
Lecture 2

Concepts

Conditional Probability, Independence

Randomized Algorithms

Random Variables, Expectation and its Linearity,

Conditional Expectation, Law of Total Probability.

Examples

Randomized Min-Cut

Randomized Quick-Sort

Randomized Approximation Algorithm for max-e3sat
Derandomization it using the conditional expectation method

Expander code

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 1 / 26

Example 1: Randomized Min-Cut

Min-Cut Problem

Given a multigraph G, find a cut with minimum size.

Randomized Min-Cut(G)

1: for i = 1 to n− 2 do
2: Pick an edge ei in G uniformly at random
3: Contract two end points of ei (remove loops)
4: end for
5: // At this point, two vertices u, v left
6: Output all remaining edges between u and v

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 3 / 26

Analysis

Let C be a minimum cut, k = |C|
If no edge in C is chosen by the algorithm, then C will be returned in
the end, and vice versa

For i = 1..n− 2, let Ai be the event that ei /∈ C and Bi be the event
that {e1, . . . , ei} ∩ C = ∅

Prob[C is returned]
= Prob[Bn−2]
= Prob[An−2 ∩Bn−3]
= Prob[An−2 | Bn−3]Prob[Bn−3]
= . . .

= Prob[An−2 | Bn−3]Prob[An−3 | Bn−4] · · ·Prob[A2 | B1]Prob[B1]

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 4 / 26

Analysis

At step 1, G has min-degree ≥ k, hence ≥ kn/2 edges
Thus,

Prob[B1] = Prob[A1] ≥ 1− k

kn/2
= 1− 2

n

At step 2, the min cut is still at least k, hence ≥ k(n− 1)/2 edges.
Thus, similar to step 1

Prob[A2 | B1] ≥ 1− 2
n− 1

In general,

Prob[Aj | Bj−1] ≥ 1− 2
n− j + 1

Consequently,

Prob[C is returned] ≥
n−2∏
i=1

(
1− 2

n− i + 1

)
=

2
n(n− 1)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 5 / 26

How to Reduce the Failure Probability

The basic algorithm has failure probability at most 1− 2
n(n−1)

How do we lower it?

Run the algorithm multiple times, say m · n(n− 1)/2 times, return
the smallest cut found

The failure probability is at most(
1− 2

n(n− 1)

)m·n(n−1)/2

<
1

em
.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 6 / 26

PTCF: Independence Events and Conditional Probabilities

A A ∩ B

B

The conditional probability of A given B is

Prob[A | B] :=
Prob[A ∩B]

Prob[B]

A and B are independent if and only if Prob[A | B] = Prob[A]
Equivalently, A and B are independent if and only if

Prob[A ∩B] = Prob[A] · Prob[B]

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 7 / 26

PTCF: Mutually Independence and Independent Trials

A set A1, . . . , An of events are said to be independent or mutually
independent if and only if, for any k ≤ n and {i1, . . . , ik} ⊆ [n] we
have

Prob[Ai1 ∩ · · · ∩Aik] = Prob[Ai1] · · ·Prob[Aik].

If n independent experiments (or trials) are performed in a row, with
the ith being “successful” with probability pi, then

Prob[all experiments are successful] = p1 · · · pn.

(Question: what is the sample space?)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 8 / 26

Example 2: Randomized Quicksort

Randomized-Quicksort(A)

1: n← length(A)
2: if n = 1 then
3: Return A
4: else
5: Pick i ∈ {1, . . . , n} uniformly at random, A[i] is called the pivot
6: L← elements ≤ A[i]
7: R← elements > A[i]
8: // the above takes one pass through A
9: L← Randomized-Quicksort(L)

10: R← Randomized-Quicksort(R)
11: Return L ·A[i] ·R
12: end if

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 9 / 26

Analysis of Randomized Quicksort

The running time is proportional to the number of comparisons

Let b1 ≤ b2 ≤ · · · ≤ bn be A sorted non-decreasingly

For each i < j, let Xij be the indicator random variable indicating if
bi was ever compared with bj

The expected number of comparisons is

E

∑
i<j

Xij

 =
∑
i<j

E[Xij] =
∑
i<j

Prob[bi & bj were compared]

bi was compared with bj if and only if either bi or bj was chosen as a
pivot before any other in the set {bi, bi+1, . . . , bj}
Hence, Prob[bi & bj were compared] = 2

j−i+1

Thus, the expected running time is Θ(n lg n)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 10 / 26

PTCF: Discrete Random Variable

a

a

a

X(ω) 6= a

X(ω) 6= a a

Event X = a is {ω | X(ω) = a}

A random variable is a function X : Ω→ R
pX(a) = Prob[X = a] is called the probability mass function of X

PX(a) = Prob[X ≤ a] is called the (cumulative/probability)
distribution function of X

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 11 / 26

PTCF: Expectation and its Linearity

The expected value of X is defined as

E[X] :=
∑

a

aProb[X = a].

For any set X1, . . . , Xn of random variables, and any constants
c1, . . . , cn

E[c1X1 + · · ·+ cnXn] = c1E[X1] + · · ·+ cnE[Xn]

This fact is called linearity of expectation

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 12 / 26

PTCF: Indicator/Bernoulli Random Variable

X : Ω→ {0, 1}

p = Prob[X = 1]

X is called a Bernoulli random variable with parameter p

If X = 1 only for outcomes ω belonging to some event A, then X is called
an indicator variable for A

E[X] = p

Var [X] = p(1− p)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 13 / 26

Las Vegas and Monte Carlo Algorithms

Las Vegas Algorithm

A randomized algorithm which always gives the correct solution is called a
Las Vegas algorithm.
Its running time is a random variable.

Monte Carlo Algorithm

A randomized algorithm which may give incorrect answers (with certain
probability) is called a Monte Carlo algorithm.
Its running time may or may not be a random variable.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 14 / 26

Example 3: Max-E3SAT

An E3-CNF formula is a CNF formula ϕ in which each clause has
exactly 3 literals. E.g.,

ϕ = (x1 ∨ x̄2 ∨ x4)︸ ︷︷ ︸
Clause 1

∧ (x1 ∨ x3 ∨ x̄4)︸ ︷︷ ︸
Clause 2

∧ (x̄2 ∨ x̄3 ∨ x4)︸ ︷︷ ︸
Clause 3

Max-E3SAT Problem: given an E3-CNF formula ϕ, find a truth
assignment satisfying as many clauses as possible

A Randomized Approximation Algorithm for Max-E3SAT

Assign each variable to true/false with probability 1/2

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 15 / 26

Analyzing the Randomized Approximation Algorithm

Let XC be the random variable indicating if clause C is satisfied

Then, Prob[XC = 1] = 7/8
Let Sϕ be the number of satisfied clauses. Then,

E[Sϕ] = E

[∑
C

XC

]
=

∑
C

E[XC] = 7m/8 ≤ opt

8/7

(m is the number of clauses)

So this is a randomized approximation algorithm with ratio 8/7

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 16 / 26

Derandomization with Conditional Expectation Method

Derandomization is to turn a randomized algorithm into a
deterministic algorithm

By conditional expectation

E[Sϕ] =
1
2
E[Sϕ | x1 = true] +

1
2
E[Sϕ | x1 = false]

Both E[Sϕ | x1 = true] and E[Sϕ | x1 = false] can be computed
in polynomial time

Suppose E[Sϕ | x1 = true] ≥ E[Sϕ | x1 = false], then

E[Sϕ | x1 = true] ≥ E[Sϕ] ≥ 7m/8

Set x1 =true, let ϕ′ be ϕ with c clauses containing x1 removed, and
all instances of x1, x̄1 removed.

Recursively find value for x2

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 17 / 26

PTCF: Law of Total Probabilities, Conditional Expectation

Law of total probabilities: let A1, A2, . . . be any partition of Ω, then

Prob[A] =
∑
i≥1

Prob[A | Ai]Prob[Ai]

(Strictly speaking, we also need “and each Ai is measurable,” but
that always holds for finite Ω.)
The conditional expectation of X given A is defined by

E[X | A] :=
∑

a

aProb[X = a | A].

Let A1, A2, . . . be any partition of Ω, then

E[X] =
∑
i≥1

E[X | Ai]Prob[Ai]

In particular, let Y be any discrete random variable, then

E[X] =
∑

y

E[X | Y = y]Prob[Y = y]

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 18 / 26

Example 4: Error-Correcting Codes

Message x ∈ {0, 1}k

Encoding f(x) ∈ {0, 1}n, n > k, f an injection

C = {f(x) | x ∈ {0, 1}k}: codewords

f(x) is sent over noisy channel, few bits altered

y is received instead of f(x)
Find codeword z “closest” to y in Hamming distance

Decoding x′ = f−1(z)
Measure of utilization: relative rate of C

R(C) =
log |C|

n

Measure of noise tolerance: relative distance of C

δ(C) =
minc1,c2∈C Dist(c1, c2)

n

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 19 / 26

Linear Codes

For any x ∈ Fn
2 , define

weight(x) = number of 1-coordinates of x

E.g., weight(1001110) = 4
If C is a k-dimensional subspace of Fn

2 , then

|C| = 2k

δ(C) = min{weight(x) | x ∈ C}

Every such C can be defined by a parity check matrix A of dimension
(n− k)× n:

C = {x | Ax = 0}

Conversely, every (n− k)× n matrix A defines a code C of
dimension ≥ k

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 20 / 26

A Communication Problem

Large rate and large distance are conflicting goals

Problem

Does there exist a family of codes Ck, |Ck| = 2k, for infinitely many k,
such that

R(Ck) ≥ R0 > 0

and
δ(Ck) ≥ δ0 > 0

(Yes, using “magical graphs.”)

Practicality

Design such a family explicitly, such that the codes are efficiently
encodable and decodable.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 21 / 26

Magical Graph

(n, c, d, α, β)-graph

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

n (1− c)n

degree d

|Γ(S)| ≥ β|S|
|S| ≤ αn

c, d, α, β are constants, n varies.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 22 / 26

From Magical Graphs to Code Family

Suppose (n, c, d, α, β)-graphs exist for infinitely many n, and
constants c, d, α, β such that β > d/2
Consider such a G = (L ∪R,E), |L| = n, |R| = (1− c)n = m

Let A = (aij) be the m× n 01-matrix, column indexed by L, and
row-indexed by R, aij = 1 iff (i, j) ∈ E

Define a linear code with A as parity check:

C = {x | Ax = 0}

Then, dim(C) = n− rank(A) ≥ cn, and

|C| = 2dim(C) ≥ 2cn ⇒ R(C) ≥ c

For every x ∈ C, weight(x) ≥ αn, hence

δ(C) =
min{weight(x) | x ∈ C}

n
≥ α

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 23 / 26

Existence of Magical Graph with β > d/2

Determine n, c, d, α, β later

Let L = [n], R = [(1− c)n].
Choose each of the d neighbors for u ∈ L uniformly at random

For 1 ≤ s ≤ αn, let Bs be the “bad” event that some subset S of
size s has |Γ(S)| < β|S|
For each S ⊂ L, T ⊂ R, |S| = s, |T | = βs, define

XS,T =

{
1 Γ(S) ⊆ T

0 Γ(S) 6⊆ T

Then,

Prob[Bs] ≤ Prob

∑
S,T

XS,T > 0

 ≤∑
S,T

Prob[XS,T = 1]

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 24 / 26

Existence of Magical Graph with β > d/2

Prob[Bs] ≤
(

n

s

)(
(1− c)n

βs

) (
βs

(1− c)n

)sd

≤
(ne

s

)s
(

(1− c)ne

βs

)βs (
βs

(1− c)n

)sd

=

[(s

n

)d−β−1
(

β

1− c

)d−β

eβ+1

]s

≤

[(
αβ

1− c

)d−β

· e
β+1

α

]s

Choose α = 1/100, c = 1/10, d = 32, β = 17 > d/2,

Prob[Bs] ≤ 0.092s

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 25 / 26

Existence of Magical Graph with β > d/2

The probability that such a randomly chosen graph is not an
(n, c, d, α, β)-graph is at most

αn∑
s=1

Prob[Bs] ≤
∞∑

s=1

0.092s =
0.092

1− 0.092
< 0.11

Not only such graphs exist, there are a lot of them!!!

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 26 / 26

	Lecture 2: Independence, Conditional Probability, Randomized Algorithms, Random Variables, (Conditional) Expectation

