Concepts
o Conditional Probability, Independence
@ Randomized Algorithms
@ Random Variables, Expectation and its Linearity,
o Conditional Expectation, Law of Total Probability.
Examples
@ Randomized Min-Cut
@ Randomized Quick-Sort
@ Randomized Approximation Algorithm for MAX-E3SAT
@ Derandomization it using the conditional expectation method
°

Expander code

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 1/26



Example 1: Randomized Min-Cut

Min-Cut Problem J

Given a multigraph G, find a cut with minimum size.

RANDOMIZED MIN-CUT(G)
1: fori=1ton—2do
2:  Pick an edge ¢; in G uniformly at random
3:  Contract two end points of e; (remove loops)
4: end for
5. // At this point, two vertices u, v left
6: Output all remaining edges between u and v
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o Let C' be a minimum cut, k = |C]|

@ If no edge in C is chosen by the algorithm, then C' will be returned in
the end, and vice versa

e Fori=1..n—2, let A; be the event that e¢; ¢ C' and B; be the event
that {61,...,6i}ﬂ02®

Prob[C' is returned|
= Prob[B,_2]
= Prob[4,,—2 N B;,_3]
[An—2 | Bp—3] Prob[By,_s]

= Prob[A,,—3 | By—3] Prob[A,,_3 | By—_4]---Prob[Ay | Bi] Prob[B]
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o At step 1, G has min-degree > k, hence > kn/2 edges

@ Thus, )
2
PrOb[Bl] = Prob[Al] 1-— m =1- ﬁ

At step 2, the min cut is still at least k, hence > k(n — 1)/2 edges.
Thus, similar to step 1
2

Prob[As | B1] > 1 —
rob[Az | Bi] 21— ——

@ In general,
2

o Consequently,

n—2
2) 2
Prob[C is returned] > 1= -
ro[Clsreurne]_il_[l< n—i+1> n(n—1)
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How to Reduce the Failure Probability

2

@ The basic algorithm has failure probability at most 1 — w=T)

@ How do we lower it?

@ Run the algorithm multiple times, say m - n(n — 1)/2 times, return
the smallest cut found

@ The failure probability is at most
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PTCEF: Independence Events and Conditional Probabilities

D

@ The conditional probability of A given B is

Prob[A N B

Probl | B) = —p

e A and B are independent if and only if Prob[A | B] = Prob|[A]
o Equivalently, A and B are independent if and only if

Prob[A N B] = Prob[A] - Prob[B]
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PTCF: Mutually Independence and Independent Trials

@ Aset Ay,..., A, of events are said to be independent or mutually
independent if and only if, for any & < n and {iy,...,it} C [n] we
have

F’I’Ob[z‘li1 n---N A’lk] = Prob[Ail] s PI’Ob[Alk]

e If n independent experiments (or trials) are performed in a row, with
the ith being “successful” with probability p;, then

Probl[all experiments are successful] = py - - - py,.

(Question: what is the sample space?)
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Example 2: Randomized Quicksort

RANDOMIZED-QUICKSORT(A)

1. n < length(A)

2: if n =1 then

3:  Return A

4: else
Pick i € {1,...,n} uniformly at random, A[] is called the pivot
L — elements < A[i]
R «— elements > AJi]
// the above takes one pass through A
L — RANDOMIZED-QUICKSORT(L)
10 R < RANDOMIZED-QUICKSORT(R)
11:  Return L- Afi]- R
12: end if

© o N oo
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Analysis of Randomized Quicksort

@ The running time is proportional to the number of comparisons
o Let by < by <--- <b, be A sorted non-decreasingly

@ For each i < j, let X;; be the indicator random variable indicating if
b; was ever compared with b;

@ The expected number of comparisons is

E ZXij = Z E[Xi;] = Z Prob[b; & b; were compared)]
i<j i<j i<j

@ b; was compared with b; if and only if either b; or b; was chosen as a

pivot before any other in the set {b;,b;41,...,b;}
@ Hence, Prob[b; & b; were compared] = ]_Z%
@ Thus, the expected running time is ©(nlgn)
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PTCF: Discrete Random Variable

Event X =ais {w | X(w) = a}

@]
Xém);éu
@]

0]
@]

@ A random variable is a function X : @ — R

@ px(a) = Prob[X = a] is called the probability mass function of X

@ Px(a) = Prob[X < a] is called the (cumulative/probability)
distribution function of X
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PTCF: Expectation and its Linearity

@ The expected value of X is defined as

E[X]:= aProb[X =al.

@ For any set X1,...,X,, of random variables, and any constants
Cly...,Cp

Ele1 X1 + -+ + cnXp] = c1E[Xa] + - -+ + cnE[X5)]

This fact is called linearity of expectation
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PTCF: Indicator/Bernoulli Random Variable

X:Q—-{0,1}
p = Prob[X = 1]
X is called a Bernoulli random variable with parameter p

If X =1 only for outcomes w belonging to some event A, then X is called
an indicator variable for A
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Las Vegas and Monte Carlo Algorithms

Las Vegas Algorithm

A randomized algorithm which always gives the correct solution is called a
Las Vegas algorithm.
Its running time is a random variable.

Monte Carlo Algorithm

A randomized algorithm which may give incorrect answers (with certain
probability) is called a Monte Carlo algorithm.
Its running time may or may not be a random variable.
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Example 3: Max-E3SAT

@ An E3-CNF formula is a CNF formula ¢ in which each clause has
exactly 3 literals. E.g.,

o= (x1VZ2Vaxg) AN(x1 VI3V ITY)N(T2V T3V x4)

Clause 1 Clause 2 Clause 3

@ Max-E3SAT Problem: given an E3-CNF formula ¢, find a truth
assignment satisfying as many clauses as possible

A Randomized Approximation Algorithm for Max-E3SAT

@ Assign each variable to TRUE/FALSE with probability 1/2

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 15 / 26



Analyzing the Randomized Approximation Algorithm

@ Let X be the random variable indicating if clause C' is satisfied
@ Then, Prob[X¢c =1]=7/8

@ Let S, be the number of satisfied clauses. Then,

S,] =E [zcj XC] S E[Xc] = Tm/8 < Z;’;

c

(m is the number of clauses)
@ So this is a randomized approximation algorithm with ratio 8/7
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Derandomization with Conditional Expectation Method

@ Derandomization is to turn a randomized algorithm into a
deterministic algorithm
@ By conditional expectation

1 1
E[S,] = §E[S¢ | 11 = TRUE] + §E[S¢ | 21 = FALSE]

e Both E[S, | 1 = TRUE] and E[S, | 21 = FALSE] can be computed
in polynomial time
@ Suppose E[S, | 1 = TRUE|] > E[S,, | 1 = FALSE], then

E[S, | 1 = TRUE] > E[S,] > Tm/8

@ Set ; =TRUE, let ¢’ be ¢ with ¢ clauses containing x; removed, and
all instances of x1,Z; removed.
@ Recursively find value for x-
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PTCF: Law of Total Probabilities, Conditional Expectation

o Law of total probabilities: let A, Ao, ... be any partition of €2, then
Prob[A] = " Prob[A | A;] Prob[A;]
i>1
(Strictly speaking, we also need “and each A; is measurable,” but

that always holds for finite (2.)
@ The conditional expectation of X given A is defined by

E[X | 4] : ZaProb =al A

o Let Ay, Ag,... be any partition of €2, then
= > E[X | Aj] Prob[A]

i>1
@ In particular, let Y be any discrete random variable, then

= E[X | Y =y|Prob[Y =y]
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Example 4: Error-Correcting Codes

Message x € {0,1}*
Encoding f(x) € {0,1}", n > k, f an injection
C = {f(x) | x €{0,1}*}: codewords
f(x) is sent over noisy channel, few bits altered
y is received instead of f(x)
Find codeword z “closest” to y in Hamming distance
Decoding x' = f~1(z)
Measure of utilization: relative rate of C
log |C]|
T

R(C)

Measure of noise tolerance: relative distance of C

mine, ¢,ec Dist(cy, c2)

8(C) =

n
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e For any x € 7}, define

WEIGHT(X) = number of 1-coordinates of x

e E.g.,, WEIGHT(1001110) =4
e If C is a k-dimensional subspace of F3, then

c| = 2F
d(C) = min{WEIGHT(x) | x € C'}

@ Every such C' can be defined by a parity check matrix A of dimension

(n—Fk)xn:
C={x|Ax =0}

o Conversely, every (n — k) x n matrix A defines a code C' of

dimension > k
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A Communication Problem

Large rate and large distance are conflicting goals

Problem

Does there exist a family of codes Cy, |Cy| = 2F, for infinitely many k,
such that
R(Ck) > Ry >0

and

0(Ck) > 00 >0

(Yes, using “magical graphs.”)

Practicality

Design such a family explicitly, such that the codes are efficiently
encodable and decodable.
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Magical Graph

(n,c,d, o, 3)-graph

[T(S)| = BlS]

=
degree d

¢,d,a, 3 are constants, n varies.
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From Magical Graphs to Code Family

@ Suppose (n,c,d, «, 3)-graphs exist for infinitely many n, and
constants ¢, d, a, 3 such that 5 > d/2
e Consider sucha G=(LUR,E), |[L| =n,|R|=(1—cn=m
o Let A = (a;;) be the m x n 01-matrix, column indexed by L, and
row-indexed by R, a;; = 1iff (i,j) € E
@ Define a linear code with A as parity check:
C={x|Ax =0}
@ Then, dim(C) = n — rank(A) > ¢n, and
|C| = 24m(©) > 9 = R(C) > ¢

@ For every x € C', WEIGHT(X) > an, hence

min{WEIGHT(x) | x € C'} > a
n

5(C) =
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Existence of Magical Graph with 3 > d/2

@ Determine n, ¢, d, o, 3 later

o Let L=[n|,R=[(1-0c)n].

@ Choose each of the d neighbors for € L uniformly at random

@ For 1 <s < an, let Bg be the “bad” event that some subset S of
size s has |[I'(S)| < 55|

@ Foreach SC L, T C R, |S| =s,|T| = (s, define

1 ns)cr
Xsr = {0 T(S)Z T

@ Then,
Prob[B,] < Prob [ Y Xgr >0| <> Prob[Xgr = 1]
S, T S, T
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Existence of Magical Graph with 3 > d/2

()" (o)
() (5) (%)
[ dﬁl 1—c> eﬁﬂ]

< [(16) 'eﬂaﬂr

Choose av = 1/100, ¢ = 1/10, d = 32, B = 17 > d/2,

Prob[B,] <

IN

Prob[B,] < 0.092°
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Existence of Magical Graph with 3 > d/2

The probability that such a randomly chosen graph is not an
(n,c,d, o, 3)-graph is at most

— . 0.092
ZProb <Z()092—1_0092<011

Not only such graphs exist, there are a lot of them!!!

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 26 / 26



	Lecture 2: Independence, Conditional Probability, Randomized Algorithms, Random Variables, (Conditional) Expectation

