CSE 725 Network Coding Theory Hung Q. Ngo SUNY at Buffalo Place: 242 Bell Time: Saturdays : 2pm-5pm Hung Q. Ngo (SUNY at Buffalo) CSE 725 1 / 44 **Motivations** Efficient networked data transmission is a central question in Computer Science Many aspects remain poorly understood Choosing a suitable mathematical model for data transmission is not easy Current (pre-network coding) approaches: network flows, combinatorial packing

Cover and Thomas – Elements of Information Theory

The theory of information flow in networks does not have the same simple answers as the theory of flow of water in pipes

• Key differences: data can be compressed, combined with signal processing techniques and/or algebraic operations (XOR); cars on highways can't be combined (except during Buffalo's winter)

Network Coding – Canonical Example 1

Network Coding – Canonical Example 2

Current Research on Network Coding

Network coding has interesting connections in and applications to

- Coding and information theory
- Networking, including multicasting, switching, wireless communications, content distribution
- Complexity theory, cryptography, operations research, matrix theory

Hung Q. Ngo (SUNY at Buffalo)

This seminar

I will present materials from the perspective of coding and information theory

CSE 725

- Single-source, multiple-source network coding
- Cyclic, acyclic networks
- Directed, undirected networks
- Randomized, deterministic algorithms
- Centralized, distributed algorithms
- Some aspects of network coding in practice

You will present mostly applications of network coding to other areas, and/or some theoretical issues that's not address in class.

Communications Network

- A finite directed graph G = (V, E) (possibly with multiple edges between any pair of vertices)
 - Undirected graphs can also be used (later)
- A node with in-degree zero is a source node
- Each edge is a noiseless channel
- Capacity of each edge is 1 (1 "packet" per time unit)
- Assume no processing delay and no propagation delay

In the first few weeks, we will assume

- G is acyclic
- One single source *s*

Hung Q. Ngo (SUNY at Buffalo)

CSE 725

More notations

In the single-source, acyclic case, there are two equivalent ways to define the network code

- Local encoding mapping
- Global encoding mapping

Hung Q. Ngo (SUNY at Buffalo)

CSE 725

15 / 44

Local Encoding Mapping

Definition

Let *F* be a finite field, ω a positive integer. An ω -dimensional *F*-valued *network code* on an acyclic communications network consists of a local encoding mapping

$$\tilde{k}_e: F^{|\partial^-(v)|} \to F$$

for each node v and each channel $e \in \partial^+(v)$.

Note:

- this definition does not explicitly give $\tilde{f}_e(\mathbf{x})$
- since the graph is acyclic, these values $\tilde{f}_e(\mathbf{x})$ can be computed recursively, however

Global Encoding Mapping

Definition

Let *F* be a finite field, ω a positive integer. An ω -dimensional *F*-valued *network code* on an acyclic communications network consists of a local encoding mapping $\tilde{k}_e : F^{|\partial^-(v)|} \to F$ and a global encoding mapping $\tilde{f}_e : F^{\omega} \to F$ for each channel *e* in the network such that:

(i) $\forall v \in V, e \in \partial^+(v), \tilde{f}_e(\mathbf{x})$ is uniquely determined by $(\tilde{f}_{e'}(\mathbf{x}), e' \in \partial^-(v))$, and \tilde{k}_e is the mapping defined via

$$(\tilde{f}_{e'}(\mathbf{x}), e' \in \partial^-(v)) \to \tilde{f}_e(\mathbf{x}).$$

(ii) For the ω imaginary channels e, the mappings \tilde{f}_e are the projections from F^{ω} to the ω different coordinates, respectively

CSE 725

Hung Q. Ngo (SUNY at Buffalo)

Road-map for the first few weeks

Loosely, a network coding solution is a network code allowing receivers to decode the message.

Theorem (Ahlswede et al., 2000)

For acyclic networks, there always exists a network coding solution such that the maximum throughput of single-source multicast is equal to the capacity of a minimum cut separating the source and some sink

Practical concerns: solution description may be very large

- (Lehman and Lehman, SODA 2005) showed that a doubly-exponential q (alphabet size) might be necessary for some (non-multicast) problem
- Consider n = |V|, q = 2, and some vertex v with in-degree m = Θ(n). The number of functions from 𝔽₂^m → 𝔽₂ is doubly-exponential in m, thus there are functions requiring 2^m = 2^{Θ(n)} bits to encode.

Road-map for the first few weeks

It would be nice to have linear network coding solution

Theorem (Li et al., 2003)

For acyclic network, multicast problem, there exists a linear network coding solution over some alphabet.

Theorem (Koetter and Médard, INFOCOM 2003)

- Alphabet size only needs to be polynomial
- It takes polynomial-space (in instance size and log of alphabet size) to write down a linear solution

Hung Q. Ngo (SUNY at Buffalo)

CSE 725

Road-map for the first few weeks

More practical concerns: OK, a good solution exists, but can we find one efficiently?

YES

- (Ho et al., 2003) gave randomized algorithms
- (Sanders et al., SPAA'03) and (Jaggi et al., ISIT'03) gave deterministic algorithms

Linear encoding mappings

• When \tilde{f}_e is linear,

$$\tilde{f}_e(\mathbf{x}) = \langle \mathbf{f}_e, \mathbf{x} \rangle, \ \mathbf{f}_e \in F^{\omega}$$

• When \tilde{k}_e is linear (e = (u, v)),

$$\tilde{k}_e(\mathbf{y}) = \langle \mathbf{k}_e, \mathbf{y} \rangle, \ \mathbf{k}_e, \mathbf{y} \in F^{\partial^-(u)}.$$

Theorem

The local encoding mappings are linear if and only if the global encoding mappings are linear.

 (\Rightarrow) obvious by induction.

 (\Leftarrow) needs a little more setup

Hung Q. Ngo (SUNY at Buffalo)

CSE 725

Global Linearity Implies Local Linearity

Definition

Strictly speaking, a map f is linear iff

$$f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}), \quad \forall \alpha, \beta, \mathbf{x}, \mathbf{y}.$$

Lemma (1)

 $f: F^m \to F$ is linear iff $\exists \mathbf{f} \in F^m$ s.t. $f(\mathbf{x}) = \langle \mathbf{f}, \mathbf{x} \rangle$

Lemma (2)

Let *S* by a subspace of F^m , then $f: S \to F$ is linear iff $\exists \mathbf{f} \in F^m$ s.t. $f(\mathbf{x}) = \langle \mathbf{f}, \mathbf{x} \rangle$

• Define $g: F^k \to F$ by $g(\mathbf{y}) = f(\mathbf{A}\mathbf{y})$, then

$$g(\alpha \mathbf{y} + \beta \mathbf{y}') = \cdots = \alpha g(\mathbf{y}) + \beta g(\mathbf{y}')$$

• Thus, $\exists \mathbf{g} \in F^k$ such that $g(\mathbf{y}) = \langle \mathbf{g}, \mathbf{y} \rangle$

• Hence,

$$f(\mathbf{x}) = f(\mathbf{A}\mathbf{y}) = g(\mathbf{y}) = \langle \mathbf{g}, \mathbf{y} \rangle = \langle \mathbf{g}, \mathbf{B}\mathbf{x} \rangle = \mathbf{g}^T \mathbf{B}\mathbf{x} = (\mathbf{B}^T \mathbf{g})^T \mathbf{x}$$
$$= \langle \mathbf{B}^T \mathbf{g}, x \rangle = \langle \mathbf{f}, \mathbf{x} \rangle$$

Global Linearity Implies Local Linearity

Consider e = (u, v), $\partial^{-}(u) = \{e_1, \dots, e_m\}$, and the subspace

 $S = \{ (\tilde{f}_{e_1}(\mathbf{x}), \dots, \tilde{f}_{e_m}(\mathbf{x})) \mid \mathbf{x} \in F^{\omega} \} \subseteq F^m$

 $\tilde{k}_e: S \to F$, defined by

$$\tilde{k}_e(\mathbf{y}) = \tilde{k}_e(\tilde{f}_{e_1}(\mathbf{x}), \dots, \tilde{f}_{e_m}(\mathbf{x})) = \tilde{f}_e(\mathbf{x}).$$

Thus,

$$\begin{split} \tilde{k}_{e}(\alpha \mathbf{y}_{1} + \beta \mathbf{y}_{2}) &= \tilde{k}_{e}(\alpha \tilde{f}_{e_{1}}(\mathbf{x}_{1}) + \beta \tilde{f}_{e_{1}}(\mathbf{x}_{2}), \dots, \alpha \tilde{f}_{e_{m}}(\mathbf{x}_{1}) + \beta \tilde{f}_{e_{m}}(\mathbf{x}_{2})) \\ &= \tilde{k}_{e}(\tilde{f}_{e_{1}}(\alpha \mathbf{x}_{1} + \beta \mathbf{x}_{2}), \dots, \tilde{f}_{e_{m}}(\alpha \mathbf{x}_{1} + \beta \mathbf{x}_{2})) \\ &= \tilde{f}_{e}(\alpha \mathbf{x}_{1} + \beta \mathbf{x}_{2}) \\ &= \alpha \tilde{f}_{e}(\mathbf{x}_{1}) + \beta \tilde{f}_{e}(\mathbf{x}_{2}) \\ &= \alpha \tilde{k}_{e}(\mathbf{y}_{1}) + \beta \tilde{k}_{e}(\mathbf{y}_{2}) \end{split}$$

Hung Q. Ngo (SUNY at Buffalo)

CSE 725

26/44

Local description of linear network codes

Definition

An ω -dimensional *F*-valued *linear network code* on an acyclic communications network consists of a local encoding kernel \mathbf{K}_{v} for every node *v*, where

$$\mathbf{K}_{v} = (k_{e,e'})_{e \in \partial^{-}(v), e' \in \partial^{+}(v)}$$

is a matrix with entries in *F*.

Global description of linear network codes

Definition

An ω -dimensional *F*-valued *linear network code* on an acyclic communications network consists of a local encoding kernel \mathbf{K}_{ν} for every node ν , where

$$\mathbf{K}_{v} = (k_{e,e'})_{e \in \partial^{-}(v), e' \in \partial^{+}(v)}$$

is a matrix with entries in *F*, and a global encoding kernel \mathbf{f}_e for every edge *e*, where $\mathbf{f}_e \in F^{\omega}$, such that

(i) for each $e \in \partial^+(v)$,

$$\mathbf{f}_e = \sum_{e' \in \partial^-(v)} k_{e',e} \mathbf{f}_{e'}$$

(ii) the vectors \mathbf{f}_e for the ω imaginary channels form the natural basis of the vector space F^{ω}

Hung Q. Ngo (SUNY at Buffalo)

CSE 725

Back to the Butterfly Network

Example

The network code for the butterfly network we saw is linear.

Exercise

Determine all the \mathbf{K}_{v} and \mathbf{f}_{e} , given the solution we discussed on the butterfly network.

Exercise

Let all $k_{e,e'}$ be variables, determine the global encoding kernels \mathbf{f}_e for the butterfly network.

Desirable properties of linear network codes

- Let *T* be the set of sinks, maxflow(*s*, *T*) is an upper bound on the information rate from *s* to *T*
- For each vertex v, let

$$S_v = \operatorname{span} \{ \mathbf{f}_e \mid e \in \partial^-(v) \}.$$

v can decode iff dim $(S_v) = \omega$ (\Rightarrow maxflow $(s, v) \ge \omega$)

- Whether this bound is achievable depends on the topology, ω , F, and the coding scheme
- We will define three classes of linear network codes which achieve the bound in 3 different extents: *linear multicast*, *linear* broadcast, *linear dispersion*

CSE 725

Hung Q. Ngo (SUNY at Buffalo)

Linear Multicast/Broadcast/Dispersion

Definition

A linear network code is a linear multicast, linear broadcast, linear dispersion, respectively, if the following conditions hold:

- (i) dim $(S_v) = \omega$ for every non-source node v with maxflow $(s, v) \ge \omega$
- (ii) $\dim(\mathcal{S}_v) = \min\{\omega, \max(s, v)\}$ for every non-source node v
- (iii) dim (span{ $\bigcup_{v \in T} S_v$ }) = min{ ω , maxflow(s, T)} for every collection T of non-source nodes.
 - linear dispersion \Rightarrow linear broadcast \Rightarrow linear multicast
 - linear multicast \Rightarrow linear broadcast \Rightarrow linear dispersion

Generic linear network codes

Definition

An ω -dimensional *F*-valued linear network code on an acyclic communications network is said to be generic if:

Let {e₁,..., e_m} be any set of channels, where e_i ∈ ∂⁺(v_i). (The v_i are not necessarily distinct.) Then, the vectors f_{e_i} are linearly independent (thus m ≤ ω) provided that

for any $i \in [m]$, $S_{v_i} \not\subseteq \operatorname{span}\{\mathbf{f}_{e_j} \mid j \neq i\}$.

- In a sense, this is saying that every collection of global encoding kernels that can possibly be independent must be independent
- generic linear network code \Rightarrow linear dispersion (will prove later)

CSE 725

Inear dispersion ⇒ generic linear network code

Hung Q. Ngo (SUNY at Buffalo)

Existence

Theorem (Existence of generic linear network code)

Given a positive integer ω and an acyclic network, there exists an ω -dimensional *F*-valued generic linear network code if |F| is sufficiently large.

Theorem

Every generic linear network code is a linear dispersion

Existence

Corollary (Existence of linear dispersion)

Given a positive integer ω and an acyclic network, there exists an ω -dimensional *F*-valued linear dispersion if |F| is sufficiently large.

Corollary (Existence of linear broadcast)

Given a positive integer ω and an acyclic network, there exists an ω -dimensional *F*-valued linear broadcast if |F| is sufficiently large.

Corollary (Existence of linear multicast)

Given a positive integer ω and an acyclic network, there exists an ω -dimensional *F*-valued linear multicast if |F| is sufficiently large.

Hung Q. Ngo (SUNY at Buffalo)

CSE 725

Existence of a linear multicast – Koetter-Médard's Method

- The local encoding kernels $k_{e,e'}$ are variables whose values are to be determined so that the code is a linear multicast
- For every path $P = (e_1, \ldots, e_m)$, define its "weight" to be

$$w_P = k_{e_1, e_2} \cdots k_{e_{m-1}, e_m}.$$

• For every channel *e*,

$$\mathbf{f}_e = \sum_{e' \in \partial^-(s)} \left(\sum_{P: \text{ a path from } e' \text{ to } e} w_P
ight) \mathbf{f}_{e'}$$

Thus, every component of every vector f_e is a polynomial in the ring F[{k_{e,e'} | (e, e') are adjacent }].

Existence of a linear multicast – Koetter-Médard's Method

- Let *t* be a node with maxflow(*s*, *t*) $\geq \omega$. Then, there exists ω edge-disjoint paths from $\partial^{-}(s)$ to $\partial^{-}(t)$. (Menger theorem)
- Let L_t be the ω × ω matrix formed by putting together the vectors f_e, e ∈ ∂[−](t) and e belongs to one of these paths. (This is a matrix of variables.)
- Want: find local encoding kernels such that all L_t have full rank.

Theorem

If *F* is sufficiently large, then there are local encoding kernels such that L_t have full rank for all *t* with maxflow(*s*, *t*) $\geq \omega$.

Hung Q. Ngo (SUNY at Buffalo)

CSE 725

37 / 44

Proof of Koetter-Médard Theorem

- L_t has full rank iff $det(L_t) \neq 0$
- $det(L_t)$ is a polynomial in $F[k_{e,e'}]$
- Just need to find local encoding kernels such that the polynomial $p(\cdot) = \prod_t \det(L_t)$ is not zero.

Lemma (1)

The polynomial $det(L_t)$ is not a zero polynomial. Thus, $p(\cdot)$ is not identically zero.

Lemma (2)

Let $p(z_1, ..., z_n)$ be a non-zero polynomial over *F*. If |F| is greater than the maximum degree of any variable z_i , then there are values $a_1, ..., a_n \in F$ such that $p(a_1, ..., a_n) \neq 0$.

Proof of Lemma 1

- $det(L_t)$ is a polynomial in $k_{e,e'}$
- assign k_{e,e'} = 1 if (e, e') are consecutive on a path of the ω edge-disjoint paths from s to t
- assign $k_{e,e'} = 0$ for all other pairs (e, e')
- then, $det(L_t) = 1$ for this set of values of $k_{e,e'}$
- thus, as a polynomial, $det(L_t)$ is not identically zero

Hung Q. Ngo (SUNY at Buffalo)

CSE 725

39 / 44

Proof of Lemma 2

Lemma (2)

Let $p(z_1, ..., z_n)$ be a non-zero polynomial over *F*. If |F| is greater than the maximum degree of any variable z_i , then there are values $a_1, ..., a_n \in F$ such that $p(a_1, ..., a_n) \neq 0$.

Proof.

Induction on *n*.

Further Notes on Koetter-Médard's Method

- Works for linear broadcast also
- Implicitly gives a (recursive) algorithm to construct linear multicasts
- However, it is not clear if there exists efficient algorithms to construct linear multicasts using this method
- Jaggi, Sanders, et al. (IEEE Trans. Info. Theory, 2005) gave a deterministic polynomial time algorithm to construct linear multicast (we will discuss later)
- Tracy Ho et al. (IEEE Trans. Info. Theory, 2006) gave randomized and distributed algorithm

Hung Q. Ngo (SUNY at Buffalo)

CSE 725

41 / 44

Construction of Generic Linear Network Code

Assume: $|F| \ge {M+\omega-1 \choose \omega-1}$, *M* is the number of channels

- 1: $\{\mathbf{f}_e \mid e \in \partial^-(s)\}$ is the natural basis for F^ω
- 2: $\mathbf{f}_e \leftarrow \mathbf{0}$, for each $e \notin \partial^-(s)$
- 3: for each node *u* in breath-first order do
- 4: for each $e \in \partial^+(u)$ do
- 5: Choose $\mathbf{w} \in S_u$ such that $w \notin \text{span}\{\mathbf{f}_{e'} : e' \in S'\}$, for any set S' of $\omega - 1$ channels (not including e) for which $S_u \not\subseteq \text{span}\{\mathbf{f}_{e'} : e' \in S'\}$
- 6: $\mathbf{f}_e \leftarrow \mathbf{w}$
- 7: end for
- 8: end for

Correctness of the Construction

- $\exists S'$ as in line 5, and $\exists w$ as in line 5
- Consider $\{e_1, \ldots, e_m\}$, $e_i \in \partial^+(v_i)$, $\mathcal{S}_{v_j} \not\subseteq \operatorname{span}\{\mathbf{f}_{e_i} \mid j \neq i\}$, $\forall j$
- WLOG, assume e_m is considered after other e_i
- We will induct that $\{\mathbf{f}_{e_1}, \ldots, \mathbf{f}_{e_m}\}$ are independent
- We know $\{\mathbf{f}_{e_1}, \ldots, \mathbf{f}_{e_{m-1}}\}$ are independent by induction hypothesis
- $S_{v_m} \not\subseteq \operatorname{span}\{\mathbf{f}_{e_1}, \dots, \mathbf{f}_{e_{m-1}}\} \Rightarrow m-1 < \omega \Rightarrow m \leq \omega$
- If $m = \omega$, then $\mathbf{f}_{e_m} = w \notin \operatorname{span}\{\mathbf{f}_{e_1}, \dots, \mathbf{f}_{e_{m-1}}\}$
- If $m < \omega$, let $R = \{\mathbf{f}_{e_1}, \dots, \mathbf{f}_{e_{m-1}}\}, |R| \le \omega 2$.
- \exists imaginary channels e', e'' such that $R \cup \{\mathbf{f}_{e'}, \mathbf{f}_{e''}\}$ are independent
- Either $\mathcal{S}_{v_m} \not\subseteq R' = R \cup \{\mathbf{f}_{e'}\}$ or $\mathcal{S}_{v_m} \not\subseteq R'' = R \cup \{\mathbf{f}_{e''}\}$
- Replace *R* by *R'* or *R''*, until $|R| = \omega 1$

Hung Q. Ngo (SUNY at Buffalo)

CSE 725

43 / 44

Generic LNC \Rightarrow Linear Dispersion

For any $T \not\ni s$, let

$$\mathcal{S}_T := \operatorname{span}\{\cup_{u \in T} \mathcal{S}_u\} = \operatorname{span}[\bar{T}, T]$$

Here, $[\overline{T}, T] = \{(u, v) \in E \mid u \in \overline{T}, v \in T\}$ Want: for any such T, $\dim(S_T) = \min\{\omega, \max flow(s, T)\}$. We have

- dim $(\mathcal{S}_T) \leq \min\{\omega, \max flow(s, T)\}, \forall T$
- If $\dim(\mathcal{S}_T) = \omega$, we are done.
- Suppose dim(S_T) < ω , will show $\exists W \supseteq T$ s.t.

$$s \in \overline{W}, \dim(\mathcal{S}_T) = |[\overline{W}, W]|$$

Generic LNC \Rightarrow Linear Dispersion

We will show by induction that

$$\forall T \not\supseteq s, \exists W \supseteq T, s \notin W, s.t. \dim(\mathcal{S}_T) = |[\overline{W}, W]|.$$

Induct on the number of non-source vertices not in *T*.

- Base case. Suppose $T = V(G) \{s\}$. Let $\{e_1, \ldots, e_m\} = \partial^+(s)$. Apply definition of Generic LNC to $\{e_1, \ldots, e_m\}$, then,
 - either $m < \omega$ and $\mathbf{f}_{e_1}, \ldots, \mathbf{f}_{e_m}$ are independent, $\Rightarrow W = T$ works.
 - or $m \ge \omega$ and every ω subset of $\mathbf{f}_{e_1}, \ldots, \mathbf{f}_{e_m}$ are independent, $\Rightarrow W = T \cup \{s\}$ works.

Hung Q. Ngo (SUNY at Buffalo)

CSE 725

Generic LNC \Rightarrow Linear Dispersion

• Suppose
$$T \subset V(G) - \{s\}$$
.

• If $\exists u \in U = V(G) - \{s\} \cup T$ s.t. $S_u \subset S_T$, then $\omega > \dim(S_T) = \dim(S_{T \cup \{u\}})$. By induction hypothesis, $\exists W \supseteq T \cup \{u\}$ such that

$$[\bar{W}, W]| = \dim(\mathcal{S}_{T \cup \{u\}}) = \dim(\mathcal{S}_T).$$

• Now, assume $\forall u \in U$, there is $e \in \partial^-(u)$ such that $\mathbf{f}_e \notin \mathcal{S}_T$.

- Let $\{e_1, ..., e_m\} = [\bar{T}, T]$, and $e_i \in \partial^+(u_i)$.
- Since $u_i \in U, \forall i$,

$$\mathcal{S}_{u_i} \not\subseteq \mathcal{S}_T = \mathsf{span}\{\mathbf{f}_{e_1}, \dots, \mathbf{f}_{e_m}\}$$

• Thus, for all *i*

$$\mathcal{S}_{u_i} \not\subseteq \operatorname{span}\{\mathbf{f}_{e_i} \mid j \neq i\}$$

• By definition of generic LNC, $\mathbf{f}_{e_1}, \dots, \mathbf{f}_{e_m}$ are independent, $\Rightarrow W = T$ works!