Randomized Algorithms

Randomized Rounding

@ Brief Introduction to Linear Programming and Its Usage in
Combinatorial Optimization

@ Randomized Rounding for Cut Problems

@ Randomized Rounding for Covering Problems

@ Randomized Rounding for Satisfiability Problems

@ Randomized Rounding and Semi-definite Programming
Approximate Sampling and Counting
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MAX-CUT and MAX-2SAT

MAX-CUT

Input: graph G = (V,E), w: E — N

Output: a cut (S,S5), S C V, with maximum total weight of edges
crossing the cut.

MAX-2SAT

Input: a 2-CNF formula ¢, n variables, m clauses, clause j is “weighted”
with w; € N

Output: a truth assignment maximizing the total weight of satisfied
clauses

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 3/29



QCQP and Strict QCQP

Definition (Quadratically Constrained Quadratic Program — QCQP)

Optimize a quadratic function subject to quadratic constraints.

Definition (Strict QCQP)

Optimize a quadratic function subject to quadratic constraints. The
monomials in the objective function and in the constraints are all of
degrees 2 or 0.
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MAX-2SAT as a QCQP

Think: y; = 1/0 iff x; =TRUE/FALSE
Example:

©=(Z1 Vaa)A(z3)A(z1V T3)
N—_——r N

max  wi(l —y1(1 —y2)) +wa(l — (1 —y3)) +ws(1 — (1 —y1)ys)

subject to yf =1y, Vi
y; €R, Vi
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MAX-CUT as a Strict QCQP

Think: z; =1 or —1 iff vertex i € or ¢ S

max g wij (1 — xizy)
’L]EE

subjectto  2?=1, VieV x3;,€R, VieV
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Vector Program

Definition (Vector Program)

Variables: n vectors vq,...,v, in R
Objective and Constraints: linear in the inner products (v;, v;)

The general form of a vector program is

max Z Cij<Vi,Vj>

1<i,j<n
subject to Z aE?(vi,vj) =b, 1<k<m
1<i,j<n
v; € R" Vi € [n]
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From Strict QCQP to Vector Program

From a Strict QCQP, we easily get a “relaxed” vector program by

replacing each variable with a vector, and a product of two variables with
the inner product of the corresponding vectors

max Z wii (1 — (vi, vj))

1]€E

subject to  (v;,vi) =1, VieV
v, eR" VieV
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Why Vector Programs?

A vector program (VP) can be solved to within +e of optimality in
time polynomial in the input size and log(1/¢)

@ Reason: vector program is equivalent to semidefinite program

o After getting a (near) optimal solution vj,..., v} to the vector

program, we can (randomly) “round” back to a feasible solution x
of the original optimization problem.

A

@ Sometime, a problem can be relaxed directly to a semidefinite
program (SDP)

@ Thus, need to know SDP and its equivalence with VP

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 9/29



Positive Semidefinite Matrices

Definition/Characterization: given a real and symmetric n X n matrix A,
the following are equivalent
@ A is positive semidefinite
xT'Ax >0, for all x € R™
all eigenvalues of A are non-negative
A = WTW for some real matrix W (not necessarily square)
A is a nonnegative linear combination of matrices of the type xx”
@ the determinant of all symmetric minor of A is non-negative
More notations
@ Use A € R™ ™ to denote “A is an n X n real matrix”
@ Use A = 0 to denote "A is positive semidefinite” (PSD)
@ Use S), to denote the set of all symmetric matrices in R"*"
@ For C,X € S,,, the Frobenius inner product of them is

n on
CeX :=trCTX = Z Zcijxij.
i=1 j=1
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Semidefinite Program

Definition (Semidefinite Program — SDP)

Optimizing a linear function of the x;; subject to linear constraints on
them, and subject to X = (z;5) = 0

In particular, let C,Aq,..., A, € Sy, and by, ...,b, € R. The following
is a general SDP:

max CeX
subjectto A;eX =0 1<i<m
X*>0

If all C, Aq,...,A,, are diagonal matrices, then the SDP is an LP.
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Solving Semidefinite Programs

Theorem

A semidefinite program can be solved to within an additive factor € of
optimality in time polynomial in n and log(1/€)

Two basic methods:
e Ellipsoid

@ Interior point
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Vector Program = Semidefinite Program

Vector Program

max Z Cij<Vi,Vj>
1<i,j<n
subject to Z aE?(vi,vj) =b, 1<k<m (1)
1<i j<n
v; € R" Vi € [n]

Semidefinite Program

max CeX
subject to ApeX =0, 1<k<m (2)
X>0

e From (1) to (2), set z;; = (v;,V;)
e From (2) to (1), write X = WTW (possible since X is PSD), then
set v; to be the ¢th column of W
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Randomized Rounding for MAX-CUT

The Vector Program (i.e. the SDP) for MAX-CUT

max Z wii (1 — (vi, vj))
z]EE
subject to  (v;,vi) =1, VieV
v; eR", VieV
Intuitions:
@ A feasible solution maps each vertex to a point on the n-dimensional
unit sphere S,,_1
o Let 0;; be the angle between v;, v;, the contribution of edge ij is
3(1 = (vi,vj)) = (1 — cosbyy)
@ The wider separated the v;,v;, the larger the contribution
e A hyperplane (through the origin) will likely separate v;, v; if they are
widely separated
@ Thus, pick a random hyperplane and “use” it as a cut
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Randomized Rounding for MAX-CUT

Q Let vj,..., v’ be a (near) optimal solution to the vector program

@ Choose a unit vector r uniformly at random from the unit sphere S,,_1
(think of it as the normal vector of the random hyperplane)

© Output the cut (5,5), where

S = {ieV| (i) >0}

S = [ieV|{vir) <0}
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o For any edge ij € E,

6;;  arccos((vi,vj))

Prob[v;, v; are separated by r] = — =
™

@ Expected cut capacity is thus

arccos ] ]
5 (i)
ijEE

arccos((vi,v;)) 1—(
= 2| iy )
ij€E 2

v

1—x

2
0.87856 - MAX-CUT CAPACITY

z€[—1,1]

AV

™

Viavj>
2

arccos(z)
min (”) - oPT(Vector Program)
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How to choose r uniformly on the sphere?

@ What do we mean by “uniform on the sphere anyway?
o The uniform distribution of a bounded set B C R” is the distribution
whose density is

L xeB
0 otherwise

flxy, ... zp) {

where V' is the k-dimensional volume (or Lebesgue measure) of B.

@ Consider S1, the 2-dimensional circle. One way to pick r uniformly is
to pick 6 € [0, 27] uniformly at random.

@ This is a continuous distribution, which we have not really talked
about
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PTCF: Continuous Random Variable

@ A r.v. X taking on uncountably many possible values is a continuous
random variable if there exists a function f : R — R, having the
property that for every B C R:

Prob[X € B| = /Bf(a:)dx

o f is called the (probability) density function (PDF) of X. We must
have

1 = Prob[X € (—o0,0)] = /oo f(z)dx.

e The (cumulative) distribution function (CDF) F(-) of X is defined by

F(a) = Prob[X € (—o00,d]] = /a f(z)dz.

@ Note that d
—F(a) = f(a)
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PTCF: Continuous Uniform Distribution

X is said to be uniformly distributed on the interval [a, 3] if its density is

A ifrela
f<x>={ﬁ—a foelof]

0 otherwise

As F(a) = [*__ f(x)dz, we get

0 a <«
Fla)= {22 acla,f]
1 a>pf

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course

21 / 29



PTCF: Continuous Unif. Dist., Some Density Plots

o
@

20
30

20

10
10

an
oo

30
30

z0
20

[=1:] 10
oo 10

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 22 /29



PTCF: Exponential Distribution

X is said to be exponentially distributed with parameter X if its density is

e ™ ifr>0
f(x)_{o if 2 < 0

Its cdf F'is u
F(a) = / f(x)dr=1—e2% a>0.
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PTCF: Exponential Dist., Some Plots
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Densities Distributions
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PTCF: Normal Distribution

e A continuous r.v. X is normally distributed with parameters 1 and o
if the density of X is given by

1 _(z—p)?

222 e

J(@) = 2no
Normal variables are also called Gaussian variables.
e If X is normally distributed with parameters 1 and o2, then
Y = aX + 3 is normally distributed with parameters o + 8 and
(a0)?
@ When 1 =0 and 02 = 1, X is said to have standard normal
distribution.
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PTCF: Normal Distribution, Some Plots

Densities Distributions
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PTCF: Continuous Distribution Random Number

Generation

@ Uniform distribution: discretize it, then use some pseudo-random
number generator

@ Let's assume we can generate a uniform number X € [0, 1).

Question:
e How to generate Y € Normal(u,o)?
e It is actually sufficient to generate Y € Normal(0, 1)

@ How to generate a point on an n-sphere uniformly at random?

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 27 /29



PTCF: Normal Distribution Random Number Generator

The Polar Method (for Normal(0, 1))
Q@ Generate V1, Vs € [—1, 1] uniformly
Q@ S=V2+V3
Q If S>1, go back to step 1

O Set Xy = Vi(/ =22 and Xy = Vi / 205

Then, X7 and X5 are independent standard normal variables

For Normal(u, o))
@ Let X be a standard normal variable

@ Then, Y =+ o X is Normal(p, o)
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PTCF: Generating a Random Point on an n-Sphere

e Generate Xj,..., X,, independently from Normal(0, 1)
e Let r = (ry,...,7,) be defined by

X
VXZ 4+ X2

@ The joint density of the X; only depends on /X7 + -+ + X2, so the
distribution is spherically symmetric, and thus its projection on to the

sphere (i.e. r) is uniformly distributed on the surface of the sphere!

Ty =
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