
Randomized Algorithms

Randomized Rounding

Brief Introduction to Linear Programming and Its Usage in
Combinatorial Optimization

Randomized Rounding for Cut Problems

Randomized Rounding for Satisfiability Problems

Randomized Rounding for Covering Problems

Randomized Rounding and Semi-definite Programming

Approximate Sampling and Counting

...
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(Randomized) Rounding

A (minimization) combinatorial problem Π ⇔ an ILP

Let ȳ be an optimal solution to the ILP

Relax ILP to get an LP; let y∗ be an optimal solution to the LP

Then,
opt(Π) = cost(ȳ) ≥ cost(y∗)

(If Π is maximization, reverse the inequality!)

Carefully “round” y∗ (rational) to get a feasible solution yA (integral)
to the ILP, such that yA is not too bad, say cost(yA) ≤ α cost(y∗)
Conclude that cost(yA) ≤ α · opt(Π)
Thus, we get an α-approximation algorithm for Π
If α = 1, then we have solved Π exactly!
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An Integer Linear Program for Minimum Cut

Definition (Min-Cut Problem)

Given a (undirect/directed) graph G = (V,E), edge capacities c : E → N,
a source s ∈ V , sink t ∈ V , find a subset C of edges such that removing
C disconnect t from s (i.e. there’s no path from s to t), such that C has
minimum total capacity.

Let P be the set of all s, t-paths

min
∑
e∈E

ceye

subject to
∑
e∈P

ye ≥ 1, ∀P ∈ P,

ye ∈ {0, 1}, ∀e ∈ E.

(1)

Let ȳ be an optimal solution to this ILP.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 4 / 14



Relaxation

To Relax and Integer LP is to relax the integral constraints
The relaxation of the ILP is a linear program:

min
∑
e∈E

ceye

subject to
∑
e∈P

ye ≥ 1, ∀P ∈ P,

ye ≥ 0, ∀e ∈ E.

(2)
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The Randomized Rounding Step

Let y∗ be an optimal solution to the LP

Think of y∗e as the “length” of e. Let d(s, u) be the distance from s
to u in terms of y∗-length. Then, d(s, t) ≥ 1.

For each r ∈ [0, 1], let B(r) := {u | d(s, u) ≤ r} and

C(r) = [B(r), B(r)]

Choose r ∈ [0, 1) uniformly at random (a continuous distribution
now!). Output the cut C = C(r)
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(Expected) Quality of the Solution

Expected quality of the solution

E[cap(C)] =
∑

e=(u,v)∈E

ce Prob[e ∈ C]

≤
∑

e=(u,v)∈E

ce
d(s, v)− d(s, u)

1− 0
≤

∑
e∈E

cey
∗
e = cost(y∗).

And so,

E[cap(C)] ≤ cost(y∗) ≤ cost(ȳ) = min-cut capacity of G

Anything “weird”?

Conclude that, just output C(r) for any r ∈ [0, 1) and we have a
minimum cut!
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Additional Remarks

Computers cannot choose r ∈ [0, 1) uniformly at random! (They
can’t deal with continuous things.)

Fortunately, there are only finitely many B(r), even though r ∈ [0, 1).

There are 0 < r1 < r2 < · · · < rk < 1 such that

For r ∈ [0, r1) we get cut C0 (with prob r1)

For r ∈ [r1, r2) we get cut C1 (with prob r2 − r1)

...

Let C be this set of k cuts, then,

cost(y∗) ≥ E[cap(C)] =
k−1∑
i=0

cap(Ci) Prob[Ci]
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The Dual Linear Program (DLP)

Here’s the dual linear program of LP (5)

max
∑
P∈P

fP

subject to
∑

P :e∈P

fP ≤ ce, ∀e ∈ E,

fP ≥ 0, ∀P ∈ P.

(3)

This is precisely the maximum flow problem!

Let f∗ be a maximum flow, then by “strong duality”

cost(f∗) = cost(y∗)
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Maxflow-Mincut Theorem

Lemma (Maxflow-Mincut, Weak Duality)

For every cut C of G, cap(C) ≥ maxflow.

Theorem (Maxflow-Mincut, Strong Duality)

There exists a cut C such that cap(C) = maxflow.
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An Integer Linear Program for Multiway Cut

Definition (Multiway-Cut Problem)

Given a graph G = (V,E), edge capacities c : E → N, and k terminals
t1, t2, . . . , tk ∈ V , find a subset C of edges such that removing C
disconnect all terminals from each other such that C has minimum total
capacity.

Let P be the set of all ti, tj-paths, i 6= j, i, j ∈ [k]

min
∑
e∈E

ceye

subject to
∑
e∈P

ye ≥ 1, ∀P ∈ P,

ye ∈ {0, 1}, ∀e ∈ E.

(4)

Let ȳ be an optimal solution to this ILP.
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Relaxation

The relaxation of the ILP is a linear program:

min
∑
e∈E

ceye

subject to
∑
e∈P

ye ≥ 1, ∀P ∈ P,

ye ≥ 0, ∀e ∈ E.

(5)
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The Randomized Rounding Step

Let y∗ be an optimal solution to the LP

Think of y∗e as the “length” of e. Let d(ti, u) be the distance from ti
to u in terms of y∗-length. Then, d(ti, tj) ≥ 1 for every pair
i, j ∈ [k], i 6= j.

For each r ∈ [0, 1], let Bi(r) := {u | d(ti, u) ≤ r} and

Ci(r) = [Bi(r), Bi(r)]

Choose r ∈ [0, 1/2) uniformly at random Output the cut

C = C1(r) ∪ · · · ∪ Ck(r)

The rest is a homework problem! We get a 2-approximation algorithm
for multiway cut
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