Example 1: Probabilistic Packet Marking (PPM)

The Setting

- A stream of packets are sent $S=R_{0} \rightarrow R_{1} \rightarrow \cdots \rightarrow R_{n-1} \rightarrow D$
- Each R_{i} can overwrite the source IP field F of a packet
- D wants to know the set of routers on the route

The Assumption

- For each packet D receives and each $i, \operatorname{Prob}\left[F=R_{i}\right]=1 / n\left(^{*}\right)$

The Questions
(1) How does the routers ensure $\left(^{*}\right)$?
(2) How many packets must D receive to know all routers?

Coupon Collector Problem

The setting

- n types of coupons
- Every cereal box has a coupon
- For each box B and each coupon type t,

$$
\operatorname{Prob}[B \text { contains coupon type } t]=\frac{1}{n}
$$

Coupon Collector Problem

How many boxes of cereal must the collector purchase before he has all types of coupons?

The Analysis

- $X=$ number of boxes he buys to have all coupon types.
- For $i \in[n]$, let X_{i} be the additional number of cereal boxes he buys to get a new coupon type, after he had collected $i-1$ different types

$$
X=X_{1}+X_{2}+\cdots+X_{n}, \quad \mathrm{E}[X]=\sum_{i=1}^{n} E\left[X_{i}\right]
$$

- After $i-1$ types collected,

$$
\operatorname{Prob}[\mathrm{A} \text { new box contains a new type }]=p_{i}=1-\frac{i-1}{n}
$$

- Hence, X_{i} is geometric with parameter p_{i}, implying

$$
\begin{gathered}
\mathrm{E}\left[X_{i}\right]=\frac{1}{p_{i}}=\frac{n}{n-i+1} \\
\mathrm{E}[X]=n \sum_{i=1}^{n} \frac{1}{n-i+1}=n H_{n}=n \ln n+\Theta(n)
\end{gathered}
$$

PTCF: Geometric Distribution

- A coin turns head with probability p, tail with $1-p$
- $X=$ number of flips until a head shows up
- X has geometric distribution with parameter p

$$
\begin{aligned}
\operatorname{Prob}[X=n] & =(1-p)^{n-1} p \\
\mathrm{E}[X] & =\frac{1}{p} \\
\operatorname{Var}[X] & =\frac{1-p}{p^{2}}
\end{aligned}
$$

Additional Questions

- We can't be sure that buying $n H_{n}$ cereal boxes suffices
- Want $\operatorname{Prob}[X \geq C]$, i.e. what's the probability that he has to buy C boxes to collect all coupon types?
- Intuitively, X is far from its mean with small probability
- Want something like

$$
\operatorname{Prob}[X \geq C] \leq \text { some function of } C \text {, preferably } \ll 1
$$

i.e. (large) deviation inequality or tail inequalities

Central Theme

The more we know about X, the better the deviation inequality we can derive: Markov, Chebyshev, Chernoff, etc.

PTCF: Markov's Inequality

Theorem

If X is a r.v. taking only non-negative values, $\mu=\mathrm{E}[X]$, then $\forall a>0$

$$
\operatorname{Prob}[X \geq a] \leq \frac{\mu}{a}
$$

Equivalently,

$$
\operatorname{Prob}[X \geq a \mu] \leq \frac{1}{a}
$$

If we know $\operatorname{Var}[X]$, we can do better!

PTCF: (Co)Variance, Moments, Their Properties

- Variance: $\sigma^{2}=\operatorname{Var}[X]:=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}$
- Standard deviation: $\sigma:=\sqrt{\operatorname{Var}[X]}$
- k th moment: $\mathrm{E}\left[X^{k}\right]$
- Covariance: $\operatorname{Cov}[X, Y]:=\mathrm{E}[(X-\mathrm{E}[X])(Y-\mathrm{E}[Y])]$
- For any two r.v. X and Y,

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y]
$$

- If X and Y are independent (define it), then

$$
\begin{aligned}
\mathrm{E}[X \cdot Y] & =\mathrm{E}[X] \cdot \mathrm{E}[Y] \\
\operatorname{Cov}[X, Y] & =0 \\
\operatorname{Var}[X+Y] & =\operatorname{Var}[X]+\operatorname{Var}[Y]
\end{aligned}
$$

- In fact, if X_{1}, \ldots, X_{n} are mutually independent, then

$$
\operatorname{Var}\left[\sum_{i} X_{i}\right]=\sum_{i} \operatorname{Var}\left[X_{i}\right]
$$

PTCF: Chebyshev's Inequality

Theorem (Two-sided Chebyshev's Inequality)

If X is a r.v. with mean μ and variance σ^{2}, then $\forall a>0$,
$\operatorname{Prob}[|X-\mu| \geq a] \leq \frac{\sigma^{2}}{a^{2}}$ or, equivalently $\operatorname{Prob}[|X-\mu| \geq a \sigma] \leq \frac{1}{a^{2}}$.

Theorem (One-sided Chebyshev's Inequality)
Let X be a r.v. with $\mathrm{E}[X]=\mu$ and $\operatorname{Var}[X]=\sigma^{2}$, then $\forall a>0$,

$$
\begin{aligned}
& \operatorname{Prob}[X \geq \mu+a] \leq \frac{\sigma^{2}}{\sigma^{2}+a^{2}} \\
& \operatorname{Prob}[X \leq \mu-a] \leq \frac{\sigma^{2}}{\sigma^{2}+a^{2}}
\end{aligned}
$$

Back to the Additional Questions

- Markov's leads to,

$$
\operatorname{Prob}\left[X \geq 2 n H_{n}\right] \leq \frac{1}{2}
$$

- To apply Chebyshev's, we need $\operatorname{Var}[X]$:

$$
\operatorname{Prob}\left[\left|X-n H_{n}\right| \geq n H_{n}\right] \leq \frac{\operatorname{Var}[X]}{\left(n H_{n}\right)^{2}}
$$

- Key observation: the X_{i} are independent (why?)

$$
\operatorname{Var}[X]=\sum_{i} \operatorname{Var}\left[X_{i}\right]=\sum_{i} \frac{1-p_{i}}{p_{i}^{2}} \leq \sum_{i} \frac{n^{2}}{(n-i+1)^{2}}=\frac{\pi^{2} n^{2}}{6}
$$

- Chebyshev's leads to

$$
\operatorname{Prob}\left[\left|X-n H_{n}\right| \geq n H_{n}\right] \leq \frac{\pi^{2}}{6 H_{n}^{2}}=\Theta\left(\frac{1}{\ln ^{2} n}\right)
$$

Example 2: PPM with One Bit

The Problem

Alice wants to send to Bob a message $b_{1} b_{2} \cdots b_{m}$ of m bits. She can send only one bit at a time, but always forgets which bits have been sent. Bob knows m, nothing else about the message.

The solution

- Send bits so that the fraction of bits 1 received is within ϵ of $p=B / 2^{m}$, where $B=b_{1} b_{2} \cdots b_{m}$ as an integer
- Specifically, send bit 1 with probability p, and 0 with $(1-p)$

The question

How many bits must be sent so B can be decoded with high probability?

The Analysis

- One way to do decoding: round the fraction of bits 1 received to the closest multiple of of $1 / 2^{m}$
- Let X_{1}, \ldots, X_{n} be the bits received (independent Bernoulli trials)
- Let $X=\sum_{i} X_{i}$, then $\mu=\mathrm{E}[X]=n p$. We want, say

$$
\operatorname{Prob}\left[\left|\frac{X}{n}-p\right| \leq \frac{1}{3 \cdot 2^{m}}\right] \geq 1-\epsilon
$$

which is equivalent to

$$
\operatorname{Prob}\left[|X-\mu| \leq \frac{n}{3 \cdot 2^{m}}\right] \geq 1-\epsilon
$$

This is a kind of concentration inequality.

PTCF: The Binomial Distribution

- n independent trials are performed, each with success probability p.
- $X=$ number of successes after n trials, then

$$
\operatorname{Prob}[X=i]=\binom{n}{i} p^{i}(1-p)^{n-i}, \forall i=0, \ldots, n
$$

- X is called a binomial random variable with parameters (n, p).

$$
\begin{aligned}
\mathrm{E}[X] & =n p \\
\operatorname{Var}[X] & =n p(1-p)
\end{aligned}
$$

PTCF: Chernoff Bounds

Theorem (Chernoff bounds are just the following idea)
Let X be any r.v., then
(1) For any $t>0$

$$
\operatorname{Prob}[X \geq a] \leq \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t a}}
$$

In particular,

$$
\operatorname{Prob}[X \geq a] \leq \min _{t>0} \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t a}}
$$

(2) For any $t<0$

$$
\operatorname{Prob}[X \leq a] \leq \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t a}}
$$

In particular,

$$
\operatorname{Prob}[X \geq a] \leq \min _{t<0} \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t a}}
$$

($\mathrm{E}^{t X}$ is called the moment generating function of X)

PTCF: A Chernoff Bound for sum of Poisson Trials

Above the mean case.
Let X_{1}, \ldots, X_{n} be independent Poisson trials, $\operatorname{Prob}\left[X_{i}=1\right]=p_{i}$, $X=\sum_{i} X_{i}, \mu=\mathrm{E}[X]$. Then,

- For any $\delta>0$,

$$
\operatorname{Prob}[X \geq(1+\delta) \mu]<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}
$$

- For any $0<\delta \leq 1$,

$$
\operatorname{Prob}[X \geq(1+\delta) \mu] \leq e^{-\mu \delta^{2} / 3} ;
$$

- For any $R \geq 6 \mu$,

$$
\operatorname{Prob}[X \geq R] \leq 2^{-R}
$$

PTCF: A Chernoff Bound for sum of Poisson Trials

Below the mean case.
Let X_{1}, \ldots, X_{n} be independent Poisson trials, $\operatorname{Prob}\left[X_{i}=1\right]=p_{i}$, $X=\sum_{i} X_{i}, \mu=\mathrm{E}[X]$. Then, for any $0<\delta<1$:
(1)

$$
\operatorname{Prob}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}
$$

(2)

$$
\operatorname{Prob}[X \leq(1-\delta) \mu] \leq e^{-\mu \delta^{2} / 2}
$$

PTCF: A Chernoff Bound for sum of Poisson Trials

A simple (two-sided) deviation case.
Let X_{1}, \ldots, X_{n} be independent Poisson trials, $\operatorname{Prob}\left[X_{i}=1\right]=p_{i}$, $X=\sum_{i} X_{i}, \mu=\mathrm{E}[X]$. Then, for any $0<\delta<1$:

$$
\operatorname{Prob}[|X-\mu| \geq \delta \mu] \leq 2 e^{-\mu \delta^{2} / 3}
$$

Chernoff Bounds Informally

The probability that the sum of independent Poisson trials is far from the sum's mean is exponentially small.

Back to the 1-bit PPM Problem

$$
\begin{aligned}
\operatorname{Prob}\left[|X-\mu|>\frac{n}{3 \cdot 2^{m}}\right] & =\operatorname{Prob}\left[|X-\mu|>\frac{1}{3 \cdot 2^{m} p} \mu\right] \\
& \leq \frac{2}{\exp \left\{\frac{n}{18 \cdot 4^{m} p}\right\}}
\end{aligned}
$$

Now,

$$
\frac{2}{\exp \left\{\frac{n}{18 \cdot 4^{m} p}\right\}} \leq \epsilon
$$

is equivalent to

$$
n \geq 18 p \ln (2 / \epsilon) 4^{m}
$$

Example 3: A Statistical Estimation Problem

The Problem

We want to estimate $\mu=\mathrm{E}[X]$ for some random variable X (e.g., X is the income in dollars of a random person in the world).

The Question

How many samples must be take so that, given $\epsilon, \delta>0$, the estimated value $\bar{\mu}$ satisfies

$$
\operatorname{Prob}[|\bar{\mu}-\mu| \leq \epsilon \mu] \geq 1-\delta
$$

- δ : confidence parameter
- ϵ : error parameter

Intuitively: Use "Law of Large Numbers"

- law of large numbers (there are actually 2 versions) basically says that the sample mean tends to the true mean as the number of samples tends to infinity
- We take n samples X_{1}, \ldots, X_{n}, and output

$$
\bar{\mu}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)
$$

- But, how large must n be? ("Easy" if X is Bernoulli!)
- Markov is of some use, but only gives upper-tail bound
- Need a bound on the variance $\sigma^{2}=\operatorname{Var}[X]$ too, to answer the question

Applying Chebyshev

- Let $Y=X_{1}+\cdots+X_{n}$, then $\bar{\mu}=Y / n$ and $\mathrm{E}[Y]=n \mu$
- Since the X_{i} are independent, $\operatorname{Var}[Y]=\sum_{i} \operatorname{Var}\left[X_{i}\right]=n \sigma^{2}$
- Let $r=\sigma / \mu$, Chebyshev inequality gives

$$
\begin{aligned}
& \operatorname{Prob}[|\bar{\mu}-\mu|>\epsilon \mu]=\operatorname{Prob}[|Y-\mathrm{E}[Y]|>\epsilon \mathrm{E}[Y]] \\
&<\frac{\operatorname{Var}[Y]}{(\epsilon \mathrm{E}[Y])^{2}}=\frac{n \sigma^{2}}{\epsilon^{2} n^{2} \mu^{2}}=\frac{r^{2}}{n \epsilon^{2}} .
\end{aligned}
$$

- Consequently, $n=\frac{r^{2}}{\delta \epsilon^{2}}$ is sufficient!
- We can do better!

Finally, the Median Trick!

- If confident parameter is $1 / 4$, we only need $\Theta\left(r^{2} / \epsilon^{2}\right)$ samples; the estimate is a little "weak"
- Suppose we have w weak estimates μ_{1}, \ldots, μ_{w}
- Output $\bar{\mu}$: the median of these weak estimates!
- Let I_{j} indicates the event $\left|\mu_{j}-\mu\right| \leq \epsilon \mu$, and $I=\sum_{j=1}^{w} I_{j}$
- By Chernoff's bound,

$$
\begin{aligned}
\operatorname{Prob}[|\bar{\mu}-\mu|>\epsilon \mu] & \leq \operatorname{Prob}[Y \leq w / 2] \\
& \leq \operatorname{Prob}[Y \leq(2 / 3) \mathrm{E}[Y]] \\
& =\operatorname{Prob}[Y \leq(1-1 / 3) \mathrm{E}[Y]] \\
& \leq \frac{1}{e^{\mathrm{E}[Y] / 18} \leq \frac{1}{e^{w / 24}} \leq \delta}
\end{aligned}
$$

whenever $w \geq 24 \ln (1 / \delta)$.

- Thus, the total number of samples needed is $n=O\left(r^{2} \ln (1 / \delta) / \epsilon^{2}\right)$.

Example 4: Oblivious Routing on the Hypercube

- Directed graph $G=(V, E)$: network of parallel processors
- Permutation Routing Problem
- Each node v contains one packet $P_{v}, 1 \leq v \leq N=|V|$
- Destination for packet from v is $\pi_{v}, \pi \in S_{n}$
- Time is discretized into unit steps
- Each packet can be sent on an edge in one step
- Queueing discipline: FIFO
- Oblivious algorithm: route R_{v} for P_{v} depends on v and π_{v} only
- Question: in the worst-case (over π), how many steps must an oblivious algorithm take to route all packets?

Theorem (Kaklamanis et al, 1990)

Suppose G has N vertices and out-degree d. For any deterministic oblivious algorithm for the permutation routing problem, there is an instance π which requires $\Omega(\sqrt{N / d})$ steps.

The (Directed) Hypercube

- The n-cube: $|V|=N=2^{n}$, vertices $\mathbf{v} \in\{0,1\}^{n}, \mathbf{v}=v_{1} \cdots v_{n}$
- $(\mathbf{u}, \mathbf{v}) \in E$ iff their Hamming distance is 1

The Bit-Fixing Algorithm

- Source $\mathbf{u}=u_{1} \cdots u_{n}$, target $\pi_{u}=v_{1} \cdots v_{n}$
- Suppose the packet is currently at $\mathbf{w}=w_{1} \cdots w_{n}$, scan \mathbf{w} from left to right, find the first place where $w_{i} \neq v_{i}$
- Forward packet to $w_{1} \cdots w_{i-1} v_{i} w_{i+1} \cdots w_{n}$

Source	010011
	110010
	100010
	100110
Destination	100111

- There is a π requiring $\Omega(\sqrt{N / n})$ steps

Valiant Load Balancing Idea

Les Valiant, A scheme for fast parallel communication, SIAM J.
Computing, 11: 2 (1982), 350-361.
Two phase algorithm (input: π)

- Phase 1: choose $\sigma \in S_{N}$ uniformly at random, route P_{v} to σ_{v} with bit-fixing
- Phase 2: route P_{v} from σ_{v} to π_{v} with bit-fixing

This scheme is now used in designing Internet routers with high throughput!

Phase 1 Analysis

- P_{u} takes route $R_{u}=\left(e_{1}, \ldots, e_{k}\right)$ to σ_{u}
- Time taken is $k(\leq n)$ plus queueing delay

Lemma

If R_{u} and R_{v} share an edge, once R_{v} leaves R_{u} it will not come back to R_{u}

Theorem

Let S be the set of packets other than packet P_{u} whose routes share an edge with R_{u}, then the queueing delay incurred by packet P_{u} is at most $|S|$

Phase 1 Analysis

- Let $H_{u v}$ indicate if R_{u} and R_{v} share an edge
- Queueing delay incurred by P_{u} is $\sum_{v \neq u} H_{u v}$.
- We want to bound

$$
\operatorname{Prob}\left[\sum_{v \neq u} H_{u v}>\alpha n\right] \geq ? ?
$$

- Need an upper bound for $\mathrm{E}\left[\sum_{v \neq u} H_{u v}\right]$
- For each edge e, let T_{e} denote the number of routes containing e

$$
\begin{gathered}
\sum_{v \neq u} H_{u v} \leq \sum_{i=1}^{k} T_{e_{i}} \\
\mathrm{E}\left[\sum_{v \neq u} H_{u v}\right] \leq \sum_{i=1}^{k} \mathrm{E}\left[T_{e_{i}}\right]=k / 2 \leq n / 2
\end{gathered}
$$

Conclusion

- By Chernoff bound,

$$
\operatorname{Prob}\left[\sum_{v \neq u} H_{u v}>6 n\right] \leq 2^{-6 n}
$$

- Hence,

Theorem

With probability at least $1-2^{-5 n}$, every packet reaches its intermediate target (σ) in Phase 1 in $7 n$ steps

Theorem (Conclusion)
With probability at least $1-1 / N$, every packet reaches its target (π) in $14 n$ steps

