The Probabilistic Method

Techniques

- Union bound
- Argument from expectation
- Alterations
- The second moment method
- The (Lovasz) Local Lemma

And much more

- Alon and Spencer, "The Probabilistic Method"
- Bolobas, "Random Graphs"

The Argument from Expectation: Main Idea

- X a random variable with $\mathrm{E}[X]=\mu$, then
- There must exist a sample point ω with $X(\omega) \geq \mu$
- There must exist a sample point ω with $X(\omega) \leq \mu$
- X a random variable with $\mathrm{E}[X] \leq \mu$, then
- There must exist a sample point ω with $X(\omega) \leq \mu$
- X a random variable with $\mathrm{E}[X] \geq \mu$, then
- There must exist a sample point ω with $X(\omega) \geq \mu$

Have we seen this?

Example 1: Large Cuts in Graphs

Intuition \& Question

Intuition: every graph must have a "sufficiently large" cut (A, B).
Question: How large?

Line of thought

On average, a random cut has size μ, hence there must exist a cut of size $\geq \mu$.

- Put a vertex in either A or B with probability $1 / 2$
- Expected number of edges X with one end point in each is

$$
\mathrm{E}[X]=\mathrm{E}\left[\sum_{e} X_{e}\right]=\sum_{e} \operatorname{Prob}\left[X_{e}\right]=|E| / 2
$$

Theorem
For every graph $G=(V, E)$, there must be a cut with $\geq|E| / 2$ edges

Example 2: ± 1 Linear Combinations of Unit Vectors

Theorem

Let $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ be n unit vectors in \mathbb{R}^{n}.
There exist $\alpha_{1}, \cdots, \alpha_{n} \in\{-1,1\}$ such that

$$
\left|\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}\right| \leq \sqrt{n}
$$

and, there exist $\alpha_{1}, \cdots, \alpha_{n} \in\{-1,1\}$ such that

$$
\left|\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}\right| \geq \sqrt{n}
$$

Simply because on average these combinations have length \sqrt{n}. Specifically, choose $\alpha_{i} \in\{-1,1\}$ independently with prob. $1 / 2$

$$
\mathrm{E}\left[\left|\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}\right|^{2}\right]=\sum_{i, j} \mathbf{v}_{i} \cdot \mathbf{v}_{j} \mathrm{E}\left[\alpha_{i} \alpha_{j}\right]=\sum_{i} \mathbf{v}_{i}^{2}=n .
$$

Example 3: Unbalancing Lights

Theorem

For $1 \leq i, j \leq n$, we are given $a_{i j} \in\{-1,1\}$. Then, there exist $\alpha_{i}, \beta_{j} \in\{-1,1\}$ such that

$$
\sum_{i} \sum_{j} a_{i j} \alpha_{i} \beta_{j} \geq\left(\sqrt{\frac{2}{\pi}}+o(1)\right) n^{3 / 2}
$$

- Choose $\beta_{j} \in\{-1,1\}$ independently with prob. $1 / 2$.
- $R_{i}=\sum_{j} a_{i j} \beta_{j}$, then

$$
\mathrm{E}\left[\left|R_{i}\right|\right]=2 \frac{n\left(\left\lfloor\binom{n-1}{\lfloor n-1) / 2\rfloor}\right.\right.}{2^{n}} \approx\left(\sqrt{\frac{2}{\pi}}+o(1)\right) n^{1 / 2}
$$

- Choose α_{i} with the same sign as R_{i}, for all i

