
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

A Survey on Combinatorial Group Testing Algorithms with
Applications to DNA Library Screening

Hung Q. Ngo and Ding-Zhu Du

ABSTRACT. In this paper, we give an overview of Combinatorial Group Testing algo-
rithms which are applicable to DNA Library Screening. Our survey focuses on several
classes of constructions not discussed in previous surveys, provides a general view on
pooling design constructions and poses several open questions arising from this view.

1. Introduction

The basic problem of DNA library screening is to determine which clone (a DNA
segment) from the library contains which probe from a given collection of probes in an
efficient fashion. A clone is said to be positive for a probe if it contains the probe, and
negative otherwise. In practice clones are pooled together in some manner to be tested
against each probe, since checking each clone-probe pair is expensive and usually only a
few clones contain any given probe. An example is when Sequenced-Tagged Site markers
(also called STS probes) are used [OHCB89]. If the test result for a pool (of clones) is
negative, indicating that no clone in the pool contains the probe, then no further tests are
needed for the clones in the pool.

This problem is just an instance of the general group testing problem, in which a large
population of items containing a small set of defectives are to be tested to identify the
defectives efficiently. We assume some testing mechanism exists which if applied to an
arbitrary subset of the population gives a negative outcome if the subset contains no defec-
tive and positive outcome otherwise. Objectives of group testing vary from minimizing the
number of tests, limiting number of pools, limiting pool sizes to tolerating a few errors.
It is conceivable that these objectives are often contradicting, thus testing strategies are
application dependent.

Group testing algorithms can roughly be divided into two categories : Combinatorial
Group Testing (CGT) and Probabilistic Group Testing (PGT). In CGT, it is often assumed
that the number of defectives among � items is equal to or at most

�
for some fixed positive

integer
�
. In PGT, we fix some probability � of having a defective. If the pools are simul-

taneously tested � times, with later test pools collected based on previous test results, then
the CGT algorithm is said to be an � -stage algorithm. Group testing strategies can also be
either adaptive or non-adaptive. A group testing algorithm is non-adaptive if all tests must

2000 Mathematics Subject Classification. Primary 05B20, 05D05; Secondary 05D40, 51E30.
Support in part by by the National Science Foundation under grant CCR-9530306.

c
�

2000 American Mathematical Society

1

2 HUNG Q. NGO AND DING-ZHU DU

be specified without knowing the outcomes of other tests. Clearly, being non-adaptive is
equivalent to being

�
-stage. A group testing algorithm is error tolerant if it can detect or

correct some � errors in test outcomes.
Library screening applications introduce several new constraints to group testing. Firstly,

� -stage group testing algorithms with small � (e.g. ���) are often preferable [BT96,
BBKT96]. The common requirement is to have an adaptive algorithm. Secondly, DNA
screening is error prone since the pools have to be purified before probing. Hence, toler-
ating several errors is desirable [BT96]. Lastly, as assembling pools is costly, sometime
robots are used to assemble the pools. This makes coordinating the pools with some phys-
ical arrangement of clones (such as a grid) important.

As far as we know, there are three related surveys previously done in this area. The
first was a survey from Dyachkov and Rykov (1983, [DR83]) done in the context of super-
imposed codes. The second was a monograph by Du and Hwang (1993, [DH93]), which
gave a nice account of CGT algorithms. The third was an article by Balding et al. (1995,
[BBKT96]), which comparatively surveyed certain classes of non-adaptive algorithms.

In this paper, we give an overview of Combinatorial Group Testing algorithms with
applications to DNA Library Screening. Our survey focuses on several classes of con-
structions not discussed in previous surveys, provides a general view on pooling design
constructions and poses several open questions arising from this view.

The rest of the paper is organized as follows. Section 2 fixes up basic definitions
and notations needed for the rest of the paper. It also gives a taxonomy of non-adaptive
group testing algorithms from which later sections are organized. Section 3 discusses
deterministic algorithms. Section 4 provides a new general perspective on constructing
a class of deterministic pooling designs, from which several open problems popped up
naturally. Section 5 presents random algorithms, and section 6 introduces error-tolerance
group testing algorithms. Section 7 concludes the paper.

2. Preliminaries

2.1. The Matrix Representation. We first emphasize that we are concerned only
with combinatorially non-adaptive group testing strategies, for DNA library screening ap-
plications prefer parallel tests as we have mentioned earlier. The “combinatorial” part
comes from the assumption that there are at most

�
defectives in a population of � items.

Consider a ��� �	� � -matrix
 . Let �
� and ��� denote row � and column � respectively.
Abusing notation, we also let � � (resp. � �) denote the set of column (resp. row) indices
corresponding to the

�
-entries of row � (resp. column �). The weight of a row or a column

is the number of
�
’s it has.
 is said to be

�
-disjunct if the union of any

�
columns does

not contain another. A
�
-disjunct ��� � matrix
 can be used to design a non-adaptive

group testing algorithm on � items by associating the columns with the items and the rows
with the pools to be tested. If
 ����� � then item � is contained in pool � (and thus test �).
If there are no more than

�
defectives and the test outcomes are error-free, then it is easy

to see that the test outcomes uniquely identify the set of defectives. We simply identify
the items contained in negative pools as negatives (good items) and the rest as positives
(defected items). Notice that

�
-disjunct property implies that each set of � �

defectives
corresponds uniquely to a test outcome vector, thus decoding test outcomes involves only
a table lookup. The design of a

�
-disjunct matrix is thus also naturally called non-adaptive

pooling design. We shall use this term interchangeably with the long phrase “non-adaptive
combinatorial group testing algorithm”.

A SURVEY ON COMBINATORIAL GROUP TESTING ALGORITHMS ... 3

Let
�������� ��� denotes the set of all subsets of � items (or columns) with size at most

�
,

called the set of samples. For �
	 �������� ��� , let � � � � denote the union of all columns corre-
sponding to � . A pooling design is � -error-detecting (correcting) if it can detect (correct)
up to � errors in test outcomes. In other words, if a design is � -error-detecting then the
test outcome vectors form a � -dimensional binary code with minimum Hamming distance
at least ��
 � . Similarly, if a design is � -error-correcting then the test outcome vectors
form a � -dimensional binary code with minimum Hamming distance at least � ��
 � . The
following remarks are simple to see, however useful later on.

REMARK 1. Suppose
 has the property that for any �
�

����	 �������� ��� � ���� ��� , � � � �
and � � ��� � viewed as vectors have Hamming distance ��� . In other words, � � � � ���
� � ��� � ����� where � denotes the symmetric difference. Then,
 is

� ��� � � -error-detecting
and �� �!#"$&% -error-correcting.

REMARK 2.
 being
�
-disjunct is equivalent to the fact that for any set of

�
 �
distinct columns � �(' �*)*)�) ���,+ with one column (say � �,') designated, ���,' has a

�
in some

row where all � �,- ’s,
� �.� � �

contain � ’s.

An important question to ask is “given � items with at most
�

defectives, at least
how many tests are needed to identify the defectives?” The best asymptotic answer to this
question is dated back to Dyachkov and Rykov (1982, [DR82]) and Dyachkov, Rykov and
Rashad (1989, [DRR89]), which can be summarized by the following theorem.

THEOREM 1. Let � � ��� ��� denote the minimum number of pools needed for the
��� ���� ���

problem, then as �0/21 and
� /21

� $
�436587 $ �

� �
:9 � � �;� 36587 $ � � � � �<� ��� � � $ 36587 $ � � �
:9 � � �=� 36587 $ �

2.2. A Taxonomy of Non-Adaptive Pooling Designs. We now give a tentative tax-
onomy of non-adaptive pooling designs, from which later sections are organized.

(1) Deterministic Designs. This refers to the fact that every pool is deterministically
specified. These designs can be further categorized into:
(i) Set-packing designs.

(ii) Transversal designs.
(iii) Designs whose

�
-disjunct matrices are directly constructed.

(2) Random Designs. In these designs, some or all of the entries are randomly de-
termined with parameterized probabilities, which could be optimized based on
certain objective function(s). The categories are :
(i) Random matrices.

(ii) Random weight- > designs.
(iii) Random size- � designs.
(iv) Random designs which come from deterministic designs.

(3) Error Tolerance Designs. Although these designs are either deterministic or ran-
dom, they are worth being paid special attention to.

3. Deterministic Pooling Designs

3.1. Set Packing Designs. First noted by Kautz and Singleton [KS64] back in 1964,
packing designs with certain parameters can be used to construct disjunct matrices. We
first give some basic definitions. A ? - � � � � �A@ � packing design is a collection B of � -subsets
(called blocks) of C �8D�E �GF � � �)*)�)H� �<I such that any ? -subset of C �JD is contained in at most

4 HUNG Q. NGO AND DING-ZHU DU

@
members of B . One useful situation for us is when

@ � � , in which case the packing is
called a

� � � � � ? � -packing. Notice that
@ � � means no two members of B have ? elements

in common. Thus, by Remark 2 if � � � � ? � � � a
�
-disjunct matrix
 can be constructed

from a
� � � � � ? � -packing by simply indexing
 ’s columns by the blocks and
 ’s rows by

members of C �JD . Moreover, by Remark 1 we see that if � � � � ?4� � �
��
 � (� � �) then

 is � -error detecting and ���$J% -error correcting.

Naturally, the basic problem of packing design is to find the packing number ��� � � � � � ? � ,
the size of a maximum ? - � � � � � @ � packing design. We write � � � � � � ? � instead of � " � � � � � ? �
when

@ � � . Maximum sized
� � � � � ? � -packings induce very good pooling designs [BBKT96].

Unfortunately, very little is known about optimal packing designs. Most of what we know
are for small values of � and ? . Mills and Mullin [MM92] gave a nice account on pack-
ing designs. To give the reader a sense of how difficult this problem is, we quote a result
on � � � � � � ? � in Theorem 2. From the theorem, it is conceivable that finding optimal set
packing is just as hard as the main coding theory problem [Rom92].

THEOREM 2. Let � � � � ��� > � denote the size of a maximum constant > -weight binary� � � � � -code, then

� � � � � � ? � � � � � � �J� � ��?#
 � � � �
Let

	 � � � � � � ? � �

�
�

� � �
� � �

)�)*)
 � � ?�
 �
� � ?#
 �

@��
���
then Schőnheim [Sch66] observed that ��� � � � � � ? � � 	 � � � � � � ? � . Equality holds when the
design is any ? - � � � � � @ � design. In particular, since we want

@ � � , Steiner Triple Systems
(� - � � ��� � � � designs) and Steiner Quadruple Systems (

�
-
� � ����� � � designs) could be used to

construct disjunct matrices with small
�
’s. Finite projective planes and affine planes are

also ? -designs with
@ � � but they don’t give good pooling designs (too many tests). The

only other noticeable result which concerns us is from Brouwer [Bro79], who determines
all values of � � � ����� � � . For a comprehensive treatment on design theory, the reader is
referred to a nice book by Beth, Jungnickel and Lenz [BJL86].

3.2. Transversal Designs. The simplest form of transversal designs is called the grid
design. To facilitate the use of robots for pool assembling, the clones can be arranged
into rows and columns of a set of � ��� grids, where each row and column contributes a
pool. For simplicity, we can assume ����� � . Clearly, ambiguity can occur if there are more
than one positive clone. The simplest example is when there are two positives, say � and�
, lying on different rows and columns of a grid � . In this case, testing � alone is not

enough to identify � and
�

because the two clones � and
�

collinear with both � and
�

are
also candidates. To resolve ambiguity, we wish to rearrange � into another grid (giving
additional pools) so that � and

�
are not collinear with both � and

�
anymore. More grids

are needed if there are
�

or more positive clones. In fact, if we require a stronger condition
that no two clones are collinear twice, called the unique collinearity condition, then Hwang
[Hwa95] showed that the existence of the grids is equivalent to the existence of certain set
of mutually orthogonal Latin squares.

Barillot et al. [BLC91] generalized this idea to � -dimensional grids, where each in-
tersection point could be viewed as a vertex of the � -cube. A new grid � � can be obtained
from the old grid � by a linear transformation represented by a matrix ������� . Thus a vertex

A SURVEY ON COMBINATORIAL GROUP TESTING ALGORITHMS ... 5

� � � � " ��)*)*) � � ��� of � is mapped to vertex � � of � � . A third grid could either be obtained
by using � twice (with transformation matrix � $) or by using a different transformation
matrix

�
(with transformation matrix � �

). They also extended the � -dimensional grid to
higher dimension. The set of hyperplanes could be taken as pools, however the pool size is
usually large. Reducing pool size by taking lower dimension is possible but that increases
the number of tests. Pros and cons of this approach have not been studied.

The general case of transversal design was mentioned by Balding et al. in [BBKT96].
Basically a pooling design is transversal if the pools can be partitioned into parts, each of
which is a partition of the clone population. Clearly the hypercube design is a special case
of transversal designs. Not much has been studied toward this general direction. Relations
of this problem to Coding Theory is also specified in [BBKT96].

3.3. Direct Constructions. Macula [Mac96, Mac99] gave the following construc-
tion of a

�
-disjunct matrix. Let � ��� � �<� � � be a � � -matrix whose rows are indexed by the�

-subsets of C � D and whose columns are indexed by the � -subsets of C � D where � $ �&� �
� � � . � ��� � �<� � � � � � � iff the �	��
 �

-subset is contained in the ����
 � -subset. It is easy to
see that � ��� � �<� � � is

�
-disjunct with � � ��
 rows and � �
 columns.

The number of tests to number of items ratio of � ��� � �<� � � is � � ��
�� � �
 , which is not
so good in terms of the random bound given in Theorem 1. However, Macula showed that
with high probability � ��� � � � � � could solve the

���H���� ��� problem, effectively converting
a deterministic construction to a probabilistic (random) one. This point will be discussed
further in a later section. In addition,

�
and � could be chosen carefully in certain cases to

suit one’s need. However, the method of choosing these parameters needs more thorough
analysis than just trial and error.

4. On Constructions of
�
-disjunct Matrices

In set packing designs, the matrix
 was row indexed by all elements of C �8D , and
column indexed by selected � -subsets of C �8D . Looking at this from a different angle, the
rows were indexed by all points at rank 1 and columns by sampled points at rank � of the
Boolean Algebra lattice

���
(see Figure 1).

On the other hand, Macula’s construction involves taking all points at rank
�

as rows
and rank � as columns of our

�
-disjunct matrix. Macula’s design rate wasn’t so good

because number of points at level
�

is too large. However, if we pick points at lower levels
than

�
to be the rows, then the matrix is not

�
-disjunct anymore.

Stretching this line of reasoning, one might hope to somehow take sampled points at
different ranks of

� �
, not taking all points. Ngo and Du (1999, [ND99]) took this approach

and gave the following construction. Given integers
� � � � � � � . A matching of size�

in � �
is called an

�
-matching. Let
 ��� � � � � � be a � � -matrix whose rows are indexed

by the set of all
�
-matchings on � $ � , and whose columns are indexed by the set of all � -

matchings on � $ � . All matchings are to be ordered lexicographically.
 ��� � � � � � has a
�

in row � and column � if and only if the ����
 �
-matching is contained in the ����
 � -matching.

The fact that
 ��� � � � � � is
�
-disjunct is not difficult to be seen. Noticing that a � -matching

is a � subset of � � $ �$
�� , because the set of edges of � $ � is exactly � � $ �$
�� . From the
above observation, this construction could be seen as taking from

� C ������ � D sampled points

at rank
�

as rows and sampled points at rank � as columns. Ngo and Du also showed that

 ��� � � � � � is

�
-error-detecting and � �$ % -error-correcting.

On another dimension, the Boolean Algebra is clearly not the only lattice we have to
work on. Some obvious questions arising would be

6 HUNG Q. NGO AND DING-ZHU DU

1

2

d

k

�

����������	�	
	���

Figure 1: The Boolean Algebra Lattice

(1) Besides the Boolean Algebra
� �

, what are other lattices we can use ? For exam-
ple, one candidate is � ��� � , the lattice of all � tuples of � �

, which is a generaliza-
tion of

���
, since

� � � � ��� $.
(2) Which conditions must hold to pick some two levels of the lattice to construct�

-disjunct matrices ? To avoid being too vague and for the ease of analysis,
we could restraint ourselves to the lattices with some regularity constraint. An
example would be to work on lattices where the number of points covering a
point � at rank � and the number of points covered by � depend only on � .

(3) In terms of error tolerance properties, can we from the lattice infer some infor-
mation about the error correcting and detecting capability of the matrix being
constructed ?

With respect to question 1, Ngo and Du [ND99] found that picking points at levels
�

and � of the lattice of all subspaces of �
�
� would also work. This construction, in fact, is

the � -analog of Macula’s construction.

5. Random Pooling Designs

Random designs refer to the designs whose matrices are randomly determined in some
manner. The fact that a design is nondeterministic means that it is possible for some pos-
itives and negatives not to be identified. Let
 be a random � � � matrix, our algorithm
of identifying the defectives is the same as before, namely pointing those items contained
in negative tests as negative. These are called resolved negatives. Clearly, an item in a
positive pool where all others in the pool are resolved negatives must be positive. These
positive items are said to be resolved positives. Let

��
(
��) denote the number of unresolved

negatives (positives). Balding et al. introduced several criteria to compare designs such as
� � �� � �� � �J� , � � �� � �J� , � � �� � , and � � �� � , where � ��� � � � is the probability of� � � and � ��� � is the expected value of a random variable

�
. We would like the prob-

abilities to be as close to
�

as possible and the expected values to be as small as they can
get.

5.1. Random Matrices. Erdős (as usual) and Renyi (1963, [ER63]) first introduced
random methods in search problems. Much later, Sebő (1985, [Seb85]) adopted the idea
to group testing. To construct a random disjunct matrix
 , we simply assign

�
to an entry

A SURVEY ON COMBINATORIAL GROUP TESTING ALGORITHMS ... 7

of
 with some fixed probability � . Given � and
�
, � and � could be chosen properly so

that the probability of
 being
�
-disjunct is higher than some certain tolerable threshold.

Although this method is not used in practice, partially due to its bad performance
[BBKT96], the idea can be used to obtain very good bounds on the number � � ��� ��� . The-
orem 1 is an example of such random bounds.

5.2. Random Weight- > Designs. If a clone is contained in no pool, we don’t have
any information above the clone. If a clone is contained in every pool and it happens to be
positive, all tests turn out to be positive and thus the amount of information we get is also
zero. On the same line of reasoning, a design with a clone contained in too many or too less
number of tests is not good. Moreover, if the number of pools containing a clone varies,
then the analysis would be very tedious if not impossible. Consequently, it is reasonable
to attempt constructing random matrices with some constant weight > , where > could be
chosen to optimize some of the efficiency criteria. This could be done by assigning the
columns randomly to > -subsets of C �8D . These designs are called random weight- > designs.
Let the corresponding probabilities and expected values be denoted by � � ��� � and � � ��� �
respectively. Let

� � � � denote the probability that a particular set of � pools is exactly the
set of pools not containing any positive clones. The following formulas were obtained by
Bruno et al. [BKB � 95], and Hwang [Hwa99].

� � � � �
��

�� � � � � �
 ! �	� � � �
 � ����
 � � !
�
� ��
�� �(5.1)

� � � �� � � � �
��
� ��� � � ��� � � � � � � � �

����
 � � � � ! ��
� ��
 ��� ! � ! �
 � � ! ��
� ��
 � �(5.2)

� � � �� � � � � � � � ��
� � " � > ����
 � � ! ��
� ��
 � �(5.3)

An open question is to find > so that � � �4�� � is minimized. Notice that these formulas
were calculated ignoring the fact that in practice we don’t want identical columns in the
matrix. The reason is that taking into account this fact makes the calculation more difficult.
Bruno et al. [BKB � 95] also indicated that random weight- > designs perform better than
the random design discussed earlier.

5.3. Random Size- � Designs. Dually, instead of reasoning on the columns of
 we
could do the same on the rows of
 . A pool containing too few clones is wasted if these
clones are negatives, while a pool containing too many clones gives little information if
there is a positive clone in it. Hence, we could as well randomly choose the rows of

with some constant size � uniformly. Similar formulas as those in the last sections were
obtained by Hwang (1999, [Hwa99]):

8 HUNG Q. NGO AND DING-ZHU DU

�
�4�� � � � � � �
 � � � � ! �
� �
 �

�
(5.4)

�
�4�� � � � �

��
� ��� � � ����
 � � ! �
� �
 � �
 � � � � ! �
� �
 �

�
! �

� � ! �� � � � � � � � � ! � � � � �� ��
 � � ! � ! �

� � ! �
 � �

for � � ��� � � �
(5.5)

In the same paper, Hwang also gave formulas to compute ��� � �� � for � 	 F �
� > � �HI .

Here ��� ��� � denote the expected value of
�

when
 is constructed using the first random
method with probability � .

5.4. Random Designs from Deterministic Designs. Macula [Mac99] showed that
his matrix � ��� � � � � � could be used to solve the

��� ��H� ��� problem with high probability of
success. Clearly, this is desirable since the test to item ratio of � ��� � � � � � is smaller than
that of � ��� � ��� � � in general. The probability, denoted by ��� � � � ��� � � , can be shown to be

�	� � � � ��� � � �

�
� � � " � � � � � � " � ��
 � �������- �� ! "
� ��� - � !#"� !#"

�� �

For example, when
� ��� and ��� � � � � � � � � � we can pick � � � �<� � � � � , which has 946 rows

(tests), 1,086,008 columns (items), and ��� � � ��� � � � � �) �
� � � � .
Borrowing this idea, Ngo and Du [ND99] also showed that
 ��� � � � � � could be used

to solve
��� ��<� ��� with probability ��� � � � � � � � of giving the right answer, where

��� ��� � � � � � �

�
� � � " � � � � � � " � �
 �! #"�%$ ''& !#")(� � " � �+* & � ! � � �! � (� !#"

� * & � �
 ,((! "� !#"

�� �

Here, - ��� � � � � � $ �$ �
 & $ � (/.$10 � . . For example, ��� �/2 �43<�4� � � � 2) �
5 , with the number of
defectives

� � �
, the number of items � � - ��2 �43 � � � 2 �4� � 2 �4� � � and the number of test

� � - ��2 � � � �6� �73 � .
One can see from these formulas that the efficiency benchmarks to compare pooling

designs often involve complicated, hypergeometric type of formulas arising from inclusion
exclusion enumerations. This makes the analysis difficult and tedious. Usually, what we
can do is to plug in some particular values and do manual comparison, which is clearly
not satisfactory theoretically. More work needs to be done in asymptotic analysis of these
formulas in order to give satisfactory results.

6. Error Tolerance Pooling Designs

As we have mentioned earlier, when DNA probing could be error prone, which leads
us to the greater challenge of designing pools that could tolerate some number of errors.
This problem is the non-adaptive version of the searching game initiated by Ulam [Ula76]
back in 1976. Ulam’s problem was to determine a chosen number 8 out of C � D using the
minimum number of questions of the form: Is 8 	 � ,

�:9 C � D . Moreover, the responder

A SURVEY ON COMBINATORIAL GROUP TESTING ALGORITHMS ... 9

could lie once or twice. In general, the questions and answers could be � -ary, i.e. each
question is a partition of C � D into � parts and each answer points out which part(s) any of

�

unknowns belong to. Up to � lies is allowed. It is easy to see that our problem is the non-
adaptive version of this so-called � -ary search problem with lies where � � � . Although
quite a lot of research effort has been put on solving this problem, we only have solutions
for several special cases where � and � are small.

Adaptively, when
� � � � � � � Pelc [Pel87] solved the case � � � , Guzicki [Guz90]

solved the case � � � , and Spencer [Spe92] provided a nearly optimal solution (up to a
constant) for general � . The � -ary case (with

� � �) was consider by Aigner [Aig96] and
Muthukrishnan [Mut94] with complete solutions.

Non-adaptively, several author have noticed that when
� � � , the design is equivalent

to an � -error-correcting code. Balding and Torney [BT96] studied several instances of the
problem when

� � � . They showed that an optimal strategy is possible if and only if certain
Steiner system exists. Macula [Mac99] showed that his construction is error tolerable up
to certain calculatable probability. Ngo and Du construction [ND99] was shown to be

�
-

error-detecting and � �$ % -error-correcting in the worst case, but can tolerate more errors on
average.

We need deeper results and new breakthroughs in order to improve our present knowl-
edge of the most general case of the problem, especially in the non-adaptive scenario. For
example, we need good bounds similar to those in Theorem 1 given the number of items
� , maximum number of defectives

�
and maximum number of errors � .

7. Conclusions

In this paper, we have given an overview of up-to-date results on Combinatorial Group
Testing algorithms which are applicable to DNA library screening. We have been focusing
more on new classes of constructions not previously discussed and pointed out directions
to generalize existing results. We also have discussed some related open questions popped
up in this area.

Finally, we would like to conclude that this is a young and interesting field with deep
connections to Coding Theory and Design Theory. We strongly believe that the theory
Distance Regular Graphs, in particular Association Schemes, should play an important
role in improving our pooling designs.

References

[Aig96] Martin Aigner, Searching with lies, J. Combin. Theory Ser. A 74 (1996), no. 1, 43–56.
[BBKT96] D. J. Balding, W. J. Bruno, E. Knill, and D. C. Torney, A comparative survey of non-adaptive pooling

designs, Genetic mapping and DNA sequencing (Minneapolis, MN, 1994) (New York), Springer,
New York, 1996, pp. 133–154.

[BJL86] Thomas Beth, Dieter Jungnickel, and Hanfried Lenz, Design theory, Cambridge University Press,
Cambridge, 1986.

[BKB
�

95] W. J. Bruno, E. Knill, D. J. Balding, D. C. Bruce, N. A. Doggett, W. W. Sawhill, R. L. Stallings,
C. C. Whittaker, and D. C. Torney, Efficient pooling designs for library screening, Genomics (1995),
no. 26, 21–30.

[BLC91] E. Barillot, B. Lacroix, and D. Cohen, Theoretical analysis of library screening using a � -
dimensional pooling strategy, Nucl. Acids Res. (1991), no. 19, 6241–6247.

[Bro79] A. E. Brouwer, Optimal packings of ��� ’s into a ��� , J. Combin. Theory Ser. A 26 (1979), no. 3,
278–297.

[BT96] David J. Balding and David C. Torney, Optimal pooling designs with error detection, J. Combin.
Theory Ser. A 74 (1996), no. 1, 131–140.

[DH93] Ding Zhu Du and Frank K. Hwang, Combinatorial group testing and its applications, World Scien-
tific Publishing Co. Inc., River Edge, NJ, 1993.

10 HUNG Q. NGO AND DING-ZHU DU

[DR82] A. G. Dyachkov and V. V. Rykov, Bounds on the length of disjunctive codes, Problemy Peredachi
Informatsii 18 (1982), no. 3, 7–13.

[DR83] A. G. Dyachkov and V. V. Rykov, A survey of superimposed code theory, Problems Control Inform.
Theory/Problemy Upravlen. Teor. Inform. 12 (1983), no. 4, 229–242.

[DRR89] A. G. Dyachkov, V. V. Rykov, and A. M. Rashad, Superimposed distance codes, Problems Control
Inform. Theory/Problemy Upravlen. Teor. Inform. 18 (1989), no. 4, 237–250.

[ER63] Paul Erdős and Alfréd Rényi, On two problems of information theory, Magyar Tud. Akad. Mat.
Kutató Int. Közl. 8 (1963), 229–243.

[Guz90] Wojciech Guzicki, Ulam’s searching game with two lies, J. Combin. Theory Ser. A 54 (1990), no. 1,
1–19.

[Hwa95] F. K. Hwang, An isomorphic factorization of the complete graph, J. Graph Theory 19 (1995), no. 3,
333–337.

[Hwa99] F. K. Hwang, Random size-
�

pool designs with distinct columns, preprint.
[KS64] W. H. Kautz and R. C. Singleton, Nonrandom binary superimposed codes, IEEE Trans. Inf. Theory

10 (1964), 363–377.
[Mac96] Anthony J. Macula, A simple construction of � -disjunct matrices with certain constant weights, Dis-

crete Math. 162 (1996), no. 1-3, 311–312.
[Mac99] Anthony J. Macula, Probabilistic nonadaptive group testing in the presence of errors and dna library

screening, Annals of Combinatorics (1999), no. 3, 61–69.
[MM92] W. H. Mills and R. C. Mullin, Coverings and packings, Contemporary design theory (New York),

Wiley, New York, 1992, pp. 371–399.
[Mut94] S. Muthukrishnan, On optimal strategies for searching in presence of errors, Proceedings of the Fifth

Annual ACM-SIAM Symposium on Discrete Algorithms (Arlington, VA, 1994) (New York), ACM,
1994, pp. 680–689.

[ND99] H. Q. Ngo and D. Z. Du, New constructions of non-adaptive and error-tolerance pooling designs,
preprint.

[OHCB89] M. Olson, L. Hood, C. Contor, and D. Botstein, A common language for physical mapping of the
human genome, Science (1989), no. 245, 1434–1435.

[Pel87] Andrzej Pelc, Solution of Ulam’s problem on searching with a lie, J. Combin. Theory Ser. A 44
(1987), no. 1, 129–140.

[Rom92] Steven Roman, Coding and information theory, Springer-Verlag, New York, 1992.
[Sch66] J. Schönheim, On maximal systems of

�
-tuples, Studia Sci. Math. Hungar 1 (1966), 363–368.

[Seb85] András Sebő, On two random search problems, J. Statist. Plann. Inference 11 (1985), no. 1, 23–31.
[Spe92] Joel Spencer, Ulam’s searching game with a fixed number of lies, Theoret. Comput. Sci. 95 (1992),

no. 2, 307–321.
[Ula76] S. M. Ulam, Adventures of a mathematician, Charles Scribner’s Sons, New York, 1976.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF MINNESOTA,, 200 SE
UNION ST., 4-192 EE/CS BLDG, MINNEAPOLIS, MN 55455

E-mail address: hngo@cs.umn.edu

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF MINNESOTA,, 200 SE
UNION ST., 4-192 EE/CS BLDG, MINNEAPOLIS, MN 55455

E-mail address: dzd@cs.umn.edu

