The Probabilistic Method

Techniques

- Union bound
- Argument from expectation
- Alterations
- The second moment method
- The (Lovasz) Local Lemma

And much more

- Alon and Spencer, "The Probabilistic Method"
- Bolobas, "Random Graphs"

Second Moment Method: Main Idea

Use Chebyshev's Inequality.

Example 1: Distinct Subset Sums

- A set $A=\left\{a_{1}, \cdots, a_{k}\right\}$ of positive integers has distinct subset sums if the sums of all subsets of A are distinct
- $f(n)=$ maximum k for which there's a k-subset of $[n]$ having distinct subset sums
- Example: $A=\left\{2^{i} \mid 0 \leq i \leq \lg n\right\}$

$$
f(n) \geq\lfloor\lg n\rfloor+1
$$

- Open Problem: (Erdős offered 500usd)

$$
f(n) \leq \log _{2} n+c ?
$$

- Simple information-theoretic bound:

$$
2^{k} \leq n k \Rightarrow k<\lg n+\lg \lg n+O(1)
$$

A Bound for $f(n)$ Using Second Moment Method

Line of thought

- Fix n and k-subset $A=\left\{a_{1}, \cdots, a_{k}\right\}$ with distinct subset sums
- $X=$ sum of random subset of $A, \mu=\mathrm{E}[X], \sigma^{2}=\operatorname{Var}[X]$
- For any integer i,

$$
\operatorname{Prob}[X=i] \in\left\{0, \frac{1}{2^{k}}\right\}
$$

- By Chebyshev, for any $\alpha>1$

$$
\operatorname{Prob}[|X-\mu| \geq \alpha \sigma] \leq \frac{1}{\alpha^{2}} \Rightarrow \operatorname{Prob}[|X-\mu|<\alpha \sigma] \geq 1-\frac{1}{\alpha^{2}}
$$

- There are at most $2 \alpha \sigma+1$ integers within $\alpha \sigma$ of μ; hence,

$$
1-\frac{1}{\alpha^{2}} \leq \frac{1}{2^{k}}(2 \alpha \sigma+1)
$$

- σ is a function of n and k

More Specific Analysis

$$
\sigma^{2}=\frac{a_{1}^{2}+\cdots+a_{k}^{2}}{4} \leq \frac{n^{2} k}{4} \Rightarrow \sigma \leq n \sqrt{k} / 2
$$

There are at most ($\alpha n \sqrt{k}+1$) within $\alpha \sigma$ of μ

$$
1-\frac{1}{\alpha^{2}} \leq \frac{1}{2^{k}}(\alpha n \sqrt{k}+1)
$$

Equivalently,

$$
n \geq \frac{2^{k}\left(1-\frac{1}{\alpha^{2}}\right)-1}{\alpha \sqrt{k}}
$$

Recall $\alpha>1$, we get

$$
k \leq \lg n+\frac{1}{2} \lg \lg n+O(1)
$$

Example 2: $\mathcal{G}(n, p)$ Model and $\omega(G) \geq 4$ Property

$\mathcal{G}(n, p)$
Space of random graphs with n vertices, each edge (u, v) is included with probability p
Also called the Erdős-Rényi Model.

Question

Does a "typical" $G \in \mathcal{G}(n, p)$ satisfy a given property?

- Is G connected?
- Does G have a 4 -clique?
- Does G have a Hamiltonian cycle?

Threshold Function

- As p goes from 0 to $1, G \in \mathcal{G}(n, p)$ goes from "typically empty" to "typically full"
- Some property may become more likely or less likely
- The property having a 4-clique will be come more likely

Threshold Function

$f(n)$ is a threshold function for property P if

- When $p \ll f(n)$ almost all $G \in \mathcal{G}(n, p)$ do not have P
- When $p \gg f(n)$ almost all $G \in \mathcal{G}(n, p)$ do have P
- It is not clear if any property has threshold function

The $\omega(G) \geq 4$ Property

- Pick $G \in \mathcal{G}(n, p)$ at random
- $S \in\binom{V}{4}, X_{S}$ indicates if S is a clique
- $X=\sum_{S} X_{S}$ is the number of 4-clique
- $\omega(G) \geq 4$ iff $X>0$

Natural line of thought:

$$
\mathrm{E}[X]=\sum_{S} \mathrm{E}\left[X_{S}\right]=\binom{n}{4} p^{6} \approx \frac{n^{4} p^{6}}{24}
$$

- When $p=o\left(n^{-2 / 3}\right)$, we have $\mathrm{E}[X]=o(1)$; thus,

$$
\operatorname{Prob}[X>0] \leq \mathrm{E}[X]=o(1)
$$

The $\omega(G) \geq 4$ Property

More precisely

$$
p=o\left(n^{-2 / 3}\right) \Longrightarrow \lim _{n \rightarrow \infty} \operatorname{Prob}[X>0]=0
$$

In English

When $p=o\left(n^{-2 / 3}\right)$ and n sufficiently large, almost all graphs from $\mathcal{G}(n, p)$ do not have $\omega(G) \geq 4$

- What about when $p=\omega\left(n^{-2 / 3}\right)$?
- We know $\lim _{n \rightarrow \infty} \mathrm{E}[X]=\infty$
- But it's not necessarily the case that $\operatorname{Prob}[X>0] \rightarrow 1$
- Equivalently, it's not necessarily the case that $\operatorname{Prob}[X=0] \rightarrow 0$
- Need more information about X

Here Comes Chebyshev

$$
\text { Let } \mu=\mathrm{E}[X], \sigma^{2}=\operatorname{Var}[X]
$$

$$
\begin{aligned}
\operatorname{Prob}[X=0] & =\operatorname{Prob}[X-\mu=-\mu] \\
& \leq \operatorname{Prob}[\{X-\mu \leq-\mu\} \cup\{X-\mu \geq \mu\}] \\
& =\operatorname{Prob}[|X-\mu| \geq \mu] \\
& \leq \frac{\sigma^{2}}{\mu^{2}}
\end{aligned}
$$

Thus, if $\sigma^{2}=o\left(\mu^{2}\right)$ then $\operatorname{Prob}[X=0] \rightarrow 0$ as desired!

Lemma

For any random variable X

$$
\operatorname{Prob}[X=0] \leq \frac{\operatorname{Var}[X]}{(\mathrm{E}[X])^{2}}
$$

PTCF: Bounding the Variance

Suppose $X=\sum_{i=1}^{n} X_{i}$

$$
\operatorname{Var}[X]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]+\sum_{i \neq j} \operatorname{Cov}\left[X_{i}, X_{j}\right]
$$

If X_{i} is an indicator for event A_{i} and $\operatorname{Prob}\left[X_{i}=1\right]=p_{i}$, then

$$
\operatorname{Var}\left[X_{i}\right]=p_{i}\left(1-p_{i}\right) \leq p_{i}=\mathrm{E}\left[X_{i}\right]
$$

If A_{i} and A_{j} are independent, then

$$
\operatorname{Cov}\left[X_{i}, X_{j}\right]=\mathrm{E}\left[X_{i} X_{j}\right]-\mathrm{E}\left[X_{i}\right] \mathrm{E}\left[X_{j}\right]=0
$$

If A_{i} and A_{j} are not independent (denoted by $i \sim j$)

$$
\operatorname{Cov}\left[X_{i}, X_{j}\right] \leq \mathrm{E}\left[X_{i} X_{j}\right]=\operatorname{Prob}\left[A_{i} \cap A_{j}\right]
$$

PTCF: Bounding the Variance

Theorem
Suppose

$$
X=\sum_{i=1}^{n} X_{i}
$$

where X_{i} is an indicator for event A_{i}. Then,

$$
\operatorname{Var}[X] \leq \mathrm{E}[X]+\sum_{i} \operatorname{Prob}\left[A_{i}\right] \underbrace{\sum_{j: j \sim i} \operatorname{Prob}\left[A_{j} \mid A_{i}\right]}_{\Delta_{i}}
$$

Corollary

If $\Delta_{i} \leq \Delta$ for all i, then

$$
\operatorname{Var}[X] \leq \mathrm{E}[X](1+\Delta)
$$

Back to the $\omega(G) \geq 4$ Property

$$
\begin{aligned}
\Delta_{S} & =\sum_{T \sim S} \operatorname{Prob}\left[A_{T} \mid A_{S}\right] \\
& =\sum_{|T \cap S|=2} \operatorname{Prob}\left[A_{T} \mid A_{S}\right]+\sum_{|T \cap S|=3} \operatorname{Prob}\left[A_{T} \mid A_{S}\right] \\
& =\binom{n-4}{2}\binom{4}{2} p^{5}+\binom{n-4}{1}\binom{4}{3} p^{3}=\Delta
\end{aligned}
$$

So,

$$
\sigma^{2} \leq \mu(1+\Delta)
$$

- Recall: we wanted $\sigma^{2} / \mu^{2}=o(1)$ - OK as long as $\Delta=o(\mu)$
- Yes! When $p=\omega\left(n^{-2 / 3}\right)$, certainly

$$
\Delta=\binom{n-4}{2}\binom{4}{2} p^{5}+\binom{n-4}{1}\binom{4}{3} p^{3}=o\left(n^{4} p^{6}\right)
$$

The $\omega(G) \geq 4$ Property: Conclusion

Theorem
 $f(n)=n^{-2 / 3}$ is a threshold function for the $\omega(G) \geq 4$ property

With essentially the same proof, we can show the following.
Let H be a graph with v vertices and e edges. Define the density $\rho(H)=e / v$. Call H balanced if every subgraph H^{\prime} has $\rho\left(H^{\prime}\right) \leq \rho(H)$

Theorem
The property " $G \in \mathcal{G}(n, p)$ contains a copy of H " has threshold function $f(n)=n^{-v / e}$.

What Happens when $p \approx$ Threshold?

Theorem
Suppose $p=c p^{-2 / 3}$, then X is approximately Poisson $\left(c^{6} / 24\right)$ In particular, $\operatorname{Prob}[X=0] \rightarrow 1-e^{-c^{6} / 24}$

Brief Summary

Let X be a non-negative integral random variable, $\mu=\mathrm{E}[X]$

- Since

$$
\operatorname{Prob}[X>0] \leq \mu,
$$

if $\mu=o(1)$ then $X=0$ almost always!

- If $\mu \rightarrow \infty$, then it does not not necessarily follow that $X>0$ almost always.
- Chebyshev gives

$$
\operatorname{Prob}[X=0] \leq \frac{\sigma^{2}}{\mu^{2}}
$$

So, if $\sigma^{2}=o\left(\mu^{2}\right)$ then $X>0$ almost always.

- Thus, need to bound the variance.

