## Lecture 2

## Concepts

- Conditional Probability, Independence
- Randomized Algorithms
- Random Variables, Expectation and its Linearity,
- Conditional Expectation, Law of Total Probability.


## Examples

- Randomized Min-Cut
- Randomized Quick-Sort
- Randomized Approximation Algorithm for MAX-E3SAT
- Derandomization it using the conditional expectation method
- Expander code


## Example 1: Randomized Min-Cut

## Min-Cut Problem

Given a multigraph $G$, find a cut with minimum size.

Randomized Min-Cut( $G$ )
1: for $i=1$ to $n-2$ do
2: $\quad$ Pick an edge $e_{i}$ in $G$ uniformly at random
3: Contract two end points of $e_{i}$ (remove loops)
4: end for
5: // At this point, two vertices $u, v$ left
6: Output all remaining edges between $u$ and $v$

## Analysis

- Let $C$ be a minimum cut, $k=|C|$
- If no edge in $C$ is chosen by the algorithm, then $C$ will be returned in the end, and vice versa
- For $i=1$.. $n-2$, let $A_{i}$ be the event that $e_{i} \notin C$ and $B_{i}$ be the event that $\left\{e_{1}, \ldots, e_{i}\right\} \cap C=\emptyset$

$$
\begin{aligned}
& \operatorname{Prob}[C \text { is returned }] \\
= & \operatorname{Prob}\left[B_{n-2}\right] \\
= & \operatorname{Prob}\left[A_{n-2} \cap B_{n-3}\right] \\
= & \operatorname{Prob}\left[A_{n-2} \mid B_{n-3}\right] \operatorname{Prob}\left[B_{n-3}\right] \\
= & \cdots \\
= & \operatorname{Prob}\left[A_{n-2} \mid B_{n-3}\right] \operatorname{Prob}\left[A_{n-3} \mid B_{n-4}\right] \cdots \operatorname{Prob}\left[A_{2} \mid B_{1}\right] \operatorname{Prob}\left[B_{1}\right]
\end{aligned}
$$

## Analysis

- At step $1, G$ has min-degree $\geq k$, hence $\geq k n / 2$ edges
- Thus,

$$
\operatorname{Prob}\left[B_{1}\right]=\operatorname{Prob}\left[A_{1}\right] \geq 1-\frac{k}{k n / 2}=1-\frac{2}{n}
$$

- At step 2 , the min cut is still at least $k$, hence $\geq k(n-1) / 2$ edges. Thus, similar to step 1

$$
\operatorname{Prob}\left[A_{2} \mid B_{1}\right] \geq 1-\frac{2}{n-1}
$$

- In general,

$$
\operatorname{Prob}\left[A_{j} \mid B_{j-1}\right] \geq 1-\frac{2}{n-j+1}
$$

- Consequently,

$$
\operatorname{Prob}[C \text { is returned }] \geq \prod_{i=1}^{n-2}\left(1-\frac{2}{n-i+1}\right)=\frac{2}{n(n-1)}
$$

## How to Reduce the Failure Probability

- The basic algorithm has failure probability at most $1-\frac{2}{n(n-1)}$
- How do we lower it?
- Run the algorithm multiple times, say $m \cdot n(n-1) / 2$ times, return the smallest cut found
- The failure probability is at most

$$
\left(1-\frac{2}{n(n-1)}\right)^{m \cdot n(n-1) / 2}<\frac{1}{e^{m}}
$$

## PTCF: Independence Events and Conditional Probabilities



- The conditional probability of $A$ given $B$ is

$$
\operatorname{Prob}[A \mid B]:=\frac{\operatorname{Prob}[A \cap B]}{\operatorname{Prob}[B]}
$$

- $A$ and $B$ are independent if and only if $\operatorname{Prob}[A \mid B]=\operatorname{Prob}[A]$
- Equivalently, $A$ and $B$ are independent if and only if

$$
\operatorname{Prob}[A \cap B]=\operatorname{Prob}[A] \cdot \operatorname{Prob}[B]
$$

## PTCF: Mutually Independence and Independent Trials

- A set $A_{1}, \ldots, A_{n}$ of events are said to be independent or mutually independent if and only if, for any $k \leq n$ and $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq[n]$ we have

$$
\operatorname{Prob}\left[A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right]=\operatorname{Prob}\left[A_{i_{1}}\right] \cdots \operatorname{Prob}\left[A_{i_{k}}\right] .
$$

- If $n$ independent experiments (or trials) are performed in a row, with the $i$ th being "successful" with probability $p_{i}$, then
$\operatorname{Prob}[$ all experiments are successful $]=p_{1} \cdots p_{n}$.
(Question: what is the sample space?)


## Example 2: Randomized Quicksort

```
Randomized-Quicksort \((A)\)
    1: \(n \leftarrow\) length \((A)\)
    2: if \(n=1\) then
    3: Return \(A\)
    4: else
    5: \(\quad\) Pick \(i \in\{1, \ldots, n\}\) uniformly at random, \(A[i]\) is called the pivot
    6: \(\quad L \leftarrow\) elements \(\leq A[i]\)
    7: \(\quad R \leftarrow\) elements \(>A[i]\)
    8: \(\quad / /\) the above takes one pass through \(A\)
    9: \(\quad L \leftarrow\) Randomized-Quicksort \((L)\)
10: \(\quad R \leftarrow\) Randomized-Quicksort \((R)\)
11: \(\quad\) Return \(L \cdot A[i] \cdot R\)
12: end if
```


## Analysis of Randomized Quicksort

- The running time is proportional to the number of comparisons
- Let $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ be $A$ sorted non-decreasingly
- For each $i<j$, let $X_{i j}$ be the indicator random variable indicating if $b_{i}$ was ever compared with $b_{j}$
- The expected number of comparisons is

$$
\mathrm{E}\left[\sum_{i<j} X_{i j}\right]=\sum_{i<j} \mathrm{E}\left[X_{i j}\right]=\sum_{i<j} \operatorname{Prob}\left[b_{i} \& b_{j} \text { were compared }\right]
$$

- $b_{i}$ was compared with $b_{j}$ if and only if either $b_{i}$ or $b_{j}$ was chosen as a pivot before any other in the set $\left\{b_{i}, b_{i+1}, \ldots, b_{j}\right\}$
- Hence, $\operatorname{Prob}\left[b_{i} \& b_{j}\right.$ were compared $]=\frac{2}{j-i+1}$
- Thus, the expected running time is $\Theta(n \lg n)$


## PTCF: Discrete Random Variable



- A random variable is a function $X: \Omega \rightarrow \mathbb{R}$
- $p_{X}(a)=\operatorname{Prob}[X=a]$ is called the probability mass function of $X$
- $P_{X}(a)=\operatorname{Prob}[X \leq a]$ is called the (cumulative/probability) distribution function of $X$


## PTCF: Expectation and its Linearity

- The expected value of $X$ is defined as

$$
\mathrm{E}[X]:=\sum_{a} a \operatorname{Prob}[X=a] .
$$

- For any set $X_{1}, \ldots, X_{n}$ of random variables, and any constants $c_{1}, \ldots, c_{n}$

$$
\mathrm{E}\left[c_{1} X_{1}+\cdots+c_{n} X_{n}\right]=c_{1} \mathrm{E}\left[X_{1}\right]+\cdots+c_{n} \mathrm{E}\left[X_{n}\right]
$$

This fact is called linearity of expectation

## PTCF: Indicator/Bernoulli Random Variable

$$
\begin{gathered}
X: \Omega \rightarrow\{0,1\} \\
p=\operatorname{Prob}[X=1]
\end{gathered}
$$

$X$ is called a Bernoulli random variable with parameter $p$
If $X=1$ only for outcomes $\omega$ belonging to some event $A$, then $X$ is called an indicator variable for $A$

$$
\begin{aligned}
\mathrm{E}[X] & =p \\
\operatorname{Var}[X] & =p(1-p)
\end{aligned}
$$

## Las Vegas and Monte Carlo Algorithms

## Las Vegas Algorithm

A randomized algorithm which always gives the correct solution is called a Las Vegas algorithm.
Its running time is a random variable.

## Monte Carlo Algorithm

A randomized algorithm which may give incorrect answers (with certain probability) is called a Monte Carlo algorithm. Its running time may or may not be a random variable.

## Example 3: Max-E3SAT

- An E3-CNF formula is a CNF formula $\varphi$ in which each clause has exactly 3 literals. E.g.,

$$
\varphi=\underbrace{\left(x_{1} \vee \bar{x}_{2} \vee x_{4}\right)}_{\text {Clause } 1} \wedge \underbrace{\left(x_{1} \vee x_{3} \vee \bar{x}_{4}\right)}_{\text {Clause } 2} \wedge \underbrace{\left(\bar{x}_{2} \vee \bar{x}_{3} \vee x_{4}\right)}_{\text {Clause } 3}
$$

- Max-E3SAT Problem: given an E3-CNF formula $\varphi$, find a truth assignment satisfying as many clauses as possible

A Randomized Approximation Algorithm for Max-E3SAT

- Assign each variable to TRUE/FALSE with probability $1 / 2$


## Analyzing the Randomized Approximation Algorithm

- Let $X_{C}$ be the random variable indicating if clause $C$ is satisfied
- Then, $\operatorname{Prob}\left[X_{C}=1\right]=7 / 8$
- Let $S_{\varphi}$ be the number of satisfied clauses. Then,

$$
\mathrm{E}\left[S_{\varphi}\right]=\mathrm{E}\left[\sum_{C} X_{C}\right]=\sum_{C} \mathrm{E}\left[X_{C}\right]=7 m / 8 \leq \frac{\mathrm{OPT}}{8 / 7}
$$

( $m$ is the number of clauses)

- So this is a randomized approximation algorithm with ratio $8 / 7$


## Derandomization with Conditional Expectation Method

- Derandomization is to turn a randomized algorithm into a deterministic algorithm
- By conditional expectation

$$
\mathrm{E}\left[S_{\varphi}\right]=\frac{1}{2} \mathrm{E}\left[S_{\varphi} \mid x_{1}=\mathrm{TRUE}\right]+\frac{1}{2} \mathrm{E}\left[S_{\varphi} \mid x_{1}=\text { FALSE }\right]
$$

- Both $\mathrm{E}\left[S_{\varphi} \mid x_{1}=\right.$ TRUE $]$ and $\mathrm{E}\left[S_{\varphi} \mid x_{1}=\right.$ FALSE $]$ can be computed in polynomial time
- Suppose $\mathrm{E}\left[S_{\varphi} \mid x_{1}=\right.$ TRUE $] \geq \mathrm{E}\left[S_{\varphi} \mid x_{1}=\right.$ FALSE $]$, then

$$
\mathrm{E}\left[S_{\varphi} \mid x_{1}=\text { TRUE }\right] \geq \mathrm{E}\left[S_{\varphi}\right] \geq 7 m / 8
$$

- Set $x_{1}=$ TRUE, let $\varphi^{\prime}$ be $\varphi$ with $c$ clauses containing $x_{1}$ removed, and all instances of $x_{1}, \bar{x}_{1}$ removed.
- Recursively find value for $x_{2}$


## PTCF: Law of Total Probabilities, Conditional Expectation

- Law of total probabilities: let $A_{1}, A_{2}, \ldots$ be any partition of $\Omega$, then

$$
\operatorname{Prob}[A]=\sum_{i \geq 1} \operatorname{Prob}\left[A \mid A_{i}\right] \operatorname{Prob}\left[A_{i}\right]
$$

(Strictly speaking, we also need "and each $A_{i}$ is measurable," but that always holds for finite $\Omega$.)

- The conditional expectation of $X$ given $A$ is defined by

$$
\mathrm{E}[X \mid A]:=\sum_{a} a \operatorname{Prob}[X=a \mid A]
$$

- Let $A_{1}, A_{2}, \ldots$ be any partition of $\Omega$, then

$$
\mathrm{E}[X]=\sum_{i \geq 1} \mathrm{E}\left[X \mid A_{i}\right] \operatorname{Prob}\left[A_{i}\right]
$$

- In particular, let $Y$ be any discrete random variable, then

$$
\mathrm{E}[X]=\sum \mathrm{E}[X \mid Y=y] \operatorname{Prob}[Y=y]
$$

## Example 4: Error-Correcting Codes

- Message $\mathbf{x} \in\{0,1\}^{k}$
- Encoding $f(\mathbf{x}) \in\{0,1\}^{n}, n>k, f$ an injection
- $C=\left\{f(\mathbf{x}) \mid \mathbf{x} \in\{0,1\}^{k}\right\}$ : codewords
- $f(\mathbf{x})$ is sent over noisy channel, few bits altered
- $\mathbf{y}$ is received instead of $f(\mathbf{x})$
- Find codeword $\mathbf{z}$ "closest" to $\mathbf{y}$ in Hamming distance
- Decoding $\mathbf{x}^{\prime}=f^{-1}(\mathbf{z})$
- Measure of utilization: relative rate of $C$

$$
R(C)=\frac{\log |C|}{n}
$$

- Measure of noise tolerance: relative distance of $C$

$$
\delta(C)=\frac{\min _{\mathbf{c}_{1}, \mathbf{c}_{2} \in C} \operatorname{Dist}\left(\mathbf{c}_{1}, \mathbf{c}_{2}\right)}{n}
$$

## Linear Codes

- For any $\mathbf{x} \in \mathbb{F}_{2}^{n}$, define

$$
\text { WEIGHT }(\mathbf{x})=\text { number of } 1 \text {-coordinates of } \mathbf{x}
$$

- E.g., $\operatorname{WeIght}(1001110)=4$
- If $C$ is a $k$-dimensional subspace of $\mathbb{F}_{2}^{n}$, then

$$
\begin{aligned}
|C| & =2^{k} \\
\delta(C) & =\min \{\operatorname{WEIGHT}(\mathbf{x}) \mid \mathbf{x} \in C\}
\end{aligned}
$$

- Every such $C$ can be defined by a parity check matrix $\mathbf{A}$ of dimension $(n-k) \times n$ :

$$
C=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{0}\}
$$

- Conversely, every $(n-k) \times n$ matrix $\mathbf{A}$ defines a code $C$ of dimension $\geq k$


## A Communication Problem

Large rate and large distance are conflicting goals

## Problem

Does there exist a family of codes $C_{k},\left|C_{k}\right|=2^{k}$, for infinitely many $k$, such that

$$
R\left(C_{k}\right) \geq R_{0}>0
$$

and

$$
\delta\left(C_{k}\right) \geq \delta_{0}>0
$$

(Yes, using "magical graphs.")

## Practicality

Design such a family explicitly, such that the codes are efficiently encodable and decodable.

## Magical Graph

$(n, c, d, \alpha, \beta)$-graph

$c, d, \alpha, \beta$ are constants, $n$ varies.

## From Magical Graphs to Code Family

- Suppose ( $n, c, d, \alpha, \beta$ )-graphs exist for infinitely many $n$, and constants $c, d, \alpha, \beta$ such that $\beta>d / 2$
- Consider such a $G=(L \cup R, E),|L|=n,|R|=(1-c) n=m$
- Let $\mathbf{A}=\left(a_{i j}\right)$ be the $m \times n$ 01-matrix, column indexed by $L$, and row-indexed by $R, a_{i j}=1$ iff $(i, j) \in E$
- Define a linear code with A as parity check:

$$
C=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{0}\}
$$

- Then, $\operatorname{dim}(C)=n-\operatorname{rank}(A) \geq c n$, and

$$
|C|=2^{\operatorname{dim}(C)} \geq 2^{c n} \Rightarrow R(C) \geq c
$$

- For every $\mathbf{x} \in C$, $\operatorname{\operatorname {WeIght}}(\mathbf{x}) \geq \alpha n$, hence

$$
\delta(C)=\frac{\min \{\operatorname{WEIGHT}(\mathbf{x}) \mid \mathbf{x} \in C\}}{n} \geq \alpha
$$

## Existence of Magical Graph with $\beta>d / 2$

- Determine $n, c, d, \alpha, \beta$ later
- Let $L=[n], R=[(1-c) n]$.
- Choose each of the $d$ neighbors for $u \in L$ uniformly at random
- For $1 \leq s \leq \alpha n$, let $B_{s}$ be the "bad" event that some subset $S$ of size $s$ has $|\Gamma(S)|<\beta|S|$
- For each $S \subset L, T \subset R,|S|=s,|T|=\beta s$, define

$$
X_{S, T}= \begin{cases}1 & \Gamma(S) \subseteq T \\ 0 & \Gamma(S) \nsubseteq T\end{cases}
$$

- Then,

$$
\operatorname{Prob}\left[B_{s}\right] \leq \operatorname{Prob}\left[\sum_{S, T} X_{S, T}>0\right] \leq \sum_{S, T} \operatorname{Prob}\left[X_{S, T}=1\right]
$$

## Existence of Magical Graph with $\beta>d / 2$

$$
\begin{aligned}
\operatorname{Prob}\left[B_{s}\right] & \leq\binom{ n}{s}\binom{(1-c) n}{\beta s}\left(\frac{\beta s}{(1-c) n}\right)^{s d} \\
& \leq\left(\frac{n e}{s}\right)^{s}\left(\frac{(1-c) n e}{\beta s}\right)^{\beta s}\left(\frac{\beta s}{(1-c) n}\right)^{s d} \\
& =\left[\left(\frac{s}{n}\right)^{d-\beta-1}\left(\frac{\beta}{1-c}\right)^{d-\beta} e^{\beta+1}\right]^{s} \\
& \leq\left[\left(\frac{\alpha \beta}{1-c}\right)^{d-\beta} \cdot \frac{e^{\beta+1}}{\alpha}\right]^{s}
\end{aligned}
$$

Choose $\alpha=1 / 100, c=1 / 10, d=32, \beta=17>d / 2$,
$\operatorname{Prob}\left[B_{s}\right] \leq 0.092^{s}$

## Existence of Magical Graph with $\beta>d / 2$

The probability that such a randomly chosen graph is not an $(n, c, d, \alpha, \beta)$-graph is at most

$$
\sum_{s=1}^{\alpha n} \operatorname{Prob}\left[B_{s}\right] \leq \sum_{s=1}^{\infty} 0.092^{s}=\frac{0.092}{1-0.092}<0.11
$$

Not only such graphs exist, there are a lot of them!!!

