Solution to CSE 250 Homework Assignment 4

Solution for problem 1

$$
\begin{gathered}
(\log n)^{3} n^{1.2} \ll n^{2} \sqrt{n} \ll n^{3} \ll n^{3}(\log n)^{2.1} \ll \frac{n^{4}}{(\log n)^{3}} \ll n^{4} \ll \frac{2^{n}}{n^{2}} \ll \frac{(\sqrt{3})^{2 n}}{n^{4}} \\
\lim _{n \rightarrow \infty} \frac{(\log n)^{3} n^{1.2}}{n^{2} \sqrt{n}}=\lim _{n \rightarrow \infty} \frac{(\log n)^{3}}{n^{1.2}}=0
\end{gathered}
$$

because the numerator is in the log-class, and the denominator is in the polynomial class.

Similarly,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{n^{2} \sqrt{n}}{n^{3}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0 \\
\lim _{n \rightarrow \infty} \frac{n^{3}}{n^{3}(\log n)^{2 \cdot 1}}=\lim _{n \rightarrow \infty} \frac{1}{(\log n)^{2.1}}=0 \\
\lim _{n \rightarrow \infty} \frac{n^{3}(\log n)^{2.1}}{\frac{n^{4}}{(\log n)^{3}}}=\lim _{n \rightarrow \infty} \frac{(\log n)^{5.1}}{n}=0 \\
\lim _{n \rightarrow \infty} \frac{\frac{n^{4}}{(\log n)^{3}}}{n^{4}}=\lim _{n \rightarrow \infty} \frac{1}{(\log n)^{3}}=0 \\
\lim _{n \rightarrow \infty} \frac{n^{4}}{\frac{2^{n}}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{6}}{2^{n}}=0
\end{gathered}
$$

because the numerator is in the polynomial-class, and the denominator is in the exponential class.

$$
\lim _{n \rightarrow \infty} \frac{\frac{2^{n}}{n^{2}}}{\frac{(\sqrt{3})^{2 n}}{n^{4}}}=\lim _{n \rightarrow \infty} \frac{\frac{2^{n}}{n^{2}}}{\frac{3^{n}}{n^{4}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{(1.5)^{n}}=0
$$

Solution for problem 2

1. $T(n)=5 T(n / 3)+1$

$$
T(n)=5 T(n / 3)+1=5^{k} T\left(n / 3^{k}\right)+\sum_{i=0}^{k-1} 5^{i}=5^{k} T\left(n / 3^{k}\right)+\frac{5^{k}-1}{4}
$$

Hence, by setting $k=\log _{3} n$, we have

$$
T(n)=5^{k} T(1)+\Theta\left(5^{k}\right)=\Theta\left(5^{k}\right)=\Theta\left(5^{\log _{3} n}\right)=\Theta\left(n^{\log _{3} 5}\right) \approx \Theta\left(n^{1.465}\right)
$$

2. $T(n)=7 T(n / 3)+n$

$$
\begin{aligned}
T(n)=7 T(n / 3)+n & \left.=7^{k} T\left(n / 3^{k}\right)+\sum_{i=0}^{k-1} 7^{i}\left(n / 3^{i}\right)=7^{k} T\left(n / 3^{k}\right)+n \sum_{i=0}^{k-1}(7 / 3)^{i}\right) \\
& =7^{k} T\left(n / 3^{k}\right)+n \frac{(7 / 3)^{k}-1}{(4 / 3)}
\end{aligned}
$$

Hence, by setting $k=\log _{3} n$, we have

$$
T(n)=7^{k} T(1)+\Theta\left(n \cdot(7 / 3)^{k}\right)=\Theta\left(7^{k}\right)+\Theta\left(7^{k}\right)=\Theta\left(7^{\log _{3} n}\right)=\Theta\left(n^{\log _{3} 7}\right) \approx \Theta\left(n^{1.771}\right)
$$

3. $T(n)=4 T(n / 4)+n$

$$
\begin{aligned}
T(n)=4 T(n / 4)+n & \left.=4^{k} T\left(n / 4^{k}\right)+\sum_{i=0}^{4-1} 4^{i}\left(n / 4^{i}\right)=4^{k} T\left(n / 4^{k}\right)+n \sum_{i=0}^{k-1}(4 / 4)^{i}\right) \\
& =4^{k} T\left(n / 4^{k}\right)+n \cdot k
\end{aligned}
$$

Hence, by setting $k=\log _{4} n$, we have

$$
T(n)=4^{k} T(1)+\Theta(n \cdot k)=n T(1)+n \cdot \log _{4} n=\Theta(n \log n)
$$

4. $T(n)=6 T(n / 2)+n^{3}$

$$
\begin{aligned}
T(n)=6 T(n / 2)+n^{3} & \left.=6^{k} T\left(n / 2^{k}\right)+\sum_{i=0}^{k-1} 6^{i}\left(n / 2^{i}\right)^{3}=6^{k} T\left(n / 2^{k}\right)+n^{3} \sum_{i=0}^{k-1}(6 / 8)^{i}\right) \\
& =6^{k} T\left(n / 2^{k}\right)+n^{3} \frac{1-(6 / 8)^{k}}{(2 / 8)}
\end{aligned}
$$

Hence, by setting $k=\log _{2} n$, we have

$$
T(n)=6^{k} T(1)+\Theta\left(n^{3} \cdot\left(1-(6 / 8)^{k}\right)\right)=\Theta\left(6^{k}\right)+\Theta\left(n^{3}\right)=\Theta\left(n^{\log _{2} 6}\right)+\Theta\left(n^{3}\right)=\Theta\left(n^{3}\right)
$$

5. $T(n)=9 T(n / 3)+n^{2}$

$$
\begin{aligned}
T(n)=9 T(n / 3)+n^{2} & \left.=9^{k} T\left(n / 3^{k}\right)+\sum_{i=0}^{k-1} 9^{i}\left(n / 3^{i}\right)^{2}=9^{k} T\left(n / 3^{k}\right)+n^{2} \sum_{i=0}^{k-1}(1)^{i}\right) \\
& =9^{k} T\left(n / 3^{k}\right)+n^{2} \cdot k
\end{aligned}
$$

Hence, by setting $k=\log _{3} n$, we have

$$
\begin{aligned}
T(n) & =9^{k} T(1)+\Theta\left(n^{2} \cdot k\right)=\Theta\left(9^{k}\right)+n^{2} \Theta(k) \\
& =\Theta\left(n^{\log _{3} 9}\right)+\Theta\left(n^{2} k\right)=\Theta\left(n^{2}\right)+\Theta\left(n^{2} \log n\right)=\Theta\left(n^{2} \log n\right)
\end{aligned}
$$

$T(n)=T(2 n / 3)+n^{2}$

$$
\begin{array}{ll}
T(n) & \\
T(2 n / 3) & +n^{2} \\
T\left(\frac{2^{2} n}{3^{2}}\right) & +\left(\frac{2 n}{3}\right)^{2} \\
T\left(\frac{2^{3} n}{3^{3}}\right) & +\left(\frac{2^{2}}{3^{2}}\right)^{2} \\
\vdots\left(\frac{2^{k} n}{3^{k}}\right) & +\left(\frac{2^{k-1} n}{3^{k-1}}\right)^{2}
\end{array}
$$

6. $T(n)=T(2 n / 3)+n^{2}$

$$
\begin{aligned}
T(n)=T(2 n / 3)+n^{2} & \left.=T\left(2^{k} n / 3^{k}\right)+\sum_{i=0}^{k-1}\left(2^{i} n / 3^{i}\right)^{2}=T\left(2^{k} n / 3^{k}\right)+n^{2} \sum_{i=0}^{k-1}(4 / 9)^{i}\right) \\
& =T\left(2^{k} n / 3^{k}\right)+n^{2} \frac{1-(4 / 9)^{k}}{(5 / 9)}
\end{aligned}
$$

Hence, by setting $k=\log _{(3 / 2)} n$, we have

$$
T(n)=T(1)+\Theta\left(n^{2} \cdot(4 / 9)^{k}\right)=\Theta(1)+n^{2} \Theta(1)=\Theta\left(n^{2}\right)
$$

7. $T(n)=2 T(n / 3)+n$

$$
\begin{aligned}
T(n)=2 T(n / 3)+n & \left.=2^{k} T\left(n / 3^{k}\right)+\sum_{i=0}^{k-1} 2^{i}\left(n / 3^{i}\right)=2^{k} T\left(n / 3^{k}\right)+n \sum_{i=0}^{k-1}(2 / 3)^{i}\right) \\
& =2^{k} T\left(n / 3^{k}\right)+n \frac{(1-2 / 3)^{k}}{(1 / 3)}
\end{aligned}
$$

Hence, by setting $k=\log _{3} n$, we have

$$
T(n)=2^{k} T(1)+\Theta\left(n \cdot(2 / 3)^{k}\right)=\Theta\left(2^{k}\right)+\Theta(n)=\Theta\left(n^{\log _{3} 2}\right)+\Theta(n)=\Theta(n)
$$

