
The Probabilistic Method

Techniques

Union bound

Argument from expectation

Alterations

The second moment method

The (Lovasz) Local Lemma

And much more

Alon and Spencer, “The Probabilistic Method”

Bolobas, “Random Graphs”
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Second Moment Method: Main Idea

Use Chebyshev’s Inequality.
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Example 1: Distinct Subset Sums

A set A = {a1, · · · , ak} of positive integers has distinct subset sums
if the sums of all subsets of A are distinct

f(n) = maximum k for which there’s a k-subset of [n] having distinct
subset sums

Example: A = {2i | 0 ≤ i ≤ lg n}

f(n) ≥ blg nc+ 1

Open Problem: (Erdős offered 500usd)

f(n) ≤ log2 n + c?

Simple information-theoretic bound:

2k ≤ nk ⇒ k < lg n + lg lg n + O(1).
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A Bound for f(n) Using Second Moment Method

Line of thought

Fix n and k-subset A = {a1, · · · , ak} with distinct subset sums

X = sum of random subset of A, µ = E[X], σ2 = Var [X]
For any integer i,

Prob[X = i] ∈
{

0,
1
2k

}

By Chebyshev, for any α > 1

Prob[|X − µ| ≥ ασ] ≤ 1
α2

⇒ Prob[|X − µ| < ασ] ≥ 1− 1
α2

There are at most 2ασ + 1 integers within ασ of µ; hence,

1− 1
α2

≤ 1
2k

(2ασ + 1)

σ is a function of n and k
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More Specific Analysis

σ2 =
a2

1 + · · ·+ a2
k

4
≤ n2k

4
⇒ σ ≤ n

√
k/2

There are at most (αn
√

k + 1) within ασ of µ

1− 1
α2

≤ 1
2k

(αn
√

k + 1)

Equivalently,

n ≥
2k

(
1− 1

α2

)
− 1

α
√

k

Recall α > 1, we get

k ≤ lg n +
1
2

lg lg n + O(1).
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Example 2: G(n, p) Model and ω(G) ≥ 4 Property

G(n, p)

Space of random graphs with n vertices, each edge (u, v) is included with
probability p
Also called the Erdős-Rényi Model.

Question

Does a “typical” G ∈ G(n, p) satisfy a given property?

Is G connected?

Does G have a 4-clique?

Does G have a Hamiltonian cycle?
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Threshold Function

As p goes from 0 to 1, G ∈ G(n, p) goes from “typically empty” to
“typically full”

Some property may become more likely or less likely

The property having a 4-clique will be come more likely

Threshold Function

f(n) is a threshold function for property P if

When p � f(n) almost all G ∈ G(n, p) do not have P

When p � f(n) almost all G ∈ G(n, p) do have P

It is not clear if any property has threshold function
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The ω(G) ≥ 4 Property

Pick G ∈ G(n, p) at random

S ∈
(
V
4

)
, XS indicates if S is a clique

X =
∑

S XS is the number of 4-clique

ω(G) ≥ 4 iff X > 0

Natural line of thought:

E[X] =
∑
S

E[XS ] =
(

n

4

)
p6 ≈ n4p6

24

When p = o
(
n−2/3

)
, we have E[X] = o(1); thus,

Prob[X > 0] ≤ E[X] = o(1)
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The ω(G) ≥ 4 Property

More precisely

p = o
(
n−2/3

)
=⇒ lim

n→∞
Prob[X > 0] = 0

In English

When p = o
(
n−2/3

)
and n sufficiently large, almost all graphs from

G(n, p) do not have ω(G) ≥ 4

What about when p = ω
(
n−2/3

)
?

We know lim
n→∞

E[X] = ∞

But it’s not necessarily the case that Prob[X > 0] → 1
Equivalently, it’s not necessarily the case that Prob[X = 0] → 0
Need more information about X
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Here Comes Chebyshev

Let µ = E[X], σ2 = Var [X]

Prob[X = 0] = Prob[X − µ = −µ]
≤ Prob [{X − µ ≤ −µ} ∪ {X − µ ≥ µ}]
= Prob [|X − µ| ≥ µ]

≤ σ2

µ2

Thus, if σ2 = o
(
µ2

)
then Prob[X = 0] → 0 as desired!

Lemma

For any random variable X

Prob[X = 0] ≤ Var [X]
(E[X])2
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PTCF: Bounding the Variance

Suppose X =
∑n

i=1 Xi

Var [X] =
n∑

i=1

Var [Xi] +
∑
i6=j

Cov [Xi, Xj ]

If Xi is an indicator for event Ai and Prob[Xi = 1] = pi, then

Var [Xi] = pi(1− pi) ≤ pi = E[Xi]

If Ai and Aj are independent, then

Cov [Xi, Xj ] = E[XiXj ]− E[Xi]E[Xj ] = 0

If Ai and Aj are not independent (denoted by i ∼ j)

Cov [Xi, Xj ] ≤ E[XiXj ] = Prob[Ai ∩Aj ]
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PTCF: Bounding the Variance

Theorem

Suppose

X =
n∑

i=1

Xi

where Xi is an indicator for event Ai. Then,

Var [X] ≤ E[X] +
∑

i

Prob[Ai]
∑
j:j∼i

Prob[Aj | Ai]︸ ︷︷ ︸
∆i

Corollary

If ∆i ≤ ∆ for all i, then

Var [X] ≤ E[X](1 + ∆)
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Back to the ω(G) ≥ 4 Property

∆S =
∑
T∼S

Prob[AT | AS ]

=
∑

|T∩S|=2

Prob[AT | AS ] +
∑

|T∩S|=3

Prob[AT | AS ]

=
(

n− 4
2

)(
4
2

)
p5 +

(
n− 4

1

)(
4
3

)
p3 = ∆

So,
σ2 ≤ µ(1 + ∆)

Recall: we wanted σ2/µ2 = o(1) – OK as long as ∆ = o(µ)
Yes! When p = ω

(
n−2/3

)
, certainly

∆ =
(

n− 4
2

)(
4
2

)
p5 +

(
n− 4

1

)(
4
3

)
p3 = o

(
n4p6

)
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The ω(G) ≥ 4 Property: Conclusion

Theorem

f(n) = n−2/3 is a threshold function for the ω(G) ≥ 4 property

With essentially the same proof, we can show the following.

Let H be a graph with v vertices and e edges. Define the density
ρ(H) = e/v. Call H balanced if every subgraph H ′ has ρ(H ′) ≤ ρ(H)

Theorem

The property “G ∈ G(n, p) contains a copy of H” has threshold function
f(n) = n−v/e.
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What Happens when p ≈ Threshold?

Theorem

Suppose p = cp−2/3, then X is approximately Poisson(c6/24)
In particular, Prob[X = 0] → 1− e−c6/24
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Brief Summary

Let X be a non-negative integral random variable, µ = E[X]
Since

Prob[X > 0] ≤ µ,

if µ = o(1) then X = 0 almost always!

If µ →∞, then it does not not necessarily follow that X > 0 almost
always.

Chebyshev gives

Prob[X = 0] ≤ σ2

µ2

So, if σ2 = o(µ2) then X > 0 almost always.

Thus, need to bound the variance.
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