The Probabilistic Method

Techniques

- Union bound
- Argument from expectation
- Alterations
- The second moment method
- The (Lovasz) Local Lemma

And much more

- Alon and Spencer, "The Probabilistic Method"
- Bolobas, "Random Graphs"

The Union Bound Technique: Main Idea

- A : event our structure exists, want $\operatorname{Prob}[A]>0$ or $\operatorname{Prob}[\bar{A}]<1$
- Suppose \bar{A} implies one of B_{1}, \cdots, B_{n} must hold
- (Think of the B_{i} as "bad" events)
- Then, by the union bound

$$
\operatorname{Prob}[\bar{A}] \leq \operatorname{Prob}\left[\bigcup_{i} B_{i}\right] \leq \sum_{i} \operatorname{Prob}\left[B_{i}\right]
$$

- Thus, as long as

$$
\sum_{i} \operatorname{Prob}\left[B_{i}\right]<1
$$

our structure exists!
We have seen this used in Ramsey number, d-disjunct matrix examples.

Example 1: Nice Tournaments

- A tournament is an orientation G of K_{n}
- Think of $u \rightarrow v$ as "player u beats player v "
- Fix integer k, G is nice if for every k-subset S of players there is another v who beats all of S
- Intuitively, nice tournaments may exist for large n (Remember the theme? "Sufficiently large space contains locally nice structures")

Existence of Nice Tournaments (Erdős, 1963)

- For every $\{u, v\}$, let $u \rightarrow v$ with probability $1 / 2$
- A : event that a random G is nice
- \bar{A} implies $\bigcup_{|S|=k} B_{S}$ where $B_{S}=$ " S is not beaten by any $v \notin S$ "

$$
\operatorname{Prob}\left[B_{S}\right]=\left(1-\frac{1}{2^{k}}\right)^{n-k}
$$

- Hence, nice tournaments exist as long as $\binom{n}{k}\left(1-\frac{1}{2^{k}}\right)^{n-k}<1$
- What's the order of n for which this holds?

$$
\text { use }\binom{n}{k} \leq\left(\frac{n e}{k}\right)^{k} \text { and }\left(1-\frac{1}{2^{k}}\right)^{n-k}<e^{-\frac{n-k}{2^{k}}}
$$

- Nice tournaments exist as long as $\left(\frac{n e}{k}\right)^{k} e^{-\frac{n-k}{2^{k}}}<1$.
- So, $n=\Omega\left(k^{2} \cdot 2^{k}\right)$ is large enough!

Example 2: 2-coloring of uniform hypergraphs

- Given a k-uniform hypergraph $G=(V, E)$, i.e.
- E is a collection of k-subsets of V
- G is 2-colorable iff each vertex in V can be assigned with red or blue such that there's no monochromatic edge
- Intuitively, if $|E|$ is small then G is 2-colorable!
- Question is: "how small?"
- An answer may be obtained along the line: "for n small enough, a random 2-coloring is good with positive probability"

Theorem (Erdős, 1963)

Every k-uniform hypergraph with $<2^{k-1}$ edges is 2 -colorable!

Example 3: Error-Correcting Codes

- Message $\mathbf{x} \in\{0,1\}^{k}$
- Encoding $f(\mathbf{x}) \in\{0,1\}^{n}, n>k, f$ an injection
- $C=\left\{f(\mathbf{x}) \mid \mathbf{x} \in\{0,1\}^{k}\right\}$: codewords
- $f(\mathbf{x})$ is sent over noisy channel, few bits altered
- \mathbf{y} is received instead of $f(\mathbf{x})$
- Find codeword \mathbf{z} "closest" to \mathbf{y} in Hamming distance
- Decoding $\mathbf{x}^{\prime}=f^{-1}(\mathbf{z})$
- Measure of utilization: relative rate of C

$$
R(C)=\frac{\log |C|}{n}
$$

- Measure of noise tolerance: relative distance of C

$$
\delta(C)=\frac{\min _{\mathbf{c}_{1} \neq \mathbf{c}_{2} \in C} \operatorname{Dist}\left(\mathbf{c}_{1}, \mathbf{c}_{2}\right)}{n}
$$

Linear Codes

- For any $\mathbf{x} \in \mathbb{F}_{2}^{n}$, define

$$
\text { WEIGHT }(\mathbf{x})=\text { number of } 1 \text {-coordinates of } \mathbf{x}
$$

- E.g., $\operatorname{WeIght}(1001110)=4$
- If C is a k-dimensional subspace of \mathbb{F}_{2}^{n}, then

$$
\begin{aligned}
|C| & =2^{k} \\
\delta(C) & =\min \{\operatorname{WEIGHT}(\mathbf{x}) \mid \mathbf{x} \in C\}
\end{aligned}
$$

- Every such C can be defined by a parity check matrix \mathbf{A} of dimension $(n-k) \times n$:

$$
C=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{0}\}
$$

- Conversely, every $(n-k) \times n$ matrix \mathbf{A} defines a code C of dimension $\geq k$

A Communication Problem

Large rate and large distance are conflicting goals

Problem

Does there exist a family of codes $C_{k},\left|C_{k}\right|=2^{k}$, for infinitely many k, such that

$$
R\left(C_{k}\right) \geq R_{0}>0
$$

and

$$
\delta\left(C_{k}\right) \geq \delta_{0}>0
$$

(Yes, using "magical graphs.")

Practicality

Design such a family explicitly, such that the codes are efficiently encodable and decodable.

Magical Graph

(n, c, d, α, β)-graph

c, d, α, β are constants, n varies.

From Magical Graphs to Code Family

- Suppose (n, c, d, α, β)-graphs exist for infinitely many n, and constants c, d, α, β such that $\beta>d / 2$
- Consider such a $G=(L \cup R, E),|L|=n,|R|=(1-c) n=m$
- Let $\mathbf{A}=\left(a_{i j}\right)$ be the $m \times n$ 01-matrix, column indexed by L, and row-indexed by $R, a_{i j}=1$ iff $(i, j) \in E$
- Define a linear code with A as parity check:

$$
C=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{0}\}
$$

- Then, $\operatorname{dim}(C)=n-\operatorname{rank}(A) \geq c n$, and

$$
|C|=2^{\operatorname{dim}(C)} \geq 2^{c n} \Rightarrow R(C) \geq c
$$

- For every $\mathbf{x} \in C$, $\operatorname{\operatorname {WeIght}}(\mathbf{x}) \geq \alpha n$, hence

$$
\delta(C)=\frac{\min \{\operatorname{WEIGHT}(\mathbf{x}) \mid \mathbf{x} \in C\}}{n} \geq \alpha
$$

Existence of Magical Graph with $\beta>d / 2$

- Determine n, c, d, α, β later
- Let $L=[n], R=[(1-c) n]$.
- Choose each of the d neighbors for $u \in L$ uniformly at random
- For $1 \leq s \leq \alpha n$, let B_{s} be the "bad" event that some subset S of size s has $|\Gamma(S)|<\beta|S|$
- For each $S \subset L, T \subset R,|S|=s,|T|=\beta s$, define

$$
X_{S, T}= \begin{cases}1 & \Gamma(S) \subseteq T \\ 0 & \Gamma(S) \nsubseteq T\end{cases}
$$

- Then,

$$
\operatorname{Prob}\left[B_{s}\right] \leq \operatorname{Prob}\left[\sum_{S, T} X_{S, T}>0\right] \leq \sum_{S, T} \operatorname{Prob}\left[X_{S, T}=1\right]
$$

Existence of Magical Graph with $\beta>d / 2$

$$
\begin{aligned}
\operatorname{Prob}\left[B_{s}\right] & \leq\binom{ n}{s}\binom{(1-c) n}{\beta s}\left(\frac{\beta s}{(1-c) n}\right)^{s d} \\
& \leq\left(\frac{n e}{s}\right)^{s}\left(\frac{(1-c) n e}{\beta s}\right)^{\beta s}\left(\frac{\beta s}{(1-c) n}\right)^{s d} \\
& =\left[\left(\frac{s}{n}\right)^{d-\beta-1}\left(\frac{\beta}{1-c}\right)^{d-\beta} e^{\beta+1}\right]^{s} \\
& \leq\left[\left(\frac{\alpha \beta}{1-c}\right)^{d-\beta} \cdot \frac{e^{\beta+1}}{\alpha}\right]^{s}
\end{aligned}
$$

Choose $\alpha=1 / 100, c=1 / 10, d=32, \beta=17>d / 2$,
$\operatorname{Prob}\left[B_{s}\right] \leq 0.092^{s}$

Existence of Magical Graph with $\beta>d / 2$

The probability that such a randomly chosen graph is not an (n, c, d, α, β)-graph is at most

$$
\sum_{s=1}^{\alpha n} \operatorname{Prob}\left[B_{s}\right] \leq \sum_{s=1}^{\infty} 0.092^{s}=\frac{0.092}{1-0.092}<0.11
$$

Not only such graphs exist, there are a lot of them!!!

