
Data Integration: Logic Query Languages

Jan Chomicki

University at Buffalo



Datalog

A logic language

• Datalog programs consist of logical facts and rules

• Datalog is a subset of Prolog (no data structures)

Basic concepts

• term: constant, variable

• predicate (relation)

• atom

• clause, rule, fact

• groundness: no variables

• substitution: mapping from variables to terms

• ground substitution: mapping from variables to constants



Logic programs

Atom

• syntax: P(T1, . . . ,Tn)

• semantics: predicate P is true of terms T1 and ... and Tn

• variables present: truth under a ground substitution

Implication (clause)

• syntax: A0 : − A1, . . . ,Ak

• semantics: atom A0 is true if atoms A1 and · · · and Ak are true

• all the variables universally quantified:
• implication true under all ground substitutions

• all the variables in the head occur also in the body

• some predicates in the body may be built-in: >,≥, . . .

Kinds of clauses

• k = 0: fact

• k > 0: rule consisting of head A0 and body A1, . . . ,Ak



Logic query languages

Datalog program P

• EDB(P): a set of true ground facts encoding a database instance

• IDB(P): a set of rules encoding a query, with a special predicate query to
return the result

Predicate dependence

• direct: the predicate in the head depends on each predicate in the body

• indirect: through multiple rules

• recursion: predicate depends on itself

Logic query languages

• conjunctive queries: single rule, no recursion

• unions of conjunctive queries: multiple rules, no recursion

• Datalog: multiple rules, recursion



Example logic program

Friends

%% Facts

friend(joe,sue).

friend(ann,sue).

friend(sue,max).

friend(max,ann).

%% Rules

fof(X,Y) :- friend(X,Y).

fof(X,Z) :- friend(X,Y), fof(Y,Z).

%% Query 1

query(X) :- fof(X,ann).

%% Query 2

query(X) :- fof(X,Y), fof(Y,X).

joe

sue

max ann



Logical semantics

Deriving facts of IDB(P) predicates
bottom-up

1 EDB(P) facts are true

2 single step: for all the ground
substitutions that map the body of a
rule in IDB(P) to true facts, make the
(substituted) head true

3 repeat until no new true facts are
derived

Derivation properties

• the derivation terminates: why?

• soundness: the derived true facts are
logical consequences of P

• completeness: all the logical
consequences of P are derived

Derived facts: all friend facts and

%% Direct friends

fof(joe,sue).

fof(ann,sue).

fof(sue,max).

fof(max,ann).

%% Second-level friends

fof(joe,max).

fof(sue,ann).

fof(ann,max).

fof(max,sue).

%% Third-level friends

fof(joe,ann).

fof(sue,sue).

for(ann,ann).

for(max,max).



Open vs. Closed World Assumption

Closed World Assumption (CWA)

What is not implied by a logic program is false.

Open World Assumption (OWA)

What is not implied by a logic program is unknown.

Scope

• traditional database applications: CWA

• information integration: OWA or CWA

Can negation be allowed inside Datalog rules?



Datalognot

Syntax

Rules with negative atoms in the body:

A0 : −A1, . . . ,Ak , not B1, . . . , not Bm.

Example

asymmetric(X,Y):- fof(X,Y), not fof(Y,X).

Semantics

Cannot be adequately given in terms of implication.



Coding relational algebra

Coding operators

• selection, Cartesian product: single clause

• projection: single clause with projected out attributes only in the body

• union: multiple clauses

• set difference: negation

But what about recursion?



Stratification

Dependency graph pdg(P)

• vertices: predicates of a Datalognot program P

• edges:
• a positive edge (p, q) if there is a clause in P in which q appears in a

positive atom in the body and p appears in the head
• a negative edge (p, q) if there is a clause in P in which q appears in a

negative atom in the body and p appears in the head

Stratified P

No cycle in pdg(P) contains a negative edge.

Stratification

Mapping s from the set of predicates in P to nonnegative integers such that:

1 if a positive edge (p, q) is in pdg(P), then s(p) ≥ s(q)

2 if a negative edge (p, q) is in pdg(P), then s(p) > s(q)

There is a polynomial-time algorithm to determine whether a program is
stratified, and if it is, to find a stratification for it.



Stratified Datalognot : query evaluation

Bottom-up evaluation

1 compute a stratification of a program P

2 partition P into P1, . . . ,Pn such that
• each Pi consisting of all and only rules whose head belongs to a single

stratum
• P1 is the lowest stratum

3 evaluate bottom-up P1, . . . ,Pn (in that order).

Result

• does not depend on the stratification

• can be semantically characterized in various ways

• is used to compute query results



Universal quantification

Coding universal quantification through double negation.

Example

everybodysFriend(X):- person(X), not isNotFriend(X).

isNotFriend(X):- person(X), person(Y), not friend(Y,X).



Expressiveness

Query result

The query result Q(D) is defined for every input database D.

Query containment

Q1 v Q2 if and only if Q1(D) ⊆ Q2(D) for every input database D.

Query equivalence

Q1 ≡ Q2 if and only if Q1 v Q2 and Q2 v Q1.

Query language containment

L1 ⊆ L2 if for every query Q1 ∈ L1, there is an equivalent query Q2 in L2.

• Q2 may be in a different syntax than Q1



Comparing query languages

Expressiveness

• Datalog ⊆ Stratified Datalognot

• Relational Algebra ⊆ Stratified Datalognot

• Datalog 6⊆ Relational Algebra
• transitive closure

• Relational Algebra 6⊆ Datalog
• set difference

How to prove expressiveness results?

• considering the syntax not enough

• semantic propreties



Monotonicity

Monotonicity

A query language L is monotonic if for every query Q ∈ L, adding facts to the
database cannot remove any tuples from the result of Q. Formally: for all
databases D1 and D2

D1 ⊆ D2 implies Q(D1) ⊆ Q(D2).

Query languages

• monotonic: Datalog

• nonmonotonic: Datalognot , relational algebra, SQL


	Datalog

