Randomized Algorithms

Randomized Rounding

- Brief Introduction to Linear Programming and Its Usage in Combinatorial Optimization
- Randomized Rounding for Cut Problems
- Randomized Rounding for Covering Problems
- Randomized Rounding for Satisfiability Problems
- Randomized Rounding and Semi-definite Programming

Approximate Sampling and Counting

CNF Formulas

- Conjunctive Normal Form (CNF) formulas:

$$
\varphi=\underbrace{\left(x_{1} \vee \bar{x}_{2}\right)}_{\text {Clause 1 }} \wedge \underbrace{\left(x_{1} \vee x_{3} \vee \bar{x}_{4} \vee x_{6}\right)}_{\text {Clause } 2} \wedge \underbrace{\left(\bar{x}_{2} \vee \bar{x}_{3} \vee x_{4}\right)}_{\text {Clause } 3} \wedge \underbrace{\left(\bar{x}_{5}\right)}_{\text {Clause } 4}
$$

- Literals: \bar{x}_{2}, x_{4}, etc.
- Truth assignment: $a:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{$ TRUE, FALSE $\}$
- For integers $k \geq 2$, a k-CNF formula is a CNF formula in which each clause is of size at most k,
- an Ek-CNF formula is a CNF formula in which each clause is of size exactly k.

Satisfiability Problems

- MAX-SAT: given a CNF formula φ, find a truth assignment satisfying as many clauses as possible
- MAX- k SAT: given a k-CNF formula φ, find a truth assignment satisfying as many clauses as possible
- MAX-EkSAT: given an E k-CNF formula φ, find a truth assignment satisfying as many clauses as possible
- Weighted-Xsat: $\mathrm{X} \in\{\emptyset, k \mathrm{E} k\}$ - clause j has weight w_{j}, find a truth assignment satisfying clauses with largest total weight

These are very fundamental problems in optimization, with many applications (in security, software verification, etc.)

The Arithmetic-Geometric Means Inequality

Theorem (Arithmetic-geometric means inequality)
For any non-negative numbers a_{1}, \ldots, a_{n}, we have

$$
\begin{equation*}
\frac{a_{1}+\cdots+a_{n}}{n} \geq\left(a_{1} \cdots a_{n}\right)^{1 / n} \tag{1}
\end{equation*}
$$

There is also the stronger weighted version. Let w_{1}, \ldots, w_{n} be positive real numbers where $w_{1}+\cdots+w_{n}=1$, then

$$
\begin{equation*}
w_{1} a_{1}+\cdots+w_{n} a_{n} \geq a_{1}^{w_{1}} \cdots a_{n}^{w_{n}} \tag{2}
\end{equation*}
$$

Equality holds iff all a_{i} are equal.

The Cauchy-Schwarz Inequality

Theorem (Cauchy-Schwarz inequality)
Let a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} be non-negative real numbers. Then,

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) \tag{3}
\end{equation*}
$$

Jensen Inequality

Theorem (Jensen inequality)

Let $f(x)$ be a convex function on an interval (a, b). Let x_{1}, \ldots, x_{n} be points in (a, b), and w_{1}, \ldots, w_{n} be non-negative weights such that $w_{1}+\cdots+w_{n}=1$. Then,

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} w_{i} x_{i}\right) \leq \sum_{i=1}^{n} w_{i} f\left(x_{i}\right) \tag{4}
\end{equation*}
$$

If f is strictly convex and if all weights are positive, then equality holds iff all x_{i} are equal. When f is concave, the inequality is reversed.

Convex test: non-negative second derivative.
Concave test: non-positive second derivative.

The "Naive" Randomized Algorithm for MAX-E3-SAT

The Algorithm

Assign each variable to TRUE/FALSE with probability $1 / 2$

- Let X_{C} be the random variable indicating if clause C is satisfied
- Then, $\operatorname{Prob}\left[X_{C}=1\right]=7 / 8$
- Let S_{φ} be the number of satisfied clauses. Then,

$$
\mathrm{E}\left[S_{\varphi}\right]=\mathrm{E}\left[\sum_{C} X_{C}\right]=\sum_{C} \mathrm{E}\left[X_{C}\right]=7 m / 8 \geq \frac{\mathrm{OPT}}{8 / 7}
$$

(m is the number of clauses)

- So this is a randomized approximation algorithm with ratio $8 / 7$

Derandomization Using Conditional Expectation

- Derandomization is to turn a randomized algorithm into a deterministic algorithm
- By conditional expectation

$$
\mathrm{E}\left[S_{\varphi}\right]=\frac{1}{2} \mathrm{E}\left[S_{\varphi} \mid x_{1}=\mathrm{TRUE}\right]+\frac{1}{2} \mathrm{E}\left[S_{\varphi} \mid x_{1}=\text { FALSE }\right]
$$

- Both $\mathrm{E}\left[S_{\varphi} \mid x_{1}=\right.$ TRUE $]$ and $\mathrm{E}\left[S_{\varphi} \mid x_{1}=\right.$ FALSE $]$ can be computed in polynomial time
- Suppose $\mathrm{E}\left[S_{\varphi} \mid x_{1}=\right.$ TRUE $] \geq \mathrm{E}\left[S_{\varphi} \mid x_{1}=\right.$ FALSE $]$, then

$$
\mathrm{E}\left[S_{\varphi} \mid x_{1}=\mathrm{TRUE}\right] \geq \mathrm{E}\left[S_{\varphi}\right] \geq 7 m / 8
$$

- Set $x_{1}=$ True, let φ^{\prime} be φ with c clauses containing x_{1} removed, and all instances of x_{1}, \bar{x}_{1} removed.
- Recursively find value for x_{2}

The "Naive" Randomized Algorithm for MAX-SAT

The Algorithm

Assign each variable to TRUE/FALSE with probability $1 / 2$

- Let X_{j} be the random variable indicating if clause C_{j} is satisfied
- If C_{j} has l_{j} literals, then $\operatorname{Prob}\left[X_{j}=1\right]=1-1 / 2^{l_{j}}$
- Let S_{φ} be the total weight of satisfied clauses. Then,

$$
\mathrm{E}\left[S_{\phi}\right]=\sum_{j=1}^{m} w_{j}\left(1-(1 / 2)^{l_{j}}\right) \geq \frac{1}{2} \sum_{j=1}^{m} w_{j} \geq \frac{1}{2} \mathrm{OPT}(\phi) .
$$

- So this is a randomized approximation algorithm with ratio 2 , quite a bit worse than $8 / 7$.
- The algorithm can be derandomized with conditional expectation

Randomized Algorithm for max-sat with One Biased Coin

The One-Biased-Coin Algorithm

Assign each variable to TRUE/FALSE with probability q (to be determined).

- Let n_{j} and p_{j} be the number of negated variables and non-negated variables in clause C_{j}, then

$$
\mathrm{E}\left[S_{\phi}\right]=\sum_{j=1}^{m} w_{j}\left(1-q^{n_{j}}(1-q)^{p_{j}}\right)
$$

- In the naive algorithm, a clause with $l_{j}=1$ is troublesome. We will try to deal with small clauses.

The Analysis

- If $\left(x_{i}\right)$ is a clause but $\left(\bar{x}_{i}\right)$ is not: change variable $y_{i}=x_{i}$
- If $\left(\bar{x}_{i}\right)$ is a clause but $\left(x_{i}\right)$ is not: change variable $y_{i}=\bar{x}_{i}$
- If $\left(x_{i}\right)$ appears many times as clauses, replace them with one clause $\left(x_{i}\right)$ whose weight is the sum
- If $\left(\bar{x}_{i}\right)$ appears many times as clauses, replace them with one clause $\left(\bar{x}_{i}\right)$ whose weight is the sum
- After this is done:
- each singleton clause $\left(x_{i}\right)$ appears at most once
- each singleton clause (\bar{x}_{i}) appears at most once
- if $\left(\bar{x}_{i}\right)$ is a singleton, then so is $\left(x_{i}\right)$.

The Analysis

- Let $N=\left\{j \mid C_{j}=\left\{\bar{x}_{i}\right\}\right.$, for some $\left.i\right\}$. Then,

$$
\operatorname{OPT}(\phi) \leq \sum_{j=1}^{m} w_{j}-\sum_{j \in N} w_{j}
$$

- If $j \in N,\left(1-q^{n_{j}}(1-q)^{p_{j}}\right)=(1-q)$.
- If $j \notin N$, then either $p_{j} \geq 1$ or $n_{j} \geq 2$, and thus

$$
\left(1-q^{n_{j}}(1-q)^{p_{j}}\right) \geq 1-\max \left\{1-q, q^{2}\right\} .
$$

Choose q such that $1-q=q^{2}$, i.e. $q \approx 0.618$, we have for $j \notin N$

$$
\left(1-q^{n_{j}}(1-q)^{p_{j}}\right) \geq 1-(1-q)=q .
$$

- Finally,

$$
\mathrm{E}\left[S_{\phi}\right]=\sum_{j \notin N} w_{j}\left(1-q^{n_{j}}(1-q)^{p_{j}}\right)+\sum_{j \in N} w_{j}(1-q) \geq q \cdot \operatorname{OPT}(\phi)
$$

Conclusions

- We have a $1 / q \approx 1 / 0.618 \approx 1.62$-approximation algorithm
- This can be derandomized too.
- To make use of the structure of the formula φ, perhaps it makes sense to use n biased coins:

$$
\operatorname{Prob}\left[x_{i}=\mathrm{TRUE}\right]=q_{i} .
$$

- But, how to choose the q_{i} ?

Randomized Rounding for MAX-SAT

The Integer Program
Think: (a) $y_{i}=1$ iff $x_{i}=\operatorname{TRUE} ;(\mathrm{b}) z_{j}=1$ iff C_{j} is satisfied.

$$
\begin{array}{cl}
\max & w_{1} z_{1}+\cdots+w_{m} z_{n} \\
\text { subject to } & \sum_{i: x_{i} \in C_{j}} y_{i}+\sum_{i: \overline{x_{i}} \in C_{j}}\left(1-y_{i}\right) \geq z_{j}, \quad \forall j \in[m], \\
y_{i}, z_{j} \in\{0,1\}, \quad \forall i \in[n], j \in[m]
\end{array}
$$

The Relaxation

$$
\begin{aligned}
& \max \quad w_{1} z_{1}+\cdots+w_{n} z_{n} \\
& \text { subject to } \sum_{i: x_{i} \in C_{j}} y_{i}+\sum_{i: \bar{x}_{i} \in C_{j}}\left(1-y_{i}\right) \geq z_{j}, \quad \forall j \in[m] \text {, } \\
& 0 \leq y_{i} \leq 1 \quad \forall i \in[n], \\
& 0 \leq z_{j} \leq 1 \quad \forall j \in[m] .
\end{aligned}
$$

Let $\left(\mathbf{y}^{*}, \mathbf{z}^{*}\right)$ be an optimal solution to the LP.

Randomized Rounding with Many Biased Coins

Set $x_{i}=$ TRUE with probability y_{i}^{*}.

$$
\begin{aligned}
\mathrm{E}\left[S_{\phi}\right] & =\sum_{j=1}^{m} w_{j}\left(1-\prod_{i: x_{i} \in C_{j}}\left(1-y_{i}^{*}\right) \prod_{i: \bar{x}_{i} \in C_{j}} y_{i}^{*}\right) \\
& \geq \sum_{j=1}^{m} w_{j}\left(1-\left[\frac{\sum_{i: x_{i} \in C_{j}}\left(1-y_{i}^{*}\right)+\sum_{i: \overline{x_{i}} \in C_{j}} y_{i}^{*}}{l_{j}}\right]^{l_{j}}\right) \\
& =\sum_{j=1}^{m} w_{j}\left(1-\left[\frac{l_{j}-\left(\sum_{i: x_{i} \in C_{j}} y_{i}^{*}+\sum_{i: \bar{x}_{i} \in C_{j}}\left(1-y_{i}^{*}\right)\right)}{l_{j}}\right]^{l_{j}}\right)
\end{aligned}
$$

Randomized Rounding with Many Biased Coins

The function $f(z)=\left(1-\left(1-z / l_{j}\right)^{l_{j}}\right.$ is concave when $z \in[0,1]$. Thus,

$$
\begin{aligned}
\mathrm{E}\left[S_{\phi}\right] & \geq \sum_{j=1}^{m} w_{j}\left(1-\left[1-\frac{z_{j}^{*}}{l_{j}}\right]^{l_{j}}\right) \\
& \geq \sum_{j=1}^{m} w_{j}\left(1-\left[1-\frac{1}{l_{j}}\right]^{l_{j}}\right) z_{j}^{*} \\
& \geq \min _{j}\left(1-\left[1-\frac{1}{l_{j}}\right]^{l_{j}}\right) \sum_{j=1}^{m} w_{j} z_{j}^{*} \\
& \geq\left(1-\frac{1}{e}\right) \operatorname{OPT}(\phi)
\end{aligned}
$$

Theorem

The LP-based randomized rounding algorithm above has approximation ratio e/(e-1) ≈ 1.58.

The "Best-of-Two" Algorithm

- The LP-based algorithm works well if all l_{j} are small. For example, if $l_{j} \leq 2$ then

$$
\left(1-\left[1-\frac{1}{l_{j}}\right]^{l_{j}}\right) \geq \frac{3}{4}
$$

which gives a $\frac{4}{3}$-approximation.

- Similarly, the naive algorithm works well if all l_{j} are large.
- Combination: run both and output the better solution.
$\mathrm{E}\left[\max \left\{S_{\phi}^{1}, S_{\phi}^{2}\right\}\right] \geq \mathrm{E}\left[\left(S_{\phi}^{1}+S_{\phi}^{2}\right) / 2\right]$

$$
\begin{aligned}
& \geq \sum_{j=1}^{m} w_{j}\left(\frac{1}{2}\left(1-\frac{1}{2^{l_{j}}}\right)+\frac{1}{2}\left(1-\left[1-\frac{1}{l_{j}}\right]^{l_{j}}\right) z_{j}^{*}\right) \\
& \geq \frac{3}{4} \sum_{j=1}^{m} w_{j} z_{j}^{*} \geq \frac{3}{4} \operatorname{OPT}(\phi) .
\end{aligned}
$$

So, we have a $\frac{4}{3}$-approximation algorithm!

