
Randomized Algorithms

Randomized Rounding

Brief Introduction to Linear Programming and Its Usage in
Combinatorial Optimization

Randomized Rounding for Cut Problems

Randomized Rounding for Covering Problems

Randomized Rounding for Satisfiability Problems

Randomized Rounding and Semi-definite Programming

Approximate Sampling and Counting

...
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max-cut and max-2sat

max-cut

Input: graph G = (V,E), w : E → N
Output: a cut (S, S̄), S ⊂ V , with maximum total weight of edges
crossing the cut.

max-2sat

Input: a 2-CNF formula ϕ, n variables, m clauses, clause j is “weighted”
with wj ∈ N
Output: a truth assignment maximizing the total weight of satisfied
clauses
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QCQP and Strict QCQP

Definition (Quadratically Constrained Quadratic Program – QCQP)

Optimize a quadratic function subject to quadratic constraints.

Definition (Strict QCQP)

Optimize a quadratic function subject to quadratic constraints. The
monomials in the objective function and in the constraints are all of
degrees 2 or 0.
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max-2sat as a QCQP

Think: yi = 1/0 iff xi =true/false
Example:

ϕ = (x̄1 ∨ x2)︸ ︷︷ ︸
w1

∧ (x3)︸︷︷︸
w2

∧ (x1 ∨ x̄3)︸ ︷︷ ︸
w3

max w1(1− y1(1− y2)) + w2(1− (1− y3)) + w3(1− (1− y1)y3)

subject to y2
i = yi, ∀i
yi ∈ R, ∀i
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max-cut as a Strict QCQP

Think: xi = 1 or −1 iff vertex i ∈ or /∈ S

max
1
2

∑
ij∈E

wij(1− xixj)

subject to x2
i = 1, ∀i ∈ V xi ∈ R, ∀i ∈ V
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Vector Program

Definition (Vector Program)

Variables: n vectors v1, . . . ,vn in Rn

Objective and Constraints: linear in the inner products 〈vi,vj〉

The general form of a vector program is

max
∑

1≤i,j≤n

cij〈vi,vj〉

subject to
∑

1≤i,j≤n

a
(k)
ij 〈vi,vj〉 = bk 1 ≤ k ≤ m

vi ∈ Rn ∀i ∈ [n]
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From Strict QCQP to Vector Program

From a Strict QCQP, we easily get a “relaxed” vector program by
replacing each variable with a vector, and a product of two variables with
the inner product of the corresponding vectors

max
1
2

∑
ij∈E

wij(1− 〈vi,vj〉)

subject to 〈vi,vi〉 = 1, ∀i ∈ V
vi ∈ Rn, ∀i ∈ V

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 8 / 29



Why Vector Programs?

A vector program (VP) can be solved to within ±ε of optimality in
time polynomial in the input size and log(1/ε)
Reason: vector program is equivalent to semidefinite program

After getting a (near) optimal solution v∗1, . . . ,v
∗
n to the vector

program, we can (randomly) “round” back to a feasible solution xA

of the original optimization problem.

Sometime, a problem can be relaxed directly to a semidefinite
program (SDP)

Thus, need to know SDP and its equivalence with VP
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Positive Semidefinite Matrices

Definition/Characterization: given a real and symmetric n× n matrix A,
the following are equivalent

A is positive semidefinite

xTAx ≥ 0, for all x ∈ Rn

all eigenvalues of A are non-negative

A = WTW for some real matrix W (not necessarily square)

A is a nonnegative linear combination of matrices of the type xxT

the determinant of all symmetric minor of A is non-negative

More notations

Use A ∈ Rn×n to denote “A is an n× n real matrix”

Use A � 0 to denote “A is positive semidefinite” (PSD)

Use Sn to denote the set of all symmetric matrices in Rn×n

For C,X ∈ Sn, the Frobenius inner product of them is

C •X := trCTX =
n∑

i=1

n∑
j=1

cijxij .
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Semidefinite Program

Definition (Semidefinite Program – SDP)

Optimizing a linear function of the xij subject to linear constraints on
them, and subject to X = (xij) � 0

In particular, let C,A1, . . . ,Am ∈ Sn, and b1, . . . , bm ∈ R. The following
is a general SDP:

max C •X
subject to Ai •X = bi 1 ≤ i ≤ m

X � 0

If all C,A1, . . . ,Am are diagonal matrices, then the SDP is an LP.
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Solving Semidefinite Programs

Theorem

A semidefinite program can be solved to within an additive factor ε of
optimality in time polynomial in n and log(1/ε)

Two basic methods:

Ellipsoid

Interior point
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Vector Program ≡ Semidefinite Program

Vector Program

max
∑

1≤i,j≤n

cij〈vi,vj〉

subject to
∑

1≤i,j≤n

a
(k)
ij 〈vi,vj〉 = bk 1 ≤ k ≤ m

vi ∈ Rn ∀i ∈ [n]

(1)

Semidefinite Program

max C •X
subject to Ak •X = bk 1 ≤ k ≤ m

X � 0
(2)

From (1) to (2), set xij = 〈vi,vj〉
From (2) to (1), write X = WTW (possible since X is PSD), then
set vi to be the ith column of W
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Randomized Rounding for max-cut

The Vector Program (i.e. the SDP) for max-cut

max
1
2

∑
ij∈E

wij(1− 〈vi,vj〉)

subject to 〈vi,vi〉 = 1, ∀i ∈ V
vi ∈ Rn, ∀i ∈ V

Intuitions:

A feasible solution maps each vertex to a point on the n-dimensional
unit sphere Sn−1

Let θij be the angle between vi,vj , the contribution of edge ij is
1
2(1− 〈vi,vj〉) = 1

2(1− cos θij)
The wider separated the vi,vj , the larger the contribution

A hyperplane (through the origin) will likely separate vi,vj if they are
widely separated

Thus, pick a random hyperplane and “use” it as a cut
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Randomized Rounding for max-cut

1 Let v∗1, . . . ,v
∗
n be a (near) optimal solution to the vector program

2 Choose a unit vector r uniformly at random from the unit sphere Sn−1

(think of it as the normal vector of the random hyperplane)

3 Output the cut (S, S̄), where

S = {i ∈ V | 〈v∗i , r〉 ≥ 0}
S̄ = {i ∈ V | 〈v∗i , r〉 < 0}
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Analysis

For any edge ij ∈ E,

Prob[vi,vj are separated by r] =
θij

π
=

arccos(〈vi,vj〉)
π

Expected cut capacity is thus∑
ij∈E

wij
arccos(〈vi,vj〉)

π

=
∑
ij∈E

(
arccos(〈vi,vj〉)

π
1−〈vi,vj〉

2

)
wij

(
1− 〈vi,vj〉

2

)

≥ min
x∈[−1,1]

(
arccos(x)

π
1−x

2

)
· opt(Vector Program)

≥ 0.87856 ·max-cut capacity
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How to choose r uniformly on the sphere?

What do we mean by “uniform on the sphere anyway?

The uniform distribution of a bounded set B ⊂ Rk is the distribution
whose density is

f(x1, . . . , xk) =

{
1
V x ∈ B

0 otherwise

where V is the k-dimensional volume (or Lebesgue measure) of B.

Consider S1, the 2-dimensional circle. One way to pick r uniformly is
to pick θ ∈ [0, 2π] uniformly at random.

This is a continuous distribution, which we have not really talked
about
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PTCF: Continuous Random Variable

A r.v. X taking on uncountably many possible values is a continuous
random variable if there exists a function f : R → R, having the
property that for every B ⊆ R:

Prob[X ∈ B] =
∫

B
f(x)dx

f is called the (probability) density function (PDF) of X. We must
have

1 = Prob[X ∈ (−∞,∞)] =
∫ ∞

−∞
f(x)dx.

The (cumulative) distribution function (CDF) F (·) of X is defined by

F (a) = Prob
[
X ∈ (−∞, a]

]
=
∫ a

−∞
f(x)dx.

Note that
d

da
F (a) = f(a)
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PTCF: Continuous Uniform Distribution

X is said to be uniformly distributed on the interval [α, β] if its density is

f(x) =

{
1

β−α if x ∈ [α, β]

0 otherwise

As F (a) =
∫ a
−∞ f(x)dx, we get

F (a) =


0 a < α
a−α
β−α a ∈ [α, β]

1 a > β
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PTCF: Continuous Unif. Dist., Some Density Plots
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PTCF: Exponential Distribution

X is said to be exponentially distributed with parameter λ if its density is

f(x) =

{
λe−λx if x ≥ 0
0 if x < 0

Its cdf F is

F (a) =
∫ a

−∞
f(x)dx = 1− e−λa, a ≥ 0.
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PTCF: Exponential Dist., Some Plots

Densities Distributions
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PTCF: Normal Distribution

A continuous r.v. X is normally distributed with parameters µ and σ2

if the density of X is given by

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R.

Normal variables are also called Gaussian variables.

If X is normally distributed with parameters µ and σ2, then
Y = αX + β is normally distributed with parameters αµ + β and
(ασ)2

When µ = 0 and σ2 = 1, X is said to have standard normal
distribution.
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PTCF: Normal Distribution, Some Plots

Densities Distributions

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 26 / 29



PTCF: Continuous Distribution Random Number
Generation

Uniform distribution: discretize it, then use some pseudo-random
number generator

Let’s assume we can generate a uniform number X ∈ [0, 1).

Question:

How to generate Y ∈ Normal(µ, σ)?
It is actually sufficient to generate Y ∈ Normal(0, 1)
How to generate a point on an n-sphere uniformly at random?
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PTCF: Normal Distribution Random Number Generator

The Polar Method (for Normal(0, 1))
1 Generate V1, V2 ∈ [−1, 1] uniformly

2 S = V 2
1 + V 2

2

3 If S ≥ 1, go back to step 1

4 Set X1 = V1

√
−2 ln S

S and X2 = V2

√
−2 ln S

S

Then, X1 and X2 are independent standard normal variables

For Normal(µ, σ))
1 Let X be a standard normal variable

2 Then, Y = µ + σX is Normal(µ, σ)
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PTCF: Generating a Random Point on an n-Sphere

Generate X1, . . . , Xn independently from Normal(0, 1)
Let r = (r1, . . . , rn) be defined by

ri =
Xi√

X2
1 + · · ·+ X2

n

The joint density of the Xi only depends on
√

X2
1 + · · ·+ X2

n, so the
distribution is spherically symmetric, and thus its projection on to the
sphere (i.e. r) is uniformly distributed on the surface of the sphere!

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 29 / 29


	Quadratic Programs and Vector Programs
	Semidefinite Programming
	SDP-Based Randomized Rounding

