# CSE 725 <br> Network Coding Theory 

Hung Q. Ngo

SUNY at Buffalo

Place: 242 Bell
Time: Saturdays : 2pm-5pm

## Motivations

- Efficient networked data transmission is a central question in Computer Science
- Many aspects remain poorly understood
- Choosing a suitable mathematical model for data transmission is not easy
- Current (pre-network coding) approaches: network flows, combinatorial packing


## Cover and Thomas - Elements of Information Theory

The theory of information flow in networks does not have the same simple answers as the theory of flow of water in pipes

- Key differences: data can be compressed, combined with signal processing techniques and/or algebraic operations (XOR); cars on highways can't be combined (except during Buffalo's winter)


## Network Information Theory

- Part of Information Theory dealing with data transmission aspects: noise, interference, correlation between data sources, etc.
- Many problems are open, too difficult
- (Ahlswede et al., 2000) opened a new door with Network Coding


## (Ahlswede et al., 2000) asked

Ignoring noise and interference (which can be dealt with at the physical layer), can coding data streams together provide any benefits?

## Network Coding - Canonical Example 1



Figure: The Butterfly Network

## Network Coding - Canonical Example 1



Figure: Network Coding on the Butterfly Network

## Network Coding - Canonical Example 2



Figure: The Wheatstone Bridge

## Network Coding - Canonical Example 2



Figure: Network Coding on the Wheatstone Bridge

## Network Coding - Canonical Example 3

- Two base stations $B_{1}$ and $B_{2}$ want to communicate
- They are out of each other's radio range
- There is a relay transceiver $T$ in the middle, within range of both

How efficient can they communicate with network coding?

- $B_{1}$ sends $b_{1}$ to $T$
- $B_{2}$ sends $b_{2}$ to $T$
- $T$ sends $b_{1} \oplus b_{2}$ to $B_{1}$ and $B_{2}$ at the same time


## Current Research on Network Coding

Network coding has interesting connections in and applications to

- Coding and information theory
- Networking, including multicasting, switching, wireless communications, content distribution
- Complexity theory, cryptography, operations research, matrix theory


## This seminar

I will present materials from the perspective of coding and information theory

- Single-source, multiple-source network coding
- Cyclic, acyclic networks
- Directed, undirected networks
- Randomized, deterministic algorithms
- Centralized, distributed algorithms
- Some aspects of network coding in practice You will present mostly applications of network coding to other areas, and/or some theoretical issues that's not address in class.


## Communications Network

- A finite directed graph $G=(V, E)$ (possibly with multiple edges between any pair of vertices)
- Undirected graphs can also be used (later)
- A node with in-degree zero is a source node
- Each edge is a noiseless channel
- Capacity of each edge is 1 (1 "packet" per time unit)
- Assume no processing delay and no propagation delay

In the first few weeks, we will assume

- $G$ is acyclic
- One single source $s$


## More notations

- For each $v \in V$,
- $\partial^{-}(v)=\{e \mid e=(u, v) \in E\}$
- $\partial^{+}(v)=\{e \mid e=(v, w) \in E\}$
- $\partial^{-}(s)$ contains $\omega$ imaginary channels without originating nodes
- We want to send one single message $\mathbf{x}$ of size $\omega$ data units
- Each data unit is an element of a base field $F=\mathbb{F}_{q}$ (In practice, $q=2^{m}$ for $m$-bit data units.)
- $\mathbf{x}$ is thus a vector $\mathbf{x}=\left(x_{1}, \ldots, x_{\omega}\right) \in \mathbb{F}_{q}^{\omega}$
- To send $\mathbf{x}$ over the network, every channel $e$ participates by carrying a "symbol" (i.e. data unit) $\tilde{f}_{e}(\mathbf{x}) \in F$


## Network Code

In the single-source, acyclic case, there are two equivalent ways to define the network code

- Local encoding mapping
- Global encoding mapping


## Local Encoding Mapping

## Definition

Let $F$ be a finite field, $\omega$ a positive integer. An $\omega$-dimensional $F$-valued network code on an acyclic communications network consists of a local encoding mapping

$$
\tilde{k}_{e}: F^{\mid \partial^{-(v) \mid}} \rightarrow F
$$

for each node $v$ and each channel $e \in \partial^{+}(v)$.
Note:

- this definition does not explicitly give $\tilde{f}_{e}(\mathbf{x})$
- since the graph is acyclic, these values $\tilde{f}_{e}(\mathbf{x})$ can be computed recursively, however


## Global Encoding Mapping

## Definition

Let $F$ be a finite field, $\omega$ a positive integer. An $\omega$-dimensional $F$-valued network code on an acyclic communications network consists of a local encoding mapping $\tilde{k}_{e}: F^{\left|\partial^{-}(v)\right|} \rightarrow F$ and a global encoding mapping $\tilde{f}_{e}: F^{\omega} \rightarrow F$ for each channel $e$ in the network such that:
(i) $\forall v \in V, e \in \partial^{+}(v), \tilde{f}_{e}(\mathbf{x})$ is uniquely determined by $\left(\tilde{f}_{e^{\prime}}(\mathbf{x}), e^{\prime} \in \partial^{-}(v)\right)$, and $\tilde{k}_{e}$ is the mapping defined via

$$
\left(\tilde{f}_{e^{\prime}}(\mathbf{x}), e^{\prime} \in \partial^{-}(v)\right) \rightarrow \tilde{f}_{e}(\mathbf{x}) .
$$

(ii) For the $\omega$ imaginary channels $e$, the mappings $\tilde{f}_{e}$ are the projections from $F^{\omega}$ to the $\omega$ different coordinates, respectively

## Road-map for the first few weeks

Loosely, a network coding solution is a network code allowing receivers to decode the message.

## Theorem (Ahlswede et al., 2000)

For acyclic networks, there always exists a network coding solution such that the maximum throughput of single-source multicast is equal to the capacity of a minimum cut separating the source and some sink

Practical concerns: solution description may be very large

- (Lehman and Lehman, SODA 2005) showed that a doubly-exponential $q$ (alphabet size) might be necessary for some (non-multicast) problem
- Consider $n=|V|, q=2$, and some vertex $v$ with in-degree $m=\Theta(n)$. The number of functions from $\mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}$ is doubly-exponential in $m$, thus there are functions requiring $2^{m}=2^{\Theta(n)}$ bits to encode.


## Road-map for the first few weeks

It would be nice to have linear network coding solution

## Theorem (Li et al., 2003)

For acyclic network, multicast problem, there exists a linear network coding solution over some alphabet.

## Theorem (Koetter and Médard, INFOCOM 2003)

- Alphabet size only needs to be polynomial
- It takes polynomial-space (in instance size and log of alphabet size) to write down a linear solution


## Road-map for the first few weeks

More practical concerns: OK, a good solution exists, but can we find one efficiently?
YES

- (Ho et al., 2003) gave randomized algorithms
- (Sanders et al., SPAA'03) and (Jaggi et al., ISIT'03) gave deterministic algorithms


## Linear encoding mappings

- When $\tilde{f}_{e}$ is linear,

$$
\tilde{f}_{e}(\mathbf{x})=\left\langle\mathbf{f}_{e}, \mathbf{x}\right\rangle, \quad \mathbf{f}_{e} \in F^{\omega}
$$

- When $\tilde{k}_{e}$ is linear $(e=(u, v))$,

$$
\tilde{k}_{e}(\mathbf{y})=\left\langle\mathbf{k}_{e}, \mathbf{y}\right\rangle, \quad \mathbf{k}_{e}, \mathbf{y} \in F^{\partial^{-}(u)} .
$$

## Theorem

The local encoding mappings are linear if and only if the global encoding mappings are linear.
$(\Rightarrow)$ obvious by induction.
$(\Leftarrow)$ needs a little more setup

## Global Linearity Implies Local Linearity

## Definition

Strictly speaking, a map $f$ is linear iff

$$
f(\alpha \mathbf{x}+\beta \mathbf{y})=\alpha f(\mathbf{x})+\beta f(\mathbf{y}), \quad \forall \alpha, \beta, \mathbf{x}, \mathbf{y} .
$$

## Lemma (1)

$f: F^{m} \rightarrow F$ is linear iff $\exists \mathbf{f} \in F^{m}$ s.t. $f(\mathbf{x})=\langle\mathbf{f}, \mathbf{x}\rangle$

## Lemma (2)

Let $S$ by a subspace of $F^{m}$, then $f: S \rightarrow F$ is linear iff $\exists \mathbf{f} \in F^{m}$ s.t. $f(\mathbf{x})=\langle\mathbf{f}, \mathbf{x}\rangle$

## Proof of Lemma (1)

- Sufficiency is immediate.
- For necessity, let $\mathbf{u}_{i}$ be the $i$ th unit vector in the natural basis for $F^{m}$.
- It follows that

$$
f(\mathbf{x})=f\left(\sum_{i} x_{i} \mathbf{u}_{i}\right)=\sum_{i} f\left(\mathbf{u}_{i}\right) x_{i}
$$

## Proof of Lemma (3)

Sufficiency is obvious. For necessity:

- Suppose $\operatorname{dim}(S)=k \leq m$. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be a basis for $S$. Let $\mathbf{A}$ be a $m \times k$ matrix with columns $\mathbf{u}_{i}$
- $\mathbf{x} \in S$ iff $\mathbf{x}=$ Ay for some $\mathbf{y} \in F^{k}$
- Let $\mathbf{B}$ be A's left inverse, i.e. $\mathbf{B A}=\mathbf{I}$
- Define $g: F^{k} \rightarrow F$ by $g(\mathbf{y})=f(\mathbf{A y})$, then

$$
g\left(\alpha \mathbf{y}+\beta \mathbf{y}^{\prime}\right)=\cdots=\alpha g(\mathbf{y})+\beta g\left(\mathbf{y}^{\prime}\right)
$$

- Thus, $\exists \mathbf{g} \in F^{k}$ such that $g(\mathbf{y})=\langle\mathbf{g}, \mathbf{y}\rangle$
- Hence,

$$
\begin{aligned}
f(\mathbf{x})=f(\mathbf{A y})=g(\mathbf{y})=\langle\mathbf{g}, \mathbf{y}\rangle=\langle\mathbf{g}, \mathbf{B} \mathbf{x}\rangle=\mathbf{g}^{T} \mathbf{B} \mathbf{x} & =\left(\mathbf{B}^{T} \mathbf{g}\right)^{T} \mathbf{x} \\
= & \left\langle\mathbf{B}^{T} \mathbf{g}, x\right\rangle=\langle\mathbf{f}, \mathbf{x}\rangle
\end{aligned}
$$

## Global Linearity Implies Local Linearity

Consider $e=(u, v), \partial^{-}(u)=\left\{e_{1}, \ldots, e_{m}\right\}$, and the subspace

$$
S=\left\{\left(\tilde{f}_{e_{1}}(\mathbf{x}), \ldots, \tilde{f}_{e_{m}}(\mathbf{x})\right) \mid \mathbf{x} \in F^{\omega}\right\} \subseteq F^{m}
$$

$\tilde{k}_{e}: S \rightarrow F$, defined by

$$
\tilde{k}_{e}(\mathbf{y})=\tilde{k}_{e}\left(\tilde{f}_{e_{1}}(\mathbf{x}), \ldots, \tilde{f}_{e_{m}}(\mathbf{x})\right)=\tilde{f}_{e}(\mathbf{x}) .
$$

Thus,

$$
\begin{aligned}
\tilde{k}_{e}\left(\alpha \mathbf{y}_{1}+\beta \mathbf{y}_{2}\right) & =\tilde{k}_{e}\left(\alpha \tilde{f}_{e_{1}}\left(\mathbf{x}_{1}\right)+\beta \tilde{f}_{e_{1}}\left(\mathbf{x}_{2}\right), \ldots, \alpha \tilde{f}_{e_{m}}\left(\mathbf{x}_{1}\right)+\beta \tilde{f}_{e_{m}}\left(\mathbf{x}_{2}\right)\right) \\
& =\tilde{k}_{e}\left(\tilde{f}_{e_{1}}\left(\alpha \mathbf{x}_{1}+\beta \mathbf{x}_{2}\right), \ldots, \tilde{f}_{e_{m}}\left(\alpha \mathbf{x}_{1}+\beta \mathbf{x}_{2}\right)\right) \\
& =\tilde{f}_{e}\left(\alpha \mathbf{x}_{1}+\beta \mathbf{x}_{2}\right) \\
& =\alpha \tilde{f}_{e}\left(\mathbf{x}_{1}\right)+\beta \tilde{f}_{e}\left(\mathbf{x}_{2}\right) \\
& =\alpha \tilde{k}_{e}\left(\mathbf{y}_{1}\right)+\beta \tilde{k}_{e}\left(\mathbf{y}_{2}\right)
\end{aligned}
$$

## Local description of linear network codes

## Definition

An $\omega$-dimensional $F$-valued linear network code on an acyclic communications network consists of a local encoding kernel $\mathbf{K}_{v}$ for every node $v$, where

$$
\mathbf{K}_{v}=\left(k_{e, e^{\prime}}\right)_{e \in \partial^{-}(v), e^{\prime} \in \partial^{+}(v)}
$$

is a matrix with entries in $F$.

## Global description of linear network codes

## Definition

An $\omega$-dimensional $F$-valued linear network code on an acyclic communications network consists of a local encoding kernel $\mathbf{K}_{v}$ for every node $v$, where

$$
\mathbf{K}_{v}=\left(k_{e, e^{\prime}}\right)_{e \in \partial^{-}(v), e^{\prime} \in \partial^{+}(v)}
$$

is a matrix with entries in $F$, and a global encoding kernel $\mathbf{f}_{e}$ for every edge $e$, where $\mathbf{f}_{e} \in F^{\omega}$, such that
(i) for each $e \in \partial^{+}(v)$,

$$
\mathbf{f}_{e}=\sum_{e^{\prime} \in \partial^{-}(v)} k_{e^{\prime},, \mathbf{f}_{e^{\prime}}}
$$

(ii) the vectors $\mathbf{f}_{e}$ for the $\omega$ imaginary channels form the natural basis of the vector space $F^{\omega}$

## Back to the Butterfly Network

## Example

The network code for the butterfly network we saw is linear.

## Exercise

Determine all the $\mathbf{K}_{v}$ and $\mathbf{f}_{e}$, given the solution we discussed on the butterfly network.

## Exercise

Let all $k_{e, e^{\prime}}$ be variables, determine the global encoding kernels $\mathbf{f}_{e}$ for the butterfly network.

## Desirable properties of linear network codes

- Let $T$ be the set of sinks, maxflow $(s, T)$ is an upper bound on the information rate from $s$ to $T$
- For each vertex $v$, let

$$
\mathcal{S}_{v}=\operatorname{span}\left\{\mathbf{f}_{e} \mid e \in \partial^{-}(v)\right\} .
$$

$v$ can decode iff $\operatorname{dim}\left(\mathcal{S}_{v}\right)=\omega(\Rightarrow \operatorname{maxflow}(s, v) \geq \omega)$

- Whether this bound is achievable depends on the topology, $\omega, F$, and the coding scheme
- We will define three classes of linear network codes which achieve the bound in 3 different extents: linear multicast, linear broadcast, linear dispersion


## Linear Multicast/Broadcast/Dispersion

## Definition

A linear network code is a linear multicast, linear broadcast, linear dispersion, respectively, if the following conditions hold:
(i) $\operatorname{dim}\left(\mathcal{S}_{v}\right)=\omega$ for every non-source node $v$ with maxflow $(s, v) \geq \omega$
(ii) $\operatorname{dim}\left(\mathcal{S}_{v}\right)=\min \{\omega$, maxflow $(s, v)\}$ for every non-source node $v$
(iii) $\operatorname{dim}\left(\operatorname{span}\left\{\cup_{v \in T} \mathcal{S}_{v}\right\}\right)=\min \{\omega, \operatorname{maxflow}(s, T)\}$ for every collection $T$ of non-source nodes.

- linear dispersion $\Rightarrow$ linear broadcast $\Rightarrow$ linear multicast
- linear multicast $\nRightarrow$ linear broadcast $\nRightarrow$ linear dispersion


## Generic linear network codes

## Definition

An $\omega$-dimensional $F$-valued linear network code on an acyclic communications network is said to be generic if:

- Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be any set of channels, where $e_{i} \in \partial^{+}\left(v_{i}\right)$. (The $v_{i}$ are not necessarily distinct.) Then, the vectors $\mathbf{f}_{e_{i}}$ are linearly independent (thus $m \leq \omega$ ) provided that

$$
\text { for any } i \in[m], \quad \mathcal{S}_{v_{i}} \nsubseteq \operatorname{span}\left\{\mathbf{f}_{e_{j}} \mid j \neq i\right\} .
$$

- In a sense, this is saying that every collection of global encoding kernels that can possibly be independent must be independent
- generic linear network code $\Rightarrow$ linear dispersion (will prove later)
- linear dispersion $\nRightarrow$ generic linear network code


## Existence

## Theorem (Existence of generic linear network code)

Given a positive integer $\omega$ and an acyclic network, there exists an $\omega$-dimensional $F$-valued generic linear network code if $|F|$ is sufficiently large.

## Theorem

Every generic linear network code is a linear dispersion

## Existence

## Corollary (Existence of linear dispersion)

Given a positive integer $\omega$ and an acyclic network, there exists an $\omega$-dimensional $F$-valued linear dispersion if $|F|$ is sufficiently large.

## Corollary (Existence of linear broadcast)

Given a positive integer $\omega$ and an acyclic network, there exists an $\omega$-dimensional $F$-valued linear broadcast if $|F|$ is sufficiently large.

## Corollary (Existence of linear multicast)

Given a positive integer $\omega$ and an acyclic network, there exists an $\omega$-dimensional $F$-valued linear multicast if $|F|$ is sufficiently large.

## Existence of a linear multicast - Koetter-Médard's Method

- The local encoding kernels $k_{e, e^{\prime}}$ are variables whose values are to be determined so that the code is a linear multicast
- For every path $P=\left(e_{1}, \ldots, e_{m}\right)$, define its "weight" to be

$$
w_{P}=k_{e_{1}, e_{2}} \cdots k_{e_{m-1}, e_{m}} .
$$

- For every channel $e$,

$$
\mathbf{f}_{e}=\sum_{e^{\prime} \in \partial^{-}(s)}\left(\sum_{P: \text { a path from } e^{\prime} \text { to } e} w_{P}\right) \mathbf{f}_{e^{\prime}}
$$

- Thus, every component of every vector $\mathbf{f}_{e}$ is a polynomial in the ring $F\left[\left\{k_{e, e^{\prime}} \mid\left(e, e^{\prime}\right)\right.\right.$ are adjacent $\left.\}\right]$.


## Existence of a linear multicast - Koetter-Médard's Method

- Let $t$ be a node with maxflow $(s, t) \geq \omega$. Then, there exists $\omega$ edge-disjoint paths from $\partial^{-}(s)$ to $\partial^{-}(t)$. (Menger theorem)
- Let $L_{t}$ be the $\omega \times \omega$ matrix formed by putting together the vectors $\mathbf{f}_{e}, e \in \partial^{-}(t)$ and $e$ belongs to one of these paths. (This is a matrix of variables.)
- Want: find local encoding kernels such that all $L_{t}$ have full rank.


## Theorem

If $F$ is sufficiently large, then there are local encoding kernels such that $L_{t}$ have full rank for all $t$ with maxflow $(s, t) \geq \omega$.

## Proof of Koetter-Médard Theorem

- $L_{t}$ has full rank iff $\operatorname{det}\left(L_{t}\right) \neq 0$
- $\operatorname{det}\left(L_{t}\right)$ is a polynomial in $F\left[k_{e, e^{\prime}}\right]$
- Just need to find local encoding kernels such that the polynomial $p(\cdot)=\prod_{t} \operatorname{det}\left(L_{t}\right)$ is not zero.


## Lemma (1)

The polynomial $\operatorname{det}\left(L_{t}\right)$ is not a zero polynomial. Thus, $p(\cdot)$ is not identically zero.

## Lemma (2)

Let $p\left(z_{1}, \ldots, z_{n}\right)$ be a non-zero polynomial over $F$. If $|F|$ is greater than the maximum degree of any variable $z_{i}$, then there are values $a_{1}, \ldots, a_{n} \in F$ such that $p\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

## Proof of Lemma 1

- $\operatorname{det}\left(L_{t}\right)$ is a polynomial in $k_{e, e^{\prime}}$
- assign $k_{e, e^{\prime}}=1$ if ( $e, e^{\prime}$ ) are consecutive on a path of the $\omega$ edge-disjoint paths from $s$ to $t$
- assign $k_{e, e^{\prime}}=0$ for all other pairs $\left(e, e^{\prime}\right)$
- then, $\operatorname{det}\left(L_{t}\right)=1$ for this set of values of $k_{e, e^{\prime}}$
- thus, as a polynomial, $\operatorname{det}\left(L_{t}\right)$ is not identically zero


## Proof of Lemma 2

## Lemma (2)

Let $p\left(z_{1}, \ldots, z_{n}\right)$ be a non-zero polynomial over $F$. If $|F|$ is greater than the maximum degree of any variable $z_{i}$, then there are values $a_{1}, \ldots, a_{n} \in F$ such that $p\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

## Proof.

Induction on $n$.

## Further Notes on Koetter-Médard's Method

- Works for linear broadcast also
- Implicitly gives a (recursive) algorithm to construct linear multicasts
- However, it is not clear if there exists efficient algorithms to construct linear multicasts using this method
- Jaggi, Sanders, et al. (IEEE Trans. Info. Theory, 2005) gave a deterministic polynomial time algorithm to construct linear multicast (we will discuss later)
- Tracy Ho et al. (IEEE Trans. Info. Theory, 2006) gave randomized and distributed algorithm


## Construction of Generic Linear Network Code

Assume: $|F| \geq\binom{ M+\omega-1}{\omega-1}, M$ is the number of channels
1: $\left\{\mathbf{f}_{e} \mid e \in \partial^{-}(s)\right\}$ is the natural basis for $F^{\omega}$
2: $\mathbf{f}_{e} \leftarrow \mathbf{0}$, for each $e \notin \partial^{-}(s)$
3: for each node $u$ in breath-first order do
4: for each $e \in \partial^{+}(u)$ do
5: $\quad$ Choose $\mathbf{w} \in \mathcal{S}_{u}$ such that $w \notin \operatorname{span}\left\{\mathbf{f}_{e^{\prime}}: e^{\prime} \in S^{\prime}\right\}$, for any set $S^{\prime}$ of $\omega-1$ channels (not including $e$ ) for which $\mathcal{S}_{u} \nsubseteq \operatorname{span}\left\{\mathbf{f}_{e^{\prime}}: e^{\prime} \in S^{\prime}\right\}$
6: $\quad \mathbf{f}_{e} \leftarrow \mathbf{w}$
7: end for
8: end for

## Correctness of the Construction

- $\exists S^{\prime}$ as in line 5 , and $\exists w$ as in line 5
- Consider $\left\{e_{1}, \ldots, e_{m}\right\}, e_{i} \in \partial^{+}\left(v_{i}\right), \mathcal{S}_{v_{j}} \nsubseteq \operatorname{span}\left\{\mathbf{f}_{e_{i}} \mid j \neq i\right\}, \forall j$
- WLOG, assume $e_{m}$ is considered after other $e_{i}$
- We will induct that $\left\{\mathbf{f}_{e_{1}}, \ldots, \mathbf{f}_{e_{m}}\right\}$ are independent
- We know $\left\{\mathbf{f}_{e_{1}}, \ldots, \mathbf{f}_{e_{m-1}}\right\}$ are independent by induction hypothesis
- $\mathcal{S}_{v_{m}} \nsubseteq \operatorname{span}\left\{\mathbf{f}_{e_{1}}, \ldots, \mathbf{f}_{e_{m-1}}\right\} \Rightarrow m-1<\omega \Rightarrow m \leq \omega$
- If $m=\omega$, then $\mathbf{f}_{e_{m}}=w \notin \operatorname{span}\left\{\mathbf{f}_{e_{1}}, \ldots, \mathbf{f}_{e_{m-1}}\right\}$
- If $m<\omega$, let $R=\left\{\mathbf{f}_{e_{1}}, \ldots, \mathbf{f}_{e_{m-1}}\right\},|R| \leq \omega-2$.
- $\exists$ imaginary channels $e^{\prime}, e^{\prime \prime}$ such that $R \cup\left\{\mathbf{f}_{e^{\prime}}, \mathbf{f}_{e^{\prime \prime}}\right\}$ are independent
- Either $\mathcal{S}_{v_{m}} \nsubseteq R^{\prime}=R \cup\left\{\mathbf{f}_{e^{\prime}}\right\}$ or $\mathcal{S}_{v_{m}} \nsubseteq R^{\prime \prime}=R \cup\left\{\mathbf{f}_{e^{\prime \prime}}\right\}$
- Replace $R$ by $R^{\prime}$ or $R^{\prime \prime}$, until $|R|=\omega-1$


## Generic LNC $\Rightarrow$ Linear Dispersion

For any $T \nexists s$, let

$$
\mathcal{S}_{T}:=\operatorname{span}\left\{\cup_{u \in T} \mathcal{S}_{u}\right\}=\operatorname{span}[\bar{T}, T]
$$

Here, $[\bar{T}, T]=\{(u, v) \in E \mid u \in \bar{T}, v \in T\}$ Want: for any such $T$, $\operatorname{dim}\left(\mathcal{S}_{T}\right)=\min \{\omega, \operatorname{maxflow}(s, T)\}$. We have

- $\operatorname{dim}\left(\mathcal{S}_{T}\right) \leq \min \{\omega, \operatorname{maxflow}(s, T)\}, \forall T$
- If $\operatorname{dim}\left(\mathcal{S}_{T}\right)=\omega$, we are done.
- Suppose $\operatorname{dim}\left(\mathcal{S}_{T}\right)<\omega$, will show $\exists W \supseteq T$ s.t.

$$
s \in \bar{W}, \operatorname{dim}\left(\mathcal{S}_{T}\right)=|[\bar{W}, W]|
$$

## Generic LNC $\Rightarrow$ Linear Dispersion

We will show by induction that

$$
\forall T \not \supset s, \exists W \supseteq T, s \notin W, \text { s.t. } \operatorname{dim}\left(\mathcal{S}_{T}\right)=|[\bar{W}, W]| .
$$

Induct on the number of non-source vertices not in $T$.

- Base case. Suppose $T=V(G)-\{s\}$. Let $\left\{e_{1}, \ldots, e_{m}\right\}=\partial^{+}(s)$. Apply definition of Generic LNC to $\left\{e_{1}, \ldots, e_{m}\right\}$, then,
- either $m<\omega$ and $\mathbf{f}_{e_{1}}, \ldots, \mathbf{f}_{e_{m}}$ are independent, $\Rightarrow W=T$ works.
- or $m \geq \omega$ and every $\omega$ subset of $\mathbf{f}_{e_{1}}, \ldots, \mathbf{f}_{e_{m}}$ are independent, $\Rightarrow$ $W=T \cup\{s\}$ works.


## Generic LNC $\Rightarrow$ Linear Dispersion

- Suppose $T \subset V(G)-\{s\}$.
- If $\exists u \in U=V(G)-\{s\} \cup T$ s.t. $\mathcal{S}_{u} \subset \mathcal{S}_{T}$, then $\omega>\operatorname{dim}\left(\mathcal{S}_{T}\right)=\operatorname{dim}\left(\mathcal{S}_{T \cup\{u\}}\right)$. By induction hypothesis, $\exists W \supseteq T \cup\{u\}$ such that

$$
|[\bar{W}, W]|=\operatorname{dim}\left(\mathcal{S}_{T \cup\{u\}}\right)=\operatorname{dim}\left(\mathcal{S}_{T}\right) .
$$

- Now, assume $\forall u \in U$, there is $e \in \partial^{-}(u)$ such that $\mathbf{f}_{e} \notin \mathcal{S}_{T}$.
- Let $\left\{e_{1}, \ldots, e_{m}\right\}=[\bar{T}, T]$, and $e_{i} \in \partial^{+}\left(u_{i}\right)$.
- Since $u_{i} \in U, \forall i$,

$$
\mathcal{S}_{u_{i}} \nsubseteq \mathcal{S}_{T}=\operatorname{span}\left\{\mathbf{f}_{e_{1}}, \ldots, \mathbf{f}_{e_{n}}\right\}
$$

- Thus, for all $i$

$$
\mathcal{S}_{u_{i}} \nsubseteq \operatorname{span}\left\{\mathbf{f}_{e_{j}} \mid j \neq i\right\}
$$

- By definition of generic LNC, $\mathbf{f}_{e_{1}}, \ldots, \mathbf{f}_{e_{m}}$ are independent, $\Rightarrow W=T$ works!

