Techniques

- Union bound
- Argument from expectation
- Alterations
- The second moment method
- The (Lovasz) Local Lemma

And much more

- Alon and Spencer, "The Probabilistic Method"
- Bolobas, "Random Graphs"

- Recall the union bound technique:
 - want to prove $\operatorname{Prob}[A] > 0$
 - $\bar{A} \Rightarrow$ (or \Leftrightarrow) some bad events $B_1 \cup \cdots \cup B_n$
 - done if $\operatorname{Prob}[B_1 \cup \cdots \cup B_n] < 1$

- Recall the union bound technique:
 - want to prove $\mathsf{Prob}[A] > 0$
 - $\bar{A} \Rightarrow$ (or \Leftrightarrow) some bad events $B_1 \cup \cdots \cup B_n$
 - done if $\mathsf{Prob}[B_1 \cup \cdots \cup B_n] < 1$
- Could also have tried to show

$$\mathsf{Prob}[\bar{B}_1 \cap \cdots \cap \bar{B}_n] > 0$$

- Recall the union bound technique:
 - want to prove $\mathsf{Prob}[A] > 0$
 - $\bar{A} \Rightarrow$ (or \Leftrightarrow) some bad events $B_1 \cup \dots \cup B_n$
 - done if $\mathsf{Prob}[B_1 \cup \cdots \cup B_n] < 1$
- Could also have tried to show

$$\mathsf{Prob}[\bar{B}_1 \cap \cdots \cap \bar{B}_n] > 0$$

• Would be much simpler if the B_i were mutually independent, because

$$\mathsf{Prob}[\bar{B}_1 \cap \cdots \cap \bar{B}_n] = \prod_{i=1}^n \mathsf{Prob}[\bar{B}_i] > 0$$

- Recall the union bound technique:
 - want to prove $\mathsf{Prob}[A] > 0$
 - $\bar{A} \Rightarrow$ (or \Leftrightarrow) some bad events $B_1 \cup \dots \cup B_n$
 - done if $\mathsf{Prob}[B_1 \cup \cdots \cup B_n] < 1$
- Could also have tried to show

$$\mathsf{Prob}[\bar{B}_1 \cap \cdots \cap \bar{B}_n] > 0$$

• Would be much simpler if the B_i were mutually independent, because

$$\mathsf{Prob}[\bar{B}_1 \cap \dots \cap \bar{B}_n] = \prod_{i=1}^n \mathsf{Prob}[\bar{B}_i] > 0$$

Main Idea

Lovasz Local Lemma is a sort of generalization of this idea when the "bad" events are not mutually independent

©Hung Q. Ngo (SUNY at Buffalo)

Definition (Recall)

A set B_1, \ldots, B_n of events are said to be mutually independent (or simply independent) if and only if, for any subset $S \subseteq [n]$,

$$\mathsf{Prob}\left[\bigcap_{i\in S}B_i\right] = \prod_{i\in S}\mathsf{Prob}[B_i]$$

Definition (Recall)

A set B_1, \ldots, B_n of events are said to be mutually independent (or simply independent) if and only if, for any subset $S \subseteq [n]$,

$$\mathsf{Prob}\left[\bigcap_{i\in S}B_i\right] = \prod_{i\in S}\mathsf{Prob}[B_i]$$

Definition (New)

An event B is mutually independent of events B_1,\cdots,B_k if, for any subset $S\subseteq [k],$

$$\mathsf{Prob}\left[B \mid \bigcap_{i \in S} B_i\right] = \mathsf{Prob}[B]$$

Definition (Recall)

A set B_1, \ldots, B_n of events are said to be mutually independent (or simply independent) if and only if, for any subset $S \subseteq [n]$,

$$\mathsf{Prob}\left[\bigcap_{i\in S}B_i\right] = \prod_{i\in S}\mathsf{Prob}[B_i]$$

Definition (New)

An event B is mutually independent of events B_1,\cdots,B_k if, for any subset $S\subseteq [k]$,

$$\mathsf{Prob}\left[B \mid \bigcap_{i \in S} B_i\right] = \mathsf{Prob}[B]$$

Question: can you find B, B_1, B_2, B_3 such that B is mutually independent of B_1 and B_2 but not from all three?

©Hung Q. Ngo (SUNY at Buffalo)

CSE 694 - A Fun Course

Definition

Given a set of events B_1, \dots, B_n , a directed graph D = ([n], E) is called a dependency digraph for the events if every event B_i is independent of all events B_j for which $(i, j) \notin E$.

Definition

Given a set of events B_1, \dots, B_n , a directed graph D = ([n], E) is called a dependency digraph for the events if every event B_i is independent of all events B_j for which $(i, j) \notin E$.

• What's a dependency digraph of a set of mutually independence events?

Definition

Given a set of events B_1, \dots, B_n , a directed graph D = ([n], E) is called a dependency digraph for the events if every event B_i is independent of all events B_j for which $(i, j) \notin E$.

- What's a dependency digraph of a set of mutually independence events?
- Dependency digraph is not unique!

Lemma (General Case)

Let B_1, \dots, B_n be events in some probability space. Suppose D = ([n], E) is a dependency digraph of these events, and suppose there are real numbers x_1, \dots, x_n such that

•
$$0 \le x_i < 1$$

• $\operatorname{Prob}[B_i] \le x_i \prod_{(i,j) \in E} (1 - x_j)$ for all $i \in [n]$

Then,

$$\operatorname{Prob}\left[\bigcap_{i=1}^{n} \bar{B}_{i}\right] \geq \prod_{i=1}^{n} (1-x_{i})$$

글 에 에 글 어

Lemma (Symmetric Case)

Let B_1, \dots, B_n be events in some probability space. Suppose D = ([n], E) is a dependency digraph of these events with maximum out-degree at most Δ . If, for all i,

$$\mathsf{Prob}[B_i] \le p \le \frac{1}{e(\Delta+1)}$$

then

$$\mathsf{Prob}\left[\bigcap_{i=1}^{n} \bar{B}_{i}\right] > 0.$$

The conclusion also holds if

$$\mathsf{Prob}[B_i] \le p \le \frac{1}{4\Delta}$$

3

A B F A B F

Image: Image:

Example 1: Hypergraph Coloring

- G = (V, E) a hypergraph, each edge has $\geq k$ vertices
- Each edge f intersects at most Δ other edges

- - E > - E >

Example 1: Hypergraph Coloring

- G = (V, E) a hypergraph, each edge has $\geq k$ vertices
- \bullet Each edge f intersects at most Δ other edges
- Color each vertex randomly with red or blue
- B_f : event that f is monochromatic

$$\operatorname{Prob}[B_f] = \frac{2}{2^{|f|}} \leq \frac{1}{2^{k-1}}$$

• There's a dependency digraph for the B_f with max out-degree $\leq \Delta$

Theorem

G is 2-colorable if

$$\frac{1}{2^{k-1}} \le \frac{1}{e(\Delta+1)}$$

Theorem

In a k-CNF formula φ , if no variable appears in more than $2^{k-2}/k$ clauses, then φ is satisfiable.

- $\mathcal N$ a directed graph with n inputs and n outputs
- From input a_i to output b_i there is a set P_i of m paths
- In switching networks, we often want to find (or want to know if there exists) a set of edge-disjoint $(a_i \rightarrow b_i)$ -paths

Theorem

Suppose $8nk \leq m$ and each path in P_i shares an edge with at most k paths in any P_j , $j \neq i$. Then, there exists a set of edge-disjoint $(a_i \rightarrow b_i)$ -paths.