Techniques

- Union bound
- Argument from expectation
- Alterations
- The second moment method
- The (Lovasz) Local Lemma

And much more

- Alon and Spencer, "The Probabilistic Method"
- Bolobas, "Random Graphs"

Use Chebyshev's Inequality.

Example 1: Distinct Subset Sums

- A set $A = \{a_1, \cdots, a_k\}$ of positive integers has distinct subset sums if the sums of all subsets of A are distinct
- $f(n) = \max \lim k$ for which there's a k-subset of [n] having distinct subset sums
- Example: $A = \{2^i \mid 0 \le i \le \lg n\}$

 $f(n) \ge \lfloor \lg n \rfloor + 1$

• Open Problem: (Erdős offered 500usd)

 $f(n) \le \log_2 n + c?$

• Simple information-theoretic bound:

$$2^k \le nk \implies k < \lg n + \lg \lg n + O(1).$$

A Bound for f(n) Using Second Moment Method

Line of thought

- Fix n and $k\text{-subset}\ A=\{a_1,\cdots,a_k\}$ with distinct subset sums
- X = sum of random subset of A, $\mu = \mathsf{E}[X], \sigma^2 = \mathsf{Var}[X]$
- For any integer *i*,

$$\mathsf{Prob}[X=i] \in \left\{0, \frac{1}{2^k}\right\}$$

• By Chebyshev, for any $\alpha>1$

$$\mathsf{Prob}[|X - \mu| \ge \alpha \sigma] \le \frac{1}{\alpha^2} \ \Rightarrow \ \mathsf{Prob}[|X - \mu| < \alpha \sigma] \ge 1 - \frac{1}{\alpha^2}$$

• There are at most $2\alpha\sigma + 1$ integers within $\alpha\sigma$ of μ ; hence,

$$1-\frac{1}{\alpha^2} \leq \frac{1}{2^k}(2\alpha\sigma+1)$$

 $\bullet \ \sigma$ is a function of n and k

More Specific Analysis

$$\sigma^2 = \frac{a_1^2 + \dots + a_k^2}{4} \le \frac{n^2 k}{4} \implies \sigma \le n\sqrt{k}/2$$

There are at most $(\alpha n\sqrt{k}+1)$ within $\alpha\sigma$ of μ

$$1 - \frac{1}{\alpha^2} \le \frac{1}{2^k} (\alpha n \sqrt{k} + 1)$$

Equivalently,

$$n \ge \frac{2^k \left(1 - \frac{1}{\alpha^2}\right) - 1}{\alpha \sqrt{k}}$$

Recall $\alpha > 1$, we get

$$k \le \lg n + \frac{1}{2} \lg \lg n + O(1).$$

$\mathcal{G}(n,p)$

Space of random graphs with n vertices, each edge (u, v) is included with probability pAlso called the Erdős-Rényi Model.

Question

Does a "typical" $G \in \mathcal{G}(n,p)$ satisfy a given property?

- Is G connected?
- Does G have a 4-clique?
- Does G have a Hamiltonian cycle?

- As p goes from 0 to 1, $G\in \mathcal{G}(n,p)$ goes from "typically empty" to "typically full"
- Some property may become more likely or less likely
- The property having a 4-clique will be come more likely

Threshold Function

 $f(\boldsymbol{n})$ is a threshold function for property \boldsymbol{P} if

- \bullet When $p \ll f(n)$ almost all $G \in \mathcal{G}(n,p)$ do not have P
- \bullet When $p \gg f(n)$ almost all $G \in \mathcal{G}(n,p)$ do have P

• It is not clear if any property has threshold function

The $\omega(G) \ge 4$ Property

- Pick $G \in \mathcal{G}(n,p)$ at random
- $S \in {V \choose 4}$, X_S indicates if S is a clique
- $X = \sum_{S} X_{S}$ is the number of 4-clique
- $\omega(G) \ge 4$ iff X > 0

Natural line of thought:

$$\mathsf{E}[X] = \sum_{S} \mathsf{E}[X_{S}] = \binom{n}{4} p^{6} \approx \frac{n^{4} p^{6}}{24}$$

• When
$$p=o\left(n^{-2/3}\right)$$
 , we have $\mathsf{E}[X]=o(1);$ thus,
$$\mathsf{Prob}[X>0]\leq\mathsf{E}[X]=o(1)$$

The $\omega(G) \ge 4$ Property

More precisely

$$p = o\left(n^{-2/3}\right) \Longrightarrow \lim_{n \to \infty} \operatorname{Prob}[X > 0] = 0$$

In English

When $p=o\left(n^{-2/3}\right)$ and n sufficiently large, almost all graphs from $\mathcal{G}(n,p)$ do not have $\omega(G)\geq 4$

- What about when $p = \omega (n^{-2/3})$?
- We know $\lim_{n\to\infty}\mathsf{E}[X]=\infty$
- But it's not necessarily the case that $\operatorname{Prob}[X>0]\to 1$
- Equivalently, it's not necessarily the case that $\operatorname{Prob}[X=0] \to 0$
- Need more information about \boldsymbol{X}

Here Comes Chebyshev

Let $\mu = \mathsf{E}[X]$, $\sigma^2 = \mathsf{Var}[X]$

$$\begin{aligned} \operatorname{Prob}[X=0] &= \operatorname{Prob}[X-\mu=-\mu] \\ &\leq \operatorname{Prob}\left[\{X-\mu\leq-\mu\}\cup\{X-\mu\geq\mu\}\right] \\ &= \operatorname{Prob}\left[|X-\mu|\geq\mu\right] \\ &\leq \frac{\sigma^2}{\mu^2} \end{aligned}$$

Thus, if $\sigma^2 = o(\mu^2)$ then $\operatorname{Prob}[X=0] \to 0$ as desired!

Lemma

For any random variable X

$$\mathsf{Prob}[X=0] \le \frac{\mathsf{Var}\left[X\right]}{(\mathsf{E}[X])^2}$$

PTCF: Bounding the Variance

Suppose $X = \sum_{i=1}^{n} X_i$

$$\operatorname{Var}\left[X\right] = \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right] + \sum_{i \neq j} \operatorname{Cov}\left[X_{i}, X_{j}\right]$$

If X_i is an indicator for event A_i and $\operatorname{Prob}[X_i = 1] = p_i$, then

$$\operatorname{Var}\left[X_{i}\right] = p_{i}(1 - p_{i}) \leq p_{i} = \mathsf{E}[X_{i}]$$

If A_i and A_j are independent, then

$$\mathsf{Cov}\left[X_i, X_j\right] = \mathsf{E}[X_i X_j] - \mathsf{E}[X_i] \mathsf{E}[X_j] = 0$$

If A_i and A_j are not independent (denoted by $i \sim j$)

$$\mathsf{Cov}\left[X_i, X_j\right] \leq \mathsf{E}[X_i X_j] = \mathsf{Prob}[A_i \cap A_j]$$

PTCF: Bounding the Variance

Theorem

Suppose

$$X = \sum_{i=1}^{n} X_i$$

where X_i is an indicator for event A_i . Then,

$$\operatorname{Var}\left[X\right] \leq \operatorname{\mathsf{E}}[X] + \sum_{i} \operatorname{\mathsf{Prob}}[A_i] \underbrace{\sum_{j:j \sim i} \operatorname{\mathsf{Prob}}[A_j \mid A_i]}_{\Delta_i}$$

Corollary

If $\Delta_i \leq \Delta$ for all i, then

 $\mathrm{Var}\left[X\right] \leq \mathrm{E}[X](1+\Delta)$

©Hung Q. Ngo (SUNY at Buffalo)

CSE 694 - A Fun Course

Back to the $\omega(G) \ge 4$ Property

$$\begin{split} \Delta_S &= \sum_{T \sim S} \operatorname{Prob}[A_T \mid A_S] \\ &= \sum_{|T \cap S|=2} \operatorname{Prob}[A_T \mid A_S] + \sum_{|T \cap S|=3} \operatorname{Prob}[A_T \mid A_S] \\ &= \binom{n-4}{2} \binom{4}{2} p^5 + \binom{n-4}{1} \binom{4}{3} p^3 = \Delta \\ &\sigma^2 \leq \mu (1+\Delta) \end{split}$$

• Recall: we wanted $\sigma^2/\mu^2=o(1)$ – OK as long as $\Delta=o(\mu)$ • Yes! When $p=\omega$ $\left(n^{-2/3}\right)$, certainly

$$\Delta = \binom{n-4}{2} \binom{4}{2} p^5 + \binom{n-4}{1} \binom{4}{3} p^3 = o(n^4 p^6)$$

So.

Theorem

 $f(n)=n^{-2/3}$ is a threshold function for the $\omega(G)\geq 4$ property

With essentially the same proof, we can show the following.

Let H be a graph with v vertices and e edges. Define the *density* $\rho(H) = e/v$. Call H balanced if every subgraph H' has $\rho(H') \le \rho(H)$

Theorem

The property " $G \in \mathcal{G}(n,p)$ contains a copy of H" has threshold function $f(n) = n^{-v/e}$.

Theorem

Suppose $p = cp^{-2/3}$, then X is approximately ${\rm Poisson}(c^6/24)$ In particular, ${\rm Prob}[X=0] \to 1 - e^{-c^6/24}$ Let X be a non-negative integral random variable, $\mu = \mathsf{E}[X]$ \bullet Since

$$\mathsf{Prob}[X > 0] \le \mu,$$

if $\mu = o(1)$ then X = 0 almost always!

- If $\mu \to \infty$, then it does not not necessarily follow that X > 0 almost always.
- Chebyshev gives

$$\mathsf{Prob}[X=0] \le \frac{\sigma^2}{\mu^2}$$

So, if $\sigma^2 = o(\mu^2)$ then X > 0 almost always.

• Thus, need to bound the variance.