COMPUTABILITY
OF DESIGN

'Edited by
Yehuda E. Kalay

School of Architecture and Environmental Design
State University of New York
Buffalo, New York

A WILEY-INTERSCIENCE PUBLICATION

JOHN WILEY & SONS .
New York [/ Chichester [/ Brisbane [/ Toronto / Singapore

Copyright © 1987 by John Wiley & Sons
Published by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Section 107 or 108 of the

1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging In Publication Data:
Computability of design.

(Principles of computer-aided design)

Papers presented at a symposium held at the State
University of New York in Buffalo, on December 6-7,
1986.

Bibliography p.

1. Computer-aided design—Congresses.

2. Engineering design—Data processing—Congresses.
I. Kaly, Yehuda E. II. Series: Kalay, Yehuda E.

~ Principles of computer-aided design.

TA174.C575 1987 620°.00425'0285 87-14745
ISBN 0-471-85387-9

Printed in the United States of America

10987654321

ARTIFICIAL INTELLIGENCE
AND AUTOMATED DESIGN

Stuart C. Shapiro
James Geller

Department of Computer Science
State University of New York at Buffalo
Buffalo, New York

Artificial Intelligence (Al) offers to the design task the use of powerful sys-
tems that can be knowledgeable assistants to the human designer. Knowl-
edge Representation techniques can be used to specify the ontology and
epistemology of the particular design task so an Intelligent Interface, in
general, and an Intelligent Drafting assistant, in particular, can discuss the
task with the designer using the same concepts that he uses. Investigating
Knowledge Representation formalisms for such aids in the context of devel-
oping a Versatile Maintenance Expert System (VMES) has uncovered a
number of interesting concepts that seem useful for a wider class of design
domains. These concepts are presented after a general discussion of the
role of Al in design, and an introduction to a particular AI Knowledge
Representation system. The role of design aids and Intelligent Interfaces in
VMES is presented as an example of the use of such systems.*

*This work was supported in part by the Air Force Systems Command, Rome Air Develop-
ment Center, Griffiss Air Force Base, New York 13441-5700, and the Air Force Office of
Scientific Research, Boiling AFB DC 20332 under Contract No. F30602-85-C-0008, which sup-

ports the Northeast Artificial Intelligence Consortium (NAIC).

173

174" ARTIFICIAL INTELLIGENCE AND AUTOMATED DESIGN

O ARTIFICIAL INTELLIGENCE AND DESIGN

The task of design presents intelligent humans with a large number of com-
plicated problems. _Artificial intelligence (AI) is the research area which
attempts to discover how to program computers to solve the sort of prob-
-lems intelligent humans tackle. One use of Al in design might be to have
an Al system that would do the design itself, perhaps viewing design as a
search through a design-problem space. In this paper, however, we will dis-
cuss two aspects of the application of Al as design aids for human design-
" ers — the application of Knowledge Representation to drafting systems, and
the use of Intelligent Interfaces. After some introductory remarks, we will
give a brief introduction to the Al system we are using, present some results
of odur investigations into the applications of Al to design, and, finally,
show how this fits into a Maintenance Expert System we are developing.

The Role of Knowledge Representation

Modern computerized drafting systems supply their users with a wealth
.of powerful modeling tools. A typical drafting system deals with objects,
their visual and non-visual attributes, and their mappings into graphical
representations. However, such a system is only a powerful set of pens, it
is not an assistant that “knows” what the designer is talking about. To be
intelligent, an assistant must be knowledgeable. Knowledgeable computer
systems are known as “Knowledge-Based Systems” (KBSs), and are a very
active area of Al research and development.

We can identify three roles that people play in the design and use of
KBSs. First, there -are people who design and implement KBSs without
regard to any particular application domain. We can refer to such people
as the KBS Designers, and to the results of their efforts, using terminology
from the field of Expert Systems (ESs), as “KBS shells.” Second, there are
those who particularize KBS shells to given application domains. They are
called “Knowledge Engineers” (KEs) in the ES world, and we can refer to
the results of their efforts as KBSs simpliciter. Finally, there are the “end-
users” who use KBSs as tools to get particular jobs done.

The job of a KE is usually perceived to be interviewing a person already
knowledgeable (at an expert level) in the application domain, and recording
that person’s knowledge in a form that the KBS shell can use. However, if
the KBS shell is flexible enough, there is an additional task for the KE: to
design the “form” in which the knowledge is to be recorded. This task is
the Knowledge Representation (KR) task, and we will refer to the KE per-
forming this task as the ‘“Knowledge Representation Engineer” (KRE).
(The KRE’s task has jocularly been called ‘“notational engineering.”) The
KRE's first task is an analysis of the knowledge primitives in the domain.

He must define the domain’s ontology (the kinds of objects and attributes
contained in the domain), and its epistemology (the sorts of things one may

ARTIFICIAL INTELLIGENCE AND DESIGN 175

know about the domain, and the ways of knowing them). A flexible KBS
shell will permit the KRE to do this declaratively, i.e. without re-
programming the shell.

The KRE can supply a <00mc=_mQ of conceptual ogona. relations, and
attributes without a limit on the level of object abstraction. For example,
one can take the system’s representation of an object, and its representation
of the depiction of the object on the screen, and create an explicit non-
procedural mapping between them. This mapping itself can be reified,
which makes it in turn amenable to serving as an object in a propositional
context. This example only involves two levels of abstraction and is fre-
quently useful. For instance, it may be used to assert the validity of a map-
ping that might be limited to particular circumstances.

The declarative representation of these objects has the additional benefit
of placing them in the domain of possible end-user queries. Whatever is a
concept for both system and user can be discussed by them. The user can
tell the system about them, and can ask the system what it currently knows
about them. The system can have rules that specify how to reason about
them, how to derive new attributes from old ones, and even under what cir-
cumstances to infer the existence of objects it hasn’t caas mxn:o:_w
informed about.

A Knowledge-Based drafting system can be an intelligent assistant to a
designer, rather than just a powerful drawing tool.

Intelligent Interfaces

Recently, there has been increased interest in the contributions Al can
make to the design of interfaces. There was both a workshop and a panel
on Intelligent Interfaces at the 1986 AAAI sponsored National Conference
on Artificial Intelligence, and DARPA has recently funded a program on
Multi-media Interfaces.

Our own view, [Shapiro 1986a] is that an intelligent interface needs the
following capabilities: it should know about the topic under discussion, not
merely be an isolated, modular, general purpose interface; it should know
about communication issues, including what is on the screen, and the rela-
tionship between what is being communicated and the way it is being com-
municated; it should have a user model, so it has an idea of what the user
knows, doesn’t know, and what the user is trying to accomplish. The
KBS-based drafter we are developing can be seen as an appropriate intelli-
gent interface to a more extensive design system.

General Introduction to SNePS

The SNePS Semantic Network Processing System [Shapiro 1979; Shapiro
1986b] is the KBS shell we use, and we will use the SNePS formalism in the

176 ARTIFICIAL INTELLIGENCE AND AUTOMATED DESIGN

- remainder of this paper. For the reader not familiar with SNePS, we will
first give a short introduction to the basic properties that distinguish it from
other semantic network systems.

SNePS, unlike semantic network systems of the KL-ONE, KRYPTON

.- family, {Brachman-1985; Brachman 1983] but like Anderson and Bower’s
HAM, [Anderson 1973] is a propositional semantic network system. i.e.,
the main ingredient of SNePS networks are assertions, constructed from
case grammar-like frames [Fillmore 1968]. This does not imply that SNePS
cannot support KL-ONE type class hierarchies and inheritance [Tranchell
1982], but that this feature is less prominent in SNePS. SNePS is a fully

- intensional knowledge representation system [Shapiro 1986b] — it can rep-
resent imaginary, non-existing, and even impossible objects, as well as
abstract objects, and multiple guises of a single object as if they were sepa-
rate objects.

SNePS "handles full predicate logic with universal, existential, and
numeric quantification. A number of non-standard connectives that
improve expressibility are available, including both a default operator and a
true negation.” SNePS supports forward, backward, and bidirectional infer-
ence; in contrast to many other systems which permit reasoning in only one

. direction. For instance, the OPSS5 expert system shell does only forward
inference, whereas PROLOG does only backward inference. In SNePS, the
same rule syntax can be used for either type of reasoning; there are no
specific forward or backward rules. SNePS permits the use of recursive
‘rules, either directly recursive or indirectly recursive [McKay 1981]. A rele-
vance logic based [Anderson 1975; Shapiro 1976] extension to SNePS per-
mits its use as a truth maintenance system [Martins 1983].

Another advantage of SNePS is the total order independence of rules and
clauses in the rules, in effect eliminating the painful mixed procedural-
declarative semantics of PROLOG. This higher degree of flexibility permits
very natural . representations, especially for natural language rule expres-
sions. However, the required computation times are usually longer than for
PROLOG programs.

Although the major purpose of SNePS is not to be a functional model of
the brain, as opposed to, for instance, Anderson’s ACT system [Anderson
1983], SNePS has been designed with a high degree of cognitive validity in
mind. This is expressed by a differentiation between conceptual and non-
conceptual relations, by the impossibility of PROLOGish retract-like forced
forgetting (except for debugging purposes), and by the accessibility of all
information about a concept from the concept itself.

A number of different SNePS interfaces have been designed, containing
several natural language parser/generators for subsets of English, a frame-
like editor, a logic programming language, and several graphics interfaces.
In our description of knowledge structures we will liberally use the
“Lispish” notation of the SNePS User Language (SNePSUL), or our stand-
ard graphical representation of SNePS networks.

ARTIFICIAL INTELLGENCE AND DESIGN 177

Knowledge Representation in SNeP$

In this section, we will discuss an example SNePS network to introduce
the syntax and semantics of some of the representational structures we use
in our work on VMES, the Versatile Maintenance Expert System [Shapiro
1986¢]. Figure 9.1 shows an Adder-Multiplier, a simple experimental device
that has been used in the field of hardware maintenance research by a num-
ber of people. This object consists of three multipliers and two adders.
Figure 9.2 shows part of the semantic network that describes this device.
Rectangles in Figure 9.2 represent concepts of real or ::wmm:m:w objects.
Circles represent propositions about these objects. The network can be
read as follows: D1 is an object of type M3A2; DIAL1 is of type Adder and
is a part of D1; DIMI is of type Multiplier and is a part of D1; DIAIFI is
a Full Adder and is part of D1AI; etc.

The SNePSUL commands that create the network of Figure 9.2 are:
(define part-of object type)

(build object D1A1
type Adder
Um1ﬁ|04 D1)

(build object DIM1
part-of D1
type Multiplier)

(build object D1
type M3A2)
part-of D1A1
type Full Adder)

(build object D1ATF1
part-of D1A1
type Full Adder)

(build object D1A1TF2
part-of D1A1
type Full Adder)

The first define command defines the arcs to be used in the system. Arcs
can be followed, for retrieval purposes, in either the forward or backward
direction, guaranteeing the universal accessibility of every node from every
other node that is related to it. ,

The set of build commands creates the actual network. Note that every
build command will result in the creation of one “m...” node. These

178 ° ARTIFICIAL INTELLIGENCE AND AUTOMATED DESIGN

[DIAIFL]
DIAIF2

Dl1Al

Flgure 9.1. The Adder Multiplier and one of its parts.

nodes, as_described earlier, correspond to propositions in the system and
cannot be created directly by the user. In other words, it is not possible for
the user to create an arc connecting two nodes named by him, guarding
users against creating non-conceptual propositions, objects the SNePS
‘theory of mind does not permit.

Lo . part-of part-of object
type object type object type

DiAIF] Ful DIAIF]
Adder

: :o:,-o 9.2. A piece of semantic net.

IMPORTANT ELEMENTS Om..Umm_OZ KNOWLEDGE 179

LJAN ANALYSIS OF IMPORTANT ELEMENTS OF DESIGN
KNOWLEDGE

Having introduced the SNePS KBS shell, we will now discuss the ontology
and representational constructs that we, in our role as KREs, have found to
be necessary for creating descriptions of graphical depictions of simple cir-
cuit boards.

Objects and Forms

The first fundamental unit we need to deal with is the displayable object.
In order to create a picture of an object it is necessary to specify a form for
it. Every form has a dual role. On the one hand, it can be used to create a
picture of that form. On the other hand, it is a conceptual unit in the
knowledge representation system and can be manipulated as such. Picture
creation is done by a Lisp graphics function whose name is identical to the
form concept in the network, and whose arguments are the coordinate posi-
tions of the place the form is to be drawn. So, if the form of a particular
gate is specified by the function gate-form, the gate would be drawn at posi-
tion (100, 300) by evaluating the Lisp form:

(gate-form 100 300)

The degree of specificity of a form varies. While the form of an inte-
grated circuit or a transistor is totally fixed, the form of a wire is dependent
on the position of the ports it connects. If a user wishes to display an
abstract object then he has to supply a symbolic form for it.

Positions

The next essential ingredient for a drafting system is the concept of posi-
tions. There are several possible ways of specifying positions. In a tradi-
tional CAD system, positions are only expressed in an absolute or relative
manner based on coordinate values. This is an ability that a KBS should
also have. However, knowledge-based design systems should also be able
to deal with relational specifications, such as the specification that a certain
element should be near or to the left of another element. This, of course,
introduces a certain fuzzyness in the representation. However, .in many
cases this is exactly what a designer would like. It permits him to think in
concepts that are natural to him, and it avoids unnecessary specificity. In
other words, a knowledge-based drafting system permits one to specify spa-
tial relations with a reasonable degree of imprecision.

The following SNePSUL commands show first our: representation- for rel- -
ative coordinate positions, and then for fuzzy positions:

180, . ARTIFICIAL INTELUGENCE AND AUTOMATED DESIGN

(build object gate-1
relpos (build x 100 y 200
rel-to gate-5
modality function)

(build object = gate~2
relpos left
.rel-to . gate-1
modality function)

. The first mZ%mCh command will create a piece of SNePS network rep-
resenting the proposition that gate-1 is 100 units to the right and 200 units
above gate-S. The second one asserts that gate-1 is to the left of gate-2.
The modality slot is used to differentiate between different arrangements of
an object in a functional representation (wire plan) and a physical represen-
tation (picture of the board).

Attributes

Attributes can either be of objects or of pictures of objects. An example
of an attribute of a picture is blinking. A blinking picture can help a user
focus his attention on a currently interesting object, without expressing any-

thing about the object itself.
An example object attribute we have been using is the faultiness of a

gate. The proposition that gate-1 is faulty would be represented by the net-
work built by the command:

(build object gate-1
attr (build atrb-cls state
_atrb faulty
modality function))

In order that the system know how to display a faulty gate, we tell it that
the state attribute maps to the state-to-color function:

(build attr state
mod-func state-to-color)

Each attribute function, such as state-to-color, is actually a functional
that takes a form function and an attribute value as arguments, and returns
a modified form function. So, again, if gate-1 had the form represented by
the function gate-form, and given that gate-1 is in the state of being faulty,
and that the attribute function for state is state-to-color, gate-1 would be

IMPORTANT ELEMENTS OF DESIGN KNOWLEDGE 181

displayed as faulty at coordinate position (100, 300) by evaluating the Lisp
form:

(funcall (state-to-color #'gate-form 'faulty)
100 300)

Notice that representing different attribute dimensions (state, color, size,
etc.) by different attribute functionals explicates the way 52 different
attribute dimensions are, in fact, different. :

In this technique, the information of how to display a ?EQ gate is pro-
cedurally encoded in the state-to-color functional. An alternative is to
store the information declaratively in the network, such as g a proposition
built by the command:

(build attr state
atrb faulty
mod-val red)

This proposition says that the attribute of being in a faulty state is to be
shown by making the display red. The fact that red is a value o», the color
attribute is stored by a separate proposition.

Class Hierarchy

An important feature of most knowledge representation systems is their
ability to handle classes of objects (and also hierarchies with many levels of
classes). This permits a user to associate an attribute with an entire class
instead of a single object. For example, one could express the fact that all
integrated circuits expect ground potential on their pin 0 by associating this
fact with the class of all integrated circuits.

Classes have two important features that are valuable for amm_mz systems
{and KR systems in general). The first is that by asserting that an object
belongs to a certain class, a lot of new knowledge is immediately available
about it. This is called inheritance along a class hierarchy. The other valu-
able feature is that this type of representation seems to correspond to the
way people organize their knowledge. Therefore the naturalness of the use
of classes also improves the general communication between user and sys-
tem.

Part Hierarchy

Another feature that is common in Al systems is the use of part hierar-
chies. Much of the knowledge about physical objects can be.organized as
facts that express a part-whole relation between different objects. This
applies also and especially to design systems.

182 ARTIFICIAL INTELLIGENCE AND AUTOMATED DESIGN

Our own research has shown that the concept of inheritability which was
mentioned for class hietarchies is also applicable to part hierarchies, but
with a difference that we have not seen discussed in the previous literature.
For instance, the attribute of a special transistor of being “twice as large as
an average transistor” is inheritable by its parts. On the other hand, if a
circuit board is known to be faulty, nobody would want this attribute to be
inherited by all its parts. That would defeat the very purpose of a diagnosis
system.

In class hierarchies, the only attributes that are not inheritable, are those
that apply only to classes. For example, the cardinality of a class is not
applicable to, let alone inherited by, its individual members. In the part
hierarchy, however, there are non-inheritable attributes, such as faultiness,
that are applicable to sub-parts, just not to be inherited by all of them.

The representation that we are using for inheritable attributes is the same
as the representation for non-inheritable attributes, and is, in fact, identical
to the example of faultiness given in an earlier section. However it is
possible to assert in the network about a certain attribute that it is inherita-
ble, simply by pointing to it with an inheritable arc. For example:

" "(build inheritable size)

- - The display program which interprets the network automatically queries
for inheritability if it has to expand an object with attributes into parts.
The results of this query determine whether or not the parts of the object
_are displayed as having the attribute.
Inheritability, as an attribute of other attributes, is a meta-attribute. The
" fact that we aré representing it explicitly and declaratively gives the user the
power to experiment with different attributes, and to postpone the decision
about which of them is inheritable.

Our findings about inheritance can be extended to other hierarchies,
which we refer to as relevance hierarchies. Relevance hierarchies are an
abstraction of a number of different hierarchies used in the literature,
includjng topic hierarchies [Haan 1986) and hierarchies of spatial universes
(containment hierarchies) [Fahlmann 1979].

O THE VMES SYSTEM

The research described in this paper is a part of the VMES (Versatile Main-
tenance Expert System) project, which deals with hardware maintenance for
mixed analog and digital circuit boards. By using the features of a knowl-
edge based architecture, a high degree of versatility has been achieved

[Shapiro 1986c).
The specific significance of our work is that frequently electronic devices
have fairly short life cycles. A new board is designed and quickly comes

THE VMES SYSTEM 183

output

Ic2 output

input

Flgure 9.3. An Invalld oo::oo:o:m .

into use in the field. There is little time to design elaborate test procedures
or equipment, or to educate a large number of technicians and users. Usu-
.m:w. the only real expert on the device is its designer, and he is already
involved with another project when the first problems in the field come up.
Our research is directed toward the design of a KBS-based drafter that the
designer will use to help design a new device. This design stage will be the
“Knowledge Acquisition” stage of the VMES, which will thén be able to
advise maintenance technicians on the maintenance and repair of the device
that it helped design.

. The maintenance system can also be used as a part of the design system
m_zom. it can be used to detect impossible designs which do not conform 8.
certain integrity constraints. An example of such an impossible design in
the circuit board domain would be if a new device that is described to the
&a.:wa has two chips with their input ports connected to each other, but
neither connected to an outport of any other chip (Figure 9.3). Another
example would be if two points are electrically connected to each other by
two separate wires (Figure 9.4).

VMES implements a large number of the concepts which have been
described in the previous sections, i.e. part and class hierarchies, inHerit-
ance, attributes, etc. It expects to talk to two different types of end-users.
On the one hand are maintenance technicians with a limited amount of edu-
cation and training. On the other hand are the designers that enter a
description of a new device into the system.” These two types of end-users

redundant connection

Figure 9.4. A redundant connection.

184 ARTIFICIAL INTELLIGENCE AND AUTOMATED DESIGN

have different user interfaces, but both interfaces are required to be natural
and user-friendly:

- The need to create aomo:v:ozm of circuit boards quickly and without

“programming” requires a system that has fairly general knowledge about
circuit boards, and that can be adapted to a new device in a short time and
with a natural dialogue. To achieve this the system has to understand much

_about the objects of the domain, like wires, inverters or integrated circuits.
‘The use of a Knowledge Representation language is a precondition for
achieving such understanding. Use of a component library also permits a
rapid change from one device to another. If a new device does not contain
any new components, then it is only necessary to describe the new wiring.

Our dpproach to the design of Intelligent Interfaces may be explained by
a description of three interfaces that are part of VMES. The main user

~interface is a Knowledge-Based graphics component. This program, named
display, takes a piece of semantic network as argument and uses it to gen-
crate a Eo”o:m_ representation of the stored knowledge. display works as a
generator,. quite comparable with a natural language generator. Only
redundant permanent auxiliary storage is used by display. In other words,

 the semantic network plus the Lisp functions describing primitive forms are
the only knowledge sources for the computation and creation of device
depictions.

We are working on displaying devices under the assumption that no
coordinate positions are given. We refer to this activity as intelligent
machine aB?:m (IMD). We are attempting to provide a procedural model
of some of the knowledge that a draftsman has about space and arrange-
ment of electronic components. display tries to arrange components of the
system in what it “thinks” is a graphically appealing way, using several var-
iations of an equal-spacing algorithm. Unlike VLSI routing or layout pro-
grams, which usually try to find some space-optimal solution, display
assumes that there is ample space to solve the placing problem.

The second interface is a natural language understander (NLU), imple-
mented by using an augmented transition network (ATN) [Woods 1970;
Shapiro 1982] semantic grammar. A user can create classes of objects,
assign (predefined) forms to them, name members of these classes, assign
them attributes, and then display them, all with commands from a (fairly
limited) subset of natural language. The NLU uses the same KR constructs
as are used by display. This enables it to demonstrate its understanding
of declarative sentences by drawing the object(s) mentioned using appropri-
ate graphic indicators of the asserted attributes.

The third interface is the readform facility, which allows a user to créate
Lisp form functions simply by drawing objects. readform permits a user to
create pictures of objects from simple primitives like lines, circles, boxes

etc. He can also design a form off to the side, on a kind of scratch pad,

and then add this form repeatedly to the object being designed. readform
will assume that the form created on the side is the form of a class of

ACKNOWLEDGMENTS 185

objects, and that the repeatedly added instances are members of that class.
These members will also be assumed to be parts of a main object, consist-
ing of the primitives placed before and after using the scratch pad.
readform verifies some of its assumptions by querying the user, e.g. asking
for a name of the suspected class. If the user supplies the requested names
then readform will create a network structure that asserts the class and part
relations and will even store the positions of the parts relative to their super

object.

O CONCLUSIONS

Al offers to the design task the use of powerful Knowledge-Based System
shells. Knowledge Representation Engineers particularize these KBS shells
to the particular design domain by specifying the ontology and epistemol-
ogy of the domain. This permits the end-users to discuss the design task
with the KBS as if it were a knowledgeable assistant.

We discussed two aspects of KBSs useful for design. Intelligent Inter-
faces know the task being performed, know about the objects, relations,
and attributes being discussed, and know how to express these concepts to
the user. Intelligent Machine Drafters (IMDs) are knowledgeable assistants
to the designer, besides being powerful drafting tools.

We have been developing a Versatile Maintenance Expert System
(VMES) that would be able to help a maintenance technician repair a device
that had been designed so recently that there would not have been time to
give the technician training on how to repair it. The VMES would acquire
its own knowledge of the device by serving as an IMD to the original
designer.

In our roles as KREs for VMES, we have identified the following con-
cepts as useful for an IMD and for an Intelligent Interface to a design sys-
tem: objects; forms of objects; absolute, relative and “fuzzy” positions;
attributes of objects and of pictures of objects; attribute functionals; object
attribute to picture attribute mappings; class, part, and relevance hierar-
chies; and meta-attributes, such as inheritability.

O ACKNOWLEDGMENTS

We would like to thank the other members of the VMES team, Mingruey
R. Taie, Sargur N. Srihari, and Scott S. Campbell for valuable discussions;
Dale Richards from RADC for administrative support; Bill Eggers, Michael
Rosenzweig, Jim Carney, and Carl Mercer for working-on several genera-
tions of “Readform”; and finally Lynda Spahr, our secretary, for being a
pearl in general.

386 ARTIFICIAL INTELLIGENCE AND AUTOMATED DESIGN

[REFERENCES

AAALl Proceedings of Sm_ﬁ.\S National Conference on Artificial Intelligence, Mor-
gan Kaufmann Publishers, Los Altos, CA, 1986.

Abbott C. “Introduction to the Special Issue on Computer Music,” ACM, Com-
puting Surveys, 17(2):147-289, June 1985.

Anderson A. and N. Belnap Entailment: The Logic of Relevance and Necessity,
Princeton University Press, vol.1, 1975.

Anderson J.R. “A Spreading Activation Theory of Memory,” Journal of Verbal
'Learning and Verbal Béhavior, 22:261-295, 1983.

Anderson J.R. and G.H. Bower Human Associative Memory, V. H. Winston and
Sons, Washington, D.C., 1973.

Ballard D.H. and C.M. Brown Computer Vision, Prentice Hall, 1982.

Brachman R.J., R.E. Fikes and H.J. Levesque “KRYPTON: A Functional
Approach to Knowledge Representation,” IEEE Computer, 16(10):67-73, 1983,
Brachman R.J. and H.J. Levesque Readings in Knowledge Representation, Morgan

Kaufmann Publishers, Los Altos, CA, 1985.

Boden M.A; Artificial Intelligence: How Machines Think, Simon & Schuster, NY,
198s.

Brachman.R.J. and J. Schmolze “An Overview of the KL-ONE Knowledge Repre-
sentation System,” Cognitive Science, 9(2):171-216, 1985,

Charniak E. and D. McDermott Introduction to Artificial Intelligence, Addison
‘Wesley, ‘Reading, MA, 1985.

Fahlmann S.E. NETL: A System for Representing and Using Real-World Knowl-
edge, MIT Press, Cambridge, MA, 1979,

Fillmore C.J. “The Case for Case,” Universals in Linguistic Theory, ed. E. Bach
and R..T. Harms, Holt, Rinehart, and Winston, NY, pp. 1-88, 1968.

Gardner H. The Mind’s New Science: A History of the Cognitive Revolution, Basic
Books, NY, 1985.

Haan J. de and L.K. Schubert “Inference in a Topically Organized Semantic Net,”
Proceedings of the Fifth National Conference on Artificial Intelligence, Morgan
Kaufmann, Los Altos, CA, pp. 334-338, 1986.

Hayes-Roth “F.; D.A. Waterman- and D.B. Lenat Building Expert Systems,
Addison-Wesley, Reading, MA, 1983.

Hofstadter D.R. and D.C. Dennett The Mind’s I, Bantam Books, NY, 1981.

Hunt M. The Universe Within, Simon & Schuster, NY, 1982.

1JCAI Proceedings of the Ninth International Joint Conference on Artificial Intelli-
gence, Morgan Kaufmann Publishers, Los Altos, CA, 1985.

McCalla G. and N. Cercone “Approaches to Knowledge Representation,” Com-
puter, pp. 12-18, Oct. 1983.

REFERENCES 187

McKay D.P. and S.C. Shapiro “Using Active Connection Graphs for Reasoning
with Recursive Rules,” Proceedings of the Seventh International Joint Confer-
ence on Artificial Intelligence, Zoﬁmm: Kaufmann, Los Altos, CA, pp. 368-374,
1981.

Martins J.P. Reasoning in Multiple Belief Systems, 203, SUNY at Buffalo, Dept. of
Comp. Sci., 1983.

Nilson N.J. Principles of Artificial Intelligence, Tioga, Palo Alto, CA, 1980.

Peat E.D. Artificial Intelligence: How Machines Think, Simon & Schuster, New
York, 1985.

Shapiro S.C. and M. Wand The Relevance of Relevance, 46, Indiana University,
1976.

Shapiro S.C. “The SNePS Semantic Network Processing System,” Associative Net-
works: The Representation and use of Knowledge by Computers, ed. by Nicho-
las V. Findler, Academic Press, NY, pp. 179-203, 1979. . A

Shapiro S.C. “Generalized augmented transition network grammars for generation
from semantic networks” The American Journal of Computational Linguistics,
8(1):12-25, 1982. ,

Shapiro S.C. and J. Geller “Knowledge Based Interfaces,” AAAI-86 Workshop on
Intelligence in Interfaces, ed. Bob Neches and Tom Kaczmarek pp. 31-36,
August, 1986a.

Shapiro S.C., S.N. Srihari, M.R. Taie and J. Geller “VMES: A Network Based
Versatile Maintenance Expert System,” Applications of Al to Engineering Prob-
lems, 1986¢.

Shapiro S.C. and W.J. Rapaport “SNePS Considered as a Fully Intentional Propo-
sitional Semantic Network,” Proceedings of the Fifth National Conference on
Artificial Intelligence, Morgan Kaufmann, Los Altos, CA, pp. 278-283, 1986b.

Tranchell L.M. A SNePS Implementation of KL-ONE, TR-198, Dept. of Comp.
Sci., SUNY at Buffalo, 1982, ,

Winston P.A. Artificial Intelligence, Addison-Wesley, Reading, MA, 1984,

Woods W.A. “Transition Network Grammars for Natural Language Analysis,”
Communications of the ACM, 10:591-606, 1970.

