Randomized Rounding

- Brief Introduction to Linear Programming and Its Usage in Combinatorial Optimization
- Randomized Rounding for Cut Problems
- Randomized Rounding for Covering Problems
- Randomized Rounding for Satisfiability Problems
- Randomized Rounding and Semi-definite Programming

Approximate Sampling and Counting

• ...

MAX-CUT

Input: graph G = (V, E), $w : E \to \mathbb{N}$ Output: a cut (S, \overline{S}) , $S \subset V$, with maximum total weight of edges crossing the cut.

MAX-2SAT

Input: a 2-CNF formula φ , n variables, m clauses, clause j is "weighted" with $w_j \in \mathbb{N}$ Output: a truth assignment maximizing the total weight of satisfied clauses Definition (Quadratically Constrained Quadratic Program – QCQP) Optimize a quadratic function subject to quadratic constraints.

Definition (Strict QCQP)

Optimize a quadratic function subject to quadratic constraints. The monomials in the objective function and in the constraints are all of degrees 2 or 0.

Think: $y_i = 1/0$ iff $x_i = \text{TRUE}/\text{FALSE}$ Example:

$$\begin{array}{ll} \max & w_1(1-y_1(1-y_2)) + w_2(1-(1-y_3)) + w_3(1-(1-y_1)y_3) \\ \text{subject to} & y_i^2 = y_i, \ \forall i \\ & y_i \in \mathbb{R}, \ \forall i \end{array}$$

Think:
$$x_i = 1$$
 or -1 iff vertex $i \in$ or $\notin S$

$$\begin{array}{ll} \max & \displaystyle \frac{1}{2} \sum_{ij \in E} w_{ij} (1 - x_i x_j) \\ \\ \text{subject to} & \displaystyle x_i^2 = 1, \ \forall i \in V \quad x_i \in \mathbb{R}, \ \forall i \in V \end{array}$$

Definition (Vector Program)

Variables: n vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ in \mathbb{R}^n Objective and Constraints: linear in the inner products $\langle \mathbf{v}_i, \mathbf{v}_i \rangle$

The general form of a vector program is

$$\begin{array}{ll} \max & \sum_{1 \leq i,j \leq n} c_{ij} \langle \mathbf{v}_i, \mathbf{v}_j \rangle \\ \text{subject to} & \sum_{1 \leq i,j \leq n} a_{ij}^{(k)} \langle \mathbf{v}_i, \mathbf{v}_j \rangle = b_k \quad 1 \leq k \leq m \\ & \mathbf{v}_i \in \mathbb{R}^n \qquad \forall i \in [n] \end{array}$$

From a Strict QCQP, we easily get a "relaxed" vector program by replacing each variable with a vector, and a product of two variables with the inner product of the corresponding vectors

$$\max \quad \frac{1}{2} \sum_{ij \in E} w_{ij} (1 - \langle \mathbf{v}_i, \mathbf{v}_j \rangle)$$

subject to $\langle \mathbf{v}_i, \mathbf{v}_i \rangle = 1, \quad \forall i \in V$
 $\mathbf{v}_i \in \mathbb{R}^n, \quad \forall i \in V$

- A vector program (VP) can be solved to within $\pm \epsilon$ of optimality in time polynomial in the input size and $\log(1/\epsilon)$
- Reason: vector program is equivalent to semidefinite program
- After getting a (near) optimal solution $\mathbf{v}_1^*, \ldots, \mathbf{v}_n^*$ to the vector program, we can (randomly) "round" back to a feasible solution \mathbf{x}^A of the original optimization problem.
- Sometime, a problem can be relaxed directly to a semidefinite program (SDP)
- Thus, need to know SDP and its equivalence with VP

Positive Semidefinite Matrices

Definition/Characterization: given a real and symmetric $n\times n$ matrix ${\bf A},$ the following are equivalent

- A is positive semidefinite
- $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$, for all $\mathbf{x} \in \mathbb{R}^n$
- ${\ensuremath{\, \bullet }}$ all eigenvalues of ${\ensuremath{\, A }}$ are non-negative
- $\mathbf{A} = \mathbf{W}^T \mathbf{W}$ for some real matrix \mathbf{W} (not necessarily square)
- A is a nonnegative linear combination of matrices of the type $\mathbf{x}\mathbf{x}^T$
- the determinant of all symmetric minor of A is non-negative

More notations

- Use $\mathbf{A} \in \mathbb{R}^{n imes n}$ to denote "A is an n imes n real matrix"
- Use $\mathbf{A} \succeq 0$ to denote "A is positive semidefinite" (PSD)
- Use S_n to denote the set of all symmetric matrices in $\mathbb{R}^{n imes n}$
- For $\mathbf{C}, \mathbf{X} \in S_n$, the Frobenius inner product of them is

$$\mathbf{C} \bullet \mathbf{X} := \operatorname{tr} \mathbf{C}^T \mathbf{X} = \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$

Definition (Semidefinite Program – SDP)

Optimizing a linear function of the x_{ij} subject to linear constraints on them, and subject to $\mathbf{X} = (x_{ij}) \succeq 0$

In particular, let $\mathbf{C}, \mathbf{A}_1, \dots, \mathbf{A}_m \in S_n$, and $b_1, \dots, b_m \in \mathbb{R}$. The following is a general SDP:

$$\begin{array}{ccc} \max & \mathbf{C} \bullet \mathbf{X} \\ \text{subject to} & \mathbf{A}_i \bullet \mathbf{X} = b_i & 1 \leq i \leq m \\ & \mathbf{X} \succeq 0 \end{array}$$

If all C, A_1, \ldots, A_m are diagonal matrices, then the SDP is an LP.

Theorem

A semidefinite program can be solved to within an additive factor ϵ of optimality in time polynomial in n and $\log(1/\epsilon)$

Two basic methods:

- Ellipsoid
- Interior point

Vector Program \equiv Semidefinite Program

Vector Program

$$\max \sum_{1 \le i,j \le n} c_{ij} \langle \mathbf{v}_i, \mathbf{v}_j \rangle$$

subject to
$$\sum_{1 \le i,j \le n} a_{ij}^{(k)} \langle \mathbf{v}_i, \mathbf{v}_j \rangle = b_k \quad 1 \le k \le m$$
$$\mathbf{v}_i \in \mathbb{R}^n \qquad \forall i \in [n]$$

Semidefinite Program

$$\begin{array}{ccc} \max & \mathbf{C} \bullet \mathbf{X} \\ \text{subject to} & \mathbf{A}_k \bullet \mathbf{X} = b_k & 1 \le k \le m \\ & \mathbf{X} \succeq 0 \end{array} \tag{2}$$

- From (1) to (2), set $x_{ij} = \langle \mathbf{v}_i, \mathbf{v}_j \rangle$
- From (2) to (1), write $\mathbf{X} = \mathbf{W}^T \mathbf{W}$ (possible since \mathbf{X} is PSD), then set \mathbf{v}_i to be the *i*th column of \mathbf{W}

Randomized Rounding for MAX-CUT

The Vector Program (i.e. the SDP) for MAX-CUT

$$\begin{array}{ll} \max & \frac{1}{2} \sum_{ij \in E} w_{ij} (1 - \langle \mathbf{v}_i, \mathbf{v}_j \rangle) \\ \text{subject to} & \langle \mathbf{v}_i, \mathbf{v}_i \rangle = 1, \ \forall i \in V \\ & \mathbf{v}_i \in \mathbb{R}^n, \ \forall i \in V \end{array}$$

Intuitions:

- A feasible solution maps each vertex to a point on the n-dimensional unit sphere \mathbb{S}_{n-1}
- Let θ_{ij} be the angle between $\mathbf{v}_i, \mathbf{v}_j$, the contribution of edge ij is $\frac{1}{2}(1 \langle \mathbf{v}_i, \mathbf{v}_j \rangle) = \frac{1}{2}(1 \cos \theta_{ij})$
- The wider separated the $\mathbf{v}_i, \mathbf{v}_j$, the larger the contribution
- A hyperplane (through the origin) will likely separate $\mathbf{v}_i, \mathbf{v}_j$ if they are widely separated
- Thus, pick a random hyperplane and "use" it as a cut

- Let $\mathbf{v}_1^*, \ldots, \mathbf{v}_n^*$ be a (near) optimal solution to the vector program
- Choose a unit vector r uniformly at random from the unit sphere S_{n-1} (think of it as the normal vector of the random hyperplane)
- $\textcircled{Output the cut } (S,\bar{S})\text{, where}$

$$\begin{array}{rcl} S & = & \{i \in V \mid \langle \mathbf{v}_i^*, \mathbf{r} \rangle \geq 0\} \\ \bar{S} & = & \{i \in V \mid \langle \mathbf{v}_i^*, \mathbf{r} \rangle < 0\} \end{array}$$

Analysis

• For any edge $ij \in E$,

$$\mathsf{Prob}[\mathbf{v}_i, \mathbf{v}_j \text{ are separated by } \mathbf{r}] = \frac{\theta_{ij}}{\pi} = \frac{\arccos(\langle \mathbf{v}_i, \mathbf{v}_j \rangle)}{\pi}$$

• Expected cut capacity is thus

$$\sum_{ij\in E} w_{ij} \frac{\arccos(\langle \mathbf{v}_i, \mathbf{v}_j \rangle)}{\pi}$$

$$= \sum_{ij\in E} \left(\frac{\frac{\arccos(\langle \mathbf{v}_i, \mathbf{v}_j \rangle)}{\pi}}{\frac{1-\langle \mathbf{v}_i, \mathbf{v}_j \rangle}{2}} \right) w_{ij} \left(\frac{1-\langle \mathbf{v}_i, \mathbf{v}_j \rangle}{2} \right)$$

$$\geq \min_{x\in [-1,1]} \left(\frac{\arccos(x)}{\frac{\pi}{2}} \right) \cdot \operatorname{OPT}(\operatorname{Vector} \operatorname{Program})$$

$$\geq 0.87856 \cdot \operatorname{MAX-CUT} \operatorname{CAPACITY}$$

• What do we mean by "uniform on the sphere anyway?

• The uniform distribution of a bounded set $B \subset \mathbb{R}^k$ is the distribution whose density is

$$f(x_1, \dots, x_k) = \begin{cases} \frac{1}{V} & \mathbf{x} \in B\\ 0 & \text{otherwise} \end{cases}$$

where V is the k-dimensional volume (or Lebesgue measure) of B.

- Consider S₁, the 2-dimensional circle. One way to pick r uniformly is to pick θ ∈ [0, 2π] uniformly at random.
- This is a continuous distribution, which we have not really talked about

PTCF: Continuous Random Variable

A r.v. X taking on uncountably many possible values is a *continuous* random variable if there exists a function f : ℝ → ℝ, having the property that for every B ⊆ ℝ:

$$\mathsf{Prob}[X \in B] = \int_B f(x) dx$$

• f is called the (probability) density function (PDF) of X. We must have

$$1 = \operatorname{Prob}[X \in (-\infty, \infty)] = \int_{-\infty}^{\infty} f(x) dx$$

• The (cumulative) distribution function (CDF) $F(\cdot)$ of X is defined by

$$F(a) = \operatorname{Prob} \left[X \in (-\infty, a] \right] = \int_{-\infty}^{a} f(x) dx.$$

Note that

$$\frac{d}{da}F(a) = f(a)$$

X is said to be *uniformly distributed* on the interval $[\alpha,\beta]$ if its density is

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{ if } x \in [\alpha, \beta] \\ 0 & \text{ otherwise} \end{cases}$$

As $F(a)=\int_{-\infty}^a f(x)dx$, we get

$$F(a) = \begin{cases} 0 & a < \alpha \\ \frac{a - \alpha}{\beta - \alpha} & a \in [\alpha, \beta] \\ 1 & a > \beta \end{cases}$$

PTCF: Continuous Unif. Dist., Some Density Plots

X is said to be exponentially distributed with parameter λ if its density is

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{ if } x \ge 0\\ 0 & \text{ if } x < 0 \end{cases}$$

Its cdf F is

$$F(a) = \int_{-\infty}^{a} f(x)dx = 1 - e^{-\lambda a}, \ a \ge 0.$$

PTCF: Exponential Dist., Some Plots

 A continuous r.v. X is normally distributed with parameters μ and σ² if the density of X is given by

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \ x \in \mathbb{R}.$$

Normal variables are also called Gaussian variables.

- If X is normally distributed with parameters μ and σ^2 , then $Y = \alpha X + \beta$ is normally distributed with parameters $\alpha \mu + \beta$ and $(\alpha \sigma)^2$
- When $\mu = 0$ and $\sigma^2 = 1$, X is said to have standard normal distribution.

PTCF: Normal Distribution, Some Plots

Densities

Distributions

- Uniform distribution: discretize it, then use some *pseudo-random number generator*
- Let's assume we can generate a uniform number $X \in [0, 1)$.

Question:

- How to generate $Y \in \mathsf{Normal}(\mu, \sigma)$?
- It is actually sufficient to generate $Y \in \mathsf{Normal}(0,1)$
- How to generate a point on an *n*-sphere uniformly at random?

The Polar Method (for Normal(0,1))

- Generate $V_1, V_2 \in [-1, 1]$ uniformly
- 2 $S = V_1^2 + V_2^2$
- $\ \ \, \textbf{if} \ S\geq 1 \textbf{, go back to step } 1 \\$

Set
$$X_1 = V_1 \sqrt{\frac{-2 \ln S}{S}}$$
 and $X_2 = V_2 \sqrt{\frac{-2 \ln S}{S}}$
Then, X_1 and X_2 are independent standard normal variables

For Normal (μ, σ))

O Let X be a standard normal variable

2 Then,
$$Y = \mu + \sigma X$$
 is Normal (μ, σ)

- Generate X_1, \ldots, X_n independently from Normal(0, 1)
- Let $r = (r_1, \ldots, r_n)$ be defined by

$$r_i = \frac{X_i}{\sqrt{X_1^2 + \dots + X_n^2}}$$

The joint density of the X_i only depends on √X₁² + · · · + X_n², so the distribution is spherically symmetric, and thus its projection on to the sphere (i.e. r) is uniformly distributed on the surface of the sphere!