The Setting

- A stream of packets are sent $S = R_0 \rightarrow R_1 \rightarrow \cdots \rightarrow R_{n-1} \rightarrow D$
- Each R_i can overwrite the SOURCE IP field F of a packet
- D wants to know the set of routers on the route

The Assumption

• For each packet D receives and each i, $Prob[F = R_i] = 1/n$ (*)

The Questions

- How does the routers ensure (*)?
- O How many packets must D receive to know all routers?

The setting

- n types of coupons
- Every cereal box has a coupon
- For each box B and each coupon type t,

$$\mathsf{Prob}\left[B ext{ contains coupon type } t
ight] = rac{1}{n}$$

Coupon Collector Problem

How many boxes of cereal must the collector purchase before he has all types of coupons?

The Analysis

- X = number of boxes he buys to have all coupon types.
- For i ∈ [n], let X_i be the additional number of cereal boxes he buys to get a new coupon type, after he had collected i − 1 different types

$$X = X_1 + X_2 + \dots + X_n$$
, $\mathsf{E}[X] = \sum_{i=1}^n E[X_i]$

After *i* − 1 types collected,

 $Prob[A new box contains a new type] = p_i = 1 - \frac{i-1}{n}$

• Hence, X_i is geometric with parameter p_i , implying

$$\mathsf{E}[X_i] = \frac{1}{p_i} = \frac{n}{n - i + 1}$$
$$\mathsf{E}[X] = n \sum_{i=1}^n \frac{1}{n - i + 1} = n H_n = n \ln n + \Theta(n)$$

- $\bullet~{\rm A}$ coin turns head with probability $p{\rm,}$ tail with 1-p
- X = number of flips until a head shows up
- $\bullet~X$ has geometric distribution with parameter p

$$\begin{aligned} \mathsf{Prob}[X = n] &= (1-p)^{n-1}p \\ \mathsf{E}[X] &= \frac{1}{p} \\ \mathsf{Var}\left[X\right] &= \frac{1-p}{p^2} \end{aligned}$$

- We can't be sure that buying nH_n cereal boxes suffices
- Want Prob[X ≥ C], i.e. what's the probability that he has to buy C boxes to collect all coupon types?
- Intuitively, X is far from its mean with small probability
- Want something like

 $\operatorname{Prob}[X \ge C] \le \operatorname{some}$ function of C, preferably $\ll 1$

i.e. (large) deviation inequality or tail inequalities

Central Theme

The more we know about X, the better the deviation inequality we can derive: Markov, Chebyshev, Chernoff, etc.

Theorem

If X is a r.v. taking only non-negative values, $\mu=\mathsf{E}[X],$ then $\forall a>0$

$$\mathsf{Prob}[X \ge a] \le \frac{\mu}{a}.$$

Equivalently,

$$\mathsf{Prob}[X \ge a\mu] \le \frac{1}{a}.$$

If we know Var[X], we can do better!

PTCF: (Co)Variance, Moments, Their Properties

- Variance: $\sigma^2 = \text{Var}[X] := \text{E}[(X \text{E}[X])^2] = \text{E}[X^2] (\text{E}[X])^2$
- Standard deviation: $\sigma := \sqrt{\operatorname{Var}[X]}$
- kth moment: $E[X^k]$
- Covariance: $\operatorname{Cov}[X,Y] := \operatorname{E}[(X \operatorname{E}[X])(Y \operatorname{E}[Y])]$
- For any two r.v. X and Y,

$$\mathsf{Var}\left[X+Y\right] = \mathsf{Var}\left[X\right] + \mathsf{Var}\left[Y\right] + 2\,\mathsf{Cov}\left[X,Y\right]$$

• If X and Y are independent (define it), then

$$\begin{aligned} \mathsf{E}[X \cdot Y] &= \mathsf{E}[X] \cdot \mathsf{E}[Y] \\ \mathsf{Cov}\left[X,Y\right] &= 0 \\ \mathsf{Var}\left[X+Y\right] &= \mathsf{Var}\left[X\right] + \mathsf{Var}\left[Y\right] \end{aligned}$$

• In fact, if X_1, \ldots, X_n are mutually independent, then

$$\mathsf{Var}\left[\sum_{i} X_{i}\right] = \sum_{i} \mathsf{Var}\left[X_{i}\right]$$

Theorem (Two-sided Chebyshev's Inequality)

If X is a r.v. with mean μ and variance σ^2 , then $\forall a > 0$,

$$\mathsf{Prob}\big[|X-\mu| \ge a\big] \le \frac{\sigma^2}{a^2} \text{ or, equivalently } \mathsf{Prob}\big[|X-\mu| \ge a\sigma\big] \le \frac{1}{a^2}.$$

Theorem (One-sided Chebyshev's Inequality) Let X be a r.v. with $E[X] = \mu$ and $Var[X] = \sigma^2$, then $\forall a > 0$,

$$\begin{aligned} &\mathsf{Prob}[X \ge \mu + a] &\leq \quad \frac{\sigma^2}{\sigma^2 + a^2} \\ &\mathsf{Prob}[X \le \mu - a] &\leq \quad \frac{\sigma^2}{\sigma^2 + a^2}. \end{aligned}$$

Back to the Additional Questions

• Markov's leads to,

$$\mathsf{Prob}[X \ge 2nH_n] \le \frac{1}{2}$$

• To apply Chebyshev's, we need Var[X]:

$$\mathsf{Prob}[|X - nH_n| \ge nH_n] \le \frac{\mathsf{Var}\left[X\right]}{(nH_n)^2}$$

• Key observation: the X_i are independent (why?)

$$\operatorname{Var}\left[X\right] = \sum_{i} \operatorname{Var}\left[X_{i}\right] = \sum_{i} \frac{1 - p_{i}}{p_{i}^{2}} \leq \sum_{i} \frac{n^{2}}{(n - i + 1)^{2}} = \frac{\pi^{2} n^{2}}{6}$$

• Chebyshev's leads to

$$\mathsf{Prob}[|X - nH_n| \ge nH_n] \le \frac{\pi^2}{6H_n^2} = \Theta\left(\frac{1}{\ln^2 n}\right)$$

The Problem

Alice wants to send to Bob a message $b_1b_2\cdots b_m$ of m bits. She can send only **one** bit at a time, but always forgets which bits have been sent. Bob knows m, nothing else about the message.

The solution

- Send bits so that the fraction of bits 1 received is within ϵ of $p = B/2^m$, where $B = b_1 b_2 \cdots b_m$ as an integer
- Specifically, send bit 1 with probability p, and 0 with (1-p)

The question

How many bits must be sent so B can be decoded with high probability?

- \bullet One way to do decoding: round the fraction of bits 1 received to the closest multiple of of $1/2^m$
- Let X_1, \ldots, X_n be the bits received (independent Bernoulli trials)
- Let $X = \sum_i X_i,$ then $\mu = \mathsf{E}[X] = np.$ We want, say

$$\mathsf{Prob}\left[\left|\frac{X}{n} - p\right| \le \frac{1}{3 \cdot 2^m}\right] \ge 1 - \epsilon$$

which is equivalent to

$$\mathsf{Prob}\left[|X-\mu| \leq \frac{n}{3\cdot 2^m}\right] \geq 1-\epsilon$$

This is a kind of concentration inequality.

- n independent trials are performed, each with success probability p.
- X = number of successes after n trials, then

$$\mathsf{Prob}[X=i] = \binom{n}{i} p^i (1-p)^{n-i}, \ \forall i = 0, \dots, n$$

• X is called a binomial random variable with parameters (n, p).

$$E[X] = np$$

Var $[X] = np(1-p)$

PTCF: Chernoff Bounds

Theorem (Chernoff bounds are just the following idea)

Let X be any r.v., then

• For any t > 0

$$\mathsf{Prob}[X \ge a] \le \frac{\mathsf{E}[e^{tX}]}{e^{ta}}$$

In particular,

$$\mathsf{Prob}[X \ge a] \le \min_{t > 0} \frac{\mathsf{E}[e^{tX}]}{e^{ta}}$$

2 For any t < 0

$$\mathsf{Prob}[X \le a] \le \frac{\mathsf{E}[e^{tX}]}{e^{ta}}$$

In particular,

$$\mathsf{Prob}[X \ge a] \le \min_{t < 0} \frac{\mathsf{E}[e^{tX}]}{e^{ta}}$$

(E^{tX} is called the moment generating function of X)

©Hung Q. Ngo (SUNY at Buffalo)

PTCF: A Chernoff Bound for sum of Poisson Trials

Above the mean case.

Let X_1, \ldots, X_n be independent Poisson trials, $\operatorname{Prob}[X_i = 1] = p_i$, $X = \sum_i X_i$, $\mu = \operatorname{E}[X]$. Then,

• For any $\delta > 0$,

$$\operatorname{Prob}[X \geq (1+\delta)\mu] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu};$$

• For any $0 < \delta \leq 1$,

$$\mathsf{Prob}[X \ge (1+\delta)\mu] \le e^{-\mu\delta^2/3};$$

• For any $R \ge 6\mu$,

$$\mathsf{Prob}[X \ge R] \le 2^{-R}.$$

Below the mean case.

2

Let X_1, \ldots, X_n be independent Poisson trials, $\operatorname{Prob}[X_i = 1] = p_i$, $X = \sum_i X_i$, $\mu = \mathsf{E}[X]$. Then, for any $0 < \delta < 1$:

$$\operatorname{Prob}[X \le (1-\delta)\mu] \le \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu};$$

$$\mathsf{Prob}[X \le (1-\delta)\mu] \le e^{-\mu\delta^2/2}.$$

A simple (two-sided) deviation case.

Let X_1, \ldots, X_n be independent Poisson trials, $\operatorname{Prob}[X_i = 1] = p_i$, $X = \sum_i X_i$, $\mu = \mathsf{E}[X]$. Then, for any $0 < \delta < 1$:

$$\mathsf{Prob}[|X - \mu| \ge \delta\mu] \le 2e^{-\mu\delta^2/3}.$$

Chernoff Bounds Informally

The probability that the sum of independent Poisson trials is far from the sum's mean is exponentially small.

$$\begin{split} \operatorname{Prob}\left[|X-\mu| > \frac{n}{3 \cdot 2^m}\right] &= \operatorname{Prob}\left[|X-\mu| > \frac{1}{3 \cdot 2^m p}\mu\right] \\ &\leq \frac{2}{\exp\{\frac{n}{18 \cdot 4^m p}\}} \end{split}$$

Now,

$$\frac{2}{\exp\{\frac{n}{18\cdot 4^m p}\}} \leq \epsilon$$

is equivalent to

 $n \ge 18p\ln(2/\epsilon)4^m.$

The Problem

We want to estimate $\mu = E[X]$ for some random variable X (e.g., X is the income in dollars of a random person in the world).

The Question

How many samples must be take so that, given $\epsilon,\delta>0,$ the estimated value $\bar{\mu}$ satisfies

$$\mathsf{Prob}[|\overline{\mu} - \mu| \le \epsilon \mu] \ge 1 - \delta$$

- δ : confidence parameter
- ϵ : error parameter

- law of large numbers (there are actually 2 versions) basically says that the sample mean tends to the true mean as the number of samples tends to infinity
- We take n samples X_1, \ldots, X_n , and output

$$\bar{\mu} = \frac{1}{n}(X_1 + \dots + X_n)$$

- But, how large must n be? ("Easy" if X is Bernoulli!)
- Markov is of some use, but only gives upper-tail bound
- Need a bound on the variance $\sigma^2 = \mathrm{Var}\left[X\right]$ too, to answer the question

- Let $Y = X_1 + \dots + X_n$, then $\overline{\mu} = Y/n$ and $\mathsf{E}[Y] = n\mu$
- Since the X_i are independent, $\operatorname{Var}[Y] = \sum_i \operatorname{Var}[X_i] = n\sigma^2$
- Let $r = \sigma/\mu$, Chebyshev inequality gives

$$\begin{split} \operatorname{Prob}[|\overline{\mu} - \mu| > \epsilon \mu] &= \operatorname{Prob}\left[|Y - \mathsf{E}[Y]| > \epsilon \mathsf{E}[Y]\right] \\ &< \frac{\operatorname{Var}\left[Y\right]}{(\epsilon \mathsf{E}[Y])^2} = \frac{n\sigma^2}{\epsilon^2 n^2 \mu^2} = \frac{r^2}{n\epsilon^2}. \end{split}$$

• Consequently,
$$n = \frac{r^2}{\delta \epsilon^2}$$
 is sufficient!
• We can do better!

Finally, the Median Trick!

- If confident parameter is 1/4, we only need $\Theta(r^2/\epsilon^2)$ samples; the estimate is a little "weak"
- Suppose we have w weak estimates μ_1,\ldots,μ_w
- Output $\bar{\mu}$: the **median** of these weak estimates!
- Let I_j indicates the event $|\mu_j \mu| \le \epsilon \mu$, and $I = \sum_{j=1}^w I_j$
- By Chernoff's bound,

$$\begin{split} \operatorname{Prob}[|\overline{\mu} - \mu| > \epsilon \mu] &\leq \operatorname{Prob}\left[Y \leq w/2\right] \\ &\leq \operatorname{Prob}\left[Y \leq (2/3) \mathsf{E}[Y]\right] \\ &= \operatorname{Prob}\left[Y \leq (1 - 1/3) \mathsf{E}[Y]\right] \\ &\leq \frac{1}{e^{\mathsf{E}[Y]/18}} \leq \frac{1}{e^{w/24}} \leq \delta \end{split}$$

whenever $w \ge 24 \ln(1/\delta)$.

• Thus, the total number of samples needed is $n = O(r^2 \ln(1/\delta)/\epsilon^2)$.

Example 4: Oblivious Routing on the Hypercube

- Directed graph G = (V, E): network of parallel processors
- Permutation Routing Problem
 - Each node v contains one packet P_v , $1 \le v \le N = |V|$
 - Destination for packet from v is $\pi_v\text{, }\pi\in S_n$
 - Time is discretized into unit steps
 - Each packet can be sent on an edge in one step
 - Queueing discipline: FIFO
- Oblivious algorithm: route R_v for P_v depends on v and π_v only
- Question: in the worst-case (over π), how many steps must an oblivious algorithm take to route all packets?

Theorem (Kaklamanis et al, 1990)

Suppose G has N vertices and out-degree d. For any deterministic oblivious algorithm for the permutation routing problem, there is an instance π which requires $\Omega(\sqrt{N/d})$ steps.

The (Directed) Hypercube

The n-cube: |V| = N = 2ⁿ, vertices v ∈ {0,1}ⁿ, v = v₁ ··· v_n
(u, v) ∈ E iff their Hamming distance is 1

The Bit-Fixing Algorithm

- Source $\mathbf{u} = u_1 \cdots u_n$, target $\pi_u = v_1 \cdots v_n$
- Suppose the packet is currently at $\mathbf{w} = w_1 \cdots w_n$, scan \mathbf{w} from left to right, find the first place where $w_i \neq v_i$
- Forward packet to $w_1 \cdots w_{i-1} v_i w_{i+1} \cdots w_n$

D

Source	010011
	110010
	100010
	100110
estination	100111

• There is a π requiring $\Omega(\sqrt{N/n})$ steps

Les Valiant, A scheme for fast parallel communication, SIAM J. Computing, 11: 2 (1982), 350-361.

Two phase algorithm (input: π)

- Phase 1: choose $\sigma \in S_N$ uniformly at random, route P_v to σ_v with bit-fixing
- Phase 2: route P_v from σ_v to π_v with bit-fixing

This scheme is now used in designing Internet routers with high throughput!

- P_u takes route $R_u = (e_1, \ldots, e_k)$ to σ_u
- Time taken is $k \ (\leq n)$ plus queueing delay

Lemma

If R_u and R_v share an edge, once R_v leaves R_u it will not come back to R_u

Theorem

Let S be the set of packets other than packet P_u whose routes share an edge with R_u , then the queueing delay incurred by packet P_u is at most |S|

Phase 1 Analysis

- Let H_{uv} indicate if R_u and R_v share an edge
- Queueing delay incurred by P_u is $\sum_{v \neq u} H_{uv}$.
- We want to bound

$$\mathsf{Prob}\left[\sum_{v\neq u}H_{uv}>\alpha n\right]\geq~??$$

,

- Need an upper bound for $\mathsf{E}\left[\sum_{v\neq u}H_{uv}\right]$
- $\bullet\,$ For each edge e, let T_e denote the number of routes containing e

$$\sum_{v \neq u} H_{uv} \leq \sum_{i=1}^{k} T_{e_i}$$
$$\mathsf{E}\left[\sum_{v \neq u} H_{uv}\right] \leq \sum_{i=1}^{k} \mathsf{E}[T_{e_i}] = k/2 \leq n/2$$

Conclusion

• By Chernoff bound,

$$\operatorname{Prob}\left[\sum_{v\neq u}H_{uv}>6n\right]\leq 2^{-6n}$$

• Hence,

Theorem

With probability at least $1 - 2^{-5n}$, every packet reaches its intermediate target (σ) in Phase 1 in 7n steps

Theorem (Conclusion)

With probability at least 1 - 1/N, every packet reaches its target (π) in 14n steps