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1 A Belief Revision System Based on Relevance Logic and
Heterarchical Contexts

Belief revision is important in systems which have to make
conclusions based on partial evidence and might have to revise
such conclusions if an unexpected condition occurs. One of the
most primitive forms of belief revision is chronological
backtracking, which consists of changing the most recent decision
taken. Dependency-directed backtracking was proposed as an
alternative by [Stallman and Sussman, 19771. In this system,
each derived proposition has stored with it the set of all
propositions in its derivation -- its dependency record. When a
contradiction is found, dependency records are traced to find all
hypotheses upon which the contradiction relies, and heuristics
are used to rule out one of them. Doyle [Doyle, 1979] adds to
the dependency record of a proposition the set of other
propositions in the data base known to be incompatible with 1it.
This latter set is used to prevent two propositions known to be
incompatible from being believed at the same time. Uhen new
incompatibilities are recognized, dependency-directed
backtracking is used.

All these systems maintain one set of currently believed
propositions, the "in" set, all other propositions are equally
"out". ‘When backtracking causes a currently in hypothesis to be
put out, dependency records are used to decide which other
propositions must now be out, and which can be brought in.

We have worked out the underlying theory of a more flexible
belief revision system based on the relevance logics of [Anderson
and Belnap, 19751 as discussed by [Shapiro and Wand, 1976]. In
this system, cach proposition is of the form A, L, ¢, L, where A
is some formula (wff), L is an origin tag used to distinguish
hypotheses from derived propositions, and ¢ and r are sets of
hypotheses known as the core context (CC) of A, and the
restriction set (RS) of 4, respectively. Instead of marking each
proposition in or out, a current context of beliefs B will be
maintained. B is simply a set of hypotheses. Each proposition
Ay Ly ¢, £ 1s currently believed just in case ¢ i3 a subset of B
and r i1s disjoint from 3. Reasoning may be done on propositions
whether or not they are currently believed, because the rules of
inference specify how to calculate the origin tag, CC and RS of> a’




child proposition from its parent propositions. The rules of
inference also specify when two propositions may not be used
because their origin tags, CCs or R3s are incompatible.

The rules of inference of this system are presented in
[Martins and Shapiro, 19811, along with further discussions of
motivations and examples. Implementation of this system as part
of the SNePS deductive semantic network processing system will be
carried out in the next stage of this research project.

2 Bi-directional Inference

Over the past year, we have added a forward reasoning
facility to SNIP, the SNePS Inference Package, which previously
only had backward reasoning and a restricted forward reasoning
that was limited to making use of new information which is
relevant to previously asked questions (see [Shapiro, 19791]).

There is still only one class of rules -- any rule can be
used for forward as well as backward reasoning. There are two
ways of adding information to the network: BUILD adds the
information, but does not trigger forward inference; ADD adds
the information and triggers forward inference. There are also
two ways of asking for information: FIND finds only explicitly
stored information; DEDUCE triggers backward inference to help
answer the question.

SNIP is- implemented in MULTI [McKay and Shapiro, 19801, a
multi-processing system that provides a producer-consumer model
[Kaplan, 1973] of inference. If forward inference finds a
consumer interested in its new information, no other potential
consumers (rule antecedents) are looked for. Similarly, if
backward inference finds a producer with the required
information, no other potential producers (rule consequents) are
looked for. Thus, our combined forward/backward inference
provides the same savings of fan-out as bi-directional search
provides over uni-directional search. Ue therefore tern it
bi-directional inference. It is discussed more fully in
[Martins, Mckay and Shapiro, 19811].

Forward, backward and bi-directional inference are discussed
in a more general context in [3hubin, 1981], where they are
compared with data-flow, lazy evaluation and a proposed "bi-
directional computation."

3 Active Connectiocn Graphs

The producer-consumer nmodel of inference mentioned above is
implemented by a set of communicating MULTI processes which wmay
be viewed as an active version of predicate connection grapis
[Kowalski, 1975; Sickel, 1976]. This active connection graph
may also be viewed as an AHD/OR problem reduction zraph in which
the root node represents a query and rules are problen reductiol




operators. The system is designed so that if a2 node representing
some problem 1s about to create a node for a subproblem, and

here 1s another node already representing that subproblem, or
some umore general instance of it, the parent node can make use of
the extant node and so avoid solving the same problem again. Ir,
instead, the extant node is a more specific instance of the
proposed subproblen, the results already produced by it are
immediately available to the parent, and the nsw more Zeneral
node can supplant the older more specific node. This nethod
enables SHIP to handle recursive rules easily with no additional
mechanismn.

.Active connection graphs are described more fully in [licKay
and Shapiro, 19811 in a terminology abstracted from tne specifics
of the SHePS representation to make the results of this researct
more available to the general theorem-proving and deductive

uestion-answering community.

' Combining Path-Based and Hode-Based Inference

In [Shapiro, 19781, we discussed the difference betueen
path-based and node-based inference in semantic networks
zssentially, node-based inference involves deducing a structure
of nodes according to a rule which is, itself, a structure of
nodes used as a node-structure pattern. Path-based inference
involves deducing an arc between two nodes based on the existence
of a path of arcs between those same two nodes according to a
rule expressed as a path grammar.

e suggested that path-based inferences could be added to a
SHePS-like system by incorporating it into the network maten

el

routine. This has now been done by Rohini Srihari as a Master's
Project. In this system, path-based and node-based inferences
are integrated. A node-structure pattern might match a virtual
structure some of whose arcs of were deduced to exist by a
path—basedpinf erence perforned by the match routine. Sections of
the path used by the path-based inference might have been
constructed by an earlier node-based inference.

Motivations, the syntax of path-based inference rules,
examples, and implementation notes are in [Srihari, 1981].

5 Intensional Concepts in Propositional Semantic Hetworks

In [Haida and Shapiro, 1981], we discuss the proposition
that all nodes in a propositional semantic network represent
intensional concepts rather than extensions. This follows fromn
the Uniqueness Priuciple -- that every concept represented in a
semantic network is represented by a unique node =-- and from our
desire to use semantic networit £t¢ represent human “nouledage
structures rather tian events occurring in the real vorld.

This proposition has interesting implications For Lnovledas



representation and reasoning in deductive
Among Lhese arc a nice solution to teCartl 5 "telephone problen®
[HMeCarthy, 1979] -- knowing that ifary's telephone number is the
same as Hike's telephone number, from "Pat dialled ifike's
telepnone number™ e can infer that "Pat dialled liary's telephone
number™; but from "Pat knows liike's telephone number™, we cannot
infer that "Pat knows llary's telephone number"™. From the
intensional concept proposition, we conclude that ary's
telephone number and iiike's telephone number are different ,
intensional concepts and are, therefore, represented by different
nodes 1n the networlkt. The system also has a node representing
the (intensional) proposition that "Mary's telephone nunber" and
"lMike's telephone number" are co-referential. The system ca
also have a node~basad (or path-based) inference rule that if
referentially transparent predicate applies to some intensional
toncept, it also applies to any co-referential concept. That
rule and the information that "dial% is referentially transparent
will allow the dialling inference to be made, but since "know" is
not referentially transparent, the knowing inference will not be
made.

enantic networks.
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The intensional concept proposition makes referential
opacity the norm -- referential transparency is easily performed
vhere explicitly permitted. Systems that use extensional
representation must assume that referential transparency is the
norm and must block it in opaque contexts. This is considerably
more difficult,
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