Software Engineering CSE542 (note: this syllabus should be used as a guide. The instructor reserves the right to make changes as the class unfolds and the situation warrants). This class is a combination of discussion topics and a “fictional” project. The class meets remotely on Monday and Wednesday for lecture and discussion,
Michael Buckley mikeb@buffalo.edu
Class web site: http://www.cse.buffalo.edu/~mikeb click on CSE542 Spring 2021
Required Books - The Tao of Pooh by Benjamin Hoff - $10 or so. We will not be using this until the second half of the semester. Do not think this book to be trivial, it is important.
Additional mandatory readings - will be handed out or published on the class web site. Most are a page or two. Please don’t ignore them.
Required Software (As members of this class, you get a free copy of every product that Microsoft makes) - You will need Microsoft Project 2003 or later for the project planning phase (Libre is a capable substitute), and Microsoft Visio (or any drawing package of your own choosing), to present your system architectures.
Grading – this is tentative and will be adjusted based on how the projects progress (i.e. we may choose to over-emphasize or de-emphasize certain aspects):

Project Grade 50% -
 System Requirements Specification - Requirements from the customer perspective - 10%
 Full Architecture Preliminary Design - 15%
 Project Planning – 15%

 Integration Thread Detailed Design - 10%
Study Grade 50% -

Essay/Research Question #1
20%
Essay/Research Question #2
20%
Class participation & professionalism (individual) 10% - attendance is taken randomly throughout the semester, usually when the class looks empty. The professional component includes not just the attendance, but emphasizes more pointedly the productive value of input a student offers to class discussion. It includes other aspects of professional behavior such as properly written emails, preparedness when attending office hours, and advanced notification for classes that are missed.
Letter Grades:

A: 92.5 - 100

A-: 90.0 - 92.49

B+: 87.5 - 89.99

B: 82.5 - 87.49

B-: 80.0 - 82.49

C+: 77.5 - 79.99

C: 72.5 - 77.49

C-: 70.0 - 72.49

D+: 67.5 - 59.99

D: 50.0 - 67.49

F: 0 - 49.99

An A-or B+ is NOT failing. It is an excellent grade in this course. To get an A in CSE442/542, you must do substantially better than what is asked-for. All grading for this course grants a C for answering the requirements, a B for showing a level of understanding, and an A for insight sufficient to apply the material to real life. If you do not add to your submissions with real-life examples based on experience or reading, you will get a very well-deserved B.
Late Penalty: no late assignments are accepted. To accommodate that very strict rule, ample time will be given for each assignment.

Topics:

Introduction

The software development lifecycle, paradigms of SW Engineering, the Software Engineering Institute Capability Maturity Model, commercial clients, the government, MIL-STD, the contractor/client relationship, the Tao of engineering, eclecticism, software disasters, the 35 (or so) steps of software implementation, pre- and post-project assessment, great sources of errors

Software Analysis

Requirements specification, client needs, hardware study, data flow-oriented analysis methods, data structure-oriented analysis methods, object-oriented analysis methods, database requirements, user interface, software prototyping, system design

Software Design

Decomposing requirements into modules, encapsulation, reusability, coupling, cohesion, process identification, Data Flow Diagrams, operation-oriented data structures, types of modules, abstract data types, data flow-oriented design, data structure-oriented design, object-oriented design, information hiding, data abstraction, real time design, real time databases/operating systems, languages, global data, preliminary design document, detailed design document, program design language, stepwise refinement, program structure, modularity , Structure Charts, task synchronization, communications protocols, integration, performance, error handling, fault tolerance, incremental and evolutionary models, spiral models, risk analysis

Coding

Company and project coding standards, correctness, safety, abstraction, clarity, simplicity, maintainability, reusability, compiler efficiency, language features, go-tos, comments, layout, personal style, reviews, configuration management, change control, maintenance techniques, maintenance costs, maintenance side effects, reporting, record keeping

Project Management

Critical paths, budgeting, scheduling, revision impact, tracking, errors, quality assurance, commercial apps
Software Testing

Objectives, unit testing, complexity measures, test case design, path testing, boundary values, integration, debugging

The Tao of Software Engineering
Enlightenment, attitude, management, critical thinking, leadership, personal style, relationships, ethics, privacy, data and program security, legal issues for SW engineers (copyrights, patents, etc.), safety.

