(a), we arrive at step 3(a)(iii)(2), which results in:

PROOF
1. (A& B) :PREMISE

TASK LIST
Apply &ELIM, 1 to obtain A
Apply vlNTRO,[A] to obtain (Av C)

And finally, after step 3(c) is performed, we have: •

PROOF
1. (A & B)
2. A
3. (Av C)

:PREMISE
:&ELIM,1
:vlNTRO,2

Step 3(b)(iii)(1) could also be applied-since it always works. Its application might
result in:

PROOF
1. (A & B)
*2. -(Av C)
*3. (A & B)
*4_ A
*5. (Av C)
*6. (Av C)
7. (Av C)

:PREMISE
:ASSUMPTION
:SEND,1
:&ELIM,3
:vlNTRO,4
:-ELIM,2,5,2
:RETURN,6

In this proof, '(Av C)' functions as the R. This choice of R results in citing line 2 twice:
once as the assumption of the -ELIM, and again as part of the contradiction. The
unusual appearance of line 6 of this proof is in fact a symptom that there is an easier
way to construct a proof of '(Av C)'-namely, using the vlNTRO strategy.

Sometimes, however, the vlNTRO option in 3(b)(iii) cannot be applied successfully
at all. In these cases, we must resort to the longer, indirect method of proof. This

242

CHAPTER 11

unfortunate circumstance will arise when neither disjunct of the desired disjunction is
derivable by itself. Consider, for example, the following argument:

(Av B)
(A-C)
(B-D)

:. (C v D)

The "natural" strategy might be to derive '(C v D)' by first deriving 'C' or 'D' and then
applying vlNTRO. But in this example, the sad fact is that 'C' alone cannot be derived,
and neither can 'D'. So we would find ourselves blocked if we tried to use step 3(b)(iii)(2)
on this argument:

PROOF
1. (Av 8)
2. (A- C)
3. (B- D)

1. (Av 8)
2. (A- C)
3. (B- D)
*4. -(C v D)
*s. (-C & -D)
*6. (A- C)
*7. (B - D)
*a. (Av 8)
*s. -c
*10. -A
*11. B
*12. -D
*13. -B
*14. (C v D)
15. (C v D)

:PREMISE
:PREMISE
:PREMISE

TASK LIST
Derive C [You should note that 'Derive D' is just as bad.]
Apply vlNTRO,[C] to obtain (C v D)

We could never derive C from these premises-a fact that could be shown by using
truth tables-and so the task list would never be emptied. Hence, we could never
complete the proof with these instructions.

A successful proof, using step 3(b)(iii)(1), would be:

:PREMISE
:PREMISE
:PREMISE
:ASSUMPTION
:RR DM,4
:SEND,2
:SEND,3
:SEND,1
:&ELIM,5
:MT,9,6
:vELIM,8, 10
:&ELIM,5
:MT,7,12
:-ELIM,4, 11, 13
:RETURN,14

In this proof, the contradiction derived involved the sentences 'B' and '-8'. This was,
however, a matter of choice (and discovery): contradictions could be derived involving
the sentences 'A' and '-A', or 'C' and '-C', or even '(Av B)' and '-(Av B)'. PROOF-
GIVER can help get us to line 4; after that, we're on our own.

243

PRODUCING PROOFS

Step 3(b)(iv) also cannot easily be transformed into a mechanical procedure, for it
requires us to derive contradictory sentences R and -R, but we are not told which
sentences this might involve.

A second difficulty with PROOF-GIVER is that it builds a task list based on whether
a sentence is identical to a previous sentence or subformula in the derivation. Sometimes,
however, a sentence might not be exactly identical to a previous sentence but might be
logically equivalent to it. Consider this argument:

(-A&-8)
(-(AvB)-C)
C

Our task list would at first contain only:

Derive C

Since sentence 'C' is contained in the second premise, PROOF-GIVER would then direct
us to step 3(a)(iii)(1), at which point the task list would become:

Derive -(Av B)
Apply -ELIM,2,(-(A v 8)]

But how do we derive '-(Av B)'? Glancing at our list of logical equivalences, we might
see that '-(Av B)' is logically equivalent to '(-A & -8)' and so can be derived in one
step using the rule RR OM. But PROOF-GIVER does not see this and notices only that
the two are not identical. PROOF-GIVER directs us to step 3(b)(iv).

PROOF-GIVER could be corrected to allow it to "see" logical equivalences as iden-
tities and then use RR. In other words, every time PROOF-GIVER refers to "identical"
sentences, we could replace this with "identical or logically equivalent" sentences. But
then, unfortunately, testing to see whether a sentence might be logically equivalent to
a previous sentence or subformula would consume almost all the time used in applying
PROOF-GIVER. Consequently, the astute user of PROOF-GIVER should keep a sharp
eye out for when a rule of replacement might be used. But such equivalences will not
be built into PROOF-GIVER.

A still worse problem is that we can occasionally be "hung up" at step 3(a}, when
we should go to step 3(b). Consider the following argument:

(A- (8 & C))
B
C
(B&C)

After performing steps 1 and 2 of PROOF-GIVER, we have:

PROOF
1. (A- (B & C))
2. B
3. C

:PREMISE
:PREMISE
:PREMISE

244

CHAPTER 11

TASK LIST
Derive (B & C)

We now go to step 3(a), because the desired result, '(B & C)', is contained in an earlier
line (the first premise). After step 3(a)(iii)(1) we have:

PROOF
1. (A ~ (B & C))
2. B
3. C

TASK LIST
Derive A
Apply ~ELIM, 1,[A]

:PREMISE
:PREMISE
:PREMISE

But it is easy to see-and could be shown by a truth table-that 'A' does not validly
follow from the premises. Consequently, we would never be able to derive 'A' on a line
by itself. (More precisely, we would never be able to eliminate all the 'Derive' statements
from the task list for this argument, once it is begun in this way.)

The problem lies with step 3(a). Whenever the desired result is a subformula of an
accessible line, step 3(a) applies. But sometimes the desired result can only be derived
by using parts of step 3(b). As an example, if we went to step 3(b)(ii) instead of step
3(a), we would have in the task list

Derive B
Derive C
Apply &INTRO,[B],[C]

which would eventually result in this proof:

1. (A~ (B & C))
2. B
3. C
4. (B & C)

:PREMISE
:PREMISE
:PREMISE
:&INTRO,2,3

The problem is not easy to correct. About the only symptom that we are hung up
is if we feel that our proof is not going anywhere. Another symptom is that our task list
grows and grows, with no end in sight. In these cases, we should retrace our steps to
find where our task list seems to have gone wrong. That will be a step where PROOF-
GIVER placed us at step 3(a) when it would have been more fruitful to be at step 3(b)(i).
Once we have found where the difficulty seems to lie, we should rebuild the task list,
this time going to step 3(b)(i) instead of step 3(a).

In our discussion of the method PROOF-GIVER, we may have become too immersed
in the details of constructing proofs. Let us rise above the sometimes dreary details for
a moment and review the general significance of the steps in PROOF-GIVER.

As we mentioned earlier, certain features of the construction of proofs-notably the
infinitely many possible connections between the premises and the conclusion using our

245

PRODUCING PROOFS

rules-require that we "work backward" from the conclusion. We must first somehow
determine how the conclusion might have arisen.

There are essentially two ways that a conclusion can be derived: It can be "part of"
an earlier line of the proof (such as a premise), or it can be "reconstituted" from information
contained somewhere in the premises.

It is the purpose of steps 3(a) and 3(b) to deal with these possibilities. If the con-
clusion is contained in some part of a previous line, we are at step 3(a), which then tells
us how to extract the conclusion from the previous line. If the conclusion is not contained
in a previous line, we are at step 3(b). There, there are numerous recipes for building
up the conclusion from other bits of information that might somehow be contained in the
premises.

PROOF-GIVER, as we have described it, is primarily a depth-first search strategy:
It guides us on a single path through the search tree. The main flaw with PROOF-GIVER,
as with other depth-first strategies, is that if we are wrong-that is, if we do not reach
our goal easily-we must back up and reconsider one of the branches we earlier ignored.
In other words, depth-first strategies will often require us to "backtrack."

Summary

In this chapter, we presented a method PROOF-GIVER, for constructing proofs of ar-
guments known to be valid. PROOF-GIVER is not an algorithm, since it will not always
work and, at certain points, requires human intervention. Nevertheless, it can be useful
and illustrates some important techniques .• PROOF-GIVER uses a depth-first search
strategy to search a tree of possible lines of a proof; that is, it follows a "best guess" as
to how the proof should proceed rather than trying all possibilities at once. You should
find it helpful in constructing proofs of arguments.

Exercises

A. 1. Using PROOF-GIVER, determine what the next change of the proof or task
list should be.
a. PROOF

1. (A~ 8)
2. (C & A)

TASK LIST
Derive (8 & C)

b. PROOF
1. ((A~ -8)~ D)
2. -8
3. (D ~ (Ev 8))

TASK LIST
Derive D
Apply ~ELIM,3,[D]

:PREMISE
:PREMISE

:PREMISE
:PREMISE
:PREMISE

246

CHAPTER 11

c. PROOF
1. (A & (8 v 0))
2. ((8 v D) - (A - -E))
3. A

TASK LIST
Apply &ELIM, 1
Apply -ELIM, [(8 v D)],2
Apply -ELIM, [(A- -E)],3

2. From an inspection of the proof and task list of (c), what is the desired
conclusion of the argument?

8. Using PROOF-GIVER, construct proofs of the following arguments:
1. (A & (A- (8- C))) 6. -A

:. (8 - C) (Av -8)
((A- 8) & (8- C)) (8- -C)
(C - D) :. (- 8 & (8 - - C))
(A- D) 7. (A- -C)
(A&(-8&C)) (8-C)

:. -8 (- Av - 8)
(A- 8) 8. (-8 ~ (A & D))
(A- -E) (-8 & (A~ E))
-A E
(A- 8) 9. (A- (8- (-C- D)))
~&~ ~&~

:. 8 :. (-c- D)

:PREMISE
:PREMISE
:&ELIM,1

2.

3.

4.

5.

C. Add a step to PROOF-GIVER that will enable it to handle 'Derive (P ~ Q)'
in a task list.

D. For programmers:
1. Why doesn't "Apply &INTRO,n,m" in a task list require a goal sentence?

That is, why is the goal sentence optional?
2. Assume that premises and the conclusion contain only atomic-sentence

letters and the symbol &. Write a program to input such an argument
and construct a proof of it.

3. Assume that premises and the conclusion contain only atomic-sentence
letters, parentheses, and the symbol-». Write a program to input such
an argument and construct a proof of it.

Suggestions for Computer Implementation

The full implementation of PROOF-GIVER should be supremely gratifying to any am-
bitious "hacker." As in PROOF-CHECKER, an appropriate data structure (such as an
array) is necessary for storing the ongoing proof. Initially, of course, only the premises
would be stored; the conclusion-with its justifying rule left blank-might be stored
temporarily in some arbitrarily high line number of the final proof, sure to exceed the
other lines of the proof (say, 100).

247

PRODUCING PROOFS

A separate data structure is also needed to store the distinct elements of the task
list. Furthermore, since the contents of the task list are constantly changing, we frequently
need to "sort" these elements into their order of priority.

We have not been as rigid in the text with the format of each record in the task list
as we would have to be if we wished to implement PROOF-GIVER. We can impose the
required rigidity here. The 'Derive' statement should have four fields:

1. A RANK: a number to indicate the priority of a task in the task list
2. A TASK: the task to be done-"DERIVE" (or "APPLY")
3. A sentence to be derived (our "goal")
4. The subproof-depth of the task

For example, consider the following argument:

A
8

:. (A & 8)

Our task list might at first contain

RANK(1) = 1
TASK(1) = DERIVE
TSEN(1) = (A & 8)
TSU8(1) = 0

indicating, respectively, that the first element in the task list is first in order of priority,
that the task is to derive a sentence, that the goal is to derive the sentence '(A & 8)',
and that it is not in a subproof. The names TSEN and TSU8 indicate task-list sentences
and subproof depths.

The other kind of statement in the task list is the 'APPLY' statement, which could
have the following fields:

1. A RANK
2. The TASK: Here, 'APPLY'
3. The goal sentence (optional, except in the case of rules, ASSUMPTION, &ELIM,

vlNTRO)
4. The TRULE to be applied
5. The line(s) to which the rule is to be applied-expressed either as a line number

or as a sentence
6. The subproof depth of the apply line

Thus we might have

RANK(2) = 3
T ASK(2) = APPLY
TSEN(2) = (A v 8)
TRULE(2) = vlNTRO
TCIT1(2) = 1

248

CHAPTER 11

TCIT2(2) = 0
TCIT3(2) = 0
TSUB(2) = 1

indicating that the priority of task-list line 2 is 3, that the task is to APPLY, that the goal
sentence is '(Av B)', that the rule is to be applied to line 1, and that the APPLY is in a
subproof of depth 1.

Note that the task can be stored in numerical fashion, since there are only two
possible tasks. For example, 1 = DERIVE, and 2 = APPLY. Similarly, TRULE can also
be stored numerically: 1 for &INTRO, 2 for &ELIM, 3 for vELIM, and so on. Using numbers
where possible might spare us some nasty string operations. A sentence, however, such
as '(A & (B v C))' cannot (easily!) be converted into numerical information.

Once the stage is set in this fashion, lt is relatively straightforward to convert METHOD
PROOF-GIVER into a computer program. Several features of the problem might, how-
ever, threaten this conversion.

1. Sometimes a line in a task list might be replaced by two (or more) lines. These
new lines are always inserted at the beginning, and so they disturb the order of
items in the task list. The clue to their priority in the task list is their RANK. If a
task of rank 1 is to be replaced by two tasks, we might let these two tasks have
ranks 1.1 and 1.2. We would first delete the original task, and we would know
that the task with rank 1.1 is to be performed before the task with rank 1 .2 and
that both are to be performed before a task of rank 2.

Similarly, a task of rank 2.1 might be replaced by tasks of ranks 2.11, 2.12,
and 2.13. Including the RANK of a task performs an automatic sort or ordering
of the elements in our task list.

2. As we have noted, sometimes PROOF-GIVER is misled or tricked, and the task
list grows prodigiously-never getting closer to the conclusion. Since computers
work so quickly, it might be a matter of mere microseconds before the task list
is full of hundreds of tasks which will never allow PROOF-GIVER to reach the
conclusion.

There are two solutions to this problem-one a "quick fix," the other more
elegant.

We could write our program so that any time the task list grows to a certain
size (say, twenty or thirty lines), then the program stops and alerts the user to
the problem. (This is a so-called "disaster cutoff.")

Another solution is to display to the user each revision of the task list and
ask the user if he or she wishes to:

a. Go on.
b. Stop.
c. Back up to an earlier stage of the proof and task list.
d. Override step 3(a).
e. Intervene and make a "human" suggestion on what to do: what contra-

diction to aim for, what step to follow, or what goal sentence to have.
3. The mention of "backing up" alerts us to the fact that we also need to store

information about past proofs and task lists, as well as about the current, ongoing
ones. We thus need to have the proof and task list of every previous step available

249

PRODUCING PROOFS

to us if we are going to be able to "back up." The easiest way to implement this
suggestion is to store the proofs and task lists in some data structure (such as
two-dimensional arrays). For example, TRULE(3,2) might be the TRULE in the
second element of a task-list array on the third step of applying PROOF-GIVER.

4. It is possible to program other "hunches" and strategies into PROOF-GIVER
beyond the ones given in this chapter. Strategies for choosing the contradictions
to be aimed for with -ELIM and -INTRO could be given, as well as tips for
keeping proofs shorter. If the arguments PROOF-GIVER is attempting to prove
are all being created by a single person, we might also program strategies to
deal with what seem to be this person's habits. The user might, for example,
use vlNTRO frequently or -INTRO rarely.

CHAPTER 12

PREDICATE LOGIC:
Quantification

The procedures and techniques that we
have studied so far for showing the validity of arguments
are perfectly fine as far as they go. But they are limited
to some extent, for there are many valid arguments
whose validity cannot be shown by the methods we
have studied in the previous chapters. Take, as an ex-
ample, an argument found in logic texts for many years:

All Greeks are mortal.
Socrates is a Greek.

: . Socrates is mortal.

Since all the sentences in this argument are different
atomic sentences, this argument would be symbolized
by three distinct sentence letters:

G
C

:. A

This argument has the following form:
p
Q

:. R
But no argument of this form can be shown to be valid
in sentential logic when R is a different atomic sentence
from atomic sentences P and Q. Yet the argument does
appear to be valid: It seems impossible for the conclu-
sion to be FALSE while the premises are TRUE.

251

252

CHAPTER 12

Individuals and Properties

If we look at our sample argument more carefully, we see that its validity rests on the
fact that all individuals of a certain sort have a special property and that some particular
individual, Socrates, is an individual of that sort. Therefore, the argument concludes,
this particular individual (Socrates) has the special property. This observation suggests
that we should extend our symbolic language to include devices for referring to individuals
and for indicating properties that individuals have. In the logic of sentences, we looked
only at whole sentences, either atomic or molecular. Now, in predicate logic, we are
going to look at what some sentences say about certain individuals.

Individual Constants

An individual is a specific single thing, such as a person, a number, a horse, and so
on. To be able to refer to individuals, we shall change the way we have been using
various letters. From now on, we shall let lower-case letters from the front of the alphabet:

a, b, c, ... , h

be the names of (or "refer to," or "denote") individuals. These letters will be called
individual constants. They are called "constants" because they do not change their
reference within any one argument. (If we need more individual constants, we shall place
numerals to the right of the letters. Thus 'a1 ', 'b12', and 'c567' are also individual
constants.) In the argument concluding that Socrates is mortal, we can let 'c' play the
role of 'Socrates'. That is, let 'c' name, or refer to, Socrates.

Individuals have properties, such as being mortal, being evenly divisible by 2, being
brown, being upholstered, and so forth. We shall now let upper-case letters from the
front of the alphabet:

A, 8, ... , 0

indicate properties of individuals, as well as simple atomic sentences. So, 'G' might be
a good choice to indicate the property of being Greek. Such property indicators are
called predicate letters. If we need more predicate letters (or atomic sentences), we
shall place numerals to the right of the letters, as above.

We shall indicate that a certain individual has a specific property by writing the
predicate letter indicating that property and, immediately following, an individual constant
referring to that individual. Thus 'Socrates is a Greek' would be written as

Ge

If 'E' is the predicate letter for the property of being wise, then 'Socrates is wise' would
be

Ee

253

QUANTIFICATION

If 'a' is the individual constant denoting Aristotle, then

(Ga & Ea)

is our way of stating that Aristotle is Greek and Aristotle is wise.

Variables

Many times, however, we make statements that are not about any particular individual.
For instance, the first premise of our initial argument is about all Greeks. Or, to take
another example, if we want to say

1. Someone received an A on the midterm.

we are not referring explicitly to any specific individual. We may not know exactly which
individual, or we may know but prefer not to say exactly which one. In order to express
such statements in our symbolic language, we need to take the procedure for forming
sentences that we now have and modify it to form "incomplete" sentences, which we
will then use to create new sentences. ·

Take the following sentence:

Bob received an A on the midterm.

Where it is possible, we choose letters that remind us of the English names of individuals
and properties. So, with an obvious choice of letters for the individual constant and the
predicate letter, we would write the sentence

2. Ab

To produce sentence (1), we first need to eliminate the specific reference to Bob in
sentence (2). As we suggested above, we may not want to identify who received the A,
but we do want to say that someone (unspecified) did. However, if we simply erased
the 'b', it would not be evident that some symbol belongs there. So, we are going to
establish some symbols as placeholders in sentences. These placeholders will be called
individual variables. They will be lower-case letters taken from the end of the alphabet:

U, V, W, X, y, Z

Notice, individual variables do not denote any particular individual; they will serve only
as placeholders for reference to any nonspecified individual. (As in''the case of individual
constants, if we need more individual variables, we shall place numerals to the right of
the letters: x3, ya, z52.)

The first step in constructing a sentence that does not name a specific individual is
to make an "incomplete sentence" by replacing the individual constants with individual

254

CHAPTER 12

variables. Thus, to produce sentence (1) from sentence (2), we can begin by replacing
the individual constant 'b' with, say, the individual variable 'x'. The result is:

Ax

This could be read as

x received an A on the midterm.

But this is an incomplete sentence, and it is neither TRUE nor FALSE. We shall call
such incomplete sentences ''formulas." (This differs from the notion of formula in Chapter
5.)

Quantifiers

We now develop the idea of a quantifier-an expression that states how many individuals,
but not which ones, have the property indicated in an incomplete sentence. A quantifier
placed before an incomplete sentence makes it complete; that is, it makes it into a
sentence that is either TRUE or FALSE. Although there are several different ones, we
shall use only two quantifiers. The universal quantifier is used to assert that all individuals
have the indicated property, and the existential quantifier is used to assert that some
(at least one) individual has the property.

What do these quantifier expressions look like? The universal quantifier consists of
a rotated A to the left of a variable: Vx, Vw, Vz. For the existential quantifier, we shall
use a rotated E to the left of a variable: 3x, 3y, 3w. Finally, we construct the sentence
we desire by placing the appropriate quantifier to the left of the relevant formula. An
"appropriate" quantifier is a quantifier that contains the same variable as does the formula.
Thus sentence (1), 'Someone received an A on the midterm', looks like this:

3xAx

And

Everyone received an A on the midterm.

looks like this:

VxAx

These are usually read, respectively, as

There is an individual x such that x received an A on the midterm.

and

For every individual x, x received an A on the midterm.

255

QUANTIFICATION

Well-Formed Formulas

We must become quite precise about the forms of sentences. In order to do this, we
define a we/I-formed formula, or wff for short. A string, you recall, is any sequence of
characters. A formula, in Chapter 5, was a string that mixed numerals, parentheses,
and connective symbols in a definite way.

We now define a well-formed formula:

1. A string consisting of a single sentence letter is a wff.
2. A string consisting of a predicate letter followed by either a constant or a variable

is a wff.
3. If P and Q are wffs, so are

~P
(P&Q)
(P V Q)
(P---'>Q)
(P~ Q)
(The list of allowable connectives can be extended.)

4. If P is a wff, then 'vvP and 3vP (where v is any variable: x, y, z, w, ...) are
wffs.

Thus, the following strings are all well-formed formulas:

'vxFx
('vxFx & Ga)
'vx(Fx & Ga)
3x~(Gx v B)
('vyHy---'> 3yGy)

(A-'> ~B)
(Fx v Gy)
'vx(Fx---'> Hz)
'vx(Fx---'> A)
(3xGx & Hx)

Later, we shall expand the notion of a well-formed formula to include relations: predicate
letters followed by strings of more than one constant or variable.

Scope

To assist us in our discussion of both quantified sentences and formulas, we need some
additional terminology. Every quantifier will have a scope; intuitively, the scope is the
formula covered by the quantifier. The scope of a quantifier is defined precisely as the
well-formed formula immediately to its right. Thus

The Scope of in Sentence is Formula

Vx Vx(Ax-> Bx) (Ax-> Bx)
3x (3xAx & C) Ax
Vy 3xVy(Ax & (By-> Cy)) (Ax & (By-> Cy))
3x 3xVy(Ax & (By-> Cy)) Vy(Ax & (By-> Cy))
Vz Vz-(Azv Bz) -(Azv Bz)

256

CHAPTER 12

Free and Bound Variables

In each of the above sentences, the same variable appears in several different places.
Each appearance of a variable is called an occurrence of the variable. An occurrence
of a variable is bound if the variable occurs in a quantifier or in the scope of a quantifier
using that variable. If an occurrence of a variable is not bound, it is a free occurrence
of the variable. In a given formula, a variable could have both free and bound occurrences.

In the Formula the Variable Occurs

1/xl/y(Fy-> Gx) y
1/x(Fx-> Gy) y
(Fx & 1/xGx) x

bound
free
first free, then bound

Two remarks are in order at this point. First, the rules for wffs allow what is called
"vacuous quantification." That is, one may place a quantifier in front of a wff, even if the
variable in the quantifier does not occur, or does not occur free, in the wff. Here are
some examples of wffs that are vacuously quantified:

'v'xFy
3yA
'v'z(3zHz & Gx)

Second, a sentence is any wff with no free occurrences of variables. Well-formed for-
mulas containing free occurrences of variables do not have truth values. {They are
incomplete sentences.) But those wffs with no free occurrences of variables are sen-
tences, and they do have truth values.

An Algorithm for Sentences

The algorithm in Chapter 5 that determines whether a string is a (well-formed) sentence
has to be modified, since we have new possibilities. There, after replacing every atomic
sentence with a truth value and changing '-0' to '1' and '-1' to 'O', we found every
formula from then on to be of the form

<truth value>

or else

(<truth value 1 > * <truth value 2>)

We now have two new possibilities: Sentences may begin with one of two quantifiers.
Let us call a wff whose first two symbols are a quantifier and a variable a quantified
formula. Hence, in the original algorithm from Chapter 5, after replacing atomic sentences
with their truth values, we might have

257

QUANTIFICATION

<quantified formula>
(<quantified tormuta» « <truth value>)
(<truth value>* <quantified formula>)

or

(<quantified formula 1 > * <quantified formula 2>)

These strange possibilities can be avoided, however, if we perform the following
operations before replacing atomic sentences with truth values:

Step 0. FOR every quantified formula in the string, working from left to right

a. Delete the first two symbols.
b. Replace all now free occurrences of the deleted variable with an indi-

vidual constant not previously used.
c. Replace all predicate formulas containing only individual constants with

an atomic-sentence letter not previously used.

For example, applying these operations to the sentence

(A & 'v'xFx)

results in:

(A & Fx)
(A& Fa)
(A & 8)

At this point, we can continue with TRUTH-VALUE CALCULATOR, replacing the
newly introduced atomic sentences with truth values. If at any point in TRUTH-VALUE
CALCULATOR we do not have either a single truth value or a pair of truth values
surrounding a connective, then the original string was not a sentence. Observe, however,
that the truth-value result of the above algorithm is not a useful value and so cannot be
used in VALIDITY/INVALIDITY DETERMINER.

One step in our new algorithm needs refinement. How do we mechanically identify
the "now free occurrences," which were bound occurrences before we deleted the quan-
tifier? In order to do that, we need to identify the next wff. The next symbol following
the quantifier variable can only be (1) a predicate letter, (2) a negation sign, (3) a left
parenthesis, or (4) a quantifier symbol. (We are excluding vacuous quantification of a
sentence letter.) Each of these cases can easily be handled. Note that when the scope
includes a formula with parentheses, procedure "First Counter" will find the matching
right parenthesis.

258

CHAPTER 12

Finally, let us work through a more complicated example:

'v'x(3y(Fx v Ly) - (Gx & 'v'yHy))
(3y(Fx v Ly) - (Gx & VyHy))
(3y(Fa v Ly) - (Ga & VyHy))

(3y(A v Ly) - (B & 'v'yHy))
((Av Lb) - (8 & 'v'yHy))
((Av C) - (8 & 'v'yHy))
((Av C) - (8 & He))
((Av C) - (8 & D))

Truth Values of Quantified Sentences

Before we learn inference rules for correctly introducing and eliminating quantifiers in
the course of a derivation, we must be perfectly clear about the truth values of sentences
with quantifiers. Sentences like 'Aristotle is Greek', that is, 'Ga', present no problem.
'Ga' is TRUE if the individual denoted by 'a' (namely, Aristotle) has the property indicated
by 'G' (namely, being Greek), and similarly for all sentences containing only individual
constants and predicate letters. In any other situation, 'Ga' is FALSE-that is, when the
individual denoted by 'a' does not have the property denoted by 'G'. An instance of a
wff is a sentence that results from replacing all free occurrences of individual variables
with individual constants.

Using the valuation function, V, introduced earlier, we now claim that

V('v'xGx) = TRUE if and only if the value of every instance of 'Gx' is TRUE.
V(3xGx) = TRUE if and only if the value of at least one instance of 'Gx' is TRUE.

(You should remember that if the value of a sentence is not TRUE, it is FALSE.)
The set of individuals we are talking about is frequently referred to as the universe

of discourse. Thus if the universe of discourse contains individuals denoted by 'a', 'b',
and 'c', then 'Fa', 'Fb', and 'Fe' are all the instances of 'Fx', So, V('v'xFx) = TRUE iff
V(Fa) and V(Fb) and V(Fc) are TRUE, and V(3xFx) = TRUE iff V(Fa) or V(Fb) or
V(Fc) is TRUE.

Quantifying Molecular Formulas

Recall our earlier example that stated that Aristotle is Greek and that he is wise. This
is the conjunction of the two sentences 'Aristotle is Greek' and 'Aristotle is wise', so we
used our symbol for conjunction to write:

(Ga & Ea)

259

QUANTIFICATION

From this sentence we can construct a wff by replacing all occurrences of the individual
constant 'a' with the variable 'x', obtaining

(Gx & Ex)

Existential Quantifiers

If we prefix the expression above with an existential quantifier using 'x', we obtain a new
sentence:

3x(Gx & Ex)

which can be read as

There is something that is Greek and wise.

or, more naturally, as

Some Greek is wise.

We now have a general pattern for English sentences of the following forms:

Some Sis T.
Some Sare T.

These should all be symbolized as

3x(Sx & Tx)

This can be read literally as "There is an x such that xis Sand xis T."

This pattern, then, is proper for all the following sentences:

Some baby is cute.
Some babies are cute.
Some students are musicians.
Some musicians are students.
Some students played all night.

(That is, some students are all-night players.)

Similarly, sentences of the forms

Some Sis not T.
Some S are not T.

will be symbolized as

260

CHAPTER 12

3x(Sx & -Tx)

This can be read literally as "There is an x such that x is S and x is not T."

Universal Quantifiers

Placing the appropriate universal quantifier before the well-formed formula

(Gx & Ex)

results in

'v'x(Gx & Ex)

which can be read as

Everything is both Greek and wise.

We would seldom make such a claim. More likely, we would want to assert that all
Greeks are wise. How can we express a statement of the form

All Sare T.

In this case, we are claiming that the property T holds for all the S sort of individuals.
We will now show that the conditional can be used to make this kind of claim. In particular,
we symbolize

All Sare T.

as

'v'x(Sx - Tx)

This says that for every x, if x is S, then x is T. This sentence is TRUE, according to
the evaluation rule, if every instance of '(Sx - Tx)' is TRUE. A few of these instances
are:

(Sa-Ta)
(Sb- Tb)
(Sc-Tc)
(Sd-Td)

These instances are sentences, but what do they assert? The first states that if a has
the property S, then it has the property T (for instance, if a is Greek, then a is wise).

261

QUANTIFICATION

When is this sentence TRUE? Clearly, if 'Sa' is TRUE and also 'Ta' is TRUE, then the
conditional sentence '(Sa - Ta)' is TRUE. Indeed, for each instance, the ordinary truth
table for a conditional will tell us when it is TRUE and when it is FALSE. As you know,
the conditional is FALSE just when the antecedent is TRUE and the consequent FALSE.
Again referring to the example, an instance is FALSE only when, for some individual
constant, the individual denoted is Greek but is not wise. A Greek who is not wise is
precisely the situation that falsifies the original sentence: All Greeks are wise.

It is important to understand how the conditional form for universally quantified
sentences works. The truth value of

All hamburgers are delicious.

is TRUE if and only if each and every hamburger is delicious. So, as we go through the
universe of discourse, examining individuals one at a time, we must be sure that if an
individual is a hamburger, then it is delicious. If the individual is not a hamburger, then
the instance is not FALSE, that i~. it is TRUE. Notice that the antecedent in this instance
is FALSE. Only when we find an individual that is a hamburger but is not delicious is
the instance FALSE. With one instance FALSE, the universally quantified sentence is
also FALSE. For example:

\fx(Hx- Dx)

Universe of discourse:

denoted by
a hamburger that is delicious a
an apple that is delicious b
a rotten apple c
Julius Caesar d

Instances:

(Ha - Da)
(Hb - Db)
(He- De)
(Hd- Dd)

TRUE
TRUE
TRUE
TRUE

Thus, in this universe of discourse, '\fx(Hx - Dx)' is TRUE. But in a universe of discourse
such as

denoted by
a hamburger that is delicious a
an apple that is delicious b
a stale hamburger c
Julius Caesar d

262

CHAPTER 12

Instances:

(Ha- Da)
(Hb- Db)
(He- De)
(Hd- Dd)

TRUE
TRUE
FALSE
TRUE

the universally quantified sentence is FALSE, because one instance is FALSE.
We now have a general way of representing sentences of the form

All Sare T.

We write

'v'x(Sx-Tx)

for sentences such as

All drivers are careful.
All joggers are healthy.
All fish swim.

(That is, all fish are swimmers.)

A sentence of the form

No Sare T.

meaning that every single individual that is S is not T, can be rewritten in the more
suggestive form:

All Sare not T.

We write

'v'x(Sx- +Tx)

for sentences like

No cobras are pets.
No Australian is sad.
No vegetarian eats meat.

(That is, no vegetarian is a meat eater.)

You are cautioned that this type of sentence does not mean the same thing as

Not all S are T.

263

QUANTIFICATION

This should be symbolized as

-Vx(Sx-Tx)

'Not all Australians are sad' is quite different from 'No Australians are sad'. In the first
case, it is still possible for some Australians to be sad while the given sentence is TRUE.
This is not possible in the second case.

Dossiers and Models

In our discussions of sentential logic, we introduced the concept of a "situation." This is
a possible case or scenario in which some sentences are TRUE and all others are
FALSE. The real world is just one such situation. For our purposes in sentential logic,
the most useful way to describe a situation is simply as a list of atomic sentences together
with their truth values in that situation. We saw how to apply TRUTH-VALUE CALCU-
LATOR to use this information to calculate the truth value of any molecular sentence.

Our purpose in considering such situations in predicate logic is the same as it was
in the earlier chapters-namely, to allow ourselves to determine when an argument is
valid. The basic definition of validity applies whether we are working in sentential logic
or in predicate logic: An argument is valid iff in all situations in which the premises are
TRUE, the conclusion is also TRUE. But in predicate logic, our descriptions of situations
must refer not only to the truth values of atomic sentences but also to individuals and
their properties.

In order to develop a systematic way of evaluating the truth values of sentences
containing quantifiers, let us first consider the case of just one predicate letter, 'F'. We
shall say that an individual j satisfies the predicate 'F' in a situation iff V(F/) = TRUE in
that situation. This is little more than another way of saying that an individual "has" a
property in a situation.

Representative Individuals

If we consider only one predicate, either each individual will satisfy that predicate or it
won't. If the predicate 'F' is 'is a tomato', then each individual either is or is not a tomato.
There are only two distinguishable kinds of individuals if we consider only this one
predicate: An individual is either of the kind that satisfies 'F' or of the kind that does not
satisfy it. Hence, we can simplify matters by dealing with only two representative indi-
viduals, a and b, where individual a does not satisfy predicate 'F', but individual b does.
The individual a is representative of all the individuals that do not satisfy 'F', and the
individual bis representative of all the individuals that do satisfy 'F'. We can picture this
case with a table:

~
~ I ~

264

CHAPTER 12

Let us a call a row of such a table a dossier on the individual named in the left column.
The dossier on an individual indicates which predicates it does (= 1) or does not (= 0)
satisfy. Each column of the table, on the other hand, indicates which individuals do or
do not satisfy the predicate listed at the top of the column.

If we consider two predicates, 'F' and 'G', we can see that there are four distinct
representative individuals that are possible:

F G
a 0
b 0
C
d

0
1
0

It should be easy to see that when there are n distinct predicates, there will be 2 ** n
representative individuals needed to cover every possibility. In the table above, it is
unnecessary to consider a fifth individual, since that individual will be similar to one of
the four representative individuals with respect to the predicates 'F' and 'G'.

Models

A model situation (or simply a model) for a sentence consists of a set of individuals and
their dossiers. We require that every model contain at least one individual and that the
dossier on each individual in the model specify for every predicate in the sentence
whether the individual satisfies the predicate or not. When we consider the models for
several sentences simultaneously-for instance, when we are trying to show an argument
to be invalid-the dossiers on individuals must include every predicate in every sentence.

For the two sentences in this argument:

'v'x(Fx---+Gx)
'v'y(Gy---+ Fy)

one model would be:

1. Individuals: a, b
2. Dossiers:

Observe that the dossiers on the individuals in a model can be listed together, forming
a table that looks much like a truth table. We shall frequently characterize a model by
simply giving such a table. The individuals in the model will then be indicated in the left
column of the table.

265

QUANTIFICATION

The model given above meets the two requirements we have specified: It contains
at least one individual, and the dossiers include information about each predicate in the
original two sentences.

A model can contain any number of individuals. This means that for any sentence
there are an infinite number of possible models. Some have one individual, some have
two, some have three, and so on. In this section, however, we need only consider what
we shall call "minimal models." A minimal model contains only representative individuals.
The model we have just described is a minimal model, but the following model:

rtt1G
0
1

0

is not a minimal model, since individual f satisfies exactly the same predicates as does
individual b. Either b or f is a representative individual, but not both of them.

A complete listing of all the minimal models for the two sentences above, which
contain only the predicates 'F' and 'G', is:

I.
I ~

G
a 0 x.rtH

II.
I ~

G
C 1 0

b 1
d 1 1

Ill.
I ~

G
XI. F G

C 0
a 0 0

IV.
I ~

b 0 1

G
d

C 1 0

1

v.rtt-t Xll.rtH
a O 0

a O 0

b O 1

b 0

Vl.m

d

a O 0

XIII. F G

C 1 0

a 0 0

VII.~

C 1 0
d 1 1

a O 0 XIV.

d 1 1

F G

VIII.~

b 0 1
C 1 0

b O 1
d 1 1

C 1 0
xv. F G

IX.rtt-t

a 0 0

b O 1
b 0 1

d 1 1
C 1 0
d

Although the number of possible models is infinite, the number of minimal models
is (2 ** m) - 1, where mis the number of representative individuals. In this case, there

266

CHAPTER 12

are just four representative individuals, and so the number of minimal models is
(2 u 4) - 1 = 15.

We now have the basic notions of models, representative individuals, and minimal
models. We need now to develop a procedure for determining when a sentence is TRUE
in a model.

Determining whether a Sentence Is TRUE in a Model

The determination of whether a sentence containing quantifiers is TRUE in a model is
not as simple as the earlier task of truth-value determination in sentential logic. We shall
extend and modify the techniques we developed in Chapter 6 in connection with WANG'S
ALGORITHM. Recall that there we constructed a pair of lists, the left list of the pair
containing sentences we tried to make TRUE, and the right list containing sentences
we tried to make FALSE. Let us apply this idea to the problem of determining if a single
sentence containing a quantifier is TRUE.

Consider, as an example, this sentence:

\fx(Fx v Gx)

in the model:

We begin, as in WANG'S ALGORITHM, by trying to make the given sentence TRUE.
When we wish to make a sentence TRUE, we place it on the left list of a list-pair:

\fx(Fx v Gx)[

Now when is such a universally quantified sentence TRUE in a model? Only when all
the instances of the nonquantified formula are TRUE. In this model, the instances are
'(Fa v Ga)' and '(Fb v Gb)'-obtained by deleting the initial quantifier and then replacing
the now free occurrences of the variable first with 'a' and next with 'b'. Putting both of
these instances on the left list, we have:

(Fa v Ga) I
(Fb v Gb)

Neither of the sentences on the left list contains a quantifier, so we can now proceed
with the earlier rules from WANG'S ALGORITHM. The first sentence is a disjunction on
the left, which requires us to branch:

Fa I
(Fb v Gb) Ga / (Fb v Gb)

267

QUANTIFICATION

The second sentence on both lists is again a disjunction on the left, so we branch again
on both list-pairs:

Fal
Fb

Fa I
Gb

Gal
Fb

Gal
Gb

Observe that the right list of each of these four list-pairs is empty. We cannot apply
WANG'S ALGORITHM any further, since at this point, every sentence in the lists is a
simple predicate formula, containing neither a quantifier nor a connective. Sentences
on the left list, we recall, are to be made TRUE. Are the two sentences in the first list-
pair satisfied in the model? To answer this question we turn to the dossiers. 'Fa' is
indeed TRUE in this model situation, but 'Fb' is not, so this branch fails. We can indicate
this failure by placing a 'O' under the branch and then proceed to the next branch. Here,
'Fa' is TRUE, but 'Gb' is not, and this branch also fails. Continuing on to the third and
fourth branches, we finally obtain:

Fal
Fb

0

Fa I
Gb

0

Gal
Fb

0

Gal
Gb

0

All branches originating from the sentence 'Vx(Fx v Gx)' fail. From the failure of all
branches, we conclude that the original sentence is not TRUE in the model.

We now formulate a principle for evaluating list-pairs relative to a model:

The original sentence is TRUE in a model if one of the branches leading from it is
successful.

This can also be formulated alternatively as:

The original sentence is FALSE in a model if all branches leading from it fail.

A branch succeeds when nothing but simple predicate formulas occurs on both lists,
and all the sentences on the left list are satisfied in the model, and all the sentences on
the right list are not satisfied in the model. When this condition is met, we can write a
'1' under the branch to indicate that it is successful. We may also stop at this point,
since one successful branch is sufficient to show that the original sentence is TRUE in
the model.

A branch fails when either of the following conditions occurs:

1. The same sentence occurs on both the left list and the right list of a list-pair.
2. Nothing but simple predicate formulas occurs on both lists, but either a formula

on the left list is not satisfied in the model or a formula on the right list is satisfied
in the model.

In the case where a branch fails, we shall write a 'O' below it and go on to the next
branch. If there are no more branches to examine, and if all previous branches failed,
then we conclude that the original sentence is not TRUE in this model.

268

CHAPTER 12

To the previous seven substeps in step 3 of WANG'S ALGORITHM we now add
four more:

(viii) If a sentence is universally quantified and on the left list, then delete the
sentence and add to the left list all the instances of the formula without its
initial quantifier.

(ix) If a sentence is universally quantified and on the right list, then branch and
replace the sentence in each branch with one instance.

(x) If a sentence is existentially quantified and on the left list, then branch and
replace the sentence in each branch with one instance.

(xi) If a sentence is existentially quantified and on the right list, then delete this
sentence and add to the right list all the instances of the formula without its
initial quantifier.

The number of instances added in steps viii and xi, as well as the number of branches
required in steps ix and x, is exactly the number of individuals in the model. It goes
without saying that different instances should be used on different branches. In the
example we have been working with, there are only two individuals, a and b.

Using this same model situation, let us consider a slightly more difficult sentence:

3x3y(Gx v -Fy)I

3y(Ga v -Fy)I 3y(Gb v -Fy)/

(Gav-Fa)/

Gal -Fal
0

I Fa
0

(Gav -Fb)I

Gal -Fbl
0

/Fb
1

(Gb v -Fa)/ (Gbv-Fb)/

Gbl -Fal Gbl

0 0

I Fa
0

-Fbl

IFb
1

The original sentence is TRUE in this model because we found a branch that succeeds:
'Fb' is not satisfied in the model.

It should be kept in mind that we are only using part of WANG'S ALGORITHM here.
We are simply trying to determine whether a sentence is TRUE in a given model. It is
quite clear that the above use of list-pairs and branches is convenient only when the
number of individuals in the model is relatively small, or when the original sentence
contains only a few quantifiers.

Finally, let us take up the question of whether the premise and conclusion of a
simple argument are TRUE or FALSE in a model. A simple argument is:

v'x(Fx-Gx)
:. v'y(Gy- Fy)

269

QUANTIFICATION

Consider minimal model I:

G
a H 0

Applying the list-pair method to the premise, we have:

'r/x (Fx- Gx)I

(Fa- Ga)I

-Fal

IFa
1

Gal
0

Since one of the branches concludes with a '1 ', the premise is TRUE in this model.
Applying the same method to the conclusion, we discover that it, too, is TRUE in this
model. But we cannot yet conclude that the argument is valid, since we have to consider
all minimal models. We must not have any model where the premises are TRUE and
the conclusion FALSE, or else the argument is invalid. Consider, then, this argument
relative to minimal model II:

F G
b 0

After applying the list-pair method, we would find that in this model the premise is TRUE
but the conclusion is FALSE. Hence, this model shows the argument to be invalid.

Here is a sketch of a procedure to determine whether an argument containing
quantifiers is valid:

1. INPUT the sentences of the argument.
2. Determine the representative individuals from the number of distinct predicates

contained in the premises and conclusion.
3. Construct all the possible minimal models.
4. FOR each minimal model:

a. Apply the list-pair method to determine whether the premises and conclusion
are TRUE or FALSE in the model.

b. IF all the premises are TRUE in the model and the conclusion is FALSE
THEN OUTPUT "Argument invalid" and STOP.

5. OUTPUT "Argument valid" and STOP.

This procedure is not an algorithm because, in many cases, steps 2 and 3 cannot be
completed.

There are two additional special circumstances we should mention. A sentence with
a quantifier might also contain a single atomic-sentence letter, such as '(A & 3xFx)'.

270

CHAPTER 12

Whenever a sentence contains sentence letters, then the model must also specify the
truth value of those atomic sentences. Second, we have been identifying individuals in
the model with lower-case letters. This usage could become confused with the occurrence
of individual constants in sentences. Let us agree, then, to identify the individuals in the
model with lower-case letters different from any individual constants occurring in the
sentences under examination. Furthermore, whenever a sentence occurs on a list-pair
and contains an individual constant that is not within the scope of any quantifier, we
treat the sentence as if it were an instance of an existentially quantified sentence. That
is, if such a sentence occurs on the left, branch and replace all occurrences of the
individual constant with names of the individuals in the model. If such a sentence occurs
on the right, delete the sentence and add all instances resulting from replacement of
the individual constant with names of individuals in the model. For instance,

(Ga -> 'v'xFx)I

(Gb -> 'v'xFx)I (Ge -> 'v'xFx)I

where the model contains two individuals, b and c.

Limitations of Models

It can be quite time-consuming to determine whether an argument is valid or invalid by
examining its models. In some cases, we might find a model in which the premises are
TRUE but the conclusion FALSE rather quickly. In other cases, we might have to examine
many models. We must examine all models, although we have simplified this task by
restricting ourselves to minimal models. Yet even after we restrict ourselves to minimal
models, the task of determining validity can be huge. For example, in an argument
containing only three predicates, there will be eight representative individuals, and thus
255 minimal models. The task of determining the truth values for each premise and the
conclusion would be very time-consuming, unless, of course, we had programmed a
computer to do it.

Furthermore, as we shall soon see, even a modest extension of predicate logic to
include relations between individuals, or to include the special logical relation of identity
(symbolized by '= '), renders the notion of a minimal model almost useless. In these
cases, we shall be forced, in general, to consider infinitely many minimal models.

Examining all minimal models is not the most efficient way to determine truth values.
There are numerous shortcuts, too sophisticated for this book, by which one can trans-
form sentences into a normal form and then quickly determine if the normal form is
TRUE in a minimal model. We shall return to this topic briefly in Chapter 14.

Relations

Before we turn to the delicate task of representing more complicated English sentences
using the device of quantification symbols, it is important to note that not all the arguments
we are interested in involve individuals and their properties. Some arguments depend
on relations between individuals. For example, consider:

271

QUANTIFICATION

Tom is older than Jane.
Jane is older than Sam.

:. Tom is older than Sam.

In this argument, it is the relations between the individuals Tom, Jane, and Sam, and
not just the properties they have, that underlie the validity of the argument. This argument
makes sense to us, and is apparently valid, because of our understanding of the relation
being older than, which relates two individuals.

To Eieal with relations between two or more individuals, we will simply extend the
use of predicate letters. Let 'L' indicate the relation of being older than. We write the
names of the individuals to the right of the predicate letter in the proper order. So, if

a= Tom
b = Jane
c = Sam

we now write

Lab for:
Lbc for:
Lac for:

Tom is older than Jane.
Jane is older than Sam.
Tom is older than Sam.

The order of the individual constants is important, for 'Loa' represents 'Jane is older
than Tom', a quite different sentence from 'Tom is older than Jane'.

We can handle well-formed formulas and quantifications involving relations as we
did before. Relation letters are simply more-than-one-place predicates, taking more than
one constant or variable after them in order to result in a well-formed formula. It is a
simple matter to revise the definition of a wff to deal with n-place predicates. We must,
however, pay close attention to the location of the variable. The wff 'Lxb' (x is older than
Jane) can be existentially quantified as

3xlxb

Notice that

3xLbx Jane is older than someone.

is a very different sentence.
In order to keep straight what is related to what in a completely quantified sentence,

we use different variables for possibly different (unspecified) individuals:

3x3ylxy

Someone is older than Jane.

Someone is older than someone.

If we used just one variable, we would have

3xlxx Someone is older than himself (or herself).

which is, of course, a sentence whose truth value is FALSE.

272

CHAPTER 12

The universal quantifier is handled in a similar fashion:

'v'xlxb Everyone is older than Jane.

'Everyone' is understood in logic quite literally; it does not mean "everyone else." This
sentence is evidently FALSE, since Jane is not older than herself. Likewise,

'v'xLbx Jane is older than everyone.

is FALSE, since Jane is not older than herself. And, finally, mixing quantifiers we can
get:

3x'v'ylxy
'v'x3zlxz

Someone is older than everyone.
Everyone is older than someone.

Both of these, of course, are FALSE in the real world (because no one is older than
himself or herself, and there are only a finite number of individuals.)

We must extend our earlier notion of a dossier on an individual in order to construct
models for sentences contaimnq relational predicates. Consider, first, just one two-place
predicate 'R' and, for simplicity, three individuals a, b, and c. There are nine relationships
that might exist between a, b, and c with respect to the relation R. That is, there are
nine sentences whose truth values we must specify. An orderly array of these sentences
is:

Raa
Rab
Rae

Rba
Rbb

Rbc

Rea
Rcb
Rec

The format above does not lend itself easily to the notion of a dossier, but with some
redundancy we can construct a dossier for each of the individuals. The dossier on a
should show which two-place predicates are satisfied with 'a' as the first term and which
ones are satisfied with 'a' as the second term. After all, with regard to, say, individual
a, we want to know which instances of 'Rax' are TRUE and which instances of 'Rxa'
are TRUE. We proceed, then, to construct, for our simple example, six columns, first
fixing the first individual to a, b, and c and then similarly fixing the second individual:

Ra - Rb Re - R a Rb RC -
a

b

C

273

QUANTIFICATION

The top row of cells contains the truth values for the sentences resulting from placing
·a· in the blanks at the top. The second row uses 'b' in the blank spaces, and the bottom
row uses 'c'. If 'Raa' is TRUE, then the cell at the top left will contain '1' (and so will the
fourth cell over). If 'Raa· is not TRUE, then the cell will contain ·o· (and likewise for the
fourth cell). For V(Raa) = 1, we have:

Ra - Rb - Re - R a Rb R_e

a 1 1

b

e

Simply stated, to construct the dossier on a, move across the top of the table inserting
·a· in each of the blank spaces, ensuring that when the same expression results at the
tops of the different columns, the same value occurs in the corresponding cells in the
appropriate row.

The proviso in the final clause of the previous sentence must be observed. Note
that in the construction of the dossier on a, the second entry evaluates 'Rba'. But 'Rba'
will also occur in the construction of the dossier on b. In particular, this will be the fourth
entry to the right on the row for b. Whatever value for 'Rba' is in the dossier on a must
also be the value for 'Rba' in the dossier on b.

Ra - Rb - Re - R a Rb Re

a 0

b 0

e

Once dossiers are specified, models can be constructed as we did earlier, and
various quantified sentences can be evaluated for truth or falsity in different models.

In general, the interesting two-place relations require a large number of individuals
for the construction of appropriate minimal models. When more than a handful of indi-
viduals are in a universe of discourse, dossiers and tables are quite difficult to exhibit
and work with. The idea of a dossier, nevertheless, helps us to see how to evaluate a
quantified sentence, even if the dossier cannot easily be displayed.

Symbolizing

The art of symbolizing English sentences depends on a clear understanding of the truth
conditions of the original sentence. For instance, if we were to state

Only students are fun-loving.

274

CHAPTER 12

we should first clearly understand the conditions under which this sentence is TRUE,
and also the conditions under which it is FALSE. Notice that if some nonstudent, say,
a teacher, were found to be fun-loving, then the sentence would be FALSE. In other
words, the basic claim amounts to saying that all fun-loving (persons) are students. This
is easily symbolized as

'v'x(Fx-,, Dx)

A sentence such as

Voters are either Democrats or Republicans.

can be symbolized quite simply as

'v'x(Ex- (Dx v Bx))

That is, for any individual x, if x is a voter, then x is a Democrat or x is a Republican.
More care must be taken with

Bats and cats are mammals.

This is correctly symbolized as

('v'x(Bx-,, Mx) & 'v'x(Cx-,, Mx))

or as

'v'x((Bx v Cx)-,, Mx)

If one were to neglect the truth conditions of the original English sentence, one might
incorrectly symbolize the sentence with a formula that begins:

For any x, if xis a bat and xis a cat. ..

But nothing is both a bat and a cat, and surely the original sentence was not talking
about bat-cats.

Not only can English sentences appear in greater and greater grammatical com-
plexity once quantifiers and predicates are permitted, but they are also frequently am-
biguous. When one exclaims:

God helps those who help themselves.

the claim could be

1. God helps (only) those who help themselves.

275

QUANTIFICATION

Or it could be

2. God helps (all) those who help themselves.

Or possibly the claim could be both (1) and (2)!
Using 'Hxx' for 'x helps x' (that is, x helps himself or herself), we have two different

claims:

1 '. Vx(Hgx - Hxx)

and

2'. Vx(Hxx - Hgx)

In this symbolization, it should be evident that g = God and that 'Hgx' means that God
helps x.

You will frequently find it helpful to symbolize more complicated statements in stages
starting at the beginning of the sentence. Consider this example:

3. All students like some professor or other.

Since this is a universal claim about all students, the first stage of symbolizing is to
represent the universal form:

Vx(if x is a student, then x likes some professor)

We now symbolize 'x is a student' as 'Dx' and get:

'v'x(Dx - x likes some professor)

How do we symbolize 'x likes some professor'? Using 'Lxy' for 'x likes y' and 'Fy' for 'y
is a professor', we write:

3y(Fy & Lxy)

We now place this clause in the consequent of the conditional, in place of 'x likes some
professor'.

3. Vx(Dx - 3y(Fy & Lxy))

In this example, we used 'Fy' for 'y is a professor'. It is important to recognize that the
variable could be different in both places:

Fy: y is a professor
Fz: z is a professor

276

CHAPTER 12

Had we chosen 'z', we would have had this equally correct symbolization:

3a. 'v'x(Dx - 3z(Fz & L.xz))

Let us look at a related example:

4. Professors admire any professor who is liked by students.

Here we have a universal claim about professors. Our first stage might look like this:

'v'x(Fx - x admires any professor who is liked by students)

We need to characterize a professor, any one, who is liked by students. Then we shall
state that x admires such a professor. So, this last clause will be written as

For any y, if y is a professor who is liked by students, then x admires y.

Now 'y is a professor who is liked by students' can be written (with the understanding
that we mean some students) as follows:

(Fy & 3z(Dz & Lzy))

Putting all the clauses together, we get:

4. 'v'x(Fx - 'v'y((Fy & 3z(Dz & Lzy)) - Axy))

Summary

Predicate logic takes us beyond assigning truth values to sentences and requires us to
consider individuals and their properties, relations between individuals, and quantifica-
tion. Individuals are denoted by lower-case letters from the beginning of the alphabet,
while individual variables are lower-case letters from the end of the alphabet. Predicate
letters are upper-case letters from the beginning of the alphabet. A single-place predicate
followed by an individual constant is a sentence. An n-place predicate followed by n
constants is a sentence.

Among the possible strings (sequences of symbols), we carefully distinguished well-
formed formulas (wffs). A wff preceded by a quantifier is also a wff. Quantifiers are either
universal or existential. They have a scope, and any occurrence of the quantifier variable
in the scope of the quantifier is bound. A wff with no free occurrences of variables is a
sentence.

The truth conditions for a quantified sentence are:

V('v'xSx) = TRUE iff the value of every instance of 'Sx' is TRUE.
V(3xSx) = TRUE iff the value of at least one instance of 'Sx' is TRUE.

277

QUANTIFICATION

Finally, the notions of a model, a minimal model, and dossiers on individuals were
introduced, and some suggestions for symbolizing were put forward.

Exercises

A. Using the individual constants and predicate letters in the table below, symbolize
the sentences that follow.

a = Socrates F = is (or was) a philosopher
b = Plato G = is (or was) a logician

1. Socrates is a logician.
2. Plato was a logician.
3. Socrates was a philosopher and Plato was a logician.
4. Plato was not a logician but Socrates was a philosopher.
5. If Plato was a philosopher, then so was Socrates.

B. Using the table from Exercise A, translate the following formulas into English:
1. Fa
2. Fb
3. (Gav Fb)
4. (Gb & -Fa)
5. (Ga~ Gb)

C. Let C = is a computer programmer
D = is a philosopher
E = is a mathematician

Symbolize the following sentences:
1. Everyone is a philosopher.
2. Someone is a mathematician.
3. Nobody is a computer programmer.
4. Not everyone is a mathematician.
5. All mathematicians are philosophers.
6. Some philosophers are computer programmers.
7. Every computer programmer is not a philosopher.
8. Some philosophers are not computer programmers.
9. Not all mathematicians are philosophers.

10. Everyone is either a mathematician or a philosopher.
11. Everyone is a mathematician and a philosopher.
12. No mathematician programs computers.

D. Using the same interpretations for the symbols as in C, translate the following
formulas into English:

1. \:/xCx
2. \:/yCy
3. 3uDu
4. -3xDx

278

CHAPTER 12

5. 3x-Dx
6. 'v'x-Ex
7. 'v'x(Cx - Dx)
8. 3x(Cx - Dx)
9. 3x(Cx & Ex)

10. 'v'x(Cx & Ex)

E. In which of the fifteen minimal models mentioned in the chapter are the following
sentences TRUE, and in which are they FALSE?

1. 'v'xFx
2. 'v'x(Fx - Gx)
3. 'v'x(Fx v Gx)
4. 'v'x(Fx & Gx)
5. 'v'x-Gx
6. 3xFx
7. -3x-Gx
8. 3x-Gx
9. -'v'xGx

10. 3x(Fx v Gx)
11. 3x(Fx & Gx)
12. 3x(Fx - Gx)
13. 'v'x(Fx v Fx)
14. 'v'x(Fx - Fx)
15. 3x(Fx & Fx)

F. Let L = is taller than
a= Alfred
b = Betty

Symbolize the following sentences:
1. Alfred is taller than Betty.
2. Betty is taller than Alfred.
3. Alfred is not taller than himself.
4. Someone is taller than Betty.
5. Alfred is taller than everyone.
6. Everyone is taller than someone. (Hint: Be careful!)
7. Someone is taller than everyone.

G. Using the same interpretations of the symbols as in F, translate the following
formulas into English:

1. Lba
2. -Lab
3. -Abb
4. 'v'xLax
5. 'v'xlxa
6. 3xLbx
7. 3xlxb
8. 3x'v'ylxy
9. 3x'v'yLyx

10. 'v'x3ylxy

279

QUANTIFICATION

11. 'v'x3yLyx
12. 'v'xlxx
13. 3yLyy

H. Symbolize the following sentences:
1. If Sam really loves Mary, then no one loves Sam.
2. All owners of handguns are in violation of some law. (Where Oxy = x owns

y, Hx =xis a handgun, Vxy = x violates y, and Lx =xis a law.)
3. All lovers of lovers love themselves. (Use only the predicate Lxy = x loves

y.)
4. Every doctor who treats himself has a fool for a client. (Where Dx = x is a

doctor, Txy = x treats y, Fx = xis a fool, Cx = xis a client.)
5. Some business people have their fingers in every business. (Where Bx = x

is a business person, Hxyz = x has y in z, Fxy = x is the finger of y and
Ox =xis a business.)

6. All those who admire themselves and who love no one other than their
mothers are going to get elected in every country. (Where Axy = x admires
y, Lxy = x loves y, Mxy = x is the mother or y, Exy = x is going to get
elected in y, Cx = xis a country.)

7. No one who despises Napolean loves a dirty joke.
8. No one admires anyone who tries to do everything.
9. Everyone has some problems but no one has every problem.

10. Everyone either admires or despises Franklin D. Roosevelt.
11. If anyone gives me a stupid gift on my birthday, I won't send him a thank-

you card. (Where Gxyzw = x gave y to z on w, Gx = x is a stupid gift,
Bx= x is my birthday, m = I/me, Sxyz = x will send y a z, Tx =xis a
thank-you card.)

Suggestions for Computer Implementation

It is not especially difficult to convert into a computer program the algorithm for deciding
when a string that might include quantifiers, variables, or constants is a well-formed
sentence. We only need to modify the algorithm given in Chapter 5. Since few computer
terminals have the symbols ''v'' and '3', you might wish to reserve the letters 'A' and 'E'
to serve in their place and then avoid using these letters for sentences or predicates.
Or, you could use the words 'ALL' and 'SOME'.

If we restrict ourselves to sentences containing one-place predicates, a program
could also be written that determines whether an argument is valid or invalid. We gave
a sketch of the underlying algorithm in this chapter. When the corresponding program
is written, one of the first steps must be to provide some data structure to hold a model
or many models. As we have hinted, a model can be stored as an array (a table) whose
rows (dossiers) indicate the predicates satisfied by distinct individuals. One early step
also must be to count the total number of distinct predicates contained in the sentences
of the argument. We then need to generate all the representative individuals. (For
inspiration on a method for doing so, you might recall how we generated all the possible
combinations for truth values in Chapter 6. Additionally, if the representative individuals

280

CHAPTER 12

are "named" by numbers, they can carry their dossiers with them.) We next need to
produce all the minimal models. This task amounts to producing all the various com-
binations of representative individuals.

Once the minimal models have been produced, we need to devise a procedure for
determining the truth values of the premises and conclusion in a given model. As we
have seen, this can be accomplished by borrowing the main technique from WANG'S
ALGORITHM {step 3 in Chapter 6) and by adding the conditions whose "main connective"
is in fact a quantifier. For suggestions on programming these steps, consult the imple-
mentation suggestions at the end of Chapter 6. Note that we also need a slightly different
TEST procedure than that given in Chapter 6 for WANG'S ALGORITHM.

Exercises

1. Write an algorithm {or program) that inputs the sentences of an argument and
determines the total number of distinct predicates in them.

2. Write an algorithm (or program) that takes a list of distinct predicates (either as
input or produced by another procedure in the same program) and generates
all the representative individuals.

3. Modify the algorithm MAIN-CONNECTIVE in Chapter 6 so that if a formula is
universally or existentially quantified, the quantifier whose scope covers the rest
of the formula is identified as the "main connective" of the formula. (The initial
quantifier is not really a connective, since it does not connect sentences. It is a
"connective" much like negation is a connective.)

4. Write an algorithm (or program) that takes as input a universally or existentially
quantified formula and a list of individuals and then does the following: (a) deletes
the initial quantifier and (b) outputs all the instances of the resulting formula.

5. Write an algorithm (or program) to determine when a formula is a simple predicate
formula-a formula containing only a predicate and individual constants.

PREDICATE LOGIC:
Quantifier Inference

Rules

A valid argument, we recall, is an argu-
ment where it is impossible for the premises to be TRUE
and the conclusion FALSE. In the logic of sentences,
there are several ways to determine if an argument is
valid or invalid. We can, in the logic of sentences, con-
struct a truth table and examine every situation to see
if it is possible for the premises to be TRUE and the
conclusion FALSE. In predicate logic, however, it is not
possible, in general, to construct or to inspect all models,
including those models in which the premises are TRUE
or the conclusion FALSE. Consequently, other ways of
showing an argument to be valid must be found. One
of the simplest ways is to derive the conclusion from
the premises in a formal deduction system with truth-
preserving rules of inference. (The system should also
be complete, in the sense that every conclusion of a
valid argument can be derived in the system.)

281

282

CHAPTER 13

We turn now to the problem of deriving conclusions with sentences containing
quantifiers and variables. The whole point of symbolizing the structure of sentences with
quantifiers and variables is to enable ourselves to derive conclusions that we could not
prove by the methods of sentential logic ,~lone.

We feel sure that

1. All Greeks are mortal.
2. Socrates is a Greek.
3. Socrates is mortal.

is a valid argument. We need to see why it is valid, and also we need to develop rules
that will allow us to derive the conclusion from the premises.

When the above argument is symbolized, we get something like

1. Vx(Gx - Mx)
2. Ge
3. Mc

Sentence (1) "says" that for every individual x, '(Gx - Mx)' is satisfied by that individual.
Hence, an instance using 'c', the name of Socrates, for 'x' is TRUE. That is, if (1) has
the truth value TRUE, so does

1a. (Ge - Mc)

But now we can use -ELIM on (1a) and (2) to obtain (3).
The earlier rules for introducing and eliminating connectives in a sentential derivation

remain unchanged. We need only to add some rules for introducing and eliminating
quantifiers. Our general strategy will be to eliminate quantifiers somehow, manipulate
and transform the results using the earlier sentential rules, and, finally, introduce ap-
propriate quantifiers, if needed, to obtain the desired conclusion. These new rules for
quantifier INTRO and ELIM are very precisely stated, and careful attention must be paid
not only to the sentence on the line to which the rule is applied but also to other sentences
in the proof or subproof.

Universal Quantifier Rules

Our earlier rules of inference from Chapters 8 and 9 apply to quantified sentences
considered as atomic sentences. Thus &ELIM will apply to a line with the sentence
'(Vxfx & VyGy)' on it. We take 'VxFx' as a single sentence P and 'VyGy' as Q. That
is, we take '(VxFx & VyGy)' as having the form (P & Q). Now, however, we are going
to extend our deduction system in order to make additional derivations to and from
quantified sentences.

283

QUANTIFIER RULES

Universal Elimination

Reflecting on the truth conditions for a universally quantified sentence, say 'VxFx', we
note that it has the value TRUE only if all instances of 'Fx' also have the value TRUE.
Hence, if we infer an instance, any instance, from 'VxFx', we shall never move from a
true sentence to a false one. This provides a justification for the rule:

VELIM RULE: From a sentence of the form
VvP

you may derive
P[c/v]

In the statement of the rule, 'v' is used for any variable at all (w, x, y, z, ...) and 'c'
for any constant at all (a, b, c, d, ...). We use the notation P[c/v] for the result of
replacing all free occurrences of the variable v in formula P with the constant c.

For example, if P is '3x(Fx v Gy)', then P[a/y] is '3x(Fx v Ga)', but P[a/x] is still
'3x(Fx v Gy)', since 'x' is not free in P.

In a derivation, the use of VELIM would look like this:

10. Vx(Fx - Hx)

15. (Fd- Hd)

:<PREMISE or Rule>

:VELIM,10

The sentence on line 10 is universally quantified, and the sentence on line 15 results
from the one on line 10 by deleting the initial quantifier and replacing all now free
occurrences of the quantifier variable 'x' with the individual constant 'd'.

It is essential to note that this rule and all the other quantifier rules require the scope
of the initial quantifier to stretch to the end of the sentence on that line. Here is an
example of a sentence where VELIM cannot be used, because the scope of the universal
quantifier expression 'Vx' is not the entire sentence:

(VxFx v VyGy)

From this sentence, one cannot get '(Fa v VyGy)' by VELIM.
One can use VELIM several times over, citing the same line:

10. Vx(Fx - Hx)

15. (Fd - Hd)
16. (Fe - He)

:VELIM,10
:VELIM,10

284

CHAPTER 13

Universal Introduction

Next, we would like to be able to generalize, that is, to introduce a universal quantifier.
A clue to justifying this move can be found in elementary geometry classes, where the
teacher draws a triangle on the board and then uses this specific triangle to prove
theorems about all triangles. This works as long as no appeal is made to any special
properties of the example triangle. That is, if we can prove something about an arbitrarily
selected individual, we have proved it for any individual. We need only to ensure that
special properties of the selected individual play no role in the proof. The following rule
is qualified to ensure just that.

VINTRO RULE: From a sentence
p

you may derive
VvP[v/c]

Provided that:
1. c does not occur in any premise.
2. If P occurs in a subproof, no constant in P occurs in an

ASSUMPTION still in force.
3. All new occurrences of the variable v in P are free after

the replacement in P[v/c].

In proviso (2), an ASSUMPTION is "still in force" during the subproof following it
and during any sub-subproofs within that. Finally, the notation P[v/c] means that all
occurrences of the constant c are replaced by the variable v. So, proviso (3) means
that when v replaces c, it should not fall within the scope of a quantifier already present
that uses v. The new occurrence of the variable should not, so to speak, be "captured"
by a quantifier already present in the wff P.

Examples of the correct use of VINTRO are given below. Assume throughout that
the restrictions on the constant on line 5 are all met.

Example 1.
5. (Fa_,, Ga) :<Rule>

9. Vx(Fx _,, Gx) :VINTRO,5

Example 2.
5. (Fb v 3yGy) :<Rule>

12. Vx(Fx v 3yGy) :VINTRO,5

285

QUANTIFIER RULES

Here is a complete derivation for the following argument:

'v'x(Fx- Gx)
:. ('v'yFy- 'v'zGz)

1. 'vx(Fx - Gx) :PREMISE
/BEGIN: ('v'yFy- 'vzGz) by-INTRO/

*2. 'v'yFy :ASSUMPTION
*3. Fa :'v'ELIM,2
*4. 'v'x(Fx- Gx) :SEND,1
*5, (Fa - Ga) :'v'ELIM,4
*6. Ga :-ELIM,5,3
*7. 'v'zGz :'v'INTRO,6
*a. ('v'yFy- 'v'zGz) :-INTRO,2,7

/END: ('v'yFy- 'v'zGz)/
9. ('v'yFy- 'v'zGz) :RETURN,8

Here is an incorrect use of 'v'INTRO:

Example 3.
5. (Fa - Ga)

9. 'v'x(Fx - Ga)

:<Rule>

:'v'INTRO,5 [INCORRECT-Not all occurrences of 'a'
replaced.]

Another incorrect use of 'v'INTRO is:

Example 4. .
5. (Fa - 3x(Ga & Hx)) :<Rule>

:'v'INTRO,5 [INCORRECT-the 'x' in 'Gx'
was captured.]

Observe that the replacement of 'a' in 'Ga' by 'x' in line 5 led to its being captured by
the existential quantifier already there. Instead of 'x', we could use another variable, say
'y', and correctly infer:

9. 'v'x(Fx - 3x(Gx & Hx))

9. 'v'y(Fy- 3x(Gy & Hx)) :'v'INTRO,5

With these two rules we can derive the conclusions of some arguments traditionally
studied since the time of Aristotle. One, for instance, is the ancient syllogistic argument:

286

CHAPTER 13

All humans are mortal.
All Greeks are humans.

:. All Greeks are mortal.

The first step, of course, is to symbolize the English sentences:

'v'x(Hx- Mx)
'v'x(Gx- Hx)
'v'x(Gx- Mx)

A proof of the conclusion using our two quantification rules goes as follows:

1. 'v'x(Hx- Mx)
2. 'v'x(Gx - Hx)
3. (Ha - Ma)
4. (Ga- Ha)
5. (Ga- Ma)
6. 'v'x(Gx - Mx)

:PREMISE
:PREMISE
:'v'ELIM,1
:'v'ELIM,2
:HS,2,1
:'v'INTR0,5

The restrictions on the rule 'v'INTRO prevent the following attempted derivation:

1. 'v'x(Gx - Mx)
2. Gf
3. (Gt- Mf)
4. Mf
5. 'v'xMx

:PREMISE
:PREMISE
:'v'ELIM, 1
:-ELIM,2,3
:'v'INTR0,4 [INCORRECT]

Here, 'f' occurs in PREMISE 2 and cannot be generalized on.

Existential Quantifier Rules

Having a pair of rules for introducing and eliminating universal quantifiers, we need now
to develop a pair of rules of inference to introduce and eliminate existential quantifiers.

Existential Introduction

The next rule is again easy to justify. If something is true of a particular individual, then
there is some individual for which it is true. Schematically,

Fa
3xFx

287

QUANTIFIER RULES

The correct statement of the rule is:

3INTRO From a sentence of the form
P[c/v]

you may derive
3vP

In this rule, the constant c replaces all free occurrences of the variable v in well-formed
formula P.

You may find the statement of this rule to be odd, because as you move down the
lines of a derivation, you encounter the sentence P[c/v) before you come to the sentence
with the variable v, namely, 3vP. But to use the rule correctly, you need only to ensure
that the earlier sentence and the wff you are about to existentially quantify are properly
related: The earlier one can be obtained from P by replacing all free occurrences of v
with c. In addition, if you are following a modified version of PROOF-GIVER, then you
will, in fact, encounter 3vP first in your task file before you get to P[c/v]. This is because
the task file begins at the end of the derivation and works up to the premises.

These are all correct uses of the rule 3INTRO:

n. Faa Faa Faa Faa :<PREMISE or Rule>

n + k. 3xFxx 3xFxa 3xFax 3xFaa :3INTRO,n

Each of these is a truth-preserving inference allowed by the rule. Any argument with
line n as premise and line (n + k) as conclusion is a valid argument. Each of the four
simple inferences above is allowable by the rule 3INTRO. Moreover, in our previous
example, although we could not derive "v'xMx' ('Everything is mortal'), we could at line
5 derive '3xMx' ('Something is mortal').

1. 'v'x(Gx - Mx)
2. Gf
3. (Gf - Mf}
4. Mf
5. 3xMx

:PREMISE
:PREMISE
:'v'ELIM,1
:-ELIM,3,2
:3INTR0,4

Existential Elimination

The final rule, 3ELIM, deals with the sorts of inferences one can validly make from an
existentially quantified sentence. Here we take a cue from legal practice. Frequently, in
legal situations, we know that someone committed the crime, but we don't know who
specifically it was. A warrant is issued for someone, John Doe or Jane Doe. We then
reason about, say, John Doe, although we don't know exactly who he is. Whatever
conclusion we reach that does not refer to John Doe by that name is, in general, a
correct conclusion.

7

288

CHAPTER 13

Our strategy with an existentially quantified sentence is to name someone as John
Doe and see what follows. If we reach a conclusion that does not depend on someone's
actually being named John Doe, then that is a valid conclusion from the original statement
referring, nonspecifically, to someone or other. Let us look at the rule and practice using
it.

3ELIM If a sentence on a previous line has the form
3vP

and there is a subproof beginning with ASSUMPTION
P[c/v]

where constant c is new to the proof, and ending with a sentence
Q

not containing c,
then Q may be RETURNed from that subproof.

To say that a constant is "new to the proof" means, simply, that it has not been used
before. Note that the RETURN rule has now been slightly, but significantly, expanded.

Rule 3ELIM is different from any of the other elimination rules because it is not a
rule for eliminating an existential quantifier from a line. It is more like a strategy for
constructing subproofs to derive conclusions from existentially quantified sentences.

Let us work a few examples, again drawn from traditional Aristotelian logic.

All circus animals are tame animals.
Some lions are circus animals.

:. Some lions are tame animals.

1. \fx(Cx - Ax)
2. 3x(Lx & Cx)

/BEGIN: 3ELIM/

*3. (La & Ca)
* 4. \fx(Cx--+ Ax)
*s. (Ca - Aa)
*6. Ca
*7. Aa
*a. La
*9. (La & Aa)
*10. 3x(Lx & Ax)

/END: 3ELIM/

11. 3x(Lx & Ax)

:PREMISE
:PREMISE

:ASSUMPTION for 3ELIM,2
:SEND,1
:\fELIM,4
:&ELIM,3
:--+ELIM,5,6
:&ELIM,3
:&INTRO,8,7
:3INTRO,9

:RETURN,10

In line 3, we assumed that a is a lion who is a circus animal. The subproof concludes
on line 1 O with a sentence that does not mention a and thus does not depend on the

289

QUANTIFIER RULES

assumption that 'a' is a name of a circus lion. So, the information on line 10 may be
returned to the main proof.*

Some Examples

When using the quantifier introduction and elimination rules, one must take care that
the scope of the quantifier (introduced or eliminated) is the entire sentence on the line.
We shall examine some ways of dealing with sentences having quantifiers whose scope
is only a proper part of the sentence. For instance, in

(\fxFx&A)

the scope of '\fx' is just the left conjunct. The inner structure of the right conjunct, 'A',
is of no concern here; it can be any sentence whatever, with one caution to be explained
shortly. We cannot use \fELIM on this sentence as it stands, but we can derive another
sentence from it to which \fELIM can apply:

1. (\fxFx & A)
2. \fxFx
3. A
4. Fa
5. (Fa & A)
6. \fx(Fx & A)

:PREMISE
:&ELIM,1
:&ELIM,1
:\fELIM,2
:&INTR0,4,3
:\flNTR0,5

The derivation assumes that the sentence A does not contain the constant 'a'. If there
are constants in sentence A, then the constant introduced at line 4 should be different
from any of them.

Here is another simple derivation that moves a quantifier to the beginning of the
sentence:

1. (A--" \fxFx) :PREMISE

/BEGIN:--" INTRO for (A-" Fa)/

*Historical note: The argument above was stated as a correct Aristotelian syllogistic argument.
The noun phrase "tame animals" must be used, although to a modern ear, the sentence sounds
stilted. With our symbolism, we could deal directly with the more naturally sounding argument:

All circus animals are tame .
Some lions are circus animals.

.-. Some lions are tame.

The symbolic form remains the same. The difference is that earlier, 'Ax' symbolized 'x is a tame
animal', while now it symbolizes 'xis tame'.

290

CHAPTER 13

*2. A :ASSUMPTION
*3. (A- VxFx) :SEND, 1
* 4. VxFx :-ELIM,3,2
*5. Fa :VELIM,4
*6. (A- Fa) :-INTRO,2,5

/END: -INTRO/

7. (A- Fa) :RETURN,6
8. Vx(A- Fx) :VINTRO,7

Quantifier Negation Rule

Before we work on the next examples, it will be helpful to consider the cases where a
negation sign precedes a quantifier whose scope is the rest of the sentence. There are
two kinds of cases:

-VxFx -3xFx

We propose to show that

'-3xFx' is logically equivalent to 'Vx-Fx'.

The equivalence between the other two, '-VxFx' and '3x-Fx', is shown similarly; it is
an exercise at the end of the chapter. The results are of some importance, since these
logical equivalences open the way to using the rule of replacement on wffs with quantifiers
flanked by negation signs.

One way to show the equivalence is by way of a semantic discussion of the truth
conditions for the pair of sentences. Thus we would begin by pointing out that

'-3xFx' is TRUE if and only if '3xFx' is FALSE

and that

'3xFx' is FALSE if and only if every instance of 'Fx' is FALSE.

But this is so if and only if every instance of '-Fx' is TRUE, and that is the condition if
and only if 'Vx-Fx' is TRUE.

A second way of showing equivalence is to prove that the biconditional of the two
is a theorem. Thus we shall prove '(-3xFx ~ Vx-Fx)' beginning with no premises.
There is a problem of strategy during the derivation, and we shall interrupt the derivation
at that point to discuss the problem and a solution.

291

QUANTIFIER RULES

*1. -3xFx :ASSUMPTION
/BEGIN: -INTRO to derive -Fa/

**2. Fa :ASSUMPTION
**3_ 3xFx :3INTRO,2
**4_ -3xFx :SEND,1
**5. -Fa :-INTRO,2,3,4

/END: -INTRO/
*6. -Fa
*7_ Vx-Fx
*a. (-3xFx- Vx-Fx)

/END: -INTRO/

:RETURN,5
:VINTRO,6
:-INTRO,1,7

9. (-3xFx- Vx-Fx) :RETURN,8
*10. VX-Fx :ASSUMPTION

/BEGIN: -INTRO to derive -3xFx/
3xFx :ASSUMPTION

/BEGIN: 3ELIM/
Fb

**11.

*** 12.
*** 13.
***14_

Vx-Fx
-Fb

:ASSUMPTION for 3ELIM,2
:SEND,10
:VELIM,13

We now have a problem: A contradiction can be seen on lines 12 and 14, but since they
contain 'b'-the constant in the assumption at 12-they cannot be returned out of the
subproof. But given a contradiction, any sentence can be proved-in particular, a con-
tradiction without the constant 'b'. Letting 'A' be an atomic sentence (say, 'Grass is
green'), we continue the proof.

*** 15.
***16.

(Fb v (A & -A))
(A & -A)
/END: 3ELIM/

(A & -A)
A
-A
-3xFx
/END: -INTRO/

*21. -3xFx
*22. (Vx-Fx - -3xFx)

/END: -INTRO/

**17.
**rn.
**19_
**20.

23. (Vx-Fx- -3xFx)
24. (-3xFx ~ Vx-Fx)

:vlNTRO,12
:vELIM, 15, 14

:RETURN,16
:&ELIM,17
:&ELIM,17
:-INTRO, 11, 18, 19

:RETURN,20
:-INTRO, 10,21

:RETURN,22
:~INTRO,9,23

Since 'Fx' played no significant role in the above proof, this result holds for any wff
in place of 'Fx'. We can now adopt a quantifier negation rule:

292

CHAPTER 13

QUANTIFIER NEGATION (QN) -3vS is derivable iff 'v'v-S is derivable.
-'v'vS is derivable iff 3v-S is derivable.

This rule enables us, at any time in a proof, to "move the negation sign through a
quantifier" if we change the quantity of the quantifier. This derived rule is very useful,
as the following proof shows:

To prove that "v'x(Fx - A)' is logically equivalent to '(3xFx - A)'

A proof, using no premises, of the biconditional:

**2.

***3_
***4,
***s.
***6.

'v'x(Fx - A) :ASSUMPTION
/BEGIN: - INTRO for (3xFx - A)/
3xFx :ASSUMPTION

/BEGIN: 3ELIM/
Fa
'v'x(Fx- A)
(Fa-A)
A
/END: 3ELIM/

**7_
**a.

A
(3xFx-A)
/END: - INTRO/

*g_ (3xFx - A)
* 10. ('v'x(Fx - A) - (3xFx - A))

/END: - INTRO/
11. ('v'x(Fx - A) - (3xFx - A))
*12. (3xFx-A)

:ASSUMPTION for 3ELIM,2
:SEND,1
:'v'ELIM,4
:- ELIM,3,5

:RETURN,6
: - INTRO,2,7

:RETURN,8
:- INTRO,1,9

:RETURN,10
:ASSUMPTION

**13,
**14,

***1s.
***16.
***17_
*** 18.
***19_
***20.
***21.

**22.
**23_
**24,
**2s.

/BEGIN: -ELIM to derive 'v'x(Fx-A)/
-'v'x(Fx - A) :ASSUMPTION
3x -(Fx-A) :QN,13

/BEGIN: 3ELIM/
-(Fb-A)
--(Fb & -A)
(Fb & -A)
Fb
3xFx
-A
(3xFx & -A)
/END: 3ELIM/

(3xFx & -A)
3xFx
(3xFx-A)
A

:ASSUMPTION for 3ELIM,14
:RR EQ,15
:RR DN,16
:&ELIM,17
:3INTRO,18
:&ELIM,17
:&INTRO,20, 19

:RETURN,21
:&ELIM,22
:SEND,12
: - ELIM,24,23

293

QUANTIFIER RULES

**26.
**27,

-A
Vx(Fx - A)
/END: -ELIM/

*20. Vx(Fx-A)
*29_ ((3xFx - A) - Vx(Fx - A))

/END: - INTRO/
30. ((3xFx - A) - Vx(Fx - A))
31. (Vx(Fx - A) ~ (3xFx - A))

:&ELIM,22
:-ELIM, 13,25,26

:RETURN,27
: - INTRO, 12,28

:RETURN,29
:~INTRO, 11,30

Let us apply our expanded set of rules to a few examples in order to become more
familiar with proofs. The first example has some historical interest. The British logician
and logic-machine builder W. S. Jevons, modifying an example from Augustus De Mor-
gan, accused traditional Aristotelian logic of being unable to validate this argument:

Horses are animals.
Therefore, every head of a horse is a head of an animal.

Using 'Dyx' for 'y is a head of x', we can symbolize these sentences as:

Vx(Hx-Ax)
:.'lfy(3x(Hx & Dyx) - 3z(Az & Dyz))

Now working back from the conclusion, we can devise a simple proof.

1. Vx(Hx - Ax) :PREMISE
/BEGIN: - INTRO for (3x(Hx & Dax)- 3z(Az & Daz))/

*2. 3x(Hx & Dax) :ASSUMPTION
/BEGIN: 3z(Az & Daz)/
(Hb & Dab)
Vx(Hx-Ax)
(Hb-Ab)
Hb
Ab

**3,
**4,
**s.
**6.
**7_
**0.
**s.
**10.

Dab
(Ab & Dab)
3z(Az & Daz)
/END: 3ELIM/

* 11. 3z(Az & Daz)
*12. (3x(Hx & Dax)- 3z(Az & Daz))

/END: - INTRO/
13. (3x(Hx & Dax) - 3z(Az & Daz))
14. Vy(3x(Hx & Dyx) - 3z(Az & Dyz))

:ASSUMPTION for 3ELIM,2
:SEND,1
:VELIM,4
: & ELIM,3
:- ELIM,6,5
:&ELIM,3
: & INTRO, 7,8
:3INTRO,9

:RETURN,10
: - INTRO,2, 11

:RETURN,12
:VINTRO,13

This concludes the proof. Notice that line 13 contains 'a' with no restrictions on VINTRO,
since the assumptions at lines 2 and 3 are no longer in force.

294

CHAPTER 13

The next example illustrates how we can handle the identity relation with our present
notation. [We could, by the way, extend our present system to treat the identity relation
in a special way, with special rules of inference for formulas with an identity sign (=).]
Consider this argument:

If one event causes another event, the first event begins before the second. When
one event begins before another, the events are not identical. Every event is identical
to itself. Hence, no event is its own cause.

Our dictionary for symbolizing is:

Cxy: x causes y
Bxy: x begins before y
lxy: x is identical to y

We symbolize this argument as follows:

1. 'v'x'v'y(Cxy- Bxy)
2. 'v'x'v'y(Bxy- -lxy)
3. 'v'xlxx

:. 4. 'v'x-Cxx

Observe that the conclusion is a universally quantified sentence. This suggests that in
the last step in the derivation, the rule VINTRO is applied. As usual, our strategy will be
to eliminate quantifiers first, perform sentence transformations, and then introduce quan-
tifiers where needed.

1. 'v'x'v'y(Cxy - Bxy)
2. 'v'x'v'y(Bxy - -lxy)
3. 'v'xlxx
4. laa
5. 'v'y(Bay - -lay)
6. (Baa - +laa)
7. 'v'y(Cay - Bay)
8. (Caa - Baa)
9. --laa

10. -Baa
11. +Caa
12. 'v'x-Cxx

:PREMISE
:PREMISE
:PREMISE
:VELIM,3
:VELIM,2
:VELIM,5
:VELIM,1
:VELIM,7
:RR DN,4
:MT,6,9
:MT,8,10
:VINTRO,11

Our final example will give us some practice with the quantifier negation rule:

Not all successful people are rich. But all successful people are either happy or
rich. So, there are some people who are not rich and yet who are happy.

295

QUANTIFIER RULES

Symbolizing this with some care, we get:

1. -'v'x(Sx - Rx)
2. 'v'x(Sx - (Rx v Hx))

:. 3. 3x(-Rx & Hx)

One proof of this argument is:

1. -'v'x(Sx-Rx)
2. 'v'x(Sx - (Rx v Hx))
3. 3x-(Sx - Rx)

:PREMISE
:PREMISE
:QN,1

/BEGIN: 3ELIM to derive 3x(-Rx & Hx)/
*4. -(Sa - Ra) :ASSUMPTION for 3ELIM,3
*s. 'v'x(Sx - (Rx v Hx)) :SEND,2
*6. (Sa - (Rav Ha)) :'v'ELIM,5
*7. --(Sa & -Ra) :RR EQ,4
*a. (Sa & -Ra) :RR DN,7
*9. Sa :&ELIM,8
*10. (Rav Ha) :-ELIM,9,6
* 11. -Ra :&ELIM,8
*12. Ha :vELIM,11,10
*13. (-Ra & Ha) :&INTRO,11,12
*14. 3x(-Rx & Hx) :3INTRO,13

/END: 3ELIM/
15. 3x(-Rx & Hx) :RETURN,14

This concludes the proof. It will be very helpful for you to review these examples and
to work some of the related exercises at the end of the chapter.

Invalid Arguments

We have been deriving conclusions of valid arguments. But what if an argument is
invalid? How would we show that an argument is invalid? Consider this argument:

All circus animals are tame.
Some lions are not circus animals.
Some lions are not tame.

'v'x(Cx-Ax)
3x(Lx & -Cx)

:. 3x(Lx & -Ax)

Try as we might, we would not be able to produce the indicated conclusion using our
rules. And it is well that we cannot, for the conclusion is not a logical consequence of
the premises. But how do we show that it is not?

296

CHAPTER 13

To show an argument to be invalid, we must provide a model in which the premises
are true sentences but the conclusion is a false one. That is, we must describe a model
where inspection of the dossiers on individuals in the model reveals that the premises
are TRUE but the conclusion is FALSE. There are many such models for the argument
we are now considering; here is one with just two individuals:

We can see that both '(Ca -Aa)' and '(Cb-Ab)' are TRUE in this model. Thus

'\fx(Cx - Ax)' is TRUE in the model.

Furthermore, V(Lb & -Cb) = TRUE, so

'3x(Lx & +Co)' is TRUE in the model.

But V(La & -Aa) = FALSE, and V(Lb & -Ab) = FALSE also. Since there are no other
individuals,

'3x(Lx & -Ax)' is FALSE in the model.

There is no algorithm for finding models that invalidate an argument. However, some
procedures and rules of thumb can be devised for this search task, as we shall see in
the next chapter.

Summary

Two universal quantification rules were discussed: universal elimination (VELIM) and
universal introduction (\/INTRO).

VELIM-From a sentence of the form \fvP, you may derive P[c/v].
VINTRO--From a sentence P, you may derive \fvP[v/c], provided that:

1. c does not occur in any premise.
2. If P is in a subproof, no constant in P occurs in an ASSUMPTION still in force.
3. All new occurrences of v in P are free after the replacement in P[v/c].

The notation P[c/v] means that the constant c replaces all free occurrences of the variable
v in P. Similarly, P[v/c] means that the variable v replaces all occurrences of the constant
c in P and is free after replacement.

Two existential quantification rules were also discussed: existential introduction
(31NTRO) and existential elimination (3ELIM).

297

QUANTIFIER RULES

31NTRO-From a sentence P(c/v], you may derive 3vP.
3ELIM-lf a sentence has the form 3vP, and there is a subproof with ASSUMPTION

P[c/v], where c is new to the whole proof, and the subproof ends with sentence
Q not containing c, then Q may be RETURNed from the subproof.

A quantifier negation rule was (partially) proved:

-3vS is derivable iff Vv-S is derivable.
-'v'vS is derivable iff 3v-S is derivable.

This rule enables us to move negation signs back and forth through quantifiers, if we
change the quantity of the quantifiers.

Some examples were worked, and then the problem of showing an argument to be
invalid was introduced.

Exercises

A. Construct derivations for the following arguments:
1. 'v'x(Fx - Gx) 6. -3xFx

3x(Fx & Hx) :.'v'x(Fx - Gx)
:.3x(Gx & Hx)

2. -'v'x(Fx - Gx)
:.3x(Fx & -Gx)

3. -3x(Fx & -Gx)
:.'v'x(Fx - Gx)

4. 'v'x(Fx - 3yRxy)
'v'x'v'y(Rxy- Gx)
3xFx

:.3xGx
5. 'v'x(Fx - Gx)

(3xGx - 3x(Hx & Dx))
:.(3xFx - 3xHx)

7. -'v'x(Fx - -Gx)
:.3x(Fx & Gx)

8. -3x(Fx & Gx)
:.'v'x(Fx - -Gx)

9. 'v'x-Gx
'v'x'v'y(Rxy- Fx)
'v'x(Fx- Gx)

:.3x3y-Rxy
10. 'v'x((Fx v Gx) - Hx)

'v'x((Hx v Dx) - +Fx)
:.'v'x-Fx

B. Prove that the following pairs of sentences are logically equivalent as was done
on pages 290 to 293 in this chapter.

1. 'v'x(Fx & Gx)
2. 'v'x(Fx & A)
3. 3x(Fx v Gx)
4. 'v'x(Fxv A)
5. 'v'x(A- Fx)
6. 3x(Fx-A)
7. 'v'x'v'yFxy
8. 3x3yFxy
9. -'v'x3yFxy

10. 'v'x((Fx v Gx) - Hx)

('v'xFx & 'v'xGx)
('v'xFx & A)
(3xFx v 3xGx)
('v'xFx v A)
(A- 'v'xFx)
('v'xFx-A)
'v'y'v'xFxy
3y3xFxy
3x'v'y-Fxy
'v'x((Fx - Hx) & (Gx- Hx))

298

CHAPTER 13

C. Some sentences are derivable from no premises at all. These sentences are
called theorems of logic, and if our rules are correctly chosen, they will be
universally valid sentences. Let us prove a theorem of logic.

To prove: (3yVxFxy--'> Vx3yFxy)
/BEGIN:--'> INTRO to derive conclusion/

*1. 3yVxFxy :ASSUMPTION
/BEGIN: 3ELIM/

**2. VxFxa
**3. Fba
**4. 3yFby

/END: 3ELIM/
*5. 3yFby
*6. Vx3yFxy
*7. (3yVxFxy--'> Vx3yFxy)

/END:--'> INTRO/
8. (3yVxFxy--'> Vx3yFxy)

:ASSUMPTION for 3ELIM,1
:VELIM,2
:3INTRO,3

:RETURN,4
:VINTRO,5
: --'> INTRO, 1,6

:RETURN,?

Notice that in the proof of a theorem of logic, the last line is not starred. Prove
the following theorems of logic:

1. 3x(Fx--'> VxFx)
2. ((3XFx--'> VxFX)--'> (VxFx v Vx-Fx))
3. (Vx(Fx--'> Gx)--'> (3x-Gx--'> 3x-Fx))
4. (3x(3yFy--'> Gx(3xFx--'> 3yGy))
5. -3yVx(Fxy ~ -Fxx)

D. Symbolize and then construct derivations for these arguments.
1. All phenomenalists deny the reality of matter, but no materialist does.

Hence, no materialist is a phenomenalist.
2. No capitalists are socialists. Only socialists are egalitarians. Therefore,

no capitalist is an egalitarian.
3. All politicians are good communicators. Some women are politicians.

Thus, some women are good communicators.
4. All students take either logic or mathematics. Some students do not take

mathematics. Therefore, some students take logic.
5. Anyone who helps a criminal is guilty. Therefore, any criminal who helps

himself is guilty.
6. If Adam graduates, then everyone does. Adam graduates only if Betty

does also. But Betty graduates only if everyone does. So, if someone
doesn't graduate, neither Adam nor Betty graduates.

7. No one who thinks for himself or herself supports every position of the
party. One is totally loyal only if one supports every position of the party.
Hence, those who are totally loyal do not think for themselves.

8. Some teachers are admired by all those students who admire any teacher
at all. Every student admires some teacher or other. Therefore, there are
teachers who are admired by all students.

299

QUANTIFIER RULES

9. People like anything liked by anyone they like. Not everybody dislikes
everybody. People like those who like them. Consequently, somebody
likes himself.

10. Whenever there is a problem at the college, all the faculty blame the dean
for it. Now, if someone blames someone for something, then he (or she)
must think that person has control over what he (or she) is being blamed
for. The dean is a person. Hence, there is a person whom the faculty
thinks has control over all the problems at the college.

CHAPTER 14

PREDICATE LOGIC:
Determining Validity

and Proving Theorems

As we mentioned in Chapter 2, a part of
the field known as Artificial Intelligence is concerned
with instructing computers to perform the activities we
associate with an ability to reason. These activities in-
clude determining whether or not arguments are valid,
deducing valid consequences from sentences, and pro-
ducing proofs for valid arguments.

Chapter 6 gave us an algorithm for determining
whether or not an argument in sentential logic is valid.
As we observed, this method is perfectly "mechanical"
and can, for any argument, determine in a finite amount
of time whether the argument is valid or invalid. This
method thus qualifies as an algorithm.

In Chapter 11 , we gave a method for producing a
proof of a valid argument in the logic of sentences.
Although this method is mechanical (or can easily be
made so), it will not always produce a correct proof of
any valid argument in a finite amount of time. So this
method is not a real algorithm. It so happens, however,
that an algorithm to produce proofs in the logic of sen-
tences can be given-although the resulting PROOF-
GIVER will be larger and less convenient to use than
the method we gave.

301

302

CHAPTER 14

In Chapters 12 and 13 we introduced the concepts of predicate logic, which go far
beyond those used in the logic of sentences. While the logic of sentences treats argu-
ments with no examination of the inner structure of atomic sentences, predicate logic
examines how even "atomic" sentences are constructed.

Decidability

There are two important questions that can be posed for any system of logic. These
questions are:

1. Is it possible to devise an algorithm for classifying any argument in the system of
logic as being valid or invalid?

2. Is there a mechanical procedure that always produces a proof of any valid argument
in the system of logic?

The first question is usually described as the question of whether the system of logic is
decidable-whether there exists a decision procedure (an algorithm) that "decides"
whether an argument is valid or invalid. We did not explicitly pose this question with
regard to the logic of sentences, because it is easy to see, once truth tables are introduced
(as in Chapter 6), that sentential logic is decidable.

The surprising answer to question 1 for predicate logic is that it is undecidable.
There is no algorithm that can classify every argument according to whether it is valid
or invalid. It is important to realize the full force of this claim. We are not saying merely
that such an algorithm is difficult to find or that it hasn't yet been found. Nor are we
saying that the algorithm is long and hard to describe. We are saying that it is impossible
to find such an algorithm. This far-reaching result is known as Church's theorem, after
its discoverer, the American logician Alonzo Church, who proved it in 1936.

Church's theorem implies that no chapter like Chapter 6 is possible for predicate
logic. There is nothing like a "truth table" that can be generated by an algorithm and
applied to an argument in predicate logic in order to determine whether it is valid or
invalid. Explaining the incontrovertible reasoning behind Church's theorem is beyond
the scope of this book. In a sentence, the difficulties that Church's theorem identifies
creep into logic when both quantifiers and relations are admitted.

Models

There are some types of arguments that escape the force of Church's theorem and for
which an algorithm can be constructed that classifies them as valid or invalid. One type
of argument that escapes the force of Church's theorem is, as we have already remarked,
sentential logic.

Let us call the logic in which formulas may contain quantifiers, relations, sentence
connectives, and the other symbols of logic we have discussed the full predicate logic.
Church's theorem asserts that the full predicate logic is undecidable.

303

DETERMINING VALIDITY

Are there certain kinds of arguments in predicate logic that are decidable, even
though there is no decision procedure for all arguments? Not surprisingly, the answer
to this question is affirmative, but a detailed discussion and proof of this answer is
beyond the scope of this book.

The question of whether such an argument is valid or invalid is the same as this
question:

Is there a model in which the premises are satisfied (TRUE) but in which the
conclusion is not satisfied (FALSE)?

If so, the argument is invalid; if not, then the argument is valid. This observation can be
put in the form of an algorithm:

1. INPUT an argument.
2. FOR every possible model of this argument:

(a) IF the premises are satisfied and the conclusion is not satisfied in this
model, THEN OUTPUT "Invalid" and STOP.

3. OUTPUT "Valid" and STOP.

In order to use this algorithm, we need to refine step 2. In particular, we need a procedure
for constructing every possible model of an argument and a way to order the models
so that we can be sure that each one is examined in the FOR-loop. We also need to
be sure that there are only a finite number of models so that we can be sure that we
shall eventually exit the FOR-loop [either by running through all the models without
finding one in which the premises are satisfied but in which the conclusion is not, thus
moving to step 3, or else by finding such a model, thus exiting the loop early, at step
2(a)].

Arguments with no quantifiers are decidable. One simply treats 'Fa' or 'Gb' or 'Hbc'
as atomic sentences, each of which is either TRUE or FALSE in a given model. The
number of models, in this case, is clearly finite. Indeed, WANG'S ALGORITHM can be
applied directly. In the terminology of Chapter 6, if the same sentence occurs on both
the left and right sides, the attempt fails. If all attempts fail, the argument is valid.

Arguments having only one-place predicates (and possibly other atomic sentences)
are also decidable. If there are n distinct one-place predicate letters in the argument,
then at most 2 ** n distinct types of individuals need to be considered to determine
validity or invalidity. Whenever only a finite number of individuals are involved, a decision
procedure can be devised. In this case, universally quantified sentences reduce to a
finite conjunction of instances, and existentially quantified sentences reduce to a finite
disjunction of instances. Then, truth tables or WANG'S ALGORITHM can be used.

The trouble arises when we have quantified n-place relations, for n > 1. The
number of distinct types of individuals-and, hence, the number of different possible
models-increases quite rapidly. Consider

3xFxa

304

CHAPTER 14

Begin with a model with only one kind of individual, say Alfie. The letter 'a' refers to
Alfie. Now 'Faa' could be TRUE (and then so would '3xFxa'), or 'Faa' could be FALSE
(and then so would '3xFxa'). So, in order to explore all possible situations, we need two
kinds of individuals: those for which 'Faa' is TRUE and those for which 'Faa' is FALSE.
Let Alfie be the first kind of individual and Betty the second kind. When 'a' is the name
of Alfie, V(Faa) = TRUE, and when 'a' is the name for Betty, V(Faa) = FALSE. Now
we want a model containing both Alfie and Betty, whose names will be 'a' and 'b',
respectively. (Of course, we could switch the names around, or even let both of them
refer to one individual, say Alfie.) But what are the truth values of 'Fab' and 'Fba'? The
number of possible kinds of individuals doubles, and doubles again. As we continue,
the number of possible kinds of individuals quickly becomes infinite, and the number of
models becomes even larger-since models are subsets of the collection of individuals.

Since the time that Church's theorem was proved, logicians have not only tried to
identify types of arguments that are decidable but have also tried to identify types of
arguments that are undecidable by any algorithm. Indeed, some logicians have shown
that some kinds of arguments are "more undecidable" than others. The intriguing notion
of "being more undecidable than" can be made quite precise. Argument type A is more
undecidable than argument type B if, given a way of deciding type A arguments (say,
an oracle), we could then decide type B arguments, but given a way (another oracle!)
of deciding type B arguments, we still could not decide type A arguments. Unfortunately,
the pursuit of this issue is well beyond the scope of this book.

Church's Thesis

Can a computer exist that would decide the question-for any argument-of whether
the argument is valid or invalid? What we have said thus far does not quite imply that
no such computer is possible. We have only asserted that:

No algorithm for classifying arguments as valid or invalid is possible.

To claim that computers could not ever classify any argument as valid or invalid, we
need an additional assumption:

Computers can perform only what algorithms describe.

This latter assertion is widely believed to be true but cannot be conclusively shown to
be true. The assertion is known as Church's thesis, or as the Church-Turing thesis. It
is not to be confused with Church's theorem, which has been conclusively proved.

A valid argument concerning the limitations of computers would be:

1 . No algorithm for classifying all arguments as valid or invalid is pos-
sible. (Church's theorem)

2. Computers can perform only what algorithms describe. (Church's
thesis)

305

DETERMINING VALIDITY

Therefore, 3. No computer could ever effectively classify all arguments as valid or
invalid.

The claim that Church's thesis is true is discussed in Appendix B.
Some people have been eager to capitalize on this weakness of computers that no

computer could ever effectively classify all arguments as valid or invalid, further asserting
that this shows that there are some things humans can do that computers can't. It is
true that Church's theorem, together with Church's thesis, implies certain limitations on
the ability of computers to reason. However, it also seems that humans are subject to
the same limitations. Are there human beings who can always, and in a finite time, state
correctly whether an argument is valid or invalid? It seems that there do not exist such
human beings. In fact, very few of us, and then only with a great deal of time, can
determine whether relatively complicated arguments in predicate logic are valid or invalid.
We do not normally say that these limitations of human beings render us altogether
unable to reason. We should not say it of computers either. So computers' inability to
decide, for any argument, whether it is valid or invalid does little to show the superiority
of human reasoning. We are apparently subject to the same limitations.

Mechanical Theorem Proving

Church's theorem and Church's thesis are heavy doses, because they apparently show
the limitations of intelligence to solve problems-regardless of whether this intelligence
is "artificial" or human. In the light of these observations, we might face the second of
our two original questions with some pessimism:

If we know (somehow) that an argument in predicate logic is valid, is there a
mechanical procedure that always produces a proof of it?

After the blow Church's theorem delivered to our confidence, we might be tempted to
answer, "Probably not!"

Contrary to these expectations, however, the answer to this question is, Yes, there
is such a procedure. If an argument is valid, there exists a method that will eventually
show that it is valid. Moreover, the procedure can be designed so that it will also tell us
why the argument is valid-that is, it will give us a demonstration of the argument's
validity. It is interesting to contemplate what would happen if we fed this procedure an
invalid argument. It is in this case that Church's theorem comes into play: the method
will never halt. If a computer were programmed with this method and we gave it an
invalid argument, we would never know whether the computer was about to give us a
proof or disproof or whether the computer might be working forever on the problem.

The general topic addressed by this question is called mechanical theorem proving.
There are essentially two different ways a procedure can be constructed to give a
demonstration of a valid argument. One way is along the lines of the method we gave
in Chapter 11, PROOF-GIVER. There, we created an almost mechanical procedure that
would output a proof in the deductive system in which we were working. We might call
this the proof method of demonstrating an argument to be valid.

306

CHAPTER 14

The other way of creating a procedure to demonstrate that an argument is valid will
not output a real proof. It will not give us a proof using our rules of deduction, but will
instead demonstrate that it is impossible for the premises to be TRUE and the conclusion
FALSE.

Consider the following argument:

A
B

:. C

As we saw in Chapter 7, this argument is valid if and only if its corresponding conditional

((A & B)- C)

is a tautology. That is, the argument is valid if and only if this conditional is TRUE in all
possible situations. But it is also true that the argument is valid if and only if the conjunction

((A & B) & -C)

is inconsistent, that is, ,f and only if a contradiction can be derived from it. That is, the
argument is valid if and only if this conjunction is FALSE in all situations. (For a review
of the meaning of 'tautology', 'contradiction', and 'inconsistent', you should reread the
relevant sections of Chapter 7.)

Resolution

There is a technique that relies on this second observation: An argument is valid if and
only if the conjunction formed by taking the conjunction of all the premises together with
the negation of the conclusion is not satisfiable in any model. This technique is called
resolution. It might not at first seem very promising to assert that an argument is valid
if and only if some formula is FALSE in every possible situation. The determination of
whether a formula is FALSE in every situation might, after all, take forever.

Let us see how resolution works in the case of the logic of sentences. The idea
behind resolution is that many valid argument forms (including most rules of inference)
can be seen as instances of a single, very general pattern that can be used as a solitary
rule of inference: the Rule of Resolution. To see this more clearly, consider a new notation
for the logic of sentences. Let us agree to write a disjunction

(P v Q)

as

PQ

307

DETERMINING VALIDITY

and a negation
-P

as
P'

And let's agree to write the premises of an argument separated by commas above a
line, with the conclusion below the line. Now let's consider some valid argument forms,
with the premises converted first to CNF and then to our new notation:

(P-Q)
p

:.Q

(P-Q)
-Q

:.-P

((P & (Q & R))
Q

:.((P & R - S))

(P-Q)
(Q-R)

:.(P- R)

(PvQ)
-P

:.Q

becomes
P'Q, p

Q

becomes
P'Q, Q'

P'

becomes
P'Q'R'S, Q

P'R'S

becomes

becomes

P'Q, Q'R
P'R

PQ,P'
Q

If we look at these valid arguments in our new notation, we see that they all have a
common form:

1. Each premise is a disjunction of sentences.
2. One of the premises has some sentence U as a disjunct.
3. The other premise has U' as a disjunct.
4. The conclusion is the disjunction of all the sentences in the premises except U and

U'.

That is, in general, all arguments of the form

U'QR ... , UST ...
QRST ...

are valid. This is the Rule of Resolution.
The following algorithm for using resolution to decide whether an argument in sen-

tential logic is valid begins with writing the sentences in the argument in conjunctive

308

CHAPTER 14

normal form (CNF). We discussed this notation and presented an algorithm for turning
a sentence into a logically equivalent CNF sentence in Chapter 7.

1. INPUT an argument.
2. Let C be a collection consisting of the premises and the negation of the

conclusion of the argument.
3. FOR each sentence Sin the collection C:

(a) Replace S with its CNF equivalent.
4. Repeat the following:

(a) Find two sentences S1 and S2 in collection C such that S1 contains
some atomic sentence letter P as a disjunct and S2 contains its ne-
gation~ P as a disjunct.

(b) Let S be a new CNF sentence whose disjuncts are all the disjuncts
of S1 and S2 except for P and ~P. (Sis called the "resolvent of" S1
and S2.)

(c) Remove S1 and S2 from C.
(d) Add S to C.

Until (i) C contains two atomic sentences a and ~a
or
(ii) no new resolvent S can be formed.

5. IF the repeat-loop in step 4 stopped because of case (i)
THEN OUTPUT "Valid" and STOP.

6. IF the repeat-loop in step 4 stopped because of case (ii)
THEN OUTPUT "Invalid" and STOP.

Recall that we are trying to derive a contradiction from the collection C. Step 4 is
a loop that keeps searching for a contradiction by generating and testing successive
resolvents. Each resolvent is logically derivable from the two sentences that are used
to generate it, so if an inconsistency is produced, we can exit the loop knowing that the
argument is valid. Some examples should help clarify this method.

Example 1.
1. (A-B)

A
B

2. C = {(A- B), A, ~B}
3. C ={(~Av B), A, ~B}
4. Choose S1 = (~AV B) and S2 = A.

Then S = B.
So C = {B, ~B}.

309

DETERMINING VALIDITY

This is case (i), so the argument is valid (as you can check by a simple application of
-ELIM).

Example 2.
1. ~{~A&~B)

B
A

2. C = {~(~A & ~B), B, ~A}
3. C = {(Av B), B, ~A}

This is case (ii), so the argument is invalid.

For arguments in predicate logic, it is necessary to find instances of quantified
formulas and then to apply the above technique to them. The main problem is to find
appropriate instances. In 1930, the French logician Jacques Herbrand showed that if a
formula is FALSE in a certain finite number of situations (described in what is called the
"Herbrand universe of clauses"), then it is FALSE in a// situations. So according to
Herbrand's theorem, we do not really have to look at a// situations or instances to see
if a formula is inconsistent. We really only need to look at whether it is FALSE in a
certain finite number of situations. Then, we may reason, if it is FALSE in all of these
situations, it is FALSE in absolutely all situations. That is, it is inconsistent. Herbrand
showed that his theorem was true in the abstract, so to speak. He did not actually show
how to go about economically applying it to various formulas. He showed only that there
exists a mechanical procedure to show an argument to be invalid.

No computer existed in 1930 that could have been used to apply Herbrand's result.
But in the 1960's, the importance of Herbrand's theorem to mechanical theorem proving
was recognized, and various computer scientists and logicians set about showing how
it could be applied on a working computer. The early attempts unfortunately were not
entirely successful. Some formulas could not be shown to be inconsistent (even when
they were), and showing that others were sometimes consumed tremendous amounts
of computer time.

Enormous progress was made by the logicians and computer scientists who de-
veloped resolution in the early 1960s. This technique, as we have seen, is a method of
showing how a formula is inconsistent. It "flushes out" an inconsistency that is lurking
in the formula, somewhere. The resolution technique turned out to be a genuine me-
chanical procedure (if a formula is inconsistent, the method can always determine that
this is so in a finite amount of time). And the resolution technique also led to computer
programs that could discover these inconsistencies in a reasonably short amount of
computer time.

Even the resolution method of theorem proving has the limitation imposed by Church's
theorem-namely, if it is given an invalid argument to analyze, it will work forever. If a
computer is programmed with this method, it will still be working on the problem when
we are forced to shut it off-at the end of the day, or after years. At the point where we
shut it off, we will not know whether the argument is invalid (and the program will never
halt) or whether the argument is valid {but is one of those difficult problems that takes
days or years to prove). For more information on resolution, see Raphael, 1976.

310

CHAPTER 14

The Proof Method

Let us return to the proof method of mechanical theorem proving, because it is usually
more enlightening. Our question is, Can PROOF-GIVER be modified to incorporate the
new rules governing quantifiers, constants, predicates, and variables? We shall call the
modified method for generating proofs PROOF-GIVER*, to distinguish it from its strictly
sentential predecessor.

Our investigation into the required modifications will begin with some observations
about strategy in using quantifiers and constants. Suppose we have three premises-
'A', 'B', and 'C' (whose internal structure will not interest us now)-and a conclusion:

'v'xFx

How can we go about deriving this conclusion? We might reason as follows. If we
somehow earlier derived 'Fb', then we can infer ''v'xFx' from it-provided that 'Fb' arose
in the "proper" manner. Once 'Fb' is derived, 'v'INTRO is applied, resulting in the desired
'v'xFx. But consider what our strategy should be if the third premise, 'C', is in fact

(B- 'v'xFx)

In such a situation, it does not seem necessary to derive 'Fb'. Instead, ''v'xFx' can be
derived directly-if we can derive 'B'. These two observations give us the tips we need
for part of our modifications. The two possible strategies we have just mentioned are in
fact already addressed by steps 3(a) and (b) of PROOF-GIVER:

3(a) IF DR = a subformula of a sentence, a, on an accessible line, .
3(b) IF DR is not a subformula of a sentence on an accessible line, .

These steps decide whether we proceed to derive the desired result from previous lines
or whether we construct it by some standard strategy.

We modify PROOF-GIVER by changing the number of step 3(b)(v)to 3(b)(viii) and
inserting the following:

3(b)(v) IF the desired result has the form 'v'x(x)
THEN replace the first 'Derive 'v'x(x)' in the task list with:

Derive (... b ...)
Apply 'v'INTRO [(... b ...)]

where '(... b ...)' is the earlier formula with the outermost universal
quantifier deleted and all resulting free occurrences of the quantified
variable replaced by some individual constant, 'b'. The constant 'b' should
be the alphabetically first constant not previously appearing in an ac-
cessible line.

3(b)(vi) IF the desired result has the form 3x(x)
THEN replace the first 'Derive 3x(x)' in the task list with:

Derive (... b ...)
Apply 31NTRO [(... b ...)

where b is any individual constant.

311

DETERMINING VALIDITY

3(b)(vii) IF the desired result has the form (b)
THEN replace the first 'Derive (b)' in the task list with:

Derive 'v'x(... x)
Apply 'v'ELIM ['v'x(x ...)]

where 'x' is some variable.

No other modifications to PROOF-GIVER are necessary.

Summary

In this chapter, we discussed the decidability of predicate logic-the issue of whether
there is an algorithm that decides whether or not an argument is valid.

Church's theorem states that the full predicate logic is not decidable. However,
parts of predicate logic are decidable, and we discussed the relationship of this fact to
our notion of models. Church's thesis, on the other hand, is the unprovable but generally
accepted claim that computers can perform only what algorithms describe.

We ended with a presentation of two methods of proving theorems in predicate logic
mechanically: resolution, which we presented in the form of a rule of inference and as
an algorithm, and a proof method-an extension of the PROOF-GIVER method of Chap-
ter 11.

APPENDIX A

APPLICATIONS OF
SENTENTIAL LOGIC
TO CIRCUIT DESIGN

AND ARITHMETIC

In Chapter 2, we mentioned that there is
a close relationship between truth values (TRUE and
FALSE, or 1 and 0) and the presence or absence of an
electric current flowing through a circuit. In the areas of
computer architecture and computer electronics, a cir-
cuit is thought of as an electronic device that has "in-
puts" and "outputs." An input will be a current flowing
into the device, and an output will be a current flowing
out of the device. Since the output is completely de-
termined by the input and the design of the circuit, a
circuit can be thought of as a function. Moreover, if we
limit the inputs and outputs to two "values"-the pres-
ence or absence of current, which we can represent by
1 and 0, respectively-then we can think of a circuit as
a truth function.

313

314

APPENDIX A

Electric Circuits

Modern circuits used in computers are usually engraved on "chips" of silicon, but they
can be (and were, in the early days of computers) built out of wires and such electric
components as resistors, capacitors, transistors, and diodes. (You don't have to know
what these are or how they work-only that they are things that can be combined to
form circuits.)

Consider a circuit whose input is a source of current (such as a battery) controlled
by a switch and whose output is an electric device such as a bulb, as in Figure A-1.

-

~

Battery Bulb

- - Switch

Figure A-1 A simple circuit. (The arrows indicate the direction in which the current flows.)

The switch in Figure A-1 is in the "open" position, so no current reaches the bulb. If the
switch is closed, the bulb will light. The operation of this circuit can be shown in the
following table:

Input
(Switch)

Output
(Bulb)

Closed
Open

On
Off

Now consider a similar circuit with one more device: an inverter. An inverter is
actually another circuit, with its own wires and electric components (usually a resistor
and a transistor). We shall be concerned not with its actual structure but only with its
behavior: When an electric current enters an inverter, the inverter acts as an open switch,
preventing the current from leaving; and when no current (or a very low current) enters,
the inverter acts as a source of electricity, allowing a current to leave it. It thus behaves
very much like an emergency light with its own battery, which only lights when there
has been a power failure. The new circuit, with both bulb and inverter, is diagrammed
in Figure A-2.

Now, when the switch is closed, electricity flows from the battery to the inverter,
which blocks it; so the bulb doesn't light. But when the switch is open, so that no current

315

LOGIC AND CIRCUIT DESIGN

-
~

Battery Bulb

~
- - ·- - Inverter - - - Switch

Figure A-2 A circuit with an inverter.

flows to the inverter, the inverter sends a current to the bulb, causing it to light. The
operation of such a circuit can be summarized in the following table:

Input
(Switch)

Output
(Bulb)

Open
Closed

On
Off

Using 1 to represent the presence of current and O to represent its absence, the table
then looks like this:

Input Output

0 1
0

But this is just the truth table for FNEG; so, an inverter can be used to represent negation.
In fact, an inverter is called a "NOT gate." (The term "gate" is used because such a device
acts as a gate, an entranceway, that transforms the current.)

Logic Gates

In general, a logic gate is a circuit whose output current depends on its input currents
in a way that can be described by (and therefore used as a representation of) the laws
of sentential logic. In theory, there could be gates corresponding to each of the logical
connectives, but in practice, the most common ones are the NOT gate, the ANO gate, the
OR gate, the NANO gate, and the NOR gate.

316

APPENDIX A

As we have seen, the NOT gate is a circuit whose behavior can be symbolized thus:

___ A __ --;►~1 __ N_0_T _ ___,,___-_A_----;ll►

Figure A-3 A NOT gate.

Here, 'A' represents the input current. So, '-A' is a reasonable way to represent the
output current. Computer engineers use a special symbol for the NOT gate:

A -A

Figure A-4 Symbol for the NOT gate.

An AND gate that has two inputs (and, of course, only one output) can be represented
as either

A
(A&B)

B :j AND ..
----~

Figure A-5 An AND gate.

or

___ :_---lo,---(A_&_B_) __

Figure A-6 Symbol for the AND gate.

The AND gate behaves by taking two low currents as input and producing a low-current
output, taking one high and one low-current input and producing a low-current output,
and taking two high-current inputs and producing a high-current output.

317

LOGIC AND CIRCUIT DESIGN

Exercises

1. Explain the relationship between an AND gate and the truth table for conjunction,
as we did for the NOT gate and negation.

2. Describe the behavior of an OR gate.

: :I OR I !Ml •

Figure A-7 An OR gate.

___ : __ D (AvB)

Figure A-8 Symbol for an OR gate.

Explain its relationship to disjunction.
3. A NAND gate can be constructed from an AND gate and a NOT gate:

A ~
B

AND NOT (ANAND B)

NANO

Figure A-9 A NANO gate.

a. Describe its behavior.
b. Explain its relationship to the logical connective NAND.
c. Explain the relationship between the tautology

((ANAND 8) ~ -A & 8))
and the behavior of a NAND gate.

4. a. Show how to construct a NOR gate.
b. Describe its behavior.
c. Explain its relationship to the logical connective NOR.

318

APPENDIX A

d. Explain the relationship between the tautology
((A NOR 8) - - (AV 8))
and the behavior of a NOR gate.

5. Do the same for an XOR gate. (Suggestion: Consider the tautology
((A XOR 8) - ((Av 8) & - (A & 8)))

Combining Logic Gates

These logic gates can be combined so that they can represent any truth-functional
formula (as we combined a NOT gate with an AND gate to form a NAND gate, in Exercise
3).

For instance,

((A & B) v -C)

can be represented by the following circuit:

A

AND
(A&B)

B

;. ((A&B)v -C).
OR

.

C NOT -c

Figure A-10 A circuit that represents ((A & B) v -C)

Similarly,

(-Av -8)

can be represented by

319

LOGIC AND CIRCUIT DESIGN

-
A ~ NOT -A

-
..,...

OR
(-Av-B)

~

B NOT -B

I

Figure A-11 A circuit that represents (-Av -8)

But, by De Morgan's law (see Chapter 7),

((-Av -8) - -(A & 8))

there is another combination of circuits that behaves exactly the same:

: : I AND I · I NOT I - IA&B) •

Figure A-12 A circuit that represents -(A & B) and so behaves like the circuit in Figure A-11.

(This, of course, is also a NAND circuit.)

Exercises

6. Use the other of De Morgan's laws to construct a circuit that behaves like a NOR
gate.

7. Construct circuits for the following formulas:
a. ((Av 8) v C)
b. (Av (8 v C))
c. ((A & 8) v C)
d. (A & (8 v C))
e. (-Av 8)
f. -(A & -8)

g. (((-A & -13) v C) & -D)
h. (-(A & (-Av B)) v B)

320

APPENDIX A

8. a. Construct an IF-THEN circuit. (Hint: See Exercise 7.)
b. Using your IF-THEN circuit, construct a circuit for

((A & (A- B)) - B)

Translating between Logic and Circuits

We have seen that information about truth values and truth functions can be described
in two ways: by using the logic of sentences and by using electric circuits. Whenever
there are two ways of representing the same information, it is important to be able to
translate between the representations. In the present case, it is important to be sure
that any logic circuit with precisely one output can be understood as (that is, can be
translated into) a sentence and that any sentence can be represented by (that is, can
be translated into) a logic circuit with one output. Moreover, if a logic circuit corresponds
to two different sentences, it is important that the sentences be logically equivalent; and
if a sentence can be translated into two different circuits, it is important that both circuits
have the same input-output behavior.

In fact, the relationship between circuits and sentences that has been described
here guarantees that those criteria are satisfied. We shall not prove that they are, but
you have enough information in this book to carry out the proof yourself. What we shall
do in the remaining sections is give examples of how to perform the translations.

Given a logic circuit, it is rather straightforward to write down a corresponding
sentence (although, of course, the more complicated the circuit, the more tedious it will
be to find a sentence). Sometimes, a circuit can have more than one output. If a circuit
has more than one output, then it can be viewed as a combination of separate circuits,
each of which has precisely one output. Consider the following circuit:

A .
NOR - B

- I

o,
OR

A

o,
OR

B

o,

Figure A-13 A combination of three circuits.

321

LOGIC AND CIRCUIT DESIGN

This circuit has two inputs-A and B--and three outputs-0,, 02, and 03• It can be
seen as three circuits linked together: first, a NOR gate whose inputs are A and B and
whose output is 01; second, an OR gate whose inputs are A and o, and whose output
is 02; and third, another OR gate, whose inputs are B and 01 and whose output is 03•

The question is, What sentences do 0,, 02, and 03 represent? You should be able
to see that if the currents A and B represent atomic sentences 'A' and 'B', respectively,
then:

1. O, represents '(A NOR B)'-or, if you prefer, '-(Av B)'.
2. 02 represents '(Av O,)'-that is, '(Av -(Av B))', to use just the inputs.
3. 03 represents '(B v O,)'-that is, '(B v -(Av B))'.

But there is a much more informative way of describing 02 and 03. If we put 02,
that is

(Av -(Av B))

into disjunctive normal form (see Chapter 7), we get

(Av (-A & -8))

which is logically equivalent to

((Av -A) & {Av -8))

which, in turn, is logically equivalent to

(Av-8)

In a similar fashion, 03 can be shown to represent '(B v -A)'.
You should observe that the most "straightforward" sentences represented by the

circuit-the ones we simply "read off" it-were not the simplest. The converse is also
the case: given our three simple sentences, if we built a circuit directly from them, we
would get the circuit of Figure A-14. This has two more NOT gates than the first circuit,
so it is not the simplest circuit to represent our sentences.

Simplifying Circuits

This trade-off in complexity between two different representations of the same i ...
formation is a common feature of representations in general. Once we have prov,

322

APPENDIX A

A . - NOR
B .

A

OR
.

B ~B
NOT .

A NOT ~A ~ -
OR

.

B -

o,

Oz = (Av ~B)

03=(~AvB)

Figure A-14 A circuit whose behavior is the same as that of the circuit of Figure A-13.

representations are equivalent, we can then use whichever is simplest or best suited
for our purposes.

Thus if we are building computers, we would prefer the first circuit to the second
one, because it is no doubt less expensive and easier to build and repair; but if we are
studying the logical behavior of the circuits, we would prefer the second set of sentences
to the first one.

This trade-off can be measured. One way to do this is to say that one circuit is
simpler than another if it has fewer gates (and fewer input lines); this translates into the
terminology of the logic of sentences as fewer connectives (and fewer occurrences of
sentence letters).

As you know from Chapter 8, all quantifier-free sentences can be expressed using
only - and &, so an engineer could get by with only NOT and AND gates. In fact, even
simpler circuits can be constructed if NANO and NOR gates are used wherever possible,
since they are easier to construct than sequences of AND. OR, and NOT gates. NANO and
NOR gates are particularly useful, since, as you know from Exercise F of Chapter 8, all
sentences can be expressed using NANO (or else NOR) as the only connective.

(There are standard algorithms for translating between circuits and sentences, using
an alternative representation for truth tables called "Karnaugh maps." For further reading,
see Ennes, 1978; Kasper and Feller, 1983; or Malvino, 1976.)

323

LOGIC AND CIRCUIT DESIGN

Circuits for Adding

In this section, we shall show how to construct a logic circuit that adds two numbers. It
is hoped that you will see that it is no exaggeration to say that computers are truly based
on logic.

Let us proceed "bottom-up." Consider the following circuit:

A -- 1

B XOR (A XOR B)

-- ~

-

A
B AND

(A& B) ~

Figure A-15 A half-adder.

Two inputs, A and B, of either high or low current are sent through two circuits, an XOR
gate and an AND gate. Letting 1 represent a high current and O represent a low current,
we can tabulate the outputs of this circuit as follows:

A B (A & B) (A XOR B)

0
0

0
1
0

0
0
0

0
1
1
0

Now, consider the following fragment of an addition table for binary arithmetic:

A B A+ B

0 0
0 1
1 0

0

10

If we write the sum of two 1-bit numerals as a 2-bit numeral, using a "leading zero"
as a placeholder on the left, then this table becomes:

324

APPENDIX A

A B A+B

0 0 00
0 1 01
1 0 01
1 10

And now, here is the link between the electronic implementation of a logic circuit
and the mathematical operation of addition: When electronic inputs A and B are inter-
preted as numbers, then the ones column of their sum is represented by the output of
the xoa gate and the twos column is represented by the output of the AND gate. Such
a circuit is called a half-adder.

Exercises

9. A full-adder is a circuit that can be used to represent the addition of three 1-
bit binary numerals. That is, given three binary numbers A, B, and C, a full-
adder outputs A + B + C. Here is a full-adder circuit:

A

AND B . .

C C

AND OR ~ A .

B .
AND C ,

,

A
B
C XOR .

Figure A-16 A full-adder.

325

LOGIC AND CIRCUIT DESIGN

Explain how it works.
10. A binary-adder is a circuit that can be used to represent the addition of any

two binary numbers.
In particular, if binary number A is a string of 4 bits, A,A2A3A4, and binary

number B is B,828384, then their sum can be represented thus:

A,A2A3A4
+ B,828384
S0S,S2S3$4

For instance, if A = 1010 and B = 1011, then we have:

1010
+ 1011

10101

where $4 = 0 + 1 = 1 , S3 = 1 + 1 = 0 with a "carry" of 1, S2 = 0 + 0 + the
"carried" 1 = 1 , S, = 1 + 1 = 0 with a "carry" of 1, and S0 = the "carried" 1.
A binary-adder that will add any two such numbers is:

A4
. s, Half

84 adder "Carry" " ~

A3
Full ~ S,

83 - adder "Carry"

'

A2
Full S2

82 adder "Carry"

A1
. ~s- Full

81 adder
~S.-:

Figure A-17 A binary-adder.

326

APPENDIX A

a. Explain how it works.
b. Show how it can be used to add:

(i) 1000 and 0111
(ii) 1111 and 1111

APPENDIX B

TURING MACHINES

fhroughout this book, we have relied
heavily on the description of an algorithm (given in
Chapter 2) as a detailed, step-by-step, finite sequence
of instructions that are mechanical and unambiguous
for performing a task. This is a rather informal and in-
tuitive notion: How detailed must an algorithm be? What
kinds of instructions are allowed? What does "mechan-
ical" mean? How can ambiguity be avoided? The pur-
pose of this appendix is to try to make the notion of
"algorithm" a bit more precise by clarifying the notion
of a mechanical procedure.*

*The presentation of Turing machines in this appendix is based
on Clark and Cowell, 1976, pp. 44-49.

327
~: ,~~~, ~7),~Cr?~d:

f.u.;,,--c; A ~ ~ (),(C~ ~IJ.·

328

APPENDIX B

Turing's Analysis of Computation

We have said that an algorithm is a "mechanical procedure" for carrying out some task
in a finite number of steps. If we limit ourselves to tasks that can be described in some
language (either a natural language or a programming language), then we can think of
such a procedure as a "computation." In 1937, the English logician Alan Turing (1912-1954)
presented an analysis of this notion in an important paper, "On ·computable Numbers,
with an Application to the Entscheidungsproblerr:,,," that led, among other things, to the
notion of the stored-program computer. (The English translation of the German word
Entscheidungsproblem is "decision problem"-the question of whether a procedure for
a given task will produce a definite affirmative or negative answer in a finite number of
steps.)

Turing's analysis begins by considering what it means for a computation to be carried
out "mechanically." At the very least, we would need:

l•

1. A "computer"-either a person or a machine-to do the computation,
2. Some scratch paper (a memory device) to do the computation on,
3. A deterministic program for the computer to follow-that is, a finite sequence of

instructions for performing the computation by manipulating symbols on the scratch
paper.

We can refine this somewhat informal picture. Let us suppose that the mind of the
person (or computer) can only be in a finite number of different "states." Also, let's
suppose for the sake of convenience that the person (or computer) has memorized the
program (so that we only have to concern ourselves with two things: the computer and
the scratch-pad "memory").

As for the scratch-pad memory, let's suppose that we have lots of paper-not
necessarily an actually infinite amount of paper, but enough paper so that if we need
more, we can always get it. And, so that we can describe precisely what's written on
the paper, let's imagine that it is crosshatched into small squares (like graph paper),
each containing one symbol, so that we can systematically locate any symbol in any
square on any page of the scratch pad (for instance, by starting at the square in the
first row and first column of the first page and examining each square in turn until we
either find the symbol or else reach the last square on the last page without having
found it). ·

Finally, imagine that the person (or computer) doing the computing can only see a
finite, bounded number of squares on the scratch pad at any one time.

As the next refinement, let us now assume the following:

1. The person (or computer) sees only one square (containing at most one symbol)
of the scratch pad at a time.

2. (a) The scratch pad is a linear tape (like an adding-machine tape), divided into
squares, that is potentially infinite in both directions (that is, we can always
add an extra square on either end).

329

TURING MACHINES

I I I I I I I I I
Figure B-1 A Turing-machine tape.

(b) Each square on the tape has a '1' or a 'O' printed on it at the start (this is
the input).

3. The program that the person (or computer) memorized doesn't consist of complex
instructions (such as "Find the word MULTIPLY on the tape"); instead, it consists
of a finite sequence of instructions of the following five kinds:
(a) START.
(b) IF your state of mind is P

and you are scanning symbol S
THEN
(i) Change S to S'.

(ii) Change your state of mind to Q.
(c) IF your state of mind is P

and you are scanning symbol S
THEN
(i) Move 1 square to the right.

(ii) Change your state of mind to Q.
(d) IF your state of mind is P

and you are scanning symbol S
THEN
(i) Move 1 square to the left.

(ii) Change your state of mind to Q.
(e) STOP.

Below, we shall make these instructions even more precise. The result of this is a "Turing
machine," which may be imagined as a physical machine on wheels, with a unit for
reading and writing on the tape and a "register" to indicate what state it is in.

Figure B-2 An imaginary, physical Turing machine.
Square being Read/write
scanned scanner

Finite amount of
circuitry for
representing the
algorithm and
other states

State register

Wheels for
moving
left/right

330

APPENDIX B

Turing Machines

A Turing machine can be defined as follows: It consists of a certain set, called the
memory set, and a program constructed from elements of specified sets of operations
and tests.

The memory set is the formal analog of the tape. Each element of the set consists
of two items: (1) a string of 'O's and '1 's (representing the information stored on the tape)
and (2) a positive integer (representing the symbol currently being scanned by the Turing
machine). For instance,

1 1 0 0 1
r

Scanner

Figure B-3 The Turing-machine tape represented by (11001, 4) or by 11 0Q1.

would be represented by the memory-set element

(11001,4)

where the first element of this pair is the string and the second is the square being
scanned, or by the symbol

110Q1

where the underline represents the position of the scanner. The "empty" tape-the tape
with no little squares of paper-is represented by any element whose scanning number
is 0; we'll represent the empty tape with the symbol e.

The Turing-machine programming language (TM) that we shall use consists of seven
operations and four tests. The operations are:

1. START.
2. PRINT-0. This changes the symbol currently being scanned to 0. More precisely,

PRINT-0 changes memory-state e to (0, 1) and memory-state s,s2 ... s;_,~
S;+1 ... s.to s.s, ... S;-1QS;+1 ... sk. (Of course, it s.were Ofo beqin wlth, PRINT-
0 would not change the tape.)

3. PRINT-1. (Exercise: Describe the behavior of PRINT-1.)
4. LEFT. This moves the scanner one symbol to the left, adding on a new square

with a 0 in it if necessary. (Remember: Our Turing machine is on wheels; it
moves, not the tape.) More precisely, LEFT leaves memory-state e alone; it
changes s, ... ~ ... s, to s, ... §f.1S; ... sk; and it changes §.1 ... s, to Qs, ... sk.

331

TURING MACHINES

5. RIGHT. This operation moves the scanner one symbol to the right, adding a new
square with a 0 in it if necessary. That is, it leaves e alone; it changes s1 ... §j ... s,
to s, ... S§J+1 ... sk; and it changes s1 ... §J< to s, ... s,J!.

6. ERASE. This operation does nothing unless the scanner is at the left-hand end
or the right-hand end of the tape, in which case it erases the symbol being
scanned and cuts off the square. That is, ERASE leaves e and s, ... §j sk
alone; but itchanges~1S2 ... s, to~ ... sk, and it changess, ... sk-1§.k to s, §.I<-,;
also, it causes a 1-square tape with only one symbol on it to disappear (that is,
~ becomes e).

7. STOP.

The tests are:

1. 0? and 1? These two test whether the symbol being scanned is 0 or 1. Formally,
if the tape is e, then the result of the tests is FALSE; and if the tape is s, ... §j ... sk,
then the result is TRUE if S; = s and FALSE otherwise (where s is 0 or 1,
depending on the test).

2. LEFTEND? Tests whether the scanner is at the left-hand end of the tape. If it
is, or if the tape is empty, the test result is TRUE; otherwise, it is FALSE.

3. RIGHTEND? Tests whether the scanner is at the right-hand end of the tape. If
it is, or if the tape is empty, the test result is TRUE; otherwise, it is FALSE.

Turing-Machine Programs

Let us see what some of our simple algorithms look like when translated into programs
in TM.

Negation

We'll begin with the algorithm for FNEG, that is, for computing the truth value of the
negation of a sentence (see Chapter 3). The first decision we need to make is how to
"code" truth values so that they can be expressed on the tape. One obvious way is to
represent a TRUE sentence with a 1-square tape containing a '1' and a FALSE sentence
with a 1-square tape containing a '0'.

Next, we must decide what the output should look like. One possibility is to have
our algorithm end with a 2-square tape whose first symbol is the original truth value and
whose second symbol represents the negation of that truth value, with the scanner on
the second symbol. (Remember: We can add new squares to our tape whenever we
want.) Thus for input '1', the output would be '1Q', and for input 'Q', the output would be
'01',

So, we'll need to scan the input tape and, if there's a '1', move right and print a
but if there's a 'Q', we'll move right and print a '1'.

332

APPENDIX B

In TM we shall let the "states of mind" be represented by M0, M1, M2, M3, etc. We
shall always begin (START) in the state of mind M0• The program for computing FNEG
in the manner we have just described is:

1. START.
2. IF you are in Mo and are scanning 0,

THEN
(a) RIGHT.
(b) Change state of mind to M1.

3. IF you are in M0 and are scanning 1,
THEN

(a) RIGHT.
(b) Change state of mind to M2.

4. IF you are in M1 and are scanning O,
THEN

(a) PRINT-1.
(b) Change state of mind to M2.

5. IF you are in M2,
THEN STOP.

Notice that you will never be in M1 and scanning 1, so that possibility is not covered in
the program.

It is easier to represent the program using a flowchart, where your position on the
chart corresponds to a "state of mind":

START

TRUE FALSE

RIGHT RIGHT

STOP

PRINT -1

Figure B-4 TM program (in flowchart form) for computing the truth value of a negation.

333

TURING MACHINES

The Turing machine begins by scanning the input tape. If it has '1', then the Turing
machine moves right, automatically attaching a new square to the tape with a 'O' already
on it, and the scanner is over that square; so the output tape is '1Q'. On the other hand,
if the input tape has 'Q', then the Turing machine moves right, adding on a square with
·o·, which is being scanned; it then prints a '1' on the scanned square, so the output
tape is ·or.

Exercise

Suppose we use the same coding for the input, but we code the output as follows: If
the input tape has 'Q', then the output tape has '1'; and if the input tape has '1', then
the output tape has 'Q'. In other words, both input and output tapes have only one square
(and so there is no record of the original truth value on the output tape). Write a Turing-
machine program in flowchart form for FNEG, using this coding.

Conjunction

Now let's look at an algorithm in TM for FCNJ, that is, for computing the truth value of
the conjunction of two sentences. Again, we need to decide on the input-output coding.
A reasonable extension of the coding we used before would be this: The input tape has
two squares, each containing a 'O' or '1' to represent the truth values of two sentences,
and the scanner is over the first square (that is, the leftmost square). The output tape
will have three squares: the original two, unchanged, and a new one (being scanned)
containing the truth value of the conjunction. Thus if the input is 'Q1 ', the output will be
'01Q'.

You should verify that the TM program in Figure B-5 does the job.

Exercises

Write TM programs in flowchart notation for each of the following problems:

1. An algorithm for FCNJ, starting with the test 1 ?, using the above input-output
coding.

2. An algorithm for FCNJ using the "destructive" input-output coding, where, for
instance, if the input tape is Q1, the output will be Q.

3. An algorithm for FDSJ. Be sure to specify your input-output coding.
4. An algorithm for FCND.
5. An algorithm for FBIC.
6. An algorithm for FXOR.
7. An algorithm for FNOR.
8. An algorithm for FNAND.

334

APPENDIX B

START

TRUE FALSE

RIGHT

TRUE FALSE

RIGHT RIGHT RIGHT

PRINT-1

STOP

Figure B-5 TM program for computing the truth value of a conjunction.

9. An algorithm for adding two positive integers. Let the input-output coding be as
follows: The addition problem m + n will be representd by m '1 's, followed by a
'O', followed by n '1 's. A nice notation for this is:

The output tape will consist of m + n '1 's, that is:

Palindromes

As a final example of TM programming, we shall sketch out a program that decides if
the input tape contains a palindrome. A palindrome will be any string of 'O's and '1 's
that reads the same backward and forward. For instance,

335

TURING MACHINES

000
010
001100

are palindromes, but

01
110
0011110

are not. Clearly, a 1-square tape always contains a palindrome. It will be useful to consider
the empty tape to be a palindrome too.

The input will be a tape containing the string to be tested, with the scanner on the
first (leftmost) symbol. The output will be a 1-square tape with a '1' if the input is a
palindrome and a 'O' otherwise. Two examples are as follows:

Input Output

101
100

1
Q

The algorithm that we shall use is the following:

1. IF the tape is empty
THEN OUTPUT '1' [since it is a palindrome).

2. IF the tape has only 1 square
THEN OUTPUT '1' [since it is a palindrome].

3. IF the tape has 2 or more squares
THEN .
(a) Compare the symbol in the leftmost square with the symbol in the

rightmost square.
(b) IF they match

THEN
(i) Erase both symbols.
(ii) GO TO step 1.

(c) IF they do not match
THEN
(i) Erase the tape.
(ii) OUTPUT 'O' [since it is not a palindrome).

4. STOP.

(You should try this algorithm on a few examples to convince yourself that it works.)
This time, we shall use top-down design and stepwise refinement to write the

program (and we shall leave some of the details as exercises). To do this, we shall
introduce a new flowchart symbol-a circle-to represent steps that will have to be
refined into the basic TM operations and tests.

The top-level program is:

START

PRINT -1 STO P

TRUE (:. left-most symbol is 0) FALSE (:. left-most symbol is 1)

ERASE ERASE

FALSE

TRUE

ERASE

TRUE

ERASE

PRINT-0

STOP

Figure B-6 TM program for the palindrome problem.

337

TURING MACHINES

The circles labeled 1 to 5 represent procedures that must be refined. Here is the re-
finement of procedure 1 :

START

TRUE FALSE

False
halt

TRUE

(i.e., the tape
is not blank) FALSE

True halt

(i.e., the tape
is not blank)

Figure B-7 TM program for procedure 1 of the palindrome program.

And here is the refinement of procedure 5:

START

ERASE

FALSE TRUE STOP

Figure B-8 TM program for procedure 5 of the palindrome program.

338

APPENDIX B

Exercises

10. Refine procedure 2.
11 . Refine procedure 3.
12. Refine procedure 4.
13. Refine the given refinement of 5 (in Figure B-8).
14. Refine procedure 5 without using procedure 1. (Hint: Use LEFTEND?)

Church's Thesis

Let us consider the relationship between a Turing machine and our notion of an algorithm.
One version of Church's thesis (see Chapter 14), known as the Church-Turing

thesis, says that our intuitive notion of a mechanical computation can be defined as any
computation that can be carried out by a Turing machine. This cannot be proved (because
our notion of a mechanical computation is intuitive and vague, and proofs require precise
notions}, but there is a substantial amount of evidence to suggest the following two
points:

1. Any computation that seems intuitively "mechanical" can be carried out on a
Turing machine.

2. Any computation that can be carried out on a Turing machine is intuitively "me-
chanical."

The main evidence for statement 2 is Turing's analysis of computation that we
discussed in an earlier section. It seems, intuitively, that any computation that can be
done by a Turing machine is intuitively mechanical.

We said that the thesis cannot be proved; but if it is false, then it can be falsified:
If anyone were to deny the Church-Turing thesis, it would have to be because he or she
denied statement 1 , that is, claimed that there might be an intuitively mechanical pro-
cedure that a Turing machine could not carry out-that, perhaps, Turing machines, with
all their limitations of size and of operations, were not powerful enough. (After all, those
instructions seem rather simplistic, especially if the only symbols allowed are 'O' and
'1'.)

But there are two sorts of evidence in favor of statement 1. First, there is empirical
evidence: All (intuitively mechanical) procedures that have been constructed so far can
be translated into Turing-machine programs. '

Second, all "rival" theories of what might count as being "mechanically computable"
have turned out to be equivalent to the theory of Turing-machine computability,

Some of these other theories of what is "mechanically computable" are:

1. Church's lambda calculus-the notion he used in the original formulation of the
thesis; it was later used as the basis for the programming language LISP.

2. Markov algorithms-which later became the basis for the programming language
SNOBOL

339

TURING MACHINES

3. The theory of partial-recursive functions, which lies at the foundation of Godel's
incompleteness theorem, and which also can be considered to underlie much
of the recent theory of "structured" programming.

4. The Herbrand-Godel theory of recursion equations-which later became the
basis for the programming language ALGOL (and thus, indirectly, its descendant
Pascal).

5. The theory of register machines-which is a mathematical analogue of a "von
Neumann" digital computer.

- -

Anderson, Alan Ross (ed.): Minds and Machines (Englewood Cliffs, N.J.: Prentice-Hall,
1964).

Boden, Margaret: Artificial Intelligence and Natural Man (New York: Basic Books, 1977).
Broad, C. 0.: The Mind and Its Place in Nature (London: Routledge, 1962).
Church, Alonzo: Introduction to Mathematical Logic (Princeton, N.J.: Princeton Univ.

Press, 1956).
Clark, Keith L., and Don F. Cowell: Programs, Machines, and Computation (London:

McGraw-Hill, 1976).
Dennett, Daniel C.: Brainstorms: Philosophical Essays on Mind and Psychology (Mont-

gomery, Vt.: Bradford Books, 1978). ·
Descartes, Rene: "Rules for the Direction of the Mind" (1628), in E. S. Haldane and G.

R. T. Ross (trans. and eds.), The Philosophical Works of Descartes, Vol. I (London:
Cambridge Univ. Press, 1970), pp. 1-77.

Dreyfus, Hubert: What Computers Can't Do: The Umits of Artificial Intelligence, rev. ed.
(New York: Harper and Row, 1979).

Ennes, Harold E.: Boolean Algebra for Computer Logic (Indianapolis: Sams, 1978).
Gardner, Martin: Logic Machines and Diagrams, 2d ed. (Chicago: University of Chicago

Press, 1982).
Haugeland, John (ed.): Mind Design: Philosophy, Psychology, Artificial Intelligence

(Cambridge, Mass.: M.I.T. Press, 1981).
Hofstadter, Douglas R.: Godel, Escher, Bach: An Eternal Golden Braid (New York: Basic

Books, 1979).
Kasper, J., and S. Feller: Digital Integrated Circuits: An Introduction for Students and

Hobbyists (Englewood Cliffs, N.J.: Prentice-Hall, 1983).
McCorduck, Pamela: Machines Who Think: A Personal Inquiry into the History and

Prospects of Artificial Intelligence (San Francisco: Freeman, 1979).
Malvino, Albert Paul: Digital Computer Electronics (New York: McGraw-Hill, 1983).
Otto, Herbert R.: The Unguistic Basis of Logic Translation (Washington, D.C.: University

Press of America, 1978). ·

341

342

BIBLIOGRAPHY

Raphael, Bertram: The Thinking Computer: Mind Inside Matter (San Francisco: Free-
man, 1976).

Rich, Elaine: Artificial Intelligence (New York: McGraw-Hill, 1983).
Slagle, James R.: Artificial Intelligence: The Heuristic Programming Approach (New

York: McGraw-Hill, 1971).
Turing, A. M.: "On Computable Numbers, with an Application to the Entscheidungsprob-

lem," Proceedings of the London Mathematical Society, 42 (1937), 230-265.
--:"Computing Machinery and Intelligence" (1950), in Anderson (1964), pp. 4-30.
Weizenbaurri, Joseph: Computer Power and Human Reason: From Judgment to Cal-

culation (San Francisco: Freeman, 1976).
Winograd, Terry: Language as a Cognitive Process, Vol. I: Syntax (Reading, Mass:

Addison-Wesley, 1983).
Winston, Patrick Henry: Artificial Intelligence (Reading, Mass.: Addison-Wesley, 1977).

INDEX

Absolute-value function (ABS),
77

Accessible line, 234
Ada, computer language, 15
Adders, 323-326
Addition, rule of, 185
Affirming the consequent, 112,

182
ALGOL, computer language,

339
Algorithms, 20-22, 27-31,

41-43,48-50,53-55,
91-98, 108-109, 112-125,
139, 146-147,203-218,
223-229,256-258,302,
304,327-339

CNF-1, 139-141
CNF-2, 140-141
INFIX-TO-POLISH, 146-147
PROOF-CHECKER,

204-218, 220-221
PROOF-CHECKER-1, 217
SENTENCE-CHECKER,

97-98,208
TRUTH-TABLE

GENERATOR, xvi,
108-110, 139

TRUTH-VALUE
CALCULATOR, 91-97,
101,103,108,114,123,
257,263

VALIDITY/INVALIDITY
DETERMINER, xvi,
112-114, 131,257

WANG'S ALGORITHM, xvii,
114-125, 129-131, 147,
266-268,279,303

Algorithms (Cont.):
(See also Mechanical

procedure)
AND (see Conjunction)
Antecedent, 68
Arguments, 3-7, 37, 134-136,

153-154, 158, 163-165,
251

Arithmetic, 323-326
Arithmetical functions, 43, 50,

55
Array, 105,246
Artificial Intelligence, 16-17,

301
(See also Mechanical

theorem proving;
Searches)

Assertion, 7
Assignment operation, 29
Associativity, 192
Assumptions, 166-168, 170
Asterisks, 166,204
Atomic sentences, 45
Automated reasoning (see

Mechanical reasoning)
Axiom, 157

Babbage, Charles, 15
Backtracking in a search,

245
Backward-looking strategy,

226-229
BASIC, computer language,

xiii-xiv, 22, 64-65
Basic disjunctions, 138-139

BEGIN, comment, 173
Biconditional, 76-77, 84, 137,

189-191, 194
Binary adder (see Adders)
Boole, George, 8, 15, 65
Boolean algebra, 15, 65
Boolean operations, 64
Boolean values, 8
Boolean variables, 8
Bound occurrence of a

variable, 256
Branches,266-269
Breadth-first search, 231-232
Byron, Lord, 15

Calculus ratiocinator, 14
CHECK-LINE-STRUCTURE,

procedure, 206-208, 217,
221

CHECK-RULE, procedure,
206,208-213,215,217

CHECK-SENTENCE-
STRUCTURE, procedure,
206,208,217

CHECK-SUBFORMULA,
procedure, 97

CHECK-SUBPROOF,
procedure, 206,211,
213-217

Church, Alonzo, 302
Church's theorem, 302,

304-305,309
Church's thesis, 305,

338-339
Circuit design, 313-326

343

344

INDEX

Citation field, 205
Clauses, 309
CNF-1, algorithm, 139-141
CNF-2, algorithm, 140-141
Commands (see Instructions)
Comments in a derivation,

172-175
Commutativity, 192
Completeness, 175-178, 281
Computation, theory of,

328-329
Computational linguistics, 58
Computers:

design of, 17-20
giving instructions to, 18-20
history of, 13-16
(See also Turing machines)

Conclusion, 4-7, 224
Conclusion indicators, 4-5
Condition, 28
Conditional:

converse, 84
corresponding, 135-136
(See also Conditional

sentence)
Conditional ELIMination (see

ELIMination rules)
Conditional instruction, 28, 30,

68, 138
Conditional INTROduction

(see INTROduction rules)
Conditional sentence, 58,

68-75, 135-136, 180-185
Conjunct, 45
Conjunction, 44-52, 56-57,

82, 84, 137, 158~163,
316-317, 333

Conjunction ELIMination (see
ELIMination rules)

Conjunction INTROduction
(see INTROduction rules)

Conjunctive normal form
(CNF), 138-141, 307-308

Connectives (see Truth-
functional connectives)

Consequent, 68
affirming the, 112, 182

Consistency, 141-144
Constant, individual, 252-253,

258
Constructive dilemma (CD),

201
Containing proof, 232-233
Contingent sentence, 134-135
Contradiction, 134-135, 137,

141-143, 167,306
Contrapositive, 136, 192
Control statements, 28-32

Converse conditional, 84
Converse non-conditional, 84
Correctness, logical and

factual, 6
Corresponding conditional,

135-136
Counter in algorithm TRUTH-

VALUE CALCULATOR,
92-93, 123, 257

Dagger, 81
Data structure, 204, 246-247
Data type, 29
Decidability, 302
Decision problem, 328
Deduction, 154
Deductive logic, 2-3, 6
Deductive system, 153-156
De Morgan's laws, 137, 192,

319
Denial, 38

(See also Negation)
Depth-first search, 231-232
Derivable rule of inference, 197
Derivation, 154, 158, 160-161,

163-165
Descartes, Rene, 2-3, 14
Disjunct, 52
Disjunction, 44, 52-57, 77-79,

81-82,84, 137, 185-188,
317

basic disiunctions, 138-139
exclusive, 55-56, 77-79, 84,

86
inclusive, 55-56, 77-78,

81-82,84
Disjunction ELIMination (see

ELIMination rules)
Disjunctlon INTROduction (see

INTROduction rules)
Disjunctive normal form (DNF),

138, 142, 151
Disjunctive syllogism (see

ELIMiriation rules, vELIM)
Distributivity, 192
Dossier, 263-273
Double negation, 43-44, 192
Dual of a sentence, 150

Either (see Disjunction)
ELIMination rules:

&ELIM, 161-163, 240-243
-ELIM, 171-172, 240-243
-->ELIM, 180-185, 240-243
vELIM, 185-188, 240-243
~ ELIM, 189-191

ELIMination rules (Cont.):
VELIM, 283
3ELIM, 287-289

ELIZA, computer program,
33

END comment, 173
Entscheidungsproblem

(decision problem), 328
Equality (see Identity)
Equivalence:

logical (see Logical
equivalence)

rule of replacement, 192
Exclusive disjunction, 55-56,

77-79,84,86
Existential generalization,

286-287
Existential instantiation,

287-289
Existential quantifier, 254,

259-260,286-289
Existential quantifier

ELIMination (see
ELIMination rules)

Existential quantifier
INTROduction (see
INTROduction rules)

Exportation, 137-138, 192
Extensional characterization of

a function, 40-42, 105

Fallacy, 112, 182
FALSE, 8, 39
FBIC, 77, 84
FCND, 70-72, 84
FCNJ, 47-52, 64, 84
FDSJ, 53-55, 64, 84
Field of a derivation line, 204
First Counter (see Counter in

algorithm TRUTH-VALUE
CALCULATOR)

Flowchart, 22-27, 42
FNAND, 82, 84
FNEG, 40-43, 64, 84, 315
FNOR, 81-82, 84
FOR-loop, 30-31
Formula, 95-98, 254-256

hybrid, 88, 95
well-formed, 95, 255
(See also Well-formed

string)
Forward-looking strategy,

226-229
Free occurrence of a variable,

256,287
Frege, Gottlob, 8
Full-adder (see Adders)

345
INDEX

Functions, 40-45 INTROduction rules (Cont.): Marquand, Allan, 15
arithmetical, 43, 50, 55 f---7 INTRO, 189-191 Material conditional, 68-75, 84
truth, 40, 44, 47-55, 105 'v'INTRO, 284-286 Material non-conditional, 84

FXOR, 78, 84 31NTRO, 286-287 Mathematics and logic, 1-3
Invalidity, 6-7, 110, 112, Matrix (see Array)

295-296 MAXimum function, 55
Game of stars and slashes, Inverter, 314-315 Maze, 224-227

154-158, 176-177 Mechanical procedure, 20-22,
Gate, logic, 315-320 327
Goal, 224-226 Jevons, William Stanley, 15 Mechanical reasoning, 14-17
Godel's theorem, 339 Justification in a derivation line, Mechanical theorem proving,
GOTO, 30-31, 50 160, 167 305-311

Memory set, 330
Method, 227

Half-adder (see Adders) Karnaugh maps, 322 Minimal model, 265
Herbrand, Jacques, 309,339 MINimum function, 50-51
Higher-level language, 19-20

Labyrinth (see Maze)
Model, 263-273, 302-304

Hybrid formula, 88, 95 (See a/so Situations)
Hypothetical syllogism (HS), Lambda calculus, 338 Modular design, 28

201 Language: Modusponens, 111,180
higher-level, 19-20 Modus to/lens (MT), 196-197
machine, 19 Molecular sentence, 45

ldempotency, 192 (See a/so Symbolization of
Identity, 294 an English sentence)
IF. .. THEN ... (see Conditional Laws of thought, 1 NAND, 58, 82, 84, 86, 137, 178,

instruction) Leibniz, Gottfried Wilhelm, 2, 317
lf...then ... (see Conditional 14-15 Natural deduction, 153-222,

sentence) Limitations: 281-299
lff ("if and only if"), 76 of predicate logic, 302-305 Natural deduction system,
Inclusive disjunction, 55-56, of PROOF-GIVER, 240 157-158

77-78,81-82,84 Line-number field, 160, Necessary condition, 75-76
Inconsistency, 143,167,306 204-205 Negation, 38-45, 52, 56-57,
Indirect proof, 167 LISP, computer language, 129, 137, 165-168, 170-172,
Individual, 252-254 338 331-333

representative, 263-264 Lists and list-pairs in WANG'S double, 43-44, 192
Individual constant, 252-253, ALGORITHM, 115-120, Negation ELIMination (see

258 129-131, 266-270 ELIMination rules)
Individual variable, 253-254, Logic, 1 Negation INTROduction (see

258 mathematics and, 1-3 INTROduction rules)
Inference (see Rules, of of sentences, 37 Neither ... nor. .. (see NOR)

inference) Logic gate, 315-320 Node of a tree, 230
Infix notation, 144-145 Logical equivalence, 136-152, NOR,58,81-82,84,86,178,
INFIX-TO-POLISH, algorithm, 175,177-178,192,194 317-318

146-147 Logically true (see Tautology) Normal form, 138-141
Innermost subformula, 90-94, LOGO, computer language, conjunctive, 138-141,

96-97, 122 129 307-308
INPUT, 23-24, 29 Lovelace, Lady Ada, 15 disjunctive, 138-141
Instances, 258, 283, 287 Lull, Ramon, 14 NOT, 64, 315-316
Instructions, 18-32
Intensional characterization of

a function, 41 Machine language, 19 OBTAIN Q, procedure, 234
INTROduction rules: Macros in computer Only if, 74

&INTRO, 158-160, 240-243 programming, 197 Operation, 22, 28-29, 330
-INTRO, 165-168, 170-171, Main connective, 122-123, Or (see Disjunction)

240-243 129-131, 146-147 OUTPUT, 23-24, 29
-+INTRO, 180-185, MAIN-CONNECTIVE,

240-243 procedure, 122-123,
vlNTRO, 185-188, 240-243 129-131, 146, 279-280 Palindromes, 334-338

346

INDEX

Parentheses, 92,123,257
Pascal, Blaise, 15
Pascal, computer language,

xiii-xiv, 22, 64-65, 101,
220-221, 339

Peirce, Charles S., 15
PLJI, computer language, 101
Polish notation, 93, 144-147,

151-152
reverse, 151

Postfix notation (reverse Polish
notation), 151

Predicate letter, 252
Prefix notation (see Polish

notation)
PREMISE, 158, 160, 168
Premise indicators, 4-5
Premises of an argument, 4-7,

166,224
Procedure, 97, 169
Program, xiii, 22, 27
Program design language, xiv,

27-32
Proof, 114, 154, 166-167, 204,

223-249
(See a/so Derivation;

Subproof)
PROOF-CHECKER,

algorithm, 204-218,
220-221

PROOF-CHECKER-1,
algorithm, 217

PROOF-GIVER method,
223-229, 305, 310-311

Property, 252-254
Proposition, 7, 37-38
Pruning of a search tree, 231

Quantification theory,
251-299

Quantified formula, 256-257
Quantifier negation rules,

290-295
Quantifiers, 254-258

existential, 254, 259-260,
286-289

universal, 254, 260-263,
282-286

Queue, 130

Reasoning, 1, 16-17
mechanical, 14-17

Recursive functions, 339
Reductio ad absurd um, 167
Register machines, 339
Relations, 270-273

Replacement, rules of,
191-196, 243-245

Representative individual,
263-264

Resolution, 306-309
Resolvant, 308
RETURN, 168-170
Reverse Polish notation (RPN),

151
Rhetoric, 3
Rule of resolution (see

Resolution)
Rule field of a derivation line,

204-205
Rules:

of inference, 154, 157-159,
179-201, 281-299

of replacement (RR),
191-196, 243-245

truth-preserving (see Truth-
preserving rules)

for well-formedness, 255
(See a/so ELIMination rules;

INTROduction rules)

Satisfaction, 263
Satisfiability, 141-144
Scope of a quantifier, 255-256
Search space, 230
Search tree, 229-232

pruning of, 231
Searches, 229-240

breadth-first, 231-232
depth-first, 231-232

SEND, 168-169
SENTENCE-CHECKER,

algorithm, 97-98, 208
Sentence field, 204
Sentence letters, 8-9
Sentence logic, 37
Sentences, 7-9, 37-38, 45,

52, 56, 82, 95-98,
134-135, 144,157,256

atomic,45
conditional (see Conditional

sentence)
contingent, 134-135
logic of, 37
symbolization of (see

Symbolization of an
English sentence)

Sentential logic, 16, 37-38, 45
(See a/so Sentences)

Shannon, Claude, 16
Sheffer stroke function (see

NANO)
Simple sentence, 45

Simultaneously satisfiable,
142-143, 167

Situations, 105, 110
(See a/so Model)

SNOBOL, computer language,
328

Soundness, 6-7
Stack, 120, 130
Stanhope, Charles, 15
Stars (see Asterisks)
Stars and slashes, game of,

154-158, 176-177
START, 22
State of a Turing machine,

328-331
Statements, 7

control, 28-32
Stepwise refinement, 21-22
STOP, 22, 30-31
Strategies, 224, 226-232
String, 37
Stroke function (see NANO)
Structured programming,

329
Subformula, 88, 90-94, 227

innermost, 90-94, 96-97,
122

Subprocedure, 28, 169
Subproof, 165-171, 232-234
Subproof-depth field in a

derivation line, 204
Sub-subproof (see Subproof)
Sufficient condition, 75-76
Suffix notation (see Reverse

Polish notation)
Switches, 16, 314

(See a/so Circuit design)
Symbolization of an English

sentence, 58, 72-75, 78,
254,259-263,270-276

Tape of a Turing machine,
328-330

Task list, 229
Tautology, 134-137, 140, 194,

306
TEST, procedure in WANG'S

ALGORITHM, 121-122,
279

Theorem, 157,177,298,
301-311

TM, Turing machine
programming language,
330-331

Top-down approach, 21, 28
Translation (see Symbolization

of an English sentence)

347

INDEX

Tree, search, 229-232
pruning of, 231

TRUE, 8,39
Truth function, 40, 44, 47-55,

105
Truth-functional connectives,

44-45,52,57-58,82-84
Truth-preserving rules,

157-160, 165,167,170,
189, 194

Truth table, 42-43, 105-131
TRUTH-TABLE GENERATOR,

algorithm, xvi, 108-110,
139

Truth value, 7-9, 39, 88-95,
258

TRUTH-VALUE
CALCULATOR, algorithm,
91-97, 101, 103,108,114,
123,257,263

counter in, 92-93, 123,257
Turing, Alan, 33, 328

Turing machines, 327-339
state of, 328-331
tape of, 328-330

Turing test, 33
Turing's thesis (see Church's

thesis)
Two-place connectives, 46, 52

Universal generalization,
284-285

Universal instantiation, 283
Universal quantifier, 254,

260-263,282-286
Universe of discourse, 258, 261
Unless, 79-80

Vacuous quantification, 256
Validity, 6-7, 13, 105-131,

135-136, 141-143,
153-154, 158, 163-165,
251,263,281, 301-311

VALIDITY/INVALIDITY
DETERMINER, algorithm,
xvi, 112-114, 131,257

Valuation function (V), 9
Value (see Truth value)
Variable, 29, 169, 253-254,

256
Von Neumann computer, 339

Wang, Hao, 114
WANG'S ALGORITHM, xvii,

114-125, 129-131, 147,
266-268,279,303

Well-formed formula (wff), 95,
255

Well-formed string, 95-96, 157
(See also Sentences)

WHILE, 30-31

XOR, 318

ISBN □ -□ 7-055131-6

