T )

Department of Computer Science

STATE UNIVERSITY OF NEW YORK AT BUFFALO

COCCI: A DEDUCTIVE SEMANTIC NETWORK PROGRAM

FOR SOLVING MICROBIOLOGY UNKNOWNS

by

Stuart C. Shapiro

March 1981

Technical Report Number 173



COCCI: A Deductive Semantic Network Program
for Solving Microbiology Unknowns

Stuart C. Shapiro
Department of Computer Science
State University of New York at Buffalo
Amherst, New York 14226
February, 1981

Abstract

"You have been given a culture of one of nine cocci.
Identify it." COCCI is a program to solve this problem. To
identify the unknown, COCCI requests a human assistant to perform
tests and make observations and report the results to it. COCCI
consists of 14 specific facts and 17 deduction rules stored in
SNePS, a general purpose deductive semantic network processing
system, and a small ATN grammar for parsing and for generating
English from the semantic network. All of COCCI's reasoning and
interaction with. humans is driven by the general purpose
bi-directional inference sub-system of SNePS. This ‘paper
describes COCCI as anvillustration of deductive semantic networks
in general and SNEPS in particular. Specific points covered
include structure sharing, procedural attachment, generation

grammars and the structure of deduction rules.
Acknowledgements

A number of people have helped with the development of SNePS
over the years. I am particularly grateful to Don McKay, Joao
Martins and Gerard Donlon for their current work. Caren Shapiro

provided COCCI's domain, and a domain expert's critique.



rage ¢«

This work was supported in part by the National Science

Foundation under grants MCS78-02274 and MCS80-06314.
Introduction

SNePS [Shapiro 79al is a general purpose deductive semantic
network processing system. It is called a gsemantic network
partly for historical reasons, but also because it was designed
to reflect certain philosophical positions on the representation
of knowledge derived from understanding natural language. Some
of these positions will not concern us in this paper (but see

[Maida and Shapiro 81]). Two that will are the following.

It is my position that semantic networks use nodes
exclusively to represent "concepts" -- every individual, class,
proposition, etc. the system "knows" and about which it has
information and can reason. Although a labelled arc represents a
relationship -between the two nodés it connects, it does not
represent a proposition the system can discuss with a user or
about which it can reason. I have «called such relations,
represented by arcs, '"system relations" [Shapiro 711 to
distinguish them from the "conceptual relations" represented by
nodes. This stance is relevant to this paper because among the
propositions that can be stored in a semantic network are general
propositions such as, "Every organism is either gram positive or
gram negative" as opposed to specific facts such as "Yellow is a
color". General propositions can not only be known, they can be
used for reasoning. Since the reasoning I have been concerned

with is deductive rather than inductive, I call the network



raye o

representations of general propositions deduction rules. Since
general propositions are composed from other propositions, and
all are represented by nodes, SNePS deduction rules can be
composed of other deduction rules to any level or degree of
complexity. In this way, SNePS differs from other reasoning
systems that limit their rules to Horn clauses, production rules,

or the 1like.

Another philosophical stance 1is that the identifiers of
nodes are uninterpretable symbols. The meaning of a concept is
embedded in the entire structure of the network connected to the
node which represents it [Quillian 68]. In this way, SNePS
differs from the "semantic networks" of [Deliyanni and Kowalski
79] in which the node labelled "w(x)" is a Skolem function of the
node labelled "x" by dint of the syntactic structure of its

label.

SNePS is a general semantic network in the sense that it was
designed to be a system that could be used for experimenting with
various knowledge representations. The .only system relations
built in are those used to represent deduction rules, and they
were built in only so that an inference system could be written
to use the rules. (I still consider the inference system to be a
layer outside the core, basic, SNePS.) Generality extends to the
rules, so the representation of deduction rules was designed to
be as powerful as predicate calculus. In this way SNePSs differs
from ACT [Anderson 76}, NETL [Fahlman 791, and most

representation systems based on "IS-A" hierarchies.

Since SNePS was designed with natural language understanding



raye a

in mind, I was disturbed by the structural complexity needed to
represent general propositions such as, "The organism is exactly
one of the following nine: ... " using the standard binary
logical connectives, so SNePS uses set oriented, non-standard
connectives, some of which will be shown in this paper. In this
way, SNePS differs from other 1logically adequate semantic
networks such as thbse of Hendrix [Hendrix 79] and Schubert

[Schubert et al. 79]}.

This paper presents an example of using SNePS in a
particular domain, that of solving microbiology laboratory
unknowns. I have named this instance of SNePS cum facts and
rules, COCCI. Although COCCI's domain and performance is
somewhat reminiscent of MYCIN [Shortliffe 76], it is far less
ambitious. COCCI is not meant to be used Sy physicians (or even
microbiologists), does not have certainty factors, and does not
have a well developed explanation facility. (However, it does
exceed MYCIN in its rule syntax and the flexibility of its
inference control structure.) Indeed, the domain was chosen only
because of a locally available expert. COCCI is intended to be a
demonstration of the features and facilities of SNePS as a
general deductive semantic network, designed on the basis of the

principles outlined above.

The Domain

Figure 1 shows COCCI's domain. This figure was adapted from
a handout given to her laboratory class by Dr. Caren D. Shapiro

of the Biology Department of D'Youville College, Buffalo, New



rdaye D

IDENTIFICATION OF COCCI

GR
RE
ARA
MC ARRANGEMENT OXYGEN PIGMENTATION, COLOR  ORGANISM
T REQUIREMENT
I N
0
N
|->IN TETRADS--====m—e—e———— e >NON-PIGMENTED==—=—— >GAFFKYA
GP |
RO |->IN PACKETS-=====—=————————ee >PIGMENTED=-—======= >SARCINA
AS |
MI-|=->IN CHAINS—--==mom e e e e e >STREPTOCOCCUS
T | PYOGENES
I |
V |=>IN PAIRS-—-=cmeme e e >STREPTOCOCCUS
E | PNEUMONIAE
I
| | =>NON-PIGMENTED~~~—~ [
| | ~~>AEROBIC---| | ->MICROCOCCUS
| [ | ->PIGMENTED, YELLOW- |
[ | .
|->IN MASSES-| | ->PIGMENTED, GOLD->STAPHYLOCOCCUS
| | AUREUS
I |
| =>FACULTATIVE- | ->NON-PIGMENTED--->STAPHYLOCOCCUS
[ EPIDERMIDIS
|
GN | ->PIGMENTED, YELLOW-->MICROCOCCUS
RE CITREUS
AG
MA—==>IN PAIRS-=--me e e e S>NEISSERIA
T
I
\Y
E

Figure 1
Chart showing the possible organisms in the unknown problem

York. The students are given an unknown culturé in a petri dish,
and are required to figure out which of the nine microorganisms
listed in the figure is 1in the culture. The students make
observations and perform tests on the cultures, guided by the
information in the figure. To determine the gram reaction of the
organism and its arrangement (how cells clump together), the
student must first apply a gram stain. Oxygen requirement

indicates the atmosphere required for the organism to grow.



Page 6

Aerobic organisms require the presence of oxygen. Anaerobic
organisms (not included in this assignment) require the absence
of oxygen. Facultative organisms can grow in either environment.
Pigmentation of the cultures can be determined by looking at them
in the petri dish. Notice that some data is missing from the
chart. These observations are irrelevant for determining the
unknown. Also note two species of aerobic micrococci which the

students needn't differentiate more precisely.

COCCI simulates a laboratory student's decision making
processes, but requires a human assistant to perform the tests
and meke the observations. 1In designing COCCI, it was important
that the program not ask for the same observation more than once
(e.g. "Is it in masses?" and later "Is it in pairs?"), not ask
for an observation permaturely (e.q. asking for the gram
reaction before asking for a gram stain to be done), and not ask
for information it should already know is irrelevant (asking for
the color after being told the organism is non-pigmented). We
will see that these dependencies did not require special purpose
control structures to be programmed, but were embedded in the way
the deduction rules were expressed. This relies on SNePS' lack
of restrictions on the structure of deduction rules.

Essentially, a SNePS deduction rule can be a rule about rules.

Another design criterion of COCCI was that a human not
expert in SNePS could follow the reasoning. The SNePS system
does not yet have a fully developed explanation facility like
MYCIN's [Shortliffe 76], but it has long had a trace facility for
use in debugging deduction rules and the inference system itself.

This trace facility prints the relevant antecedents and



rage ¢/

consequents of a rule whenever an inference is made. By making
this trace conditional, so that not all inferences need be
traced, and by sending the output through a generating Augmented
Transition Network [Shapiro, 79b], the reasoning can easily be
followed. Figure 2 shows a session with COCCI. 1In subsequent

sections, we will explain how this session came to be.
Representation Schemata

The semantic network representation of the information in
the dumain was designed specifically for this domain. The ad hoc
design criteria were: 1) wusing a minimal number of arcs per
assertion; 2) using different case frames for different
underlying predicates to simplify the dedﬁction rules; 3) using
a small set of different arc 1labels to simplify the generation
grammar, yet big enough so that different sentence frames are
distinguished. Alternatively, we could have used a
repfesentation designed for general English, but decided not to

pursue that for this demonstration project.

Figure 3 shows the six different case frames used for
specific information, and the sentences generated for each one by
the generator. Node M1l asserts that an organism has a certain
property. M2 asserts that an organism is in a certain «class of
organisms. Note that the organism is a mass, not an individual.
M3 asserts that an individual property is a member of a class of
properties. M4 asserts that a culture is prepared for making an
observation. This proposition is crucial for COCCI's ordering of

its requests. M5 and M6 are function nodes, our version of



rage o

*% (: UNKNOWNl IS ASSIGNED)

PLEASE DO A GRAM STAIN ON UNKNOWN1

PRESS CARRIAGE RETURN WHEN YOU'RE READY TO GO ON.
* %

SINCE

A GRAM STAIN IS DONE ON UNKNOWNI

WE INFER

UNKNOWN1 IS PREPARED FOR DETERMINING ARRANGEMENT

WHAT IS THE ARRANGEMENT OF UNKNOWN1 ?
PLEASE TYPE THE APPROPRIATE NUMBER BETWEEN 1 AND 6 --

1) IN MASSES
2 ) IN PAIRS
3) IN CHAINS
4 ) IN PACKETS
5) IN TETRADS
6 ) NOT APPLICABLE OR UNKNOWN
*% ]
SINCE
IN PAIRS IS AN ARRANGEMENT
WE INFER
THE ARRANGEMENT OF UNKNOWN1 IS SAID NOT TO BE IN PAIRS
SINCE
IN CHAINS IS AN ARRANGEMENT
WE INFER
THE ARRANGEMENT OF UNKNOWN1 IS SAID NOT TO BE IN CHAINS
SINCE
IN PACKETS IS AN ARRANGEMENT
WE INFER
THE ARRANGEMENT OF UNKNOWN1 IS SAID NOT TO BE IN PACKETS
SINCE
IN TETRADS IS AN ARRANGEMENT
WE INFER
THE ARRANGEMENT OF UNKNOWN1 IS SAID NOT TO BE IN TETRADS
SINCE
THE ARRANGEMENT OF UNKNOWN1l IS SAID TO BE IN MASSES
WE INFER
UNKNOWN1 IS IN MASSES
SINCE
A GRAM STAIN IS DONE ON UNKNOWNI
WE INFER

UNKNOWN1 IS PREPARED FOR DETERMINING GRAM REACTION

WHAT IS THE GRAM REACTION OF UNKNOWN1 ?
PLEASE TYPE THE APPROPRIATE NUMBER BETWEEN 1 AND 3 --
1) GRAM NEGATIVE

2 ) GRAM POSITIVE
3) NOT APPLICABLE OR UNKNOWN
*%k 9
SINCE
GRAM NEGATIVE IS A GRAM REACTION
WE INFER
THE GRAM REACTION OF UNKNOWN1 IS SAID NOT TO BE GRAM NEGATIVE
SINCE
THE GRAM REACTION OF UNKNOWN1 IS SAID TO BE GRAM POSITIVE

Figure 2
A sample session part 1



rage

WE INFER

UNKNOWN1 IS GRAM POSITIVE

SINCE

UNKNOWN1 IS ASSIGNED

WE INFER

UNKNOWN1 IS PREPARED FOR DETERMINING PIGMENTATION

WHAT IS THE PIGMENTATION OF UNKNOWN1l ?
PL,EASE TYPE THE APPROPRIATE NUMBER BETWEEN 1 AND 3 -

1 ) NON-PIGMENTED
2 )  PIGMENTED
3 )  NOT APPLICABLE OR UNKNOWN
**l
SINCE
PIGMENTED IS A PIGMENTATION
WE INFER
THE PTGMENTATION OF UNKNOWN1 IS SAID NOT TO BE PIGMENTED
SINCE
THE PIGMENTATION OF UNKNOWN1 IS SAID TO BE NON-PIGMENTED
WE INFER
UNKNOWN1 IS NON-PIGMENTED
SINCE
UNKNOWN1 IS5 ASSIGNED
WE INFER

UNKNOWN1 IS PREPARED FOR DETERMINING OXYGEN REQUIREMENT

WHAT IS THE OXYGEN REQUIREMENT OF UNKNOWN1l ?
PLEASE TYPE THE APPROPRIATE NUMBER BETWEEN 1 AND 4 --

1) FACULTATIVE

2 ) ANAEROBIC

3) AEROBIC

4 ) NOT APPLICABLE OR UNKNOWN
*% ]
SINCE
ANAEROBIC IS AN OXYGEN REQUIREMENT
WE INFER

THE OXYGEN REQUIREMENT OF UNKNOWN1 IS SAID NOT TO BE ANAEROBIC
SINCE

AEROBIC IS AN OXYGEN REQUIREMENT

WE INFER

THE OXYGEN REQUIREMENT OF UNKNOWN1l IS SAID NOT TO BE AEROBIC
SINCE

THE OXYGEN REQUIREMENT OF UNKNOWN1l IS SAID TO BE FACULTATIVE
WE INFER

UNKNOWN1 IS FACULTATIVE

SINCE

UNKNOWN]1 IS NON-PIGMENTED AND

UNKNOWN1 IS FACULTATIVE AND

UNKNOWN1 IS IN MASSES AND

UNKNOWN1 IS GRAM POSITIVE

WE INFER

UNKNOWN1 IS STAPHYLOCOCCUS EPIDERMIDIS

SINCE

UNKNOWN1 IS STAPHYLOCOCCUS EPIDERMIDIS

WE INFER

UNKNOWN1 IS NOT GAFFKYA AND

Figure 2
A sample ®ession part 2



Page 10

UNKNOWN1 IS NOT SARCINA AND

UNKNOWN1 IS NOT STREPTOCOCCUS PYOGENES AND
UNKNOWN1 IS NOT STREPTOCOCCUS PNEUMONIAE AND
UNKNOWN1 IS NOT MICROCOCCUS AND

UNKNOWN1 IS NOT STAPHYLOCOCCUS AUREUS AND
UNKNOWN1 IS NOT MICROCOCCUS CITREUS AND
UNKNOWN1 IS NO7T NEISSERIA

UNKNOWN1 IS ASSIGNED AND

UNKNOWN1 IS PREPARED FOR DETERMINING ARRANGEMENT AND
UNKNOWN1 IS IN MASSES AND

THE ARRANGEMENT OF UNKNOWN1 IS SAID NOT TO BE IN PAIRS AND
THE ARRANGEMENT OF UNKNOWN1l IS SAID NOT TO BE IN CHAINS AND
THE ARRANGEMENT OF UNKNOWN1 IS SAID NOT TO BE IN PACKETS AND
THE ARRANGEMENT OF UNKNOWN1 IS SAID NOT TO BE IN TETRADS AND
UNKNOWN1 IS PREPARED FOR DETERMINING GRAM REACTION AND
UNKNC'IN1 1S GRAM POSITIVE AND

THE GRAM REACTION OF UNKNOWN1 IS SAID NOT TO BE GRAM NEGATIVE AND
UNKNOWN1 1S PREPARED FOR DETERMINING PIGMENTATION AND
UNKNOWN1 IS NON-PIGMENTED AND

THE PIGMENTATION OF UNKNOWN1l IS SAID NOT TO BE PIGMENTED AND
UNKNOWN1 IS PREPARED FOR DETERMINING OXYGEN REQUIREMENT AND
THE OXYCEN REQUIREMENT OF UNKNOWN1l IS SAID NOT TO BE AEROBIC AND
UNKNOWN1 IS FACULTATIVE AND

UNKNOWNL1 IS STAPHYLOCOCCUS EPIDERMIDIS AND

UNKNOWN1 IS NOT GAFFKYA AND

UNKNOWN1 IS NOT SARCINA AND

UNKNOWN1 IS NOT STREPTOCOCCUS PYOGENES AND

UNKNOWN1 IS NOT STREPTOCOCCUS PNEUMONIAE AND

UNKNOWN1 IS NOT MICROCOCCUS AND

UNKNOWN1 IS NOT STAPHYLOCOCCUS AUREUS AND

UNKNOWN1 IS NOT MICROCOCCUS CITREUS AND

UNKNOWN1 IS NOT NEISSERIA

Figure 2
A sample session Conclusion
procedural attachment. When the inference system needs to
determine the validity of a function node, it does so by
executing the function associated with the atom at the end of the
NAME: auxiliary arc. It 1is the presence of such an arc that
declares the node to be a function node. M5 evaluates true when
the specified test has been done on the organism. M6 evaluates
true when the human assistant has reported that the indicated

culture has the indicated property.

Building E



fayc a4

(d) UNKNOWN IS PREPARED FOR
DETERMINING PIGMENTATION

k
REQUEST-TEST (GRAM/ STAIN NKNOWN1

(e) A GRAM STAIN IS DONE ON UNKNOWN1

k
REQUEST-RESULT @OLOID @KNOWNl YELLO@

(f) THE COLOR OF UNKNOWN1l IS SAID TO BE YELLOW

Figure 3
The case frames used by COCCI

To enter the data into the SNePS semantic network, we first
build some pattern nodes that will each be used in several rules.
A pattern node for the open statement that some culture is gram
positive is built by the SNePS User Language (SNePSUL) command:
** ((BUILD OBJ $X PROP GRAM/ POSITIVE) = GRMPOSPAT)

M7
The "**" 4jis the system prompt. "/" indicates that the next

character (in this case a blank) is an alphabetic character and



Page 12

can be included in an atom's print name. $X causes a new
variable node to be created and made the value of the SNePSUL
variable X. M7 is the node build by the BUILD command. This
node has been retained as the value of the SNePSUL variable
GRMPOSPAT. Fiqure 4 is a pictorial representation of the network
built by this command. V1 is the variable node created to be the
value of X. The system knows it to be a variable node, not

because of the "V" in its identifier, but because of an auxiliary

arc (not shown) hanging from it.

E

Figure 4
The network for the GRMPOSPAT pattern

For a more user-friendly output, we can pass the value of
the BUILD command to the sentence generator with the SNePSUL
function SURFACE. This is shown in the next two pattern building
commands.

** (SURFACE (BUILD OBJ *X PROP IN/ CHAINS) = CHAINPAT)

V1l IS IN CHAINS
** (SURFACE (BUILD OBJ *X PROP IN/ PAIRS) = PAIRPAT)

V1l IS IN PAIRS

The "*" macro character causes the current value of the indicated
SNePSUL variable to be used. One pattern like these is built for

each of the twelve properties used in this domain.

L {bing the O o



‘rage 413

To describe the organisms to COCCI, we build SNePS deduction

rules like these two:

** (SURFACE (BUILD AVB *X THRESH 1
ARG (BUILD MIN 2 MAX 2
ARG *GRMPOSPAT ARG *CHAINPAT)
ARG (BUILD OBJ *X CLASS STREPTOCOCCUS/ PYOGENES)
= STREPPY))
FOR EVERY V1, V1 IS STREPTOCOCCUS PYOGENES IF AND ONLY IF
V1l IS IN CHAINS AND
V1l IS GRAM POSITIVE
**(SURFACE (BUILD AVB *X THRESH 1
ARG (BUILD MIN 2 MAX 2
ARG *GRMPOSPAT ARG *PAIRPAT)
ARG (BUILD OBJ *X CLASS STREPTOCOCCUS/ PNEUMONIAE)
= STREPN))
FOR EVERY V1, V1 IS STREPTOCOCCUS PNEUMONIAE IF AND ONLY IF
V] IS IN PAIRS AND
V1l IS GRAM POSITIVE
AVB is an arc from a rule node to a variable universally bound in
the rule. THRESH-1-ARG-...-ARG is a case frame asserting the
mutual equivalence of all the ARGuments. MIN-n-MAX-n-ARG-...-ARG
is a case frame asserting the conjunction of the n ARGuments.
The representation of deduction rules is discussed more fully in
[Shapiro 77] and [Shapiro 79a]. Notice that the pattern node
GRMPOSPAT is used in both these rules. This is an example of
structure sharing in semantic networks. Structure sharing not
only saves space 1in the network, it also saves time during
deduction since derived instances of a pattern node are
immediately available to all rules which share the node.

GRMPOSPAT is shared among eight rules in this domain.

One rule like these two is built for each of the organisms.
SNePSUL variables were set to the organism patterns so that COCCI
could be told that every culture is exactly one of the given

organisms:



Page 14

** (SURFACE (BUILD AVB *X MIN 1 MAX 1
ARG *GAFFKYA ARG *SARCINA ARG *STREPPY ARG *STREPN
ARG *MICROCOCCUS ARG *STAPH-AUREUS ARG *STAPH-EPI
ARG *MICRO-CITREUS ARG *NEISSIRIA))
EITHER V1 IS NEISSERIA OR
V1l IS MICROCOCCUS CITREUS OR
V1l IS STAPHYLOCOCCUS EPIDERMIDIS OR
V1l IS STAPHYLOCOCCUS AUREUS OR
V1l IS MICROCOCCUS OR
V1l IS STREPTOCOCCUS PNEUMONIAE OR
V1l IS STREPTOCOCCUS PYOGENES OR
V1l IS SARCINA OR
V1 IS GAFFKYA
The MIN-1-MAX-1-ARG-...-ARG case frame asserts that exactly one

of the ARGuments is true.

- : zing .

We must tell COCCI what properties are together in what

categories:

* % (SURFACE (BUILD MEM (GRAM/ POSITIVE GRAM/ NEGATIVE)
CLASS GRAM/ REACTION))

GRAM NEGATIVE AND GRAM POSITIVE ARE GRAM REACTIONS

The node built here is not a rule, but a specific fact. However,
just as in the rule nodes, this node has more than one descending
arc with the same label (MEM). This node is equivalent to
building two nodes, one for gram positive's being a gram
reaction, the other for gram negative's being a gram reaction.
What is significant is that a node exists with a MEM arc to the
property and a CLASS arc to the property category. One node like

this is built for each of the five property categories. These

are the only specific facts needed for this problem.

An important fact about the property categories is when the
culture is prepared for observing which property it has in the

category. Pigmentation can be observed as soon as the unknown is



oS

rage 1>

assigned:

*% (SURFACE (BUILD AVB *X

ANT (BUILD OBJ *X PROP ASSIGNED) = ASSIGNPAT

CQO (BUILD OBJ *X DET PIGMENTATION)))
FOR EVERY V1, IF V1 IS ASSIGNED

THEN V1 IS PREPARED FOR DETERMINING PIGMENTATION

COCCI is also allowed to ask for oxygen requirement immediately,
but it doesn't make sense to ask for the color of an unknown
unless it is known to be pigmented:
** (SURFACE (BUILD AVB *X ANT *ASSIGNPAT

CQ (BUILD ANT *PIGPAT

CQ (BUILD OBJ *X DET COLOR))))
FOR EVERY V1, IF V1 IS ASSIGNED
THEN IF V1 IS PIGMENTED
THEN V1 IS PREPARED FOR DETERMINING COLOR
COCCI will be started by asserting that an unknown is

assigned and having this assertion trigger forward inference.
The first rule shown above will allow the deduction that COCCI
can ask about the unknown's pigmentation. We will shortly see
how the request itself 1is triggered. The second rule, however,
only allows the deduction of another rule, namely one that says
that if the unknown is pigmented, COCCI can ask for its color.
The forward deduction of this rule causes a backward deduction of
its antecedent to be started. This is an example of SNePS'
bi-directional inference [Martins, et al. 8l]l. It may be that
COCCI does not yet know whether or not the unknown is pigmented.
In that case the backward deduction will be guspended, to be
resumed if and when the unknown is determined to be pigmented.
Notice the similarity of this to the creation of "demons". 1In

Figure 2, since the unknown was said to be non-pigmented, this

demon was never awakened, and COCCI never asked for the unknown's



Page 16
color.

Before an unknown is prepared for determining gram reaction,
COCCI must ask its assistant to do a gram stain. This rule uses
a function node:

** (SURFACE (BUILD AVB *X ANT *ASSIGNPAT

CQ (BUILD ANT (BUILD NAME: REQUEST-TEST OBJ *X
TEST GRAM/ STAIN) = GRAM-STAIN
CQ (BUILD OBJ *X DET GRAM/ REACTION))))
FOR EVERY V1, IF V1 IS ASSIGNED
THEN IF A GRAM STAIN IS DONE ON V1
THEN V1 IS PREPARED FOR DETERMINING GRAM REACTION

After an unknown is assigned, backward deduction is begun on the
antecedent of the embedded rule. However, the SNePS inference
system recognizes that this antecedent is a function node and
executes it. We will discuss function node functions more fully
when we discuss REQUEST-RESULT below. REQUEST-TEST prints the
message shown in Figure 2, and after the assistant types a
carriage return, REQUEST-TEST terminates in a way that signals
the inference system that the function node evaluated to frue.

At that point the unknown is deduced to be prepared for

determining gram reaction.

Arrangement also requires a gram stain. The rule is similar

to the one for gram reaction and will not be shown here.

T {nq

Some of the information we have discussed so far is specific
to the particular organisms included in this example. Some of
the information is specific to the property categories relevant

to this example. The two rules discussed in this section are



Page 17

specific only to the general class of laboratory unknown

problems.

The first rule says that if an unknown is prepared for
making an observation, then COCCI <can ask the assistant to make
the observation, and should believe what the assistant reports:

* % (SURFACE (BUILD AVB ($0 $C)
ANT (BUILD OBJ *O DET *C)
CQ (BUILD AVB $P
ANT (BUILD MEM *P CLASS *C)
CQO (BUILD THRESH 1
ARG ((BUILD OBJ *O VALUE *P DIM *C)
(BUILD OBJ *O PROP *P))))))
FOR EVERY V2 AND V3, IF V2 IS PREPARED FOR DETERMINING V3
THEN FOR EVERY V4, IF V4 IS A V3
THEN V2 IS V4 IF AND ONLY IF
THE V3 OF V2 IS SAID TO BE V4
This rule is easier to understand fully instantiated:
IF UNKNOWN1 IS PREPARED FOR DETERMINING COLOR
THEN IF GOLD IS A COLOR
THEN UNKNOWNl IS GOLD IF AND ONLY IF
THE COLOR OF UNKNOWN1l IS SAID TO BE GOLD
When an unknown is deduced to be ready for making an observation
on a category by the rules we saw above, this rule collects the
properties of the category, and deduces that the unknown has the
property if the assistant says SOy but doesn't if the assistant
denies it. (The rule used in the run of Figure 2 did not use the
THRESH, but just had "IF THE V3 OF V2 IS SAID TO BE V4 THEN V2 IS
V4".) The node built by (BUILD OBJ *O VALUE *P DIM *C) is not a
function node, but matches the REQUEST-RESULT function node in

the rule we will see next. In backward inference, a node matches

another even if that node has extra arcs.

The assistant only reports the properties that the unknown

has. COCCI deduces that the assistant means that the unknown



rage 1o

doesn't have the other properties in each category because of
this rule:
** (SURFACE (BUILD AVB ($C $0)
CQ (BUILD PEVB $P EMAX 1
&ANT (BUILD CLASS *C MEM *P)
CO (BUILD NAME: REQUEST-RESULT OBJ *0
DIM *C VALUE *P))))

FOR EVERY V5 AND V6, THERE IS AT MOST ONE V7 SUCH THAT

V7 IS A V5 AND

THE V5 OF V6 IS SAID TO BE V7
Again, this rule is more easily understood partially
instantiated:
THERE IS AT MOST ONE V7 SUCH THAT

v7 IS A COLOR AND

THE COLOR OF UNKNOWN1l IS SAID TO BE V7
This rule uses a maximal numerical quantifier [Shapiro 79].
When triggered by the previous rule, V5 and V6 will be
instantiated, so let's consider the partially instantiated
version. The inference system creates backward inference queries
for all instances of V7 IS A COLOR and for all instances of THE
COLOR OF UNKNOWNl1 IS SAID TO BE V7. The former returns all
colors. The latter, however, 1is recognized to be a function
node. As we shall see, the REQUEST-RESULT function queries the
assistant, and is told what color UNKNOWN1 is, say YELLOW. The
function node then evaluates to true in its substitution instance
of V7 bound to YELLOW. This information 1is sent up to the
previous rule which deduces that UNKNOWN1l IS YELLOW, and also
triggers the maximal parameter of the numerical quantifier,
causing the earlier rule to be told that the assistant reported

UNKNOWN1 not to be the other colors. That rule will then deduce

that UNKNOWN1 IS NOT the other colors.

SNePS contains facilities for making it easy to write



Page 19

function node functions. The code for REQUEST-RESULT is shown in
Figure 5. Within the body of the function, the arc labels of the
arcs emanating from the function node (OBJ, DIM and VALUE) are
treated as lambda variables. These have as their values the
constant nodes their arcs go to, or the nodes their variables are
bound to in case of an arc going to a variable node. The
function ISBOUND? returns T if its variable is bound to a
constant node, and NIL if the arc goes to a free variable. BINDQ
sets a variable to a constant in such a way that the inference
system also binds the variable to the constant. (SUCCEED TRUE)
causes the function node to evaluate to true in the current
substitution, and (SUCCEED FALSE) causes it to evaluate to false.
The function FAIL causes no value to be returned -- the function
node is suspended like a normal antecedent that found no match in

the network.

The form

(SNOC (STRIP (FIND (MEM- CLASS) (" DIM)))
'"NOT/ APPLICABLE/ OR/ UNKNOWN)

uses the SNePSUL function FIND to retrieve from the network all
the properties in the category which is the LISP value of DIM
(Remember, that is the network node bound to the variable node V5
in the current instance of the function node.), and appends to
this list the NONE-OF-THE-ABOVE catchall for presentation to the

assistant.

When the assistant responds with a number, as was shown in
Figure 2, REQUEST-RESULT succeeds in the proper binding of V7,

and the inference system resumes.



Page 20

(DP REQUEST-RESULT (OBJ DIM VALUE)
(IF (AND (ISBOUND? OBJ) (ISBOUND? DIM)
(NOT (ISBOUND? VALUE)))
(PROG (N PROPS)
(SETQ
N (LENGTH
(SETQ
PROPS (SNOC
(STRIP (FIND (MEM- CLASS) (M DIM)))
INOT/ APPLICABLE/ OR/ UNKNOWN))))
(PRIN3 <> "WHAT IS THE" *DIM OF *OBJ ? <>
"PLEASE TYPE THE APPROPRIATE NUMBER BETWEEN 1 AND"
*N /— <)
(FOR I FROM 1 TO N
(PRIN3 %5 *I /) %2 * (ARGN PROPS I) <>))
(REPEAT (ANS)
(SETQ ANS (READ))
UNTIL (IF (EQ ANS N) (FAIL 'UNKNOWN))
UNTIL (IF (AND (FIXP ANS)
(GREATERP ANS -1)
(LESSP ANS N))
(BINDQ VALUE (ARGN PROPS ANS))
(SUCCEED TRUE)
T)
(PRIN3 "PLEASE JUST TYPE AN INTEGER BETWEEN
1 AND" *N)))))

Figure 5
The code for REQUEST-RESULT

Parsi ; ‘] ) Traci

Figure 2 begins with the input (: UNKNOWNl IS ASSIGNED).
The SNePSUL function ":" passes its argument to an ATN parser.
In this case, an action on on ATN arc evaluates the SNePSUL form
(ADD OBJ UNKNOWN1 PROP ASSIGNED). ADD builds a node, triggers
forward inference and returns all nodes added to the network as a
result. The grammar passes these to the generating sub-network

which produces the last sentence shown in Figure 2.

The generation grammar consists of two parts. One part
generates the framework of a sentence expressing a SNePS
deduction rule. We have seen examples of these throughout this

paper. This section of the grammar is designed for the



Page 21

quantifiers and connectives used in SNePS and has been used in

several different domains.

The other part of the generation grammar was designed
specifically for this domain and generates sentences for the

atomic proposition case frames shown in Figure 3.

The inference tracing function 1is called whenever a rule
successfully deduces one of its consequences. It is passed the
antecedents that were found to hold, the consequents being
deduced and a substitution giving the proper instance of the
rule. A switch determines whether the tracing function will do
nothing, print the antecedents and consequents in a GSNePS
internal format, or use SURFACE to print them. To produce Figure
2, SURFACE was used. The trace can also be conditional. To
reduce the length of Figure 2, the trace function only printed
when the consequent was an atomic proposition, the negation of an

atomic proposition or the conjunction of such propositions.
Conclusions

The SNePS system consists of a fully indexed semantic
network data base, a bi-directional inference system which
operates according to deduction rules stored in the network using
a set of non-standard quantifiers and propositional connectives,
an interpreter for parsing-generating grammars, and a flexible

tracing package.

SNePS is currently implemented in the ALISP dialect of LISP

and runs on a CYBER 174 under the NOS operating system. Copies



rage <«

of the system are available from the author. Activity is
currently planned or underway to translate SNePS into MACLISP and

INTERLISP.

We have seen how SNePS can be used to impliment COCCI, a
program for solving microbiology laboratory unknown problems.
For such purposes, SNePS may be considered to be an Al

programming system or a system for building expert systems.

References

l. anderson, J. R. Language, Memory, and Thought. Lawrence
Erlbaum, Hillsdale, NJ, 1976.

2. Deliyanni, A. and Kowalski, R. A. Logic and semantic

networks. CACM 22, 3 (March 1979), 184-192.

3. Fahlman, S. E. NETL: A System for Representing and Using
Real-World Knowledge, MIT Press, Cambridge, MA, 1979.

4. Hendrix, G. G. Encoding knowledge in partitioned networks.
In Findler, N. V., ed. Agsociative Networks: The

Representation and Use of Knowledge by Computers, Academic
Press, New York, 1979, 51-92.

5. Martins, J. P., McKay, D. P., and Shapiro, S. C.
Bi-directional inference. Department of Computer Science,

SUNY at Buffalo, Amherst, NY, 1981.

6. Maida, A. S. and Shapiro, S. C. Intensional concepts in
propositional semantic networks. Department of Computer

Science, SUNY at Buffalo, Amherst, NY, 1981.



7.

10.

11.

12,

13.

rade <o

Quillian, M. R. Semantic memory. In Minsky, M., ed.

Semantic Information Processing, MIT Press, Cambridge, MA,
1968, 227-270.

Schubert, L. K., Goebel, R. G., and Cercone, N. J. The
structure and organization of a semantic net for

comprehension and inference. In Findler, N. V., ed.,

Associative Networks: The Representation and Use of

Knowledge by Computers, Academic Press, New York, 1979,
121-175.

Shapiro, S. C. A net structure for semantic information
storage, deduction and retrieval. Proc. 2nd. IJCAI, The

British Computer Society, London, England, 1971, 512-523.

Shapiro, S. C. Representing and locating deduction rules
in a semantic network. Proc. Workshop on Pattern-Directed
Inference Systems. SIGART Newsletter, 63 (June 1977) ,
14-18.

Shapiro, S. C. The SNePS semantic network processing
system. In Findler, N. V., ed. Associative Networks: The

Representation and Use of Knowledge by Computers, Academic
Press, New York, 1979, 179-2063.

Shapiro, S. C. Generalized augmented transition network
grammars for generation from semantic networks. Proc. l17th

Annual Meeting of the ACL. U. of California at San Diego,
August, 1979, 25-29.

Shapiro S. C. Numerical quantifiers and their use in



14,

ragye <&

reasoning with negative information. Proc. _Sixth IJCAIL,

Computer Science Dept., Stanford U., 1979, 791-796.

Shortliffe, E. H. Computer-Based Medical Consultations:

MYCIN. American Elsevier, New York, 1976.



