Relational Databases

Jan Chomicki
University at Buffalo

Jan Chomicki () Relational databases 1/18

Relational data model

Domain
@ domain: predefined set of atomic values: integers, strings,...
@ every attribute value comes from a domain or is null (null is not a value)

@ First Normal Form: domains consist of atomic values

Tuple (row)
@ tuple: a sequence of values and nulls

@ tuple arity: the number of values in the sequence (including nulls)

Relation
@ relation name, e.g., Employee

@ relation schema: finite set of attributes (column labels) and associated
domains, for example

Name:String, Salary:Decimal, Age:Integer

@ relation instance: finite set of tuples conforming to the schema.

Jan Chomicki () Relational databases 2 /18

Schema vs. instance

Schema
@ rarely changes
@ when it does, database needs to be reorganized

@ used to formulate queries

Instance
@ changes with update transactions

@ used to evaluate queries

Notation
An instance of a schema R is denoted r. J

We will need the schema vs. instance distinction in discussing integrity constraints
and query results.

Jan Chomicki () Relational databases 3/18

Integrity constraints

Logical conditions that have to be satisfied in every database instance.

Role of constraints
@ guarding against entering incorrect data into a database (data quality)
@ providing object identity (key and foreign key constraints)
@ representing relationships and associations

@ helping in database design

DBMS support for constraints
@ all declared constraints are checked after every transaction

@ if any constraint is violated, the transaction is backed out

o typically SQL DBMS support only limited kinds of constraints
keys, foreign keys, CHECK constraints

Jan Chomicki () Relational databases 4 /18

Key constraints

Key constraint of a relation schema R
A set of attributes S (called a key) of R. J

An instance r satisfies a key constraint S if r does not contain a pair of tuples
that agree on S but disagree on some other attribute of R.

Formally: for each two tuples t; € r, t, € r
if t1[S] = t2[S], then t1[A] = t2[A] for every attribute A in R.

Jan Chomicki () Relational databases 5/18

Properties of keys

Adequacy

@ uniqueness of key values should be guaranteed by the properties of the
application domain

@ in other words: it is an error to have different tuples (in the same relation)
with the same key values

@ a key should be as small as possible (good database design)

Minimality

@ no subset of a key can also be designated a key

Multiple keys
@ there may be more than one key in a relation schema

@ one is selected as the primary key:

cannot be null (entity integrity)
typically used in indexing

Jan Chomicki () Relational databases 6 /18

Relational model is value-based

No duplicates

There cannot be two different “objects” (here: tuples) whose all attribute values
are pairwise equal.

No pointers

The only way to reference an “object” (tuple) is by providing its key value. J
No notion of location

It is not possible to refer to the location of an object (tuple). J

These properties are not shared by the ER model, object-oriented models, XML
etc.

Jan Chomicki () Relational databases 7 /18

Foreign keys

Relation schemas Ry, R, (not necessarily distinct).

Foreign key constraint

A pair of sets of attributes (51, 55) such that:
@ 51C R, S%ChR
@ 5 is a key of Ry

@ the number of attributes and their respective domains in S; and S, are the
same.

A pair of instances (r, r») satisfies a foreign key constraint (51, S)

if for every tuple t; € ry, t1[S1] = t2[Sz] for some tuple ty € ry or t1[51]
is null.

A primary key (or a part thereof) can be a foreign key at the same time (but then
it can't be null).

Jan Chomicki () Relational databases 8 /18

Other kinds of integrity constraints?

Functional dependencies J

@ generalize key constraints

Inclusion dependencies
@ generalize foreign key constraints J
Multivalued dependencies J

All rarely supported by current DBMS.

Jan Chomicki () Relational databases 9/18

Logical conditions

General conditions
@ essentially queries

@ shouldn’t evaluate to False in any valid instance

"I'm willing to admit that | may not always be right, but | am never
wrong."”

Samuel Goldwyn

Scope
@ can be associated with attributes, tuples, relations, or databases
e SQL DBMS often implements only tuple-level conditions (CHECK constraints)

Jan Chomicki () Relational databases 10 / 18

Relational query languages

Relational algebra
@ a set of algebraic operator

@ each operator takes one or two relations as arguments and returns a relation
as the result

@ operators can be nested to form expressions

@ procedural query language: expressions describe how the query can be
evaluated

Relational calculus
@ a logic language: expressions involve Boolean operators and quantifiers

@ declarative query language: expressions do not describe how to evaluate the
query
@ we will not talk about it

SQL

@ a mix of relational algebra and logic (procedural/declarative)

@ the standard query language of the existing DBMS.
/1

Subtle issues

Nulls

@ relational algebra does not allow nulls
@ SQL does

Duplicates
o relational algebra operates on sets and does not allow duplicates
@ SQL allows duplicates and operates on multisets (bags)

@ duplicates irrelevant for most queries

Order

@ neither relational algebra nor SQL can specify order within sets of tuples

@ in SQL top-level query results can be ordered
but not in subqueries

Jan Chomicki () Relational databases 12 /18

Basic operators

Set operators
@ union

@ set difference

Relational operators
@ Cartesian product
@ selection

@ projection

@ renaming.
v
This is a minimal set of operators. J
13/ 18

Union and difference

Union (U) of Ry and R,
e arity(Ry U Ry) = arity(Ry) = arity(R»)
etecnUnifftenrnort € n.

Difference (—) of Ry and R;
e arity(Ry — Ry) = arity(Ry) = arity(R»)
oeten—niftenrnandtéenr.

The arguments of union and difference need to be compatible. J

Compatibility of Ry and R,
e arity(Ry) = arity(R»)
@ the corresponding attribute domains in R; and R, are the same

@ thus compatibility of two relations can be determined solely on the basis of
their schemas (compile-time property).

Jan Chomicki () Relational databases 14 /18

Cartesian product of R; and R»

arity(Rl) = kyq, arity(Rg) = ko J

Cartesian product(x)

o arity(Ry x Ry) = arity(Ry) + arity(R>)
@ ten X niff:

the first k; components of t form a tuple in r1, and
the next ko components of t form a tuple in ra.

15/ 18
Selection

Selection condition E built from:
@ comparisons between operands which can be constants or attribute names
@ Boolean operators: A (AND), Vv (OR), = (NOT).

Selection og(R)
e arity(ce(R)) = arity(R)
o t € og(r)iff t € rand t satisfies E.

Jan Chomicki () Relational databases 16 / 18

Projection

A1, ..., A distinct attributes of R. J

Projection ma, . a,(R)

o arity(ra,_a(R)) = k
o t €ma,,. alr)iff for somes € r, t[A;...Aq] = s[A1... Aq].

Renaming
Ai,..., A, attributes of R
Bi,..., B, new attributes

Renaming R(B, ..., B,)
e arity(R(Bu,...,B,)) = arity(R) = n,
o ter(B,...,B)iff forsomes e r, t[By... By =s[A1...An

Jan Chomicki () Relational databases

Derived operators

Q Intersection.
@ Quotient.
@ 0-join.

@ Natural join.

Jan Chomicki () Relational databases

Intersection

Intersection
o arity(R1 N Ry) = arity(Ry) = arity(R»)
etennNnmniffternandte n.

Intersection is a derived operator:

RiNR, = Rl—(Rl—Rz).

Jan Chomicki () Relational databases

Quotient

A1, ..., Anik: all the attributes of Ry

Apni1, ..., Apsk: all the attributes of R,
r» nonempty.

Quotient (division)
o arity(Ry + R2) = arity(Ry) — arity(R2) = n
@ tenn +niff for all s € rn there is a w € r; such that

W[A1 .. An] = t[Al e An], and
W[A,H_l 000 An+k] = S[A,H_l 600 A,,_|_k].

Quotient is a derived operator:

Ri+~R = ma,. .. a(Ri)—
... A(TA,.. A, (R1) X Ry — Ry)

Jan Chomicki () Relational databases 21 /18

6-join

6: a comparison operator (=, #, <,>, >, <)
Ai,...,A,: all the attributes of R;
Bi, ..., By: all the attributes of R

6-join
o arity(Ry ot Ry) = arity(Ry) + arity(R»)

() Rl l>< ' R2 = O'A’.QBJ.(R]_ X Rg)

Ai0B;

Equijoin
f-join where 0 is equality. J

Jan Chomicki () Relational databases

22/ 18

Natural join

A1, ..., A, all the attributes of Ry
Bi, ..., Bx: all the attributes of R,
m - the number of attributes common to R; and R»

Natural join
o arity(Ry X Ry) = arity(Ry) + arity(R2) — m
@ to obtain 1 X r:

© select from 1 X r» the tuples that agree on all attributes common to R; and R»
@ project duplicate columns out from the resulting tuples.

v

Jan Chomicki () Relational databases 23 /18

Query evaluation

Basic

@ queries evaluated bottom-up: an operator is applied after the arguments have
been computed

@ temporary relations for intermediate results

Advanced

@ using indexes, sorting and hashing
@ special algorithms

@ input/output streams, blocking

@ parallelism

Jan Chomicki () Relational databases 24 /18

SQL

Support
@ virtually all relational DBMS

@ vendor-specific extensions

Standardized (partially)
@ SQL2 or SQL-92 (completed 1992)
e SQL3, SQL:1999, SQL:2003 (completed)
@ SQL:2006 (ongoing work)

Jan Chomicki () Relational databases

SQL language components
@ query language
@ data definition language
@ data manipulation language
@ integrity constraints and views
e API's (ODBC, JDBC()
@ host language preprocessors (Embedded SQL, SQLJ)
@ support XML data and queries
°

25/ 18

Jan Chomicki () Relational databases

26 /18

Basic SQL queries

Basic form

SELECT Aj,...,A,
FROM Ry,..., Rk
WHERE C

Corresponding relational algebra expression

Ta...A(0c(R1 X -+ X Ry))

Jan Chomicki () Relational databases

Range variables

To refer to a relation more than once in the FROM clause, range variables are used.J

Example

SELECT R1.A, R2.B
FROM R R1,R R2
WHERE R1.B=R2.A

corresponds to

man(R(A, B) »<_R(C,D)).

Jan Chomicki () Relational databases

Manipulating the result

SELECT =*: all the columns are selected.)
SELECT DISTINCT: duplicates are eliminated from the result.)
ORDER BY Aj,..., A, the result is sorted according to Ay,..., An. J

E AS A can be used instead of an column A in the SELECT list to mean that the
value of the column A in the result is determined using the (arithmetic or string)
expression E.

Jan Chomicki () Relational databases 29 /18

Set operations

UNION set union.
INTERSECT set intersection.
EXCEPT set difference.

Note
@ INTERSECT and EXCEPT can be expressed using other SQL constructs J

Jan Chomicki () Relational databases 30/ 18

Nested queries

Subquery

A query @ can appear as a subquery in the WHERE clause which can now contain:
e A IN Q: for set membership (A € Q)
@ ANOT IN Q: for the negation of set membership (A & Q)

@ A0 ALL Q: Ais in the relationship 6 to all the elements of @
(0 e{=< > >=<=<>})

@ A0 ANY Q: Ais in the relationship 6 to some elements of @
@ EXISTS Q: Q is nonempty
@ NOT EXISTS @: Q is empty

Notes
@ the subqueries can contain columns from enclosing queries

@ multiple occurrences of the same column name are disambiguated by
choosing the closest enclosing FROM clause.

3/
Aggregation

Instead of a column A, the SELECT list can contain the results of some aggregate
function applied to all the values in the column A in the relation. J

Aggregation functions
@ COUNT(A): the number of all values in the column A (with duplicates)
@ SUM(A): the sum of all values in the column A (with duplicates)
@ AVG(A): the average of all values in the column A (with duplicates)
@ MAX(A): the maximum value in the column A

@ MINCA): the minimum value in the column A.

Notes
@ DISTINCT A, instead of A, considers only distinct values

@ aggregation queries not expressible in relational algebra

Jan Chomicki () Relational databases 32/18

Grouping
The clause
GROUP BY Ai,...,A,

assembles the tuples in the result of the query into groups with identical values in
columns Aq,... A,

The clause
HAVING C

leaves only those groups that satisfy the condition C.

Notes
The SELECT list of a query with GROUP BY can contain only:
@ the columns mentioned in GROUP BY (or expressions with those), or

@ the result of an aggregate function, which is then viewed as applied
group-by-group.

Jan Chomicki () Relational databases 33 /18

Building complex queries

A complex query can be broken up into smaller pieces using:
@ nested queries in the FROM clause

@ views.

View

Computed relation whose contents are defined by an SQL query.

Creating a view

CREATE VIEW View-name(Attrl, ..., Attrn)
AS Query

Dropping a view
DROP VIEW View-name

Jan Chomicki () Relational databases 34 /18

Nulls

Various interpretations: unknown, missing value, inapplicable, no information...

)

In SQL columns that are not explicitly or implicitly designated as NOT NULL can J

contain nulls.

Behavior of nulls

@ comparisons return the unknown truth value if at least one of the arguments

is null
@ IS NULL returns true

@ null values counted by COUNT (*), discarded by other aggregate operators.

/18
Three-valued logic
NOT AND | T F OR|T F
T F T T F T [T T
F T F F F F | T F
? ? ? ? F ? T ?
%/ 18

Outer joins

To keep the tuples in the result if there are no matching tuples in the other
argument of the join:

@ LEFT: preserve only the tuples from the left argument
@ RIGHT: preserve only the tuples from the right argument

@ FULL: preserve the tuples from both arguments.

The result tuples are padded with nulls.

Syntax (in the FROM clause):

R; OUTER JOIN R, ON Condition USING Columns

Notes
@ outer joins can be expressed using other SQL constructs

e some DBMS, e.g., Oracle, use a different syntax for outerjoins.

Jan Chomicki () Relational databases 37 /18

Limitations of relational query languages

They cannot express queries involving transitive closure of binary relations:
@ “List all the ancestors of David.”

e ‘“Find all the buildings reachable from Bell Hall without going outside.”

Recursive views.

Solution J

Jan Chomicki () Relational databases 38 /18

Recursion in SQL3

A relation R depends on a relation S if S is used, directly or indirectly, in the
definition of R. J

In a recursive view definition a relation may depend on itself!)

Recursive views in SQL
@ SQLS3, still unsupported in most DBMS
@ recursively defined relations should be preceded by RECURSIVE.

@ syntax:

WITH R AS
definition of R
query to R

Jan Chomicki () Relational databases 39 /18

Example

Find all the ancestors of David:

WITH RECURSIVE Anc(Upper,Lower) AS
(SELECT * FROM Parent)
UNION
(SELECT P.Upper, A.Lower
FROM Parent AS P, Anc AS A
WHERE P.Lower=A.Upper)

SELECT Anc.Upper
FROM Anc
WHERE Anc.Lower=’David’;

Stratification restriction

No view can depend on itself through negation (EXCEPTand the like) or
aggregation.

Jan Chomicki () Relational databases 40/ 18

Evaluating queries with recursive views

More involved if negation or aggregation present.

Evaluation algorithm
Q Initially, the contents of all views are empty.
© Compute the new contents of the views, using database relations and the
current contents of the views.
© Repeat the previous step until no changes in view contents occur.)

Why does this terminate? J

Jan Chomicki () Relational databases 41 /18

