Randomized Algorithms

Randomized Rounding

- Brief Introduction to Linear Programming and Its Usage in Combinatorial Optimization
- Randomized Rounding for Cut Problems
- Randomized Rounding for Covering Problems
- Randomized Rounding for Satisfiability Problems
- Randomized Rounding and Semi-definite Programming

Approximate Sampling and Counting

(Randomized) Rounding

- A (minimization) combinatorial problem $\Pi \Leftrightarrow$ an ILP
- Let $\overline{\mathbf{y}}$ be an optimal solution to the ILP
- Relax ILP to get an LP; let \mathbf{y}^{*} be an optimal solution to the LP
- Then,

$$
\operatorname{OPT}(\Pi)=\operatorname{cost}(\overline{\mathbf{y}}) \geq \operatorname{cost}\left(\mathbf{y}^{*}\right)
$$

(If Π is maximization, reverse the inequality!)

- Carefully "round" \mathbf{y}^{*} (rational) to get a feasible solution \mathbf{y}^{A} (integral) to the ILP, such that \mathbf{y}^{A} is not too bad, say $\operatorname{cost}\left(\mathbf{y}^{A}\right) \leq \alpha \operatorname{cost}\left(\mathbf{y}^{*}\right)$
- Conclude that $\operatorname{cost}\left(\mathbf{y}^{A}\right) \leq \alpha \cdot \operatorname{OPT}(\Pi)$
- Thus, we get an α-approximation algorithm for Π
- If $\alpha=1$, then we have solved Π exactly!

An Integer Linear Program for Set Cover

Definition (Set-Cover Problem)

Inputs: a collection $\mathcal{S}=\left\{S_{1}, \ldots, S_{n}\right\}$ of subsets of $[m]=\{1, \ldots, m\}$, where S_{j} is of weight $w_{j} \in \mathbb{Z}^{+}$.
Objective: find a sub-collection $\mathcal{C}=\left\{S_{i} \mid i \in J\right\}$ with least total weight such that $\bigcup_{i \in J} S_{i}=[m]$.

ILP for Set Cover

$$
\begin{array}{cl}
\min & w_{1} x_{1}+\cdots+w_{n} x_{n} \\
\text { subject to } & \sum_{j: S_{j} \ni i} x_{j} \geq 1, \quad \forall i \in[m], \\
& x_{j} \in\{0,1\}, \quad \forall j \in[n] . \tag{1}
\end{array}
$$

Let $\overline{\mathrm{x}}$ be an optimal solution to this ILP.

Relaxation

The relaxation of the ILP is the following LP:

$$
\begin{array}{cl}
\min & w_{1} x_{1}+\cdots+w_{n} x_{n} \\
\text { subject to } & \sum_{j: S_{j} \ni i} x_{j} \geq 1, \quad \forall i \in[m], \tag{2}\\
& 0 \leq x_{j} \leq 1 \quad \forall j \in[n] .
\end{array}
$$

Let x^{*} be an optimal solution to this LP.

First Attempt at Randomized Rounding

- Want: a feasible solution \mathbf{x}^{A} which is not too far from \mathbf{x}^{*} on average.
- Make sense to try:

$$
\operatorname{Prob}\left[x_{j}^{A}=1\right]=x_{j}^{*} .
$$

- Solution quality:

$$
\mathrm{E}\left[\operatorname{cost}\left(\mathbf{x}^{A}\right)\right]=\sum_{j=1}^{n} w_{j} x_{j}^{*}=\operatorname{cost}\left(\mathbf{x}^{*}\right) \leq \operatorname{cost}(\overline{\mathbf{x}})=\mathrm{OPT}
$$

- Feasibility? Consider an arbitrary constraint $x_{j_{1}}+\cdots+x_{j_{k}} \geq 1$.
- The probability that this constraint is not satisfied by \mathbf{x}^{A} is

$$
\left(1-x_{j_{1}}^{*}\right) \ldots\left(1-x_{j_{k}}^{*}\right) \leq\left(\frac{k-\left(x_{j_{1}}^{*}+\cdots+x_{j_{k}}^{*}\right)}{k}\right)^{k} \leq\left(1-\frac{1}{k}\right)^{k} \leq \frac{1}{e}
$$

There are m constraints; thus, $\operatorname{Prob}\left[\mathbf{x}^{A}\right.$ is not feasible $] \leq m / e$.
First attempt doesn't quite work!

Second Attempt at Randomized Rounding

- Should round x_{j} to 1 with higher probability. Let t be a parameter determined later.

$$
\operatorname{Prob}\left[x_{j}^{A}=0\right]=\left(1-x_{j}^{*}\right)^{t}
$$

(This is equivalent to running the first strategy independently t rounds, and set $x_{j}^{A}=0$ only when $x_{j}^{A}=0$ in all rounds.)

- Solution Quality

$$
\mathrm{E}\left[\operatorname{cost}\left(\mathrm{x}^{A}\right)\right] \leq t \cdot \mathrm{OPT}
$$

- Feasibility? $\operatorname{Prob}\left[\mathbf{x}^{A}\right.$ does not satisfy any given constraint $] \leq(1 / e)^{t}$.
- Thus, $\operatorname{Prob}\left[\mathbf{x}^{A}\right.$ is not feasible $] \leq m(1 / e)^{t}$.

Finishing Up

- Markov inequality gives

$$
\operatorname{Prob}\left[\operatorname{cost}\left(\mathrm{x}^{A}\right)>\rho \cdot \mathrm{OPT}\right]<\frac{\mathrm{E}\left[\operatorname{cost}\left(\mathrm{x}^{A}\right)\right]}{\rho \cdot \mathrm{OPT}} \leq \frac{t \cdot \mathrm{OPT}}{\rho \cdot \mathrm{OPT}}=\frac{t}{\rho}
$$

- Consequently,
$\operatorname{Prob}\left[\mathbf{x}^{A}\right.$ is feasible and $\left.\operatorname{cost}\left(\mathbf{x}^{A}\right) \leq \rho \cdot \mathrm{OPT}\right] \geq 1-m(1 / e)^{t}-\frac{t}{\rho}$.
We can pick $t=\theta(\lg m)$ and $\rho=4 t$ so that $1-m(1 / e)^{t}-\frac{t}{\rho} \geq \frac{1}{2}$.
- To boost the confidence up (say, to $1-1 / 2^{m}$), run the algorithm m times!
- Basically, we got a $\Theta(\log m)$-approximation algorithm for weighted set cover.
- Asymptotically, we cannot approximate better than that!

