
Randomized Algorithms

Randomized Rounding

Brief Introduction to Linear Programming and Its Usage in
Combinatorial Optimization

Randomized Rounding for Cut Problems

Randomized Rounding for Covering Problems

Randomized Rounding for Satisfiability Problems

Randomized Rounding and Semi-definite Programming

Approximate Sampling and Counting

...
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(Randomized) Rounding

A (minimization) combinatorial problem Π ⇔ an ILP

Let ȳ be an optimal solution to the ILP

Relax ILP to get an LP; let y∗ be an optimal solution to the LP

Then,
opt(Π) = cost(ȳ) ≥ cost(y∗)

(If Π is maximization, reverse the inequality!)

Carefully “round” y∗ (rational) to get a feasible solution yA (integral)
to the ILP, such that yA is not too bad, say cost(yA) ≤ α cost(y∗)
Conclude that cost(yA) ≤ α · opt(Π)
Thus, we get an α-approximation algorithm for Π
If α = 1, then we have solved Π exactly!
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An Integer Linear Program for Set Cover

Definition (Set-Cover Problem)

Inputs: a collection S = {S1, . . . , Sn} of subsets of [m] = {1, . . . ,m},
where Sj is of weight wj ∈ Z+.
Objective: find a sub-collection C = {Si | i ∈ J} with least total weight
such that

⋃
i∈J Si = [m].

ILP for Set Cover

min w1x1 + · · ·+ wnxn

subject to
∑

j:Sj3i

xj ≥ 1, ∀i ∈ [m],

xj ∈ {0, 1}, ∀j ∈ [n].

(1)

Let x̄ be an optimal solution to this ILP.
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Relaxation

The relaxation of the ILP is the following LP:

min w1x1 + · · ·+ wnxn

subject to
∑

j:Sj3i

xj ≥ 1, ∀i ∈ [m],

0 ≤ xj ≤ 1 ∀j ∈ [n].

(2)

Let x∗ be an optimal solution to this LP.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 5 / 8



First Attempt at Randomized Rounding

Want: a feasible solution xA which is not too far from x∗ on average.

Make sense to try:
Prob[xA

j = 1] = x∗j .

Solution quality:

E[cost(xA)] =
n∑

j=1

wjx
∗
j = cost(x∗) ≤ cost(x̄) = opt.

Feasibility? Consider an arbitrary constraint xj1 + · · ·+ xjk
≥ 1.

The probability that this constraint is not satisfied by xA is

(1−x∗j1) . . . (1−x∗jk
) ≤

(
k − (x∗j1 + · · ·+ x∗jk

)
k

)k

≤
(

1− 1
k

)k

≤ 1
e
.

There are m constraints; thus, Prob[xA is not feasible] ≤ m/e.

First attempt doesn’t quite work!
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Second Attempt at Randomized Rounding

Should round xj to 1 with higher probability. Let t be a parameter
determined later.

Prob[xA
j = 0] = (1− x∗j )

t

(This is equivalent to running the first strategy independently t
rounds, and set xA

j = 0 only when xA
j = 0 in all rounds.)

Solution Quality
E[cost(xA)] ≤ t · opt.

Feasibility? Prob[xA does not satisfy any given constraint] ≤ (1/e)t.

Thus, Prob[xA is not feasible] ≤ m(1/e)t.
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Finishing Up

Markov inequality gives

Prob[cost(xA) > ρ · opt] <
E[cost(xA)]

ρ · opt
≤ t · opt

ρ · opt
=

t

ρ
.

Consequently,

Prob[xA is feasible and cost(xA) ≤ ρ · opt] ≥ 1−m(1/e)t − t

ρ
.

We can pick t = θ(lg m) and ρ = 4t so that 1−m(1/e)t − t
ρ ≥

1
2 .

To boost the confidence up (say, to 1− 1/2m), run the algorithm m
times!

Basically, we got a Θ(log m)-approximation algorithm for weighted
set cover.

Asymptotically, we cannot approximate better than that!
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