
CSE 694 – Prob. Analysis and Randomized Algo.

What is it about?

Probabilistic thinking!

Administrative Stuff

5 assignments (to be done individually)

1 final presentation and report (I will assign papers and topic)

First few weeks

Gentle introduction to concepts and techniques from probability
theory

Done via sample problems from many areas (networking, algorithms,
combinatorics, coding, learning theory, etc.)

PTCF = Probability Theory Concepts and Facts
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Outline

1 Lecture 1: Probability Space, Union Bound, Probabilistic Method
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Example 1: Ramsey Numbers

The Ramsey number R(k, k) is the smallest integer n such that no
matter how we assign red or blue to each edge of Kn, there must
exist a monochromanic Kk.

Analogy: R(k, k) is the smallest n so that in any set of n people
there must be either k mutual acquaintances, or k mutual strangers

Erdős’ Quote

Imagine an alien force, vastly more powerful than us landing on Earth and
demanding the value of R(5, 5) or they will destroy our planet. In that
case, we should marshal all our computers and all our mathematicians and
attempt to find the value. But suppose, instead, that they asked for
R(6, 6), we should attempt to destroy the aliens.
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Notes

There are (much) more general Ramsey numbers. E.g., R(a, b) is the
smallest integer n such that no matter how we 2-color edges of Kn

with red and blue, there exists either a red Ka or a blue Kb.

Or multi-dimensional Ramsey numbers (the above is 2-dim)

The problem is a generalization of the pigeonhole principle

Intuition/interpretation:

when n is sufficiently large, there must be a monochromatic sub-clique
of a given size
i.e., in a sufficiency large “space,” local “patterns” must emerge. (this
theme is manifested in different ways in this course)
problem is to find/estimate the threshold
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Erdős’ Theorem (1947)

Theorem

(i) If
(
n
k

)
21−(k

2) < 1, then R(k, k) > n.

(ii) Consequently, R(k, k) > b2k/2c for all k ≥ 3.

To see (ii), let n = b2k/2c.
Then, (

n

k

)
21−(k

2) <
nk

k!
· 21+k/2

2k2/2
<

21+k/2

k!
· nk

2k2/2
< 1.

We will give two proofs of (i).
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A Pigeonhole Principle Proof

We’ll show that
(
n
k

)
21−(k

2) < 1 implies, there exists a 2-edge-coloring of
Kn without a monochromatic Kk.

Let [n] be the set of vertices

Let Ω = set of all 2-edge-colorings of Kn

For any S ∈
([n]

k

)
, the number of colorings for which S is

monochromatic is 2× 2(n
2)−(k

2)

The number of colorings for which some S ∈
([n]

k

)
is monochromatic

is at most (
n

k

)
× 2× 2(n

2)−(k
2) = 2(n

2)
(

n

k

)
21−(k

2).

But, the total number of colorings is 2(n
2), and

2(n
2)

(
n

k

)
21−(k

2) < 2(n
2) ⇔

(
n

k

)
21−(k

2) < 1
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Probabilistic Method Proof #1

Pick a coloring c ∈ Ω uniformly at random.

For any S ∈
([n]

k

)
, let AS be the event that S is monochromatic, then

Prob[AS ] =
# colorings making S mono.

total # colorings
=

2× 2(n
2)−(k

2)

2(n
2)

= 21−(k
2)

The probability that some S ∈
([n]

k

)
is monochromatic is

Prob

[⋃
S

AS

]
≤

∑
S

Prob[AS ] =
(

n

k

)
21−(k

2) < 1

Thus, there must be some coloring for which no S is monochromatic!
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PTCF: Simple Probability Space

Event A

Sample Space Ω

Ω is a finite set of all possible outcomes of some experiment

Each outcome occurs equally likely
A subset A of outcomes is an event

Think of it as a set of outcomes satisfying a certain property

Prob[A] = |A|
|Ω| : the fraction of outcomes in A

In most cases, not a good way to think about probability spaces
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PTCF: The Union Bound

Lemma

Let A1, A2, . . . be any finite or countably infinite sequence of events.
Then,

Prob

⋃
i≥1

Ai

 ≤
∑
i≥1

Prob[Ai]

Note:

this bound holds for any probability space (not just simple spaces).

the bound is simple but extremely useful!
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Probabilistic Method Proof #2 (much better than #1!)

Color each edge of Kn with either red or blue with probability 1/2

For any S ∈
([n]

k

)
, let AS be the event that S is monochromatic, then

Prob[AS ] = Prob[S is blue] + Prob[S is red] = 2× 1

2(k
2)

= 21−(k
2)

The probability that some S ∈
([n]

k

)
is monochromatic is

Prob

[⋃
S

AS

]
≤

∑
S

Prob[AS ] =
(

n

k

)
21−(k

2) < 1

Thus, there must be some coloring for which no S is monochromatic!
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PTCF: Discrete Probability Space

Event A

Sample Space Ω

pω

Each ω ∈ Ω is assigned a number pω ∈ [0, 1], such that
∑

ω∈Ω pω = 1.

For any event A, Prob[A] =
∑

ω∈A pω.

In the simple space, pω = 1
|Ω| ,∀ω

Note: this is not the most general definition, but suffices for now.
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PTCF: How do we “assign” the pω?

Could think of it as a mathematical function, like saying “give each
outcome ω a number pω equal to 1/|Ω|”
That’s not the probabilistic way of thinking!

Probabilistic way of thinking:

An experiment is an algorithm whose outcome is not deterministic
For example, algorithms making use of a random source (like a bunch
of “fair” coins)
Ω is the set of all possible outputs of the algorithm
pω is the “likelihood” that ω is output
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Example 2: Sperner Lemma

Lemma (Sperner, 1928)

The maximum size of a family F of subsets of [n] whose members do not
contain one another is

(
n

bn/2c
)
.

The collection of bn/2c-subsets of [n] satisfies the condition

Suffices to show that, for any such F , |F| ≤
(

n
bn/2c

)
.

Fix F ∈ F , choose a permutation π ∈ Sn uniformly at random

Let AF be the event that F = {π1, . . . , πk} for some k, then

Prob[AF ] =
k!(n− k)!

n!
=

1(
n
k

) ≥ 1(
n

bn/2c
)

The AF are mutually exclusive (why?), hence

1 ≥ Prob

[ ⋃
F∈F

AF

]
=

∑
F∈F

Prob[AF ] ≥ |F|(
n

bn/2c
)
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Example 3: Non-Adaptive Group Testing

A t× n matrix A is called d-disjunct iff the union of any d columns
does not contain another column

Columns are codewords of superimposed codes

Rate of the code is R(a) = log n
t

Want codes with high rates. But, as n →∞ and d →∞

1
d2 log e

(1 + o(1)) ≤ lim sup
A

R(A) ≤ 2 log d

d2
(1 + o(1))

(From Dyachkov, Rykov (1982), and Dyachkov, Rykov and Rashad
(1989))

We’ll prove the lower bound
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Existence of Good d-disjunct Matrix

Set aij to 1 with probability p

The probability that A is not d-disjunct is at most

(d + 1)
(

n

d + 1

) [
1− p(1− p)d

]t
≤

(d + 1)
(

n

d + 1

) [
1− 1

d + 1
(1− 1

d + 1
)d

]t

This is < 1 as long as

t ≥ 3(d + 1) ln
[
(d + 1)

(
n

d + 1

)]
In particular, for large n, there exist d-disjunct matrices with rate

log n

t
≈ 1

3(d + 1)2

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 15 / 16



Key Ideas We’ve Learned

In a sufficiently large “space,” locally nice “patterns” often emerge

To show the existence of some combinatorial object, set up some
probability space and show that it exists with probability > 0
The above is essentially a pigeonhole principle kind of proof, casted in
probabilistic language

We will see throughout the course that the probabilistic language is
crucial!

Thinking about probabilities “locally” is better than “globally”
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