Concepts

- Conditional Probability, Independence
- Randomized Algorithms
- Random Variables, Expectation and its Linearity,
- Conditional Expectation, Law of Total Probability.

Examples

- Randomized Min-Cut
- Randomized Quick-Sort
- Randomized Approximation Algorithm for MAX-E3SAT
- Derandomization it using the conditional expectation method
- Expander code

Min-Cut Problem

Given a multigraph G, find a cut with minimum size.

RANDOMIZED Min-Cut(G)

- 1: for i=1 to n-2 do
- 2: Pick an edge e_i in G uniformly at random
- 3: Contract two end points of e_i (remove loops)
- 4: end for
- 5: // At this point, two vertices u, v left
- 6: Output all remaining edges between \boldsymbol{u} and \boldsymbol{v}

Analysis

- Let C be a minimum cut, $k = \left| C \right|$
- If no edge in C is chosen by the algorithm, then C will be returned in the end, and vice versa
- For i = 1..n 2, let A_i be the event that $e_i \notin C$ and B_i be the event that $\{e_1, \ldots, e_i\} \cap C = \emptyset$

$\mathsf{Prob}[C \text{ is returned}]$

- $= \operatorname{Prob}[B_{n-2}]$
- $= \operatorname{Prob}[A_{n-2} \cap B_{n-3}]$
- $= \operatorname{Prob}[A_{n-2} \mid B_{n-3}] \operatorname{Prob}[B_{n-3}]$
- = ...
- $= \operatorname{Prob}[A_{n-2} \mid B_{n-3}] \operatorname{Prob}[A_{n-3} \mid B_{n-4}] \cdots \operatorname{Prob}[A_2 \mid B_1] \operatorname{Prob}[B_1]$

Analysis

• At step 1, G has min-degree $\geq k,$ hence $\geq kn/2$ edges • Thus,

$$\mathsf{Prob}[B_1] = \mathsf{Prob}[A_1] \ge 1 - rac{k}{kn/2} = 1 - rac{2}{n}$$

• At step 2, the min cut is still at least k, hence $\geq k(n-1)/2$ edges. Thus, similar to step 1

$$\mathsf{Prob}[A_2 \mid B_1] \ge 1 - \frac{2}{n-1}$$

In general,

$$Prob[A_j | B_{j-1}] \ge 1 - \frac{2}{n-j+1}$$

• Consequently,

$$\mathsf{Prob}[C \text{ is returned}] \geq \prod_{i=1}^{n-2} \left(1 - rac{2}{n-i+1}
ight) = rac{2}{n(n-1)}$$

- The basic algorithm has failure probability at most $1 \frac{2}{n(n-1)}$
- How do we lower it?
- $\bullet\,$ Run the algorithm multiple times, say $m\cdot n(n-1)/2$ times, return the smallest cut found
- The failure probability is at most

$$\left(1 - \frac{2}{n(n-1)}\right)^{m \cdot n(n-1)/2} < \frac{1}{e^m}.$$

PTCF: Independence Events and Conditional Probabilities

• The conditional probability of A given B is $\operatorname{Prob}[A \mid B] := \frac{\operatorname{Prob}[A \cap A]}{\operatorname{Prob}[A \cap A]}$

$$\mathsf{Prob}[A \mid B] := \frac{\mathsf{Prob}[A \cap B]}{\mathsf{Prob}[B]}$$

- A and B are independent if and only if $Prob[A \mid B] = Prob[A]$
- \bullet Equivalently, A and B are independent if and only if

$$\mathsf{Prob}[A \cap B] = \mathsf{Prob}[A] \cdot \mathsf{Prob}[B]$$

PTCF: Mutually Independence and Independent Trials

• A set A_1, \ldots, A_n of events are said to be independent or mutually independent if and only if, for any $k \le n$ and $\{i_1, \ldots, i_k\} \subseteq [n]$ we have

$$\mathsf{Prob}[A_{i_1} \cap \cdots \cap A_{i_k}] = \mathsf{Prob}[A_{i_1}] \cdots \mathsf{Prob}[A_{i_k}].$$

• If n independent experiments (or trials) are performed in a row, with the *i*th being "successful" with probability p_i , then

Prob[all experiments are successful] = $p_1 \cdots p_n$.

(Question: what is the sample space?)

RANDOMIZED-QUICKSORT(A)

- 1: $n \leftarrow \mathsf{length}(A)$
- 2: if n = 1 then
- 3: Return A
- 4: **else**
- 5: Pick $i \in \{1, \dots, n\}$ uniformly at random, A[i] is called the *pivot*
- 6: $L \leftarrow \text{elements} \leq A[i]$
- 7: $R \leftarrow \text{elements} > A[i]$
- 8: // the above takes one pass through A
- 9: $L \leftarrow \text{Randomized-Quicksort}(L)$
- 10: $R \leftarrow \text{Randomized-Quicksort}(R)$
- 11: Return $L \cdot A[i] \cdot R$
- 12: end if

Analysis of Randomized Quicksort

- The running time is proportional to the number of comparisons
- Let $b_1 \leq b_2 \leq \cdots \leq b_n$ be A sorted non-decreasingly
- For each i < j, let X_{ij} be the indicator random variable indicating if b_i was ever compared with b_j
- The expected number of comparisons is

$$\mathsf{E}\left[\sum_{i < j} X_{ij}\right] = \sum_{i < j} \mathsf{E}[X_{ij}] = \sum_{i < j} \mathsf{Prob}[b_i \ \& \ b_j \text{ were compared}]$$

- b_i was compared with b_j if and only if either b_i or b_j was chosen as a pivot before any other in the set {b_i, b_{i+1},..., b_j}
- Hence, $\operatorname{Prob}[b_i \& b_j \text{ were compared}] = \frac{2}{i-i+1}$
- Thus, the expected running time is $\Theta(n\lg n)$

PTCF: Discrete Random Variable

- A random variable is a function $X: \Omega \to \mathbb{R}$
- $p_X(a) = \operatorname{Prob}[X = a]$ is called the probability mass function of X
- P_X(a) = Prob[X ≤ a] is called the (cumulative/probability) distribution function of X

• The expected value of X is defined as

$$\mathsf{E}[X] := \sum_{a} a \operatorname{Prob}[X = a].$$

• For any set X_1, \ldots, X_n of random variables, and any constants c_1, \ldots, c_n

$$\mathsf{E}[c_1X_1 + \dots + c_nX_n] = c_1\mathsf{E}[X_1] + \dots + c_n\mathsf{E}[X_n]$$

This fact is called linearity of expectation

PTCF: Indicator/Bernoulli Random Variable

$$\begin{aligned} X: \Omega \to \{0, 1\} \\ p = \mathsf{Prob}[X = 1] \end{aligned}$$

X is called a Bernoulli random variable with parameter p

If X = 1 only for outcomes ω belonging to some event A, then X is called an indicator variable for A

$$\begin{aligned} \mathsf{E}[X] &= p \\ \mathsf{Var}\left[X\right] &= p(1-p) \end{aligned}$$

Las Vegas Algorithm

A randomized algorithm which always gives the correct solution is called a Las Vegas algorithm. Its running time is a random variable.

Monte Carlo Algorithm

A randomized algorithm which may give incorrect answers (with certain probability) is called a Monte Carlo algorithm. Its running time may or may not be a random variable. • An E3-CNF formula is a CNF formula φ in which each clause has *exactly* 3 literals. E.g.,

- Max-E3SAT Problem: given an E3-CNF formula φ , find a truth assignment satisfying as many clauses as possible
- A Randomized Approximation Algorithm for Max-E3SAT
 - \bullet Assign each variable to ${\rm TRUE}/{\rm FALSE}$ with probability 1/2

- Let X_C be the random variable indicating if clause C is satisfied
- Then, $Prob[X_C = 1] = 7/8$
- $\bullet~{\rm Let}~S_{\varphi}$ be the number of satisfied clauses. Then,

$$\mathsf{E}[S_{\varphi}] = \mathsf{E}\left[\sum_{C} X_{C}\right] = \sum_{C} \mathsf{E}[X_{C}] = 7m/8 \le \frac{\mathsf{OPT}}{8/7}$$

(m is the number of clauses)

• So this is a randomized approximation algorithm with ratio 8/7

Derandomization with Conditional Expectation Method

- Derandomization is to turn a randomized algorithm into a deterministic algorithm
- By conditional expectation

$$\mathsf{E}[S_{\varphi}] = \frac{1}{2}\mathsf{E}[S_{\varphi} \mid x_1 = \text{ true}] + \frac{1}{2}\mathsf{E}[S_{\varphi} \mid x_1 = \text{ false}]$$

- Both $E[S_{\varphi} \mid x_1 = TRUE]$ and $E[S_{\varphi} \mid x_1 = FALSE]$ can be computed in polynomial time
- Suppose $\mathsf{E}[S_{\varphi} \mid x_1 = \text{ true}] \geq \mathsf{E}[S_{\varphi} \mid x_1 = \text{ false}]$, then

$$\mathsf{E}[S_{\varphi} \mid x_1 = \text{ true}] \geq \mathsf{E}[S_{\varphi}] \geq 7m/8$$

- Set $x_1 = \text{TRUE}$, let φ' be φ with c clauses containing x_1 removed, and all instances of x_1, \bar{x}_1 removed.
- Recursively find value for x_2

PTCF: Law of Total Probabilities, Conditional Expectation

• Law of total probabilities: let A_1, A_2, \ldots be any partition of Ω , then

$$\mathsf{Prob}[A] = \sum_{i \geq 1} \mathsf{Prob}[A \mid A_i] \operatorname{Prob}[A_i]$$

(Strictly speaking, we also need "and each A_i is measurable," but that always holds for finite Ω .)

• The conditional expectation of X given A is defined by

$$\mathsf{E}[X \mid A] := \sum_{a} a \operatorname{Prob}[X = a \mid A].$$

• Let A_1, A_2, \ldots be any partition of Ω , then

$$\mathsf{E}[X] = \sum_{i \geq 1} \mathsf{E}[X \mid A_i] \operatorname{Prob}[A_i]$$

• In particular, let Y be any discrete random variable, then

$$\mathsf{E}[X] = \sum_{y} \mathsf{E}[X \mid Y = y] \operatorname{\mathsf{Prob}}[Y = y]$$

©Hung Q. Ngo (SUNY at Buffalo)

Example 4: Error-Correcting Codes

- Message $\mathbf{x} \in \{0,1\}^k$
- Encoding $f(\mathbf{x}) \in \{0,1\}^n$, n > k, f an injection
- $C = \{f(\mathbf{x}) \mid \mathbf{x} \in \{0,1\}^k\}$: codewords
- $f(\mathbf{x})$ is sent over noisy channel, few bits altered
- \mathbf{y} is received instead of $f(\mathbf{x})$
- \bullet Find codeword \mathbf{z} "closest" to \mathbf{y} in Hamming distance
- Decoding $\mathbf{x}' = f^{-1}(\mathbf{z})$
- Measure of utilization: relative rate of C

$$R(C) = \frac{\log |C|}{n}$$

• Measure of noise tolerance: relative distance of ${\boldsymbol C}$

$$\delta(C) = \frac{\min_{\mathbf{c}_1, \mathbf{c}_2 \in C} \mathsf{Dist}(\mathbf{c}_1, \mathbf{c}_2)}{n}$$

Linear Codes

• For any $\mathbf{x} \in \mathbb{F}_2^n$, define

 ${}_{\rm WEIGHT}(\mathbf{x})=$ number of 1-coordinates of \mathbf{x}

• E.g., WEIGHT(1001110) = 4

1

• If C is a k-dimensional subspace of \mathbb{F}_2^n , then

$$|C| = 2^{k}$$

$$\delta(C) = \min\{\text{WEIGHT}(\mathbf{x}) \mid \mathbf{x} \in C\}$$

• Every such C can be defined by a parity check matrix A of dimension $(n-k) \times n$:

$$C = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}$$

• Conversely, every $(n-k) \times n$ matrix ${\bf A}$ defines a code C of dimension $\geq k$

Large rate and large distance are conflicting goals

Problem

Does there exist a family of codes $C_k, \ |C_k|=2^k,$ for infinitely many k, such that

$$R(C_k) \ge R_0 > 0$$

and

 $\delta(C_k) \ge \delta_0 > 0$

(Yes, using "magical graphs.")

Practicality

Design such a family explicitly, such that the codes are efficiently encodable and decodable.

Magical Graph

 $(n,c,d,\alpha,\beta)\text{-}\mathsf{graph}$

 c,d,α,β are constants, n varies.

From Magical Graphs to Code Family

- Suppose (n, c, d, α, β) -graphs exist for infinitely many n, and constants c, d, α, β such that $\beta > d/2$
- $\bullet~$ Consider such a $G=(L\cup R,E)$, |L|=n, |R|=(1-c)n=m
- Let $\mathbf{A} = (a_{ij})$ be the $m \times n$ 01-matrix, column indexed by L, and row-indexed by R, $a_{ij} = 1$ iff $(i, j) \in E$
- Define a linear code with A as parity check:

$$C = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}$$

• Then, $\dim(C) = n - \operatorname{rank}(A) \ge cn$, and

$$|C| = 2^{\dim(C)} \ge 2^{cn} \implies R(C) \ge c$$

• For every $\mathbf{x} \in C$, WEIGHT $(\mathbf{x}) \geq \alpha n$, hence

$$\delta(C) = \frac{\min\{\text{WEIGHT}(\mathbf{x}) \mid \mathbf{x} \in C\}}{n} \ge \alpha$$

Existence of Magical Graph with $\beta > d/2$

• Determine n, c, d, α, β later

• Let
$$L = [n], R = [(1 - c)n].$$

- Choose each of the d neighbors for $u \in L$ uniformly at random
- For $1\leq s\leq \alpha n,$ let B_s be the "bad" event that some subset S of size s has $|\Gamma(S)|<\beta|S|$
- \bullet For each $S\subset L,\,T\subset R,\,|S|=s,|T|=\beta s,$ define

$$X_{S,T} = \begin{cases} 1 & \Gamma(S) \subseteq T \\ 0 & \Gamma(S) \not\subseteq T \end{cases}$$

Then,

$$\mathsf{Prob}[B_s] \le \mathsf{Prob}\left[\sum_{S,T} X_{S,T} > 0\right] \le \sum_{S,T} \mathsf{Prob}[X_{S,T} = 1]$$

Existence of Magical Graph with $\beta > d/2$

$$\begin{aligned} \mathsf{Prob}[B_s] &\leq \binom{n}{s} \binom{(1-c)n}{\beta s} \left(\frac{\beta s}{(1-c)n}\right)^{sd} \\ &\leq \left(\frac{ne}{s}\right)^s \left(\frac{(1-c)ne}{\beta s}\right)^{\beta s} \left(\frac{\beta s}{(1-c)n}\right)^{sd} \\ &= \left[\left(\frac{s}{n}\right)^{d-\beta-1} \left(\frac{\beta}{1-c}\right)^{d-\beta} e^{\beta+1}\right]^s \\ &\leq \left[\left(\frac{\alpha\beta}{1-c}\right)^{d-\beta} \cdot \frac{e^{\beta+1}}{\alpha}\right]^s \end{aligned}$$

Choose $\alpha=1/100\text{, }c=1/10\text{, }d=32\text{, }\beta=17>d/2\text{,}$

 $\mathsf{Prob}[B_s] \le 0.092^s$

The probability that such a randomly chosen graph is ${\rm not}$ an $(n,c,d,\alpha,\beta)\text{-}{\rm graph}$ is at most

$$\sum_{s=1}^{\alpha n} \operatorname{Prob}[B_s] \le \sum_{s=1}^{\infty} 0.092^s = \frac{0.092}{1 - 0.092} < 0.11$$

Not only such graphs exist, there are a lot of them!!!