Randomized Algorithms

Randomized Rounding

- Brief Introduction to Linear Programming and Its Usage in Combinatorial Optimization
- Randomized Rounding for Cut Problems
- Randomized Rounding for Covering Problems
- Randomized Rounding for Satisfiability Problems
- Randomized Rounding and Semi-definite Programming

Approximate Sampling and Counting

MAX-CUT and MAX-2SAT

MAX-CUT

Input: graph $G=(V, E), w: E \rightarrow \mathbb{N}$
Output: a cut $(S, \bar{S}), S \subset V$, with maximum total weight of edges crossing the cut.

MAX-2SAT

Input: a 2-CNF formula φ, n variables, m clauses, clause j is "weighted" with $w_{j} \in \mathbb{N}$
Output: a truth assignment maximizing the total weight of satisfied clauses

QCQP and Strict QCQP

Definition (Quadratically Constrained Quadratic Program - QCQP) Optimize a quadratic function subject to quadratic constraints.

Definition (Strict QCQP)

Optimize a quadratic function subject to quadratic constraints. The monomials in the objective function and in the constraints are all of degrees 2 or 0 .

MAX-2SAT as a QCQP

Think: $y_{i}=1 / 0$ iff $x_{i}=$ TRUE $/$ FALSE

Example:

$$
\varphi=\underbrace{\left(\bar{x}_{1} \vee x_{2}\right)}_{w_{1}} \wedge \underbrace{\left(x_{3}\right)}_{w_{2}} \wedge \underbrace{\left(x_{1} \vee \bar{x}_{3}\right)}_{w_{3}}
$$

\max

$$
w_{1}\left(1-y_{1}\left(1-y_{2}\right)\right)+w_{2}\left(1-\left(1-y_{3}\right)\right)+w_{3}\left(1-\left(1-y_{1}\right) y_{3}\right)
$$

subject to

$$
\begin{gathered}
y_{i}^{2}=y_{i}, \quad \forall i \\
y_{i} \in \mathbb{R}, \quad \forall i
\end{gathered}
$$

MAX-CUT as a Strict QCQP

Think: $x_{i}=1$ or -1 iff vertex $i \in$ or $\notin S$

$$
\begin{array}{cl}
\max & \frac{1}{2} \sum_{i j \in E} w_{i j}\left(1-x_{i} x_{j}\right) \\
\text { subject to } & x_{i}^{2}=1, \quad \forall i \in V \quad x_{i} \in \mathbb{R}, \quad \forall i \in V
\end{array}
$$

Vector Program

Definition (Vector Program)

Variables: n vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ in \mathbb{R}^{n}
Objective and Constraints: linear in the inner products $\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle$
The general form of a vector program is

$$
\begin{array}{ccc}
\max & \sum_{1 \leq i, j \leq n} c_{i j}\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle & \\
\text { subject to } & \sum_{1 \leq i, j \leq n} a_{i j}^{(k)}\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=b_{k} & 1 \leq k \leq m \\
\mathbf{v}_{i} \in \mathbb{R}^{n} & \forall i \in[n]
\end{array}
$$

From Strict QCQP to Vector Program

From a Strict QCQP, we easily get a "relaxed" vector program by replacing each variable with a vector, and a product of two variables with the inner product of the corresponding vectors

$$
\begin{array}{cl}
\max & \frac{1}{2} \sum_{i j \in E} w_{i j}\left(1-\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle\right) \\
\text { subject to } & \left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle=1, \quad \forall i \in V \\
& \mathbf{v}_{i} \in \mathbb{R}^{n}, \quad \forall i \in V
\end{array}
$$

Why Vector Programs?

- A vector program (VP) can be solved to within $\pm \epsilon$ of optimality in time polynomial in the input size and $\log (1 / \epsilon)$
- Reason: vector program is equivalent to semidefinite program
- After getting a (near) optimal solution $\mathbf{v}_{1}^{*}, \ldots, \mathbf{v}_{n}^{*}$ to the vector program, we can (randomly) "round" back to a feasible solution \mathbf{x}^{A} of the original optimization problem.
- Sometime, a problem can be relaxed directly to a semidefinite program (SDP)
- Thus, need to know SDP and its equivalence with VP

Positive Semidefinite Matrices

Definition/Characterization: given a real and symmetric $n \times n$ matrix \mathbf{A}, the following are equivalent

- \mathbf{A} is positive semidefinite
- $\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0$, for all $\mathbf{x} \in \mathbb{R}^{n}$
- all eigenvalues of \mathbf{A} are non-negative
- $\mathbf{A}=\mathbf{W}^{T} \mathbf{W}$ for some real matrix \mathbf{W} (not necessarily square)
- A is a nonnegative linear combination of matrices of the type $\mathbf{x x}^{T}$
- the determinant of all symmetric minor of \mathbf{A} is non-negative More notations
- Use $\mathbf{A} \in \mathbb{R}^{n \times n}$ to denote " \mathbf{A} is an $n \times n$ real matrix"
- Use $\mathbf{A} \succeq 0$ to denote " \mathbf{A} is positive semidefinite" (PSD)
- Use S_{n} to denote the set of all symmetric matrices in $\mathbb{R}^{n \times n}$
- For $\mathbf{C}, \mathbf{X} \in S_{n}$, the Frobenius inner product of them is

$$
\mathbf{C} \bullet \mathbf{X}:=\operatorname{tr} \mathbf{C}^{T} \mathbf{X}=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

Semidefinite Program

Definition (Semidefinite Program - SDP)

Optimizing a linear function of the $x_{i j}$ subject to linear constraints on them, and subject to $\mathbf{X}=\left(x_{i j}\right) \succeq 0$

In particular, let $\mathbf{C}, \mathbf{A}_{1}, \ldots, \mathbf{A}_{m} \in S_{n}$, and $b_{1}, \ldots, b_{m} \in \mathbb{R}$. The following is a general SDP:

$$
\begin{array}{cc}
\max & \mathbf{C} \bullet \mathbf{X} \\
\text { subject to } & \mathbf{A}_{i} \bullet \mathbf{X}=b_{i} \quad 1 \leq i \leq m \\
& \mathbf{X} \succeq 0
\end{array}
$$

If all $\mathbf{C}, \mathbf{A}_{1}, \ldots, \mathbf{A}_{m}$ are diagonal matrices, then the SDP is an LP.

Solving Semidefinite Programs

Theorem

A semidefinite program can be solved to within an additive factor ϵ of optimality in time polynomial in n and $\log (1 / \epsilon)$

Two basic methods:

- Ellipsoid
- Interior point

Vector Program \equiv Semidefinite Program

Vector Program

$$
\begin{array}{ccc}
\max & \sum_{1 \leq i, j \leq n} c_{i j}\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle & \\
\text { subject to } & \sum_{1 \leq i, j \leq n} a_{i j}^{(k)}\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=b_{k} & 1 \leq k \leq m \tag{1}\\
\mathbf{v}_{i} \in \mathbb{R}^{n} & \forall i \in[n]
\end{array}
$$

Semidefinite Program

$$
\begin{array}{cc}
\max & \mathbf{C} \bullet \mathbf{X} \\
\text { subject to } & \mathbf{A}_{k} \bullet \mathbf{X}=b_{k} \tag{2}\\
& \mathbf{X} \succeq 0
\end{array}
$$

- From (1) to (2), set $x_{i j}=\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle$
- From (2) to (1), write $\mathbf{X}=\mathbf{W}^{T} \mathbf{W}$ (possible since \mathbf{X} is PSD), then set \mathbf{v}_{i} to be the i th column of \mathbf{W}

Randomized Rounding for MAX-CUT

The Vector Program (i.e. the SDP) for MAX-CUT

$$
\begin{array}{cc}
\max & \frac{1}{2} \sum_{i j \in E} w_{i j}\left(1-\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle\right) \\
\text { subject to } & \left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle=1, \quad \forall i \in V \\
& \mathbf{v}_{i} \in \mathbb{R}^{n}, \quad \forall i \in V
\end{array}
$$

Intuitions:

- A feasible solution maps each vertex to a point on the n-dimensional unit sphere \mathbb{S}_{n-1}
- Let $\theta_{i j}$ be the angle between $\mathbf{v}_{i}, \mathbf{v}_{j}$, the contribution of edge $i j$ is $\frac{1}{2}\left(1-\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle\right)=\frac{1}{2}\left(1-\cos \theta_{i j}\right)$
- The wider separated the $\mathbf{v}_{i}, \mathbf{v}_{j}$, the larger the contribution
- A hyperplane (through the origin) will likely separate $\mathbf{v}_{i}, \mathbf{v}_{j}$ if they are widely separated
- Thus, pick a random hyperplane and "use" it as a cut

Randomized Rounding for MAX-CUT

(1) Let $\mathbf{v}_{1}^{*}, \ldots, \mathbf{v}_{n}^{*}$ be a (near) optimal solution to the vector program
(2) Choose a unit vector \mathbf{r} uniformly at random from the unit sphere \mathbb{S}_{n-1} (think of it as the normal vector of the random hyperplane)
(3) Output the cut (S, \bar{S}), where

$$
\begin{aligned}
& S=\left\{i \in V \mid\left\langle\mathbf{v}_{i}^{*}, \mathbf{r}\right\rangle \geq 0\right\} \\
& \bar{S}=\left\{i \in V \mid\left\langle\mathbf{v}_{i}^{*}, \mathbf{r}\right\rangle<0\right\}
\end{aligned}
$$

Analysis

- For any edge $i j \in E$,
$\operatorname{Prob}\left[\mathbf{v}_{i}, \mathbf{v}_{j}\right.$ are separated by $\left.\mathbf{r}\right]=\frac{\theta_{i j}}{\pi}=\frac{\arccos \left(\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle\right)}{\pi}$
- Expected cut capacity is thus

$$
\begin{aligned}
& \sum_{i j \in E} w_{i j} \frac{\arccos \left(\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle\right)}{\pi} \\
= & \sum_{i j \in E}\left(\frac{\frac{\arccos \left(\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle\right)}{\pi}}{\frac{1-\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle}{2}}\right) w_{i j}\left(\frac{1-\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle}{2}\right) \\
\geq & \left.\min _{x \in[-1,1]}\left(\frac{\frac{\arccos (x)}{\pi}}{\frac{1-x}{2}}\right) \cdot \text { OPT(Vector Program }\right) \\
\geq & 0.87856 \cdot \operatorname{MAX}-\text { CUT CAPACITY }
\end{aligned}
$$

How to choose \mathbf{r} uniformly on the sphere?

- What do we mean by "uniform on the sphere anyway?
- The uniform distribution of a bounded set $B \subset \mathbb{R}^{k}$ is the distribution whose density is

$$
f\left(x_{1}, \ldots, x_{k}\right)= \begin{cases}\frac{1}{V} & \mathbf{x} \in B \\ 0 & \text { otherwise }\end{cases}
$$

where V is the k-dimensional volume (or Lebesgue measure) of B.

- Consider \mathbb{S}_{1}, the 2-dimensional circle. One way to pick \mathbf{r} uniformly is to pick $\theta \in[0,2 \pi]$ uniformly at random.
- This is a continuous distribution, which we have not really talked about

PTCF: Continuous Random Variable

- A r.v. X taking on uncountably many possible values is a continuous random variable if there exists a function $f: \mathbb{R} \rightarrow \mathbb{R}$, having the property that for every $B \subseteq \mathbb{R}$:

$$
\operatorname{Prob}[X \in B]=\int_{B} f(x) d x
$$

- f is called the (probability) density function (PDF) of X. We must have

$$
1=\operatorname{Prob}[X \in(-\infty, \infty)]=\int_{-\infty}^{\infty} f(x) d x
$$

- The (cumulative) distribution function (CDF) $F(\cdot)$ of X is defined by

$$
F(a)=\operatorname{Prob}[X \in(-\infty, a]]=\int_{-\infty}^{a} f(x) d x
$$

- Note that

$$
\frac{d}{d a} F(a)=f(a)
$$

PTCF: Continuous Uniform Distribution

X is said to be uniformly distributed on the interval $[\alpha, \beta]$ if its density is

$$
f(x)= \begin{cases}\frac{1}{\beta-\alpha} & \text { if } x \in[\alpha, \beta] \\ 0 & \text { otherwise }\end{cases}
$$

As $F(a)=\int_{-\infty}^{a} f(x) d x$, we get

$$
F(a)= \begin{cases}0 & a<\alpha \\ \frac{a-\alpha}{\beta-\alpha} & a \in[\alpha, \beta] \\ 1 & a>\beta\end{cases}
$$

PTCF: Continuous Unif. Dist., Some Density Plots

PTCF: Exponential Distribution

X is said to be exponentially distributed with parameter λ if its density is

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Its cdf F is

$$
F(a)=\int_{-\infty}^{a} f(x) d x=1-e^{-\lambda a}, a \geq 0
$$

PTCF: Exponential Dist., Some Plots

PTCF: Normal Distribution

- A continuous r.v. X is normally distributed with parameters μ and σ^{2} if the density of X is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, x \in \mathbb{R}
$$

Normal variables are also called Gaussian variables.

- If X is normally distributed with parameters μ and σ^{2}, then $Y=\alpha X+\beta$ is normally distributed with parameters $\alpha \mu+\beta$ and $(\alpha \sigma)^{2}$
- When $\mu=0$ and $\sigma^{2}=1, X$ is said to have standard normal distribution.

PTCF: Normal Distribution, Some Plots

Densities

Distributions

PTCF: Continuous Distribution Random Number Generation

- Uniform distribution: discretize it, then use some pseudo-random number generator
- Let's assume we can generate a uniform number $X \in[0,1)$.

Question:

- How to generate $Y \in \operatorname{Normal}(\mu, \sigma)$?
- It is actually sufficient to generate $Y \in \operatorname{Normal}(0,1)$
- How to generate a point on an n-sphere uniformly at random?

PTCF: Normal Distribution Random Number Generator

The Polar Method (for $\operatorname{Normal}(0,1)$)
(1) Generate $V_{1}, V_{2} \in[-1,1]$ uniformly
(2) $S=V_{1}^{2}+V_{2}^{2}$
(3) If $S \geq 1$, go back to step 1
(9) Set $X_{1}=V_{1} \sqrt{\frac{-2 \ln S}{S}}$ and $X_{2}=V_{2} \sqrt{\frac{-2 \ln S}{S}}$

Then, X_{1} and X_{2} are independent standard normal variables
For $\operatorname{Normal}(\mu, \sigma))$
(1) Let X be a standard normal variable
(2) Then, $Y=\mu+\sigma X$ is $\operatorname{Normal}(\mu, \sigma)$

PTCF: Generating a Random Point on an n-Sphere

- Generate X_{1}, \ldots, X_{n} independently from $\operatorname{Normal}(0,1)$
- Let $r=\left(r_{1}, \ldots, r_{n}\right)$ be defined by

$$
r_{i}=\frac{X_{i}}{\sqrt{X_{1}^{2}+\cdots+X_{n}^{2}}}
$$

- The joint density of the X_{i} only depends on $\sqrt{X_{1}^{2}+\cdots+X_{n}^{2}}$, so the distribution is spherically symmetric, and thus its projection on to the sphere (i.e. \mathbf{r}) is uniformly distributed on the surface of the sphere!

