The Probabilistic Method

Techniques

- Union bound
- Argument from expectation
- Alterations
- The second moment method
- The (Lovasz) Local Lemma

And much more

- Alon and Spencer, "The Probabilistic Method"
- Bolobas, "Random Graphs"

Lovasz Local Lemma: Main Idea

- Recall the union bound technique:
- want to prove $\operatorname{Prob}[A]>0$
- $\bar{A} \Rightarrow($ or $\Leftrightarrow)$ some bad events $B_{1} \cup \cdots \cup B_{n}$
- done if $\operatorname{Prob}\left[B_{1} \cup \cdots \cup B_{n}\right]<1$

Lovasz Local Lemma: Main Idea

- Recall the union bound technique:
- want to prove $\operatorname{Prob}[A]>0$
- $\bar{A} \Rightarrow($ or $\Leftrightarrow)$ some bad events $B_{1} \cup \cdots \cup B_{n}$
- done if $\operatorname{Prob}\left[B_{1} \cup \cdots \cup B_{n}\right]<1$
- Could also have tried to show

$$
\operatorname{Prob}\left[\bar{B}_{1} \cap \cdots \cap \bar{B}_{n}\right]>0
$$

Lovasz Local Lemma: Main Idea

- Recall the union bound technique:
- want to prove $\operatorname{Prob}[A]>0$
- $\bar{A} \Rightarrow($ or $\Leftrightarrow)$ some bad events $B_{1} \cup \cdots \cup B_{n}$
- done if $\operatorname{Prob}\left[B_{1} \cup \cdots \cup B_{n}\right]<1$
- Could also have tried to show

$$
\operatorname{Prob}\left[\bar{B}_{1} \cap \cdots \cap \bar{B}_{n}\right]>0
$$

- Would be much simpler if the B_{i} were mutually independent, because

$$
\operatorname{Prob}\left[\bar{B}_{1} \cap \cdots \cap \bar{B}_{n}\right]=\prod_{i=1}^{n} \operatorname{Prob}\left[\bar{B}_{i}\right]>0
$$

Lovasz Local Lemma: Main Idea

- Recall the union bound technique:
- want to prove $\operatorname{Prob}[A]>0$
- $\bar{A} \Rightarrow($ or $\Leftrightarrow)$ some bad events $B_{1} \cup \cdots \cup B_{n}$
- done if $\operatorname{Prob}\left[B_{1} \cup \cdots \cup B_{n}\right]<1$
- Could also have tried to show

$$
\operatorname{Prob}\left[\bar{B}_{1} \cap \cdots \cap \bar{B}_{n}\right]>0
$$

- Would be much simpler if the B_{i} were mutually independent, because

$$
\operatorname{Prob}\left[\bar{B}_{1} \cap \cdots \cap \bar{B}_{n}\right]=\prod_{i=1}^{n} \operatorname{Prob}\left[\bar{B}_{i}\right]>0
$$

Main Idea

Lovasz Local Lemma is a sort of generalization of this idea when the "bad" events are not mutually independent

PTCF: Mutual Independence

Definition (Recall)

A set B_{1}, \ldots, B_{n} of events are said to be mutually independent (or simply independent) if and only if, for any subset $S \subseteq[n]$,

$$
\operatorname{Prob}\left[\bigcap_{i \in S} B_{i}\right]=\prod_{i \in S} \operatorname{Prob}\left[B_{i}\right]
$$

PTCF: Mutual Independence

Definition (Recall)

A set B_{1}, \ldots, B_{n} of events are said to be mutually independent (or simply independent) if and only if, for any subset $S \subseteq[n]$,

$$
\operatorname{Prob}\left[\bigcap_{i \in S} B_{i}\right]=\prod_{i \in S} \operatorname{Prob}\left[B_{i}\right]
$$

Definition (New)

An event B is mutually independent of events B_{1}, \cdots, B_{k} if, for any subset $S \subseteq[k]$,

$$
\operatorname{Prob}\left[B \mid \bigcap_{i \in S} B_{i}\right]=\operatorname{Prob}[B]
$$

PTCF: Mutual Independence

Definition (Recall)

A set B_{1}, \ldots, B_{n} of events are said to be mutually independent (or simply independent) if and only if, for any subset $S \subseteq[n]$,

$$
\operatorname{Prob}\left[\bigcap_{i \in S} B_{i}\right]=\prod_{i \in S} \operatorname{Prob}\left[B_{i}\right]
$$

Definition (New)

An event B is mutually independent of events B_{1}, \cdots, B_{k} if, for any subset $S \subseteq[k]$,

$$
\operatorname{Prob}\left[B \mid \bigcap_{i \in S} B_{i}\right]=\operatorname{Prob}[B]
$$

Question: can you find B, B_{1}, B_{2}, B_{3} such that B is mutually independent of B_{1} and B_{2} but not from all three?

PTCF: Dependency Graph

Definition

Given a set of events B_{1}, \cdots, B_{n}, a directed graph $D=([n], E)$ is called a dependency digraph for the events if every event B_{i} is independent of all events B_{j} for which $(i, j) \notin E$.

PTCF: Dependency Graph

Definition

Given a set of events B_{1}, \cdots, B_{n}, a directed graph $D=([n], E)$ is called a dependency digraph for the events if every event B_{i} is independent of all events B_{j} for which $(i, j) \notin E$.

- What's a dependency digraph of a set of mutually independence events?

PTCF: Dependency Graph

Definition

Given a set of events B_{1}, \cdots, B_{n}, a directed graph $D=([n], E)$ is called a dependency digraph for the events if every event B_{i} is independent of all events B_{j} for which $(i, j) \notin E$.

- What's a dependency digraph of a set of mutually independence events?
- Dependency digraph is not unique!

The Local Lemma

Lemma (General Case)

Let B_{1}, \cdots, B_{n} be events in some probability space. Suppose $D=([n], E)$ is a dependency digraph of these events, and suppose there are real numbers x_{1}, \cdots, x_{n} such that

- $0 \leq x_{i}<1$
- $\operatorname{Prob}\left[B_{i}\right] \leq x_{i} \quad \prod\left(1-x_{j}\right)$ for all $i \in[n]$

$$
(i, j) \in E
$$

Then,

$$
\operatorname{Prob}\left[\bigcap_{i=1}^{n} \bar{B}_{i}\right] \geq \prod_{i=1}^{n}\left(1-x_{i}\right)
$$

The Local Lemma

Lemma (Symmetric Case)

Let B_{1}, \cdots, B_{n} be events in some probability space. Suppose $D=([n], E)$ is a dependency digraph of these events with maximum out-degree at most Δ. If, for all i,

$$
\operatorname{Prob}\left[B_{i}\right] \leq p \leq \frac{1}{e(\Delta+1)}
$$

then

$$
\operatorname{Prob}\left[\bigcap_{i=1}^{n} \bar{B}_{i}\right]>0 .
$$

The conclusion also holds if

$$
\operatorname{Prob}\left[B_{i}\right] \leq p \leq \frac{1}{4 \Delta}
$$

Example 1: Hypergraph Coloring

- $G=(V, E)$ a hypergraph, each edge has $\geq k$ vertices
- Each edge f intersects at most Δ other edges

Example 1: Hypergraph Coloring

- $G=(V, E)$ a hypergraph, each edge has $\geq k$ vertices
- Each edge f intersects at most Δ other edges
- Color each vertex randomly with red or blue
- B_{f} : event that f is monochromatic

$$
\operatorname{Prob}\left[B_{f}\right]=\frac{2}{2^{|f|}} \leq \frac{1}{2^{k-1}}
$$

- There's a dependency digraph for the B_{f} with max out-degree $\leq \Delta$

Theorem
G is 2-colorable if

$$
\frac{1}{2^{k-1}} \leq \frac{1}{e(\Delta+1)}
$$

Example 2: k-SAT

Theorem

In a k-CNF formula φ, if no variable appears in more than $2^{k-2} / k$ clauses, then φ is satisfiable.

Example 3: Edge-Disjoint Paths

- \mathcal{N} a directed graph with n inputs and n outputs
- From input a_{i} to output b_{i} there is a set P_{i} of m paths
- In switching networks, we often want to find (or want to know if there exists) a set of edge-disjoint $\left(a_{i} \rightarrow b_{i}\right)$-paths

Theorem

Suppose $8 n k \leq m$ and each path in P_{i} shares an edge with at most k paths in any $P_{j}, j \neq i$. Then, there exists a set of edge-disjoint $\left(a_{i} \rightarrow b_{i}\right)$-paths.

