
Graphical Query Interfaces for
Semistructured Data: The QURSED System

MICHALIS PETROPOULOS, YANNIS PAPAKONSTANTINOU
University of California, San Diego
and
VASILIS VASSALOS
Athens University of Economics and Business, Athens, Greece

We describe the QURSED system for the declarative specification and automatic generation of
Web-based query forms and reports (QFRs) for semistructured XML data. In QURSED, a QFR
is formally described by its query set specification (QSS) which captures the complex query and
reporting capabilities of the QFR and the associations of the query set specification with visual el-
ements that implement these capabilities on a Web page. The design-time component of QURSED,
called QURSED Editor, semi-automates the development of the query set specification and its as-
sociation with visual elements by translating intuitive visual actions taken by a developer into
appropriate specification fragments. The run-time component of QURSED produces XQuery state-
ments by synthesizing fragments from the query set specification that have been activated during
the interaction of the end-user with the QFR and renders the query results in interactive reports
as specified by the QSS. We describe the techniques and algorithms employed by QURSED with
emphasis on how it accommodates the intricacies introduced by the semistructured nature of the
underlying data. We present the formal model of the query set specification, as well as its gener-
ation via the QURSED Editor, and focus on the techniques and heuristics the Editor employs for
translating visual designer input into meaningful specifications. We also present the algorithms
QURSED employs for query generation and report generation. An online demonstration of the
system is available at http://www.db.ucsd.edu/qursed/.

Categories and Subject Descriptors: D.1.7 [Programming Techniques]: Visual Programming;
D.2.1 [Software Engineering]: Requirements/Specifications—Languages; Tools; D.2.2 [Soft-
ware Engineering]: Design Tools and Techniques—User interfaces; D.2.6 [Software Engineer-
ing]: Programming Environments—Graphical environments; H.2.3 [Database Management]:
Languages—Query languages; Report writers; H.2.5 [Database Management]: Heterogeneous
Databases; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—
Information filtering; Query formulation; H.3.5 [Information Storage and Retrieval]: Online
Information Services—Web-based services; H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical user interfaces (GUI); Interaction styles

Preliminary portions of this article appear in Papakonstantinou et al. [2002].
Authors’ addresses: M. Petropoulos, Y. Papakonstantinou; email: {mpetropo,yannis}@cs.ucsd.edu;

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1533-5399/05/0500-0390 $5.00

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005, Pages 390–438.

V. Vassalos; email: vssalos@aueb.gr

Graphical Query Interfaces for Semistructured Data: The QURSED System • 391

General Terms: Algorithms, Design, Human Factors, Languages

Additional Key Words and Phrases:

1. INTRODUCTION

XML is a simple and powerful data exchange and representation language,
largely due to its self-describing nature. Its advantages are especially strong in
the case of semistructured data, that is, data whose structure is not rigid and is
characterized by nesting, optional fields, and high variability of the structure.
An example is a catalog for complicated products such as sensors; they are often
nested into manufacturer categories and each product of a sensor manufacturer
comes with its own variations. For example, some sensors are rectangular and
have height and width, and others are cylindrical and have diameter and barrel
style. Some sensors have one or more protection ratings, while others have none.
The relational data model is cumbersome in modeling such semistructured data
because of its rigid tabular structure.

The database community perceived the relational model’s limitations early
on and responded with labeled graph data models [Abiteboul et al. 2000] that
evolved into XML-based data models [Fernandez et al. 2005]. XML query lan-
guages (with the most notable the emerging XQuery standard [Boag et al.
2005]), XML databases [Schöning and Wäsch 2000], and mediators [Cluet et al.
1998; Draper et al. 2001; Fernandez et al. 2001; Ludäscher et al. 2000; Shanmu-
gasundaram et al. 2000] have been designed and developed. They materialize
the in-principle advantages of XML in representing and querying semistruc-
tured data. Indeed, mediators allow one to export XML views of data found in
relational databases [Fernandez et al. 2001; Shanmugasundaram et al. 2000],
XHTML pages, and other information sources and to obtain XML’s advantages
even when one starts with non-XML legacy data. QURSED automates the con-
struction of Web-based query forms and reports for querying semistructured
XML data.

Web-based query forms and reports are an important aspect of real-
world database systems [Bernstein et al. 1998; Silberschatz et al. 1990]—
albeit semineglected by the database research community. They allow mil-
lions of Web users to selectively view the information of underlying sources.
A number of tools (Dreamweaver UltraDev [Macromedia 2003]; ColdFusion
[Macromedia 2003]; Visual InterDev [Microsoft 2003]) facilitate the develop-
ment of Web-based query forms and reports that access relational databases.
However, these tools are tied to the relational model which limits the resulting
user experience and impedes the developer in his efforts to quickly and cleanly
produce Web-based query forms and reports. QURSED is, to the best of our
knowledge, the first Web-based query forms and reports generator with focus
on semistructured XML data.

QURSED produces query form and report pages that are called QFRs. A QFR
is associated with a Query Set Specification (QSS). A QSSdescribes formally
the complex query and reporting capabilities [Vassalos and Papakonstantinou
2000] of a QFR. These capabilities include the large number of queries that
a form can generate to the underlying XML query processor and the different

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

392 • M. Petropoulos et al.

Fig. 1. The QURSED system architecture.

structure and content of the query result. The emitted queries are expressed in
XQuery, and the query results are expressed directly in XHTML that renders
the report page.

1.1 System Overview and Architecture

We next discuss the QURSED system architecture, shown in Figure 1, the
process and the actions involved in producing a QFR, and the process by which
a QFR interacts with the end-user, emits a query, and displays the result. We
also introduce terms used in the rest of the article. QURSED consists of the
QURSED Editor, which is the design-time component, the QURSED Compiler,
and the QURSED Run-Time Engine.

The Editor inputs the XML Schema that describes the structure of the XML
data to be queried and constructs an Expanded Schema Tree (EST) out of it. The
EST is a structure that serves as the basis for building the query set specifica-
tion and is a visual abstraction of the XML Schema that the developer interacts
with. The Editor also inputs an XHTML query form page that provides the static
part of the form page, including the XHTML form controls [Raggett et al. 1999],
such as select (“drop-down menus”) and text (“fill-in-the-box”) input controls,
that the end-user will be interacting with. It may additionally input an optional
template report page that provides the XHTML structure of the report page. In
particular, it depicts the nested tables and other components of the page. It is
just a template since we may not know in advance how many rows/tuples ap-
pear in each table. The query form and template report pages are typically
developed with an external “What You See Is What You Get” (WYSIWYG)
editor, such as HomeSite [Macromedia 2003]. If a template report page is not
provided, the developer can automatically build one using the Editor.

The Editor displays the EST and the XHTML pages to the developer who uses
them to build the query set specification of the QFR and the query/visual asso-
ciation. The QSS focuses on the query capabilities of the QFR and describes the
set of queries that the form may emit. The query description is based on the for-
malism of the Tree Query Language (TQL) described in Section 4. The QSS’s key

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 393

components are the parameterized condition fragments, the fragment depen-
dencies and the result tree generator. Each condition fragment stands for a set of
conditions (typically navigations, selections, and joins) that contain parameters.
The query/visual association indicates how each parameter is associated with
corresponding XHTML form controls [Raggett et al. 1999] of the query form
page. The form controls that are associated with the parameters contained in a
condition fragment constitute its visual fragment. Dependencies can be estab-
lished between condition fragments and between the values of parameters and
fragments, and provide fine-grained control on what queries can be submitted
and which visual fragments are eligible to appear on the query form page at each
point (see Figure 11 in Section 6.1). Finally, the result tree generator specifies
how the source data instantiate and populate the XHTML template report page.

The QURSED Compiler takes as input the output of the Editor and pro-
duces dynamic server pages which control the interaction with the end-user.
Dynamic server pages are implemented in QURSED as JavaServer Pages [Sun
Microsystems 2005], while Active Server Pages such as ASP.NET [Microsoft
2005] are another possible option. The dynamic server pages, the query set
specification, and the query/visual association are inputs to the QURSED Run-
time Engine. In particular, the dynamic server pages enforce the dependencies
between the visual fragments on the query form page and handle the naviga-
tion on the report page. The engine, based on the query set specification and the
query/visual association, generates an XQuery expression when the end-user
clicks “Execute”, which is sent to the XML Data Server, and its XHTML result
is displayed on the report page.

The rest of the article is organized as follows. The related work and the list
of contributions of QURSED are presented in Section 2. In Section 3, the run-
ning example is introduced and the end-user experience is described. Section 4
describes TQL, and Section 5 presents the query set specification formalism.
Section 6 discusses how a TQL query is formulated from a QSS during run-time,
and Section 7 presents the Editor that is the visual tool for the development of
a QFR and its query set specification.

2. RELATED WORK AND NOVEL CONTRIBUTIONS OF QURSED

The QURSED system relates to four wide classes of systems, coming from both
academia and industry.

(1) Web-Based Form and Report Generators, such as Dreamweaver UltraDev
[Macromedia 2003] ColdFusion [Macromedia 2003], and]. Visual Inter-
Dev [Microsoft 2003]. All of the these enable the development of Web-
based applications that create form and report pages that access relational
databases with the exception of XQForms [Petropoulos et al. 2001] which
targets XML data. QURSED is classified in the same category except for
its focus on semistructured data.

(2) Visual Querying Interfaces such as QBE [Zloof 1975] and Microsoft’s Query
Builder (part of Visual InterDev [Microsoft 2003]) which target rela-
tional databases, and XML-GL [Comai et al. 2001], EquiX [Cohen et al.
1999], BBQ [Munroe and Papakonstantinou 2000], VQBD [Chawathe et al.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

394 • M. Petropoulos et al.

2001], the Lorel’s DataGuide-driven GUI [Goldman and Widom 1998], and
PESTO [Carey et al. 1996] which target XML or object-oriented databases.

(3) Schema Mapping Tools such as IBM’s Clio [Popa et al. 2002], Microsoft’s
BizTalk Mapper [Microsoft 2004], XML Transform [TIBCO 2005], and
BEA’s Data View Builder [BEA 2005]. These are graphical user inter-
faces that facilitate the data transformation from one or more source
XML Schemas to a target XML Schema. The user constructs complex
XQuery [Boag et al. 2005] or XSLT [Kay 2005] expressions through a set of
visual actions. These tools are mainly used in integration scenarios.

(4) Data-Intensive Web Site and Application Generators such as Autoweb
[Fraternali and Paolini 2000], Araneus [Atzeni et al. 1997], Strudel
[Fernandez et al. 2000], and Application Manifold [Eyal and Milo 2001].
These are recent research projects proposing new methods of generating
Web sites which are heavily based on database content. An additional ex-
tensive discussion on this class of systems can be found in Fraternali [1999].

Web-based form and report generators create Web-based interfaces that
access relational databases. Popular examples are Dreamweaver UltraDev
[Macromedia 2003], ColdFusion [Macromedia 2003], and Visual InterDev
[Microsoft 2003]. The developer uses a set of wizards to visually explore the
tables and views defined in a relational database schema and selects the one(s)
she wants to query using a query form page. By dragging and dropping the
attributes of the desired table to XHTML form controls [Raggett et al. 1999]
on the page, she creates conditions that, during run-time, restrict the attribute
values based on the end-user’s input. The developer can also select the ta-
bles or views to present on a report page and by dragging and dropping the
desired attributes to XHTML elements on the page, for example, table cells,
the corresponding attribute values will be shown as the element’s content.
The developer also specifies the XHTML region that will be repeated for each
record found in the table, for example, one table row per record. These ac-
tions are translated to scripting code or a set of custom XHTML tags that
these products generate. The custom tags incorporate common database and
programming languages functionality, and one may think of them as a way
of folding a programming/scripting language into XHTML. The three most
popular custom tag libraries today are JavaServer Pages [Sun Microsystems
2005], Active Server Pages [Microsoft 2005] and ColdFusion Markup Language
[Macromedia 2003].

These tools are excellent when flat, uniform relational tables need to be dis-
played. The visual query formulation paradigm offered to the developer allows
the expression of projections, sort-bys, and simple conditions. However, the de-
velopment of form and report pages that query and display semistructured data
requires substantial programming effort.

Visual querying interfaces are applications that allow the exploration of
the schema and/or content of the underlying database and the formulation
of queries. Typical examples are the Query-By-Example (QBE) [Zloof 1975]
interface and Microsoft’s Query Builder [Microsoft 2003] which target the
querying of relational databases. Recent visual frontends such as XML-GL

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 395

[Comai et al. 2001], EquiX [Cohen et al. 1999], BBQ [Munroe and
Papakonstantinou 2000], VQBD [Chawathe et al. 2001], the Lorel’s DataGuide-
driven GUI [Goldman and Widom 1998], and PESTO [Carey et al. 1996] target
the querying of XML and object-oriented databases. Unlike the form and report
generators which produce Web frontends for the general public, visual querying
interfaces present the schema of the underlying database to experienced users
who are often developers building a query, helping them formulate queries vi-
sually and displaying the results in a default fashion. The user has to, at the
very least, understand what the meaning of schema is and what the model of
the underlying object structure is in order to be able to formulate a query. For
example, the QBE user has to understand what a relational schema is and the
user of Lorel’s DataGuide GUI has to understand that the tree-like structure
displayed is the structure of the underlying XML objects. These systems have
heavily influenced the design of the Editor because they provide an excellent
visual paradigm for the formulation of fairly complex queries.

In particular, EquiX [Cohen et al. 1999] allows the visual development of
complex XML queries that include quantification, negation, and aggregation.
EquiX and BBQ [Munroe and Papakonstantinou 2000] use some form of the
EST and of the corresponding visual concept, but they still require basic knowl-
edge of query language primitives. Simple predicates, Boolean expressions, and
variables can be typed at terminal nodes and quantifiers can be applied to non-
terminal nodes. In a QBE-like manner, the user can select which elements of
the DTD to print in the output but the XML structure of the query result con-
forms to the XML structure of the source, that is, there is no restructuring
ability.

A more powerful visual query language is XML-GL [Comai et al. 2001] that
uniformly expresses XML documents, DTDs, and queries as graphs. Queries
consist of a set of extraction query graphs, a set of construction query graphs,
and a set of bindings from nodes of one side to nodes of the other. In terms of
expressiveness, XML-GL is more powerful than BBQ and EquiX, because of its
ability to construct complex results using grouping, aggregate, and arithmetic
functions. It also supports heterogeneous union in a fashion similar to TQL.
XML-GL is less powerful than XQuery [Boag et al. 2005] though since recursive
queries are not expressible and nested subqueries are partially supported. An
advantage of XML-GL is that it can be implemented as a visual frontend to an
XQuery processor since the correspondence between their semantics is straight-
forward. The disadvantage of XML-GL is that it doesn’t make the common case
easy. The interface is not intuitive for simple queries until the developer gets
familiar with the visual semantics of the language.

It is important to note that the described visual query formulation tools and
the Editor have very different goals. The goal of the former is the development
of a query or a query template by a database programmer who is familiar with
database models and languages. The goal of the latter is the construction from
an average Web developer of a form that represents and can generate a large
number of possible queries.

Schema mapping tools are graphical user interfaces that declaratively trans-
form data between XML Schemas in the context of integration applications.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

396 • M. Petropoulos et al.

IBM’s Clio [Popa et al. 2002], Microsoft’s BizTalk Mapper [Microsoft 2004],
XML Transform [TIBCO 2005], and BEA’s Data View Builder [BEA 2005]
are representative examples. The transformation is a three-step process that
is based on multiple source XML Schemas and a single target XML Schema
that are visualized and presented to the user. The first step discovers and cre-
ates correspondences between one or more elements of the source schemas
and a single target element without attaching any specific semantics to them.
The second step turns correspondences into mappings by specifying exactly
how the source elements are transformed to the target element. Selection
predicates, inner and outer joins, arithmetic, string, and user-defined func-
tions are a few examples of the supported functionality. Clio [Popa et al. 2002]
goes one step further and explains the difference between different mappings
interactively by giving examples to the user based on small datasets. The
third step of the transformation process generates either an XQuery [Boag
et al. 2005] or an XSLT [Kay 2005] expression that actually implements the
transformation.

Note that the first two steps above are carried out using visual actions only
so the user does not need to be aware of the particular query language used by
each tool. These visual actions greatly facilitate data integration by simplifying
the transformation process especially when the fact that the generated query
expressions are particularly complex and hard to write by hand is taken into
account.

QURSED’s Editor adopts part of the functionality provided by the schema
mapping tools for a different purpose. More specifically, the Editor creates
two types of transformations without making a distinction between correspon-
dences and mappings. First, it creates query/visual associations that map form
controls on the XHTML query form page to parameters of selection predicates
in order to generate queries that filter the data. And second, it creates a trans-
formation between a single XML Schema and an XHTML template report page
in order to construct the report pages.

Data-intensive web site and application generators such as Autoweb
[Fraternali and Paolini 2000], Araneus [Atzeni et al. 1997], and Strudel
[Fernandez et al. 2000] are excellent examples of the ongoing research on
how to design and develop Web sites that are heavily dependent on database
content. All of them offer a data model, a navigation model, and a presen-
tation model. They provide important lessons on how to decouple the query
aspects of Web development from the presentation ones. (Decoupling the query
from the presentation aspects is an area where commercial Web-based form
and report generators suffer.) Strudel is based on the labeled directed graphs
model for both data and Web sites and is very close to the XML model of
QURSED.

The query language of Strudel [Fernandez et al. 2000], called StruQL, is
used to define the way data are integrated from multiple sources (data graph),
the pages that make up the Web site, and the way they are linked (site graph).
Each node of the site graph corresponds to exactly one query which is man-
ually constructed. Query forms are defined on the edges of the site graph by
specifying a set of free variables in the query which are instantiated when the

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 397

page is requested, producing the end node of the edge. Similarly, Fraternali and
Paolini [2000] Autoweb and Araneus [Atzeni et al. 1997] perceive query forms
as a single query in the sense that the number of conditions and the output
structure are fixed. In Strudel, if conditions need to be added or the output
structure changed, a new query has to be constructed and a new node added to
the site graph. In other words, every possible query and output structure has
to be written and added to the site graph. QURSED is complementary to these
systems as it addresses the problem of encoding a large number of queries in
a single QFR and also of grouping and representing different reports using a
single site graph node.

Application Manifold [Eyal and Milo 2001] is the first attempt to expand a
data integration framework to an application integration one. The system is
capable of generating Web-based e-commerce applications by integrating and
customizing existing ones. Applications’ flow is modeled and visually repre-
sented using UML state charts that consist of states, corresponding to Web
pages that provide activities, linked by transitions, corresponding to naviga-
tion links that the end-user can follow, and containing actions, correspond-
ing to method calls that trigger other transitions and/or alter the application’s
state. Application integration and customization is specified using a declara-
tive language that allows for optimization and verification of the generated
application.

Also related to QURSED is prior work on capability-description lan-
guages and their use in mediator systems [Levy et al. 1996; Vassalos and
Papakonstantinou 2000]. The QSS formalism of QURSED is essentially a ca-
pability description language for query forms and reports over XML data. The
prior work on capabilities has focused on describing the capabilities of query
processors with an underlying relational data model. The QSS instead captures
the complex query and reporting capabilities of query forms over semistruc-
tured data.

There is also the prior work of the authors on the XQForms system that
declaratively generates Web-based query forms and reports that construct
XQuery expressions [Petropoulos et al. 2001]. The paper describes a software
architecture that allows an extensible set of XHTML input controls to be as-
sociated with element definitions of an XML Schema via an annotation on the
XML Schema. It also presents different hard-wired ways the system provides
for customizing the appearance of reports. The set of queries produced by the
system are conjunctive, and its spectrum is narrow because of the limitations
of the XML Schema-based annotation. The paper does not describe how the
system encodes or composes queries and results of queries based on end-user
actions.

Finally, there is the XForms W3C standard [Dubinko et al. 2003] which
promotes the use of XML-structured documents for communicating to the
Web server the results of the end-user’s actions on various kinds of forms.
XForms also tries to provide constructs that change the appearance of the
form page on the client side without the need of coding. QURSED can use
these constructs for the evaluation of dependencies, thus simplifying the
implementation.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

398 • M. Petropoulos et al.

2.1 Contributions

Forms and Reports for Semistructured Data. QURSED generates form and re-
port pages that target the need for interacting with and presenting semistruc-
tured data. Multiple features contribute to this need.

(1) QURSED generates queries that handle the structural variance and irreg-
ularities of the source data by employing appropriate forms of disjunction.
For example, consider a sensor query form that allows the end-user to check
whether the sensor fits within an envelope with length X and width Y, where
X and Y are end-user-provided parameters. The corresponding query has
to take into consideration whether the sensor is cylindrical or rectangular
since X and Y have to be compared against a different set of dimension
attributes in each case.

(2) Condition fragment dependencies control what the end-user can ask at
every point. For example, consider another version of the sensor query form
that contains a selection menu where the end-user can specify whether he
is interested in cylindrical or rectangular sensors. Once this is known, the
form transforms itself to display conditions (e.g., diameter) that pertain to
cylindrical sensors only or conditions (e.g., height and width) that pertain
to rectangular sensors only.

(3) On the report side, data can be automatically nested according to the nest-
ing proposed by the source schema or can be made to fit XHTML tables
that have variance in their structure and different nesting patterns. Struc-
tural variance on the report page is tackled by producing heterogeneous
rows/tuples in the resulting XHTML tables.

Loose Coupling of Query and Visual Aspects. QURSED separates the logical
aspects of query forms and reports generation, that is, the query form capa-
bilities, from the presentation aspects, hence making it easier to develop and
maintain the resulting form and report pages. The visual component of the
forms can be prepared with any XHTML editor. Then the developer can focus
on the logical aspects of the forms and reports: What are the condition frag-
ments? What are their dependencies? How should the report be nested? The
coupling between the logical and the visual part is loose, simple, and easy to
build. The query parameters are associated with XHTML form controls, the
condition fragments are associated with sets of XHTML form controls, and the
grouped elements (see Section 4) of the result tree are associated with the nested
tables of the report.

Powerful and Succinct Description Language for Query Form Capabilities
We provide formal syntax and semantics for the QFR query set specifications
which describe query form capabilities by succinctly encoding large numbers
of meaningful semistructured queries. The specifications primarily consist of
parameterized condition fragments and dependencies. The combinations of the
fragments lead to large numbers of parameterized queries, while the dependen-
cies guarantee that the produced queries make sense given the XML Schema
and the semantics of the data.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 399

The query set specifications use the Tree Query Language (TQL) which is
a calculus-based language. TQL is designed to handle the structural variance
and missing fields of semistructured data. Nevertheless, TQL’s purpose is not
to be another general-purpose semistructured query language. Its design goals
are to:

(1) facilitate the definition of query set specifications and, in particular, of con-
dition fragments; and

(2) provide a tree-based query model that easily captures the schema-driven
generation of query conditions by the forms component of the Editor and
also maps well to the model of nested tables used by the reports.

XML, XHTML, and XQuery-Based Architecture. The QURSED architecture
and implementation fully utilizes XQuery [Boag et al. 2005] and the interplay of
XML/XHTML. The result is an efficient overall system when compared to either
relational-based frontend generators or to conventional to XML-based frontend
architectures such as XSQL [Oracle 2004]. An XML-related efficiency is derived
by the fact that XML is used throughout QURSED: XML is the data model of
the source on which XML queries, in XQuery syntax, are evaluated, and it is
also used to deliver the presentation in the form of XHTML. The elimination
of internal model mismatches yields significant advantages in the engineering
and maintainability of the system.

3. PRELIMINARIES

This section describes an example XML Schema, the corresponding EST, and
the data model of QURSED and introduces as the running example a QURSED-
generated QFR interface. It concludes by describing the end-user experience
with that interface.

3.1 Data Model, XML Schema, and Expanded Schema Tree

QURSED models XML data as labeled ordered tree objects (lotos) such as the
sample data set shown in Figure 2(a) that describes two proximity sensor prod-
ucts. Each internal node of the labeled ordered tree represents an XML element
and is labeled with the element’s tag name. The list of children of a node repre-
sents the sequence of elements that make up the content of the element. A leaf
node holds the string value of its parent node. If n is a node of a loto, we denote
as tree(n) the subtree rooted at n.

In the sample data set of Figure 2(a), the top sensors node contains a
manufacturer node, whose name is “Turck”. This manufacturer contains a list
of two product nodes whose direct subelements contain the basic information
of each sensor. The first sensor’s part number is “A123” and has an image, while
the second’s one is “B123” and has no image. The technical specification of each
sensor is modeled by the specs node whose content is quite irregular. For ex-
ample, the body type of the first sensor is cylindrical and has diameter and
barrel style, while the second one is rectangular and has height and width.
Also, both sensors have more than one protection rating nodes and have min
and max operating temperature.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

400 • M. Petropoulos et al.

Fig. 2. Example data set, XML Schema and expanded schema tree.

The XML Schema that describes the structure of the sample data set of Fig-
ure 2(a) is shown as a tree structure in Figure 2(b). Similar conventions for
representing XML Schemas and DTDs have been used in previous works, for
example Abiteboul et al. [2001] and Fernandez et al. [2001]. The optional (? and
∗ labeled edges) and repeatable (∗ and + labeled edges) elements and the types
of groups of elements (SEQ, CHOICE, and ALL nodes [Fallside and Walmsley
2004]) are indicated. The leaf nodes are of primitive type [Biron and Malhotra
2004]. Like many XML Schemas, it has nesting and many “irregular” struc-
tures such as choice groups, for example the body type may be rectangular or
cylindrical, and optional elements [Fallside and Walmsley 2004], for example
each sensor can optionally have an image element.

Based on the XML Schema in Figure 2(b), the Editor constructs the corre-
sponding EST that serves as the basis for building the query set specification.
Figure 2(c) shows the Editor’s view of the EST as it is displayed to the developer
and Figure 2(d) the internal representation used by the Editor. Formally, the
EST is defined in the following.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 401

Definition 3.1. Expanded Schema Tree. An expanded schema tree EST is
a labeled tree that consists of:

—element nodes n having an element name name(n) which is a constant. Ele-
ment nodes are labeled with a unique element variable var(n) which starts
with the $ symbol, and an occurrence constrain occ(n) which can be ? (0–1
occurrences), 1 (only one occurrences), ∗ (any number of occurrences), or +
(one or more occurrences). An element node n is optional if occ(n) is either ?
or ∗. If occ(n) is either + or ∗, then n is repeatable. Element nodes have a
Boolean property report(n);

—SEQ nodes;
—CHOICE nodes;
—ALL nodes.

The root node of an EST is a nonrepeatable element node.
The Boolean property report of an element node is true if the correspond-

ing checkbox that appears next to the element node on the view of the EST
(Figure 2(c)) is checked. The reason for doing that is to indicate to the Edi-
tor which elements to include on the report. Report generation is described in
Section 7.3.

3.2 Example QFR and End-User Experience

There are cases where the developer needs to create aliases of element nodes.
For example, assume that the developer wants to give the end-user the ability
to specify two desirable protection ratings out of the multiple that a single
sensor might have. This case is depicted on Figure 3 where two “Protection
Rating” form controls appear on the query form page. To accomplish this, the
developer expands the protection rating element node on the EST and creates
two copies of it as shown on Figure 2(c). The EST of Figure 2(d) illustrates the
internal effect of the two aliases where the two copies of the protection rating
element node have two different and unique element variables, $PROT1 and
$PROT2.

An expansion can be applied only on a repeatable element node n, creating
a copy c of the subtree rooted at n and setting it as the last child of n’s parent
node. All element nodes of c are labeled with new and unique element variables.

3.3 QFR and End-User Experience

Using QURSED, a developer can easily generate a QFR interface like the one
shown in Figure 3 that queries and reports proximity sensor products. This
interface will be the running example and will illustrate the basic points of the
functionality and the experience that QURSED delivers to the end-user of the
interface.

The browser window displays a query form page and a report page. On the
query form page, XHTML form controls are displayed for the end-user to select
or enter desired values of sensors’ attributes and customize the report page.
The state of the query form page of Figure 3 has been produced by the following
end-user actions:

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

402 • M. Petropoulos et al.

Fig. 3. Example QFR interface.

—placed the equality condition “NEMA3” on “Protection Rating 1”;
—left the preset option “No preference” on “Body Type” and placed the con-

ditions on “Dimension X” as being less than 20mm and on “Dimension Y”
as less than 40mm. These two dimensions define an envelope in which the
end-user wants the sensors to fit without specifying a particular body type;

—selected from the “Sort By Options” list to sort the results first by “Manufac-
turer” (descending) and then by “Sensing Distance” (ascending). The selec-
tions appear in the “Sort By Selections” list;

—in the “Customize Presentation” section, selected to present (“P” column) all
columns that she has control over, for example, “Part Number” is, by default,
always presented (disabled checkbox).

After the end-user submits the form, she receives the report of Figure 3.
The results depict the information of product elements: the developer had de-
cided earlier that product elements should be returned. By default, QURSED
organizes the presentation of the qualifying XML elements in a way that cor-
responds to the nesting suggested by their XML Schema. Notice, for example,
that each product display has nested tables for rectangular and cylindrical

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 403

Fig. 4. TQL query corresponding to Figure 3.

values. Also notice that instead of the text of the manufacturer’s name, a cor-
responding image (logo) is presented.

The following section illustrates the query model QURSED uses to represent
the possible queries. Section 7 elaborates on the visual steps the developer
follows on the Editor interface to deliver query form and report interfaces like
the one shown in Figure 3, using QURSED.

4. TREE QUERY LANGUAGE (TQL)

End-user interaction with the query form page results in the generation of TQL
queries which are subsequently translated into XQuery statements. TQL shares
many common characteristics with previously proposed XML query languages
like XML-QL [Deutsch et al. 1998], XML-GL [Comai et al. 2001], LOREL [Quass
et al. 1995], XMAS [Ludäscher et al. 2000] and XQuery [Boag et al. 2005]. TQL
facilitates the development of query set specifications that encode large num-
bers of queries and the development of a visual interface for the easy construc-
tion of those specifications. This section describes the structure and semantics
of TQL queries. The structure and semantics of query set specifications are
described in the next section.

A TQL query q consists of a condition tree and a result tree. An example of a
TQL query is shown in Figure 4 and corresponds to the TQL query generated
by the end-user’s interaction with the query form page of Figure 3.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

404 • M. Petropoulos et al.

Definition 4.1. (Condition Tree). The condition tree of a TQL query q is a
labeled tree that consists of:

—element nodes n having an element name name(n) which is a constant or a
name variable, and an element variable var(n). In a condition tree, there can
be multiple nodes with the same constant element name but element and
name variables must be unique. Element variables start with the $ symbol
and name variables start with the $N ;

—AND nodes which are labeled with a Boolean expression b, consisting of
predicates combined with the Boolean connectives ∧, ∨ and ¬. The predi-
cates consist of arithmetic and comparison operators and functions that use
element and name variables and constant values as operands and are under-
stood by the underlying query processor. Each element and name variable
used in b belongs to at least one element node that is either an ancestor of
the AND node, or a descendant of the AND node such that the path from the
AND node to the element node does not contain any OR nodes. The Boolean
expression may also take the values true and false;

—OR nodes.

The following constraints apply to condition trees:

(1) The root element node of a condition tree is an AND node.
(2) OR nodes have AND nodes as children.

Figure 4 shows the TQL query for the example of Figure 3. Note that two
conditions are placed on diameter of cylindrical sensors corresponding to the
height and width of rectangular sensors. Omitted are the variables that are not
used in the condition or the result tree.

The semantics of condition trees is defined in two steps, OR-removal and
binding generation. OR-removal is the process of transforming a condition tree
with OR nodes into a forest of condition trees without OR nodes, called con-
junctive condition trees in the remainder of the article. OR-removal for the con-
dition tree of Figure 4(a) results in the set of the four condition trees shown in
Figure 5.

Intuitively, OR-removal is analogous to turning a logical expression to dis-
junctive normal form [Genesereth and Nilsson 1987]. In particular, we repeat-
edly apply the rules shown in Figure 6. Without loss of generality, the subtrees
of Figure 6 are presented with 2 or 3 children. At the point where we can no
longer apply the rules, we have produced a tree with an OR root node which
we replace with the forest of conjunctive condition trees, consisting of all the
children of the root OR node. Notice that wherever this process generates AND
nodes as children of AND nodes, these can merged, and the Boolean expression
of the merged node is the conjunction of the Boolean expressions of the original
AND nodes. Also notice that the Boolean expression of the root AND node in
the first rule cannot contain any variables in subtrees B or C per the earlier
definition of condition trees. Finally, notice that in the course of OR-removal,
intermediate results may not be valid condition trees by Definition 4 (in par-
ticular, constraint 2 can be violated), but the final results obviously are. The

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 405

Fig. 5. Conjunctive condition trees.

Fig. 6. OR-removal replacement rules.

semantics of the original condition tree is given in terms of the semantics of the
resulting conjunctive condition trees.

A conjunctive condition tree C produces all bindings for which an input loto
t satisfies C. Formally, a binding is a mapping β from the set of element vari-
ables and name variables in C to the nodes and node labels of t such that
the child of the root of C (which is an AND node) matches with the root of t,
that is, β(var(child (root(C)))) = root(t), and recursively, traversing the two
trees top-down, for each child ni of an element node n in C, assuming var(n) is
mapped to a node x in t, there exists a child xi of x, such that β(var(ni)) = xi
and, if xi is not a leaf node:

—if name(ni) is a constant, name(ni) = name(xi),
—if name(ni) is a name variable, β(name(ni)) = name(xi).

Importantly, AND notes in C are ignored in the traversal of C. In particular, in
the previous definition, by “child of the element”, we mean either element child
of the element, or the child of an AND node that is the child of the element. A
binding is qualified if it makes true the Boolean expressions that label the AND
nodes of C. Notice that it is easy to do AND-removal on conjunctive condition

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

406 • M. Petropoulos et al.

Table I. Bindings for Conjunctive Condition Trees of Figure 5

trees. Let a1, . . . , an be the AND nodes in a CCT with root a, and let b1, . . . , bn,
and b be their Boolean expressions. We can eliminate a1, . . . , an, and replace b
with b AND b1 and . . . and bn.

The result of C is the set of qualified bindings. For a conjunctive condition
tree with element and name variables $V1, . . . , $Vk , a binding is represented
as a tuple [$V1 : v1, . . . , $Vk : vk] that binds $Vi to node or value vi, where
1 ≤ i ≤ k. A binding of some of the variables in a (conjunctive) condition tree
is called a partial binding. Note that the semantics of a binding requires total
tuple assignment [Quass et al. 1995], that is, every variable binds to a node or
a string value.

The semantics of a condition tree is defined as the union of the bindings
returned from each of the conjunctive condition trees in which it is transformed
by OR-removal. For example, the result of the four conjunctive condition trees
shown in Figure 5 on the source loto of Figure 2(a) is shown in Table I. The
union of the sets of bindings does not need to remove duplicate bindings or
bindings that are subsumed by other bindings (e.g., CCT2 rows are subsumed
by CCT1 rows in Table I.) The necessary duplicate elimination is performed
during construction. Notice that three of the four conjunctive condition trees
generate two bindings each. Notice also that the union is heterogeneous in
the sense that the conjunctive condition trees can contain different element
variables and thus their evaluation produces heterogeneous binding tuples.

This shows that the semantics of an OR node is that of union, and it cannot be
simulated by a disjunctive Boolean condition labeling an AND node. OR nodes,
therefore, are necessary for queries over semistructured data sources (e.g.,
sources whose XML Schema makes use of choice groups and optional elements.)

The condition tree corresponds intuitively to the WHERE part of XML query
languages such as [Deutsch et al. 1998] XML-QL, LOREL, [Quass et al. 1995]
and XMAS, [Boag et al. 2005] to the extract and match parts of XML-GL [Comai
et al. 2001], and to the FOR and WHERE clauses of a FLWOR expression of XQuery
[Boag et al. 2005]. The result tree correspondingly maps to the CONSTRUCT clause
of XML-QL and XMAS, the SELECT clause of LOREL, the clip and construct parts
of XML-GL, and the RETURN clause of a FLWOR expression of XQuery. A result
tree specifies how to build new XML elements using the bindings provided by
the condition tree.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 407

Definition 4.2. (Result Tree). A result tree of a TQL query q is a node-
labeled tree that consists of:

—element nodes n having an element name name(n) which is a constant if n is
an internal node, and a constant or a variable that appears in the condition
tree of q f n is a leaf node;

—a group-by label G and a sort-by label S on each node. A group-by label G is a
(possibly empty) list of variables [$V1, . . . , $Vn] from the condition tree of q,,
A sort-by label S is a list of ($Vi, Oi) pairs, where $Vi is a variable from the
condition tree of q, and Oi zis the sorting order determined for $Vi. Oi can
take the values “DESC” for descending or “ASC” for ascending order. Each
variable in the sort-by list of a node must appear in the group-by list of the
same node. Empty group-by and sort-by labels are omitted from figures in
the remainder of the article;

—a Boolean expression b on each node consisting of predicates combined with
the Boolean connectives ∧, ∨ and ¬. The predicates consist of arithmetic and
comparison operators and functions that use element and name variables
appearing in the condition tree of q, and constant values as operands.

Every element or name variable must be in the scope of some group-by list
or Boolean condition. Similar to logical quantification, the scope of a group-
by list or a Boolean condition of a node is the subtree rooted at that node.
Figure 4(b) shows the result tree for the example of Figure 3. Note that the
rows of the XHTML tables that contain the static column names are omitted
from the result tree for presentation clarity. Group-by and sort-by labels are the
TQL means of performing grouping and sorting. The intuition behind Boolean
expressions on nodes is that they provide control on the construction of nodes in
the result of a query: A node (and its subtree) is only added to the result of the
query if there is at least one qualified binding of the variables in the condition
for that node that renders it true.

Given a TQL query with condition tree and result tree, the answer of the
query on given input is constructed from the set of qualified bindings of the
condition tree. In what follows, binding refers to qualified binding. The result is
a loto constructed by structural recursion on the result tree, formally described
in the following. The recursion uses partial bindings to instantiate the group-by
variables and condition variables of element nodes.

Traversing the result tree top-down, for each subtree tree(n) rooted at el-
ement node n with group-by label [$V1, . . . , $Vk] and, without loss of gener-
ality, sort-by label [$V1, . . . , $Vm] (m ≤ k), let µ = [$VA1:vA1,...,$VAn:vAn

] be a

partial binding that instantiates all the group-by and condition variables of
the ancestors of n, let the Boolean expressions of n and its ancestors be b
and bA1, . . . , bAh, and let the variables in these expressions that do not appear
among the [$VA1, . . . , $VAn, $V1, . . . , $Vk] be [$B1, . . . , $Bj]. Recursively replace
the subtree tree(n) in place with a list of subtrees, one for each qualified binding
π = [$VA1 : vA1, . . . , $VAn : vAn, $V1 : v1, . . . , $Vk : vk] such that v1, . . . , vm are
string values, by instantiating all occurrences of $VA1, . . . , $VAn, $V1, . . . , $Vk
with vA1, . . . , vAn, v1, . . . , vk , if and only if b, bA1, . . . , bAh all evaluate to true

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

408 • M. Petropoulos et al.

Fig. 7. Resulting loto for bindings of Table I.

for some qualified binding π ′ = [$VA1 : vA1, . . . , $VAn : vAn, $V1 : v1, . . . , $Vk :
vk , $B1 : b1, . . . , $Bj : bj] (otherwise the subtree is not included in the list of
subtrees produced.) The list of instantiated subtrees is ordered according to the
conditions in the sort-by label.

Figure 7 shows the resulting loto from the TQL query of Figure 4 and the
bindings of Table I. Note, for example, that for each of the two distinct partial
bindings of the triple [$PROD, $NAME, $DIST], one tr element node is created,
and that for each such binding, different subtrees rooted at the nested table
element nodes are created, corresponding to different π bindings. Finally, out
of the three Boolean expressions that label the img elements in Figure 4(b),
only the first one evaluates to true for both sensors, based on the bindings of
variable $NAME in Table I.

The QURSED system uses the TQL queries internally but issues queries
in the standard XQuery language by translating TQL queries to equivalent
XQuery statements. The algorithm for translating TQL queries to equivalent
XQuery statements is given in Appendix A. The XQuery specification is a work-
ing draft of the World Wide Web Consortium (W3C). For a more detailed pre-
sentation of the language and its semantics, see Boag et al. [2005] and Draper
et al. [2005].

The TQL query generated by a query form page is a member of the set of
queries encoded in the query set specification of the QFR. The next section
describes the syntax and semantics of query set specifications.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 409

Fig. 8. Query set specification.

5. QUERY SET SPECIFICATION

Query set specifications are used by QURSED to succinctly encode in QFRs
large numbers of possible queries. In general, the query set specification can
describe a number of queries that is exponential in the size of the specification.
The specification also includes a set of dependencies that constrain the set of
queries that can be produced.

The developer uses the Editor to visually create a query set specification like
the one in Figure 8. This section formally presents the query set specification
that is the logical underpinning of QFRs.

Definition 5.1. (Query Set Specification). A query set specification, QSS, is
a 4-tuple 〈 CTG, RTG, F, D〉, where:
—CTG, the condition tree generator, is a condition tree with three modifications:

• AND nodes ai can be labeled with a set of Boolean expressions B(ai),
• the same element or name variable can appear in more than one condition
fragments,
• Boolean expressions can use parameters, also known as placeholders [Levy
et al. 1996], as operands of their predicates. Parameters are denoted by the
$# symbol and must bind to a value [Biron and Malhotra 2004].
The same constraints apply to a CTG as to a condition tree:

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

410 • M. Petropoulos et al.

Fig. 9. Query formulation process.

—RTG, the result tree generator, is a result tree with two modifications. First,
the variables that appear in the sort-by label S on a node do not have a
specified order (ascending or descending,) as in the case of a result tree but
they have a parameter instead, called ordering parameter, that starts with
the $#O . Second, the Boolean expressions on nodes can use parameters as
operands of their predicates. Boolean expressions on nodes involving only
parameters and constants as operands (no variables) are a special case since
they can be evaluated as soon as the parameters are instantiated. Their use
is described later in Section 7.5.

— F is a nonempty set of condition fragments. A condition fragment f is defined
as a subtree of the CTG, rooted at the root node of the CTG, where each
AND node ai is labeled with exactly one Boolean expression, b ∈ B(ai). Each
variable used in b must belong to a node included in f . F always contains
a special condition fragment f R , called result fragment, that includes all
the element nodes whose variables appear in the RTG, all its AND nodes
are labeled with the Boolean value true, and has no parameters. The result
fragment intuitively guarantees the safety of the result tree.

— D is an optional set of dependencies. Dependencies are defined in Section 6.1.

For example, the query set specification of Figure 8 encodes, among others,
the TQL query of Figure 4. The CTG in Figure 8(a) corresponds partially to the
set F of condition fragments defined for the query form page of Figure 3. Three
condition fragments are indicated with different shades of gray:

(1) condition fragment f1 is defined by the dark grey subtree and the Boolean
expression on the root AND node of the CTG that applies a condition to the
name element node;

(2) condition fragment f2 is defined by the medium gray subtee and the Boolean
expressions that apply a condition to the dimensions of cylindrical and rect-
angular sensors ; and

(3) condition fragment f R (the result fragment) is defined by the light grey
subtree that includes all the element nodes whose variables appear in the
RTG in Figure 8(b), and imposes no Boolean conditions.

How the developer produces a query set specification via the Editor is de-
scribed in Section 7.

6. QUERY FORMULATION PROCESS

Figure 9 summarizes the query formulation process of the QURSED run-
time engine. The process starts by accepting a QSS(CTG, RTG, F, D) and a

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 411

query/visual association provided by the interaction of the developer with the
Editor, and a partial valuation of its parameters provided by the end-user’s in-
teraction with the query form page. The process terminates by outputting an
XQuery expression.

Parameter Instantiation. The run-time engine first instantiates the param-
eters of the condition tree generator CTG and the result tree generator RTG.
In particular, during the end-user’s interaction with the query form page and
based on which form controls she fills out and on the query/visual association,
a partial valuation v over P , where P is the set of the parameters that appear
in the QSS, is generated. As an example partial valuation, consider the one
generated by the query form page of Figure 3 from the constant values the
end-user provides:

v = {$#PROT1:“NEMA3”, $#DIMX:“20”, $#DIMY:“40”, $#O NAME:“DESC”, $#O DIST:“ASC”}.
Based on v, the run-time engine instantiates the parameters of condition

fragments in F . For example, the above partial valuation instantiates the pa-
rameters $#DIMX and $#DIMY of condition fragment f2 of Figure 8(a) which
imposes a condition on the dimensions of the sensor’s body type. Similarly,
the ordering parameters of the sort-by labels of the RTG and the parame-
ters of Boolean expressions labeling nodes of the RTG are instantiated. The
ordering parameters can take the values “DESC” or “ASC”, as in the case of
$#O NAME and $#O DIST in the partial valuation just presented. An example of
an RTG where parameterized Boolean expressions are labeling its nodes is
shown in Section 7.5. Finally, the run-time engine also instantiates the param-
eters of the set of dependencies D. Dependencies are presented in the next
section.

FragmentActivate Algorithm. As a second step on Figure 9, the FragmentAc-
tivate algorithm inputs the instantiated CTG and the set of condition fragments
F and outputs the set of active condition fragments. The algorithm renders a
condition fragment active if it has all its parameters instantiated by the par-
tial valuation v. Since the partial valuation v might not provide values for all
the parameters used in the CTG, some condition fragments are rendered inac-
tive. Based on the previous example partial valuation, condition fragment f2 of
Figure 8(a) and the condition fragment that imposes a condition on protection
rating (not indicated in Figure 8(a) are rendered active, while condition frag-
ment f1 on the manufacturer’s name is inactive, since parameter $#NAME is not
instantiated by v. As a special case, the result fragment f R is always active
since it does not have any parameters.

Note that the FragmentActivate algorithm in Figure 9 also inputs the set of
dependencies D which further complicate the algorithm. Both the dependencies
and the revised version of the FragmentActivate algorithm are presented in the
next section.

QSS2TQL Algorithm. The set of active condition fragments and the instan-
tiated RTG are passed to the QSS2TQL algorithm which outputs a TQL query
by formulating its condition tree CT and its result tree RT. The CT consists
of the union of the nodes of the active condition fragments f1, . . . , fn, along
with the edges that connect them. Each AND node nAND in the CT is annotated

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

412 • M. Petropoulos et al.

with the conjunction c1 ∧ . . . ∧ cn of the Boolean expressions c1, . . . , cn that an-
notate the node nAND in the fragments f1, . . . , fn, respectively.

Similarly, in order to convert the RTG to the RT, the QSS2TQL algorithm
first eliminates from the RTG the subtrees rooted at nodes labeled with a
Boolean expression b that has uninstantiated parameters or evaluates to false,
as further explained in Section 7.5. Then for every node that has a sort-by
label S, we keep in the label only the variables with instantiated ordering
parameters.

As an example of the QSS2TQL algorithm, consider the CT of Figure 4(a)
which is formulated based on the active condition fragments of Figure 8(a), that
is, f2, the condition fragment that imposes a condition on protection rating, and
the result fragment f R . Accordingly, the RT of Figure 4(b) is formulated from
the RTG of Figure 8(b) where the variable $#N BODY is excluded from the top
sort-by list, since its ordering parameter $#O N BODY is not instantiated by the
example partial valuation above.

TQL2XQuery Algorithm. The final step of the query formulation process on
Figure 9 passes the TQL query as input to the TQL2XQuery algorithm, pre-
sented in Appendix A. The TQL2XQuery algorithm outputs the final XQuery
expression which is sent to the underlying XQuery processor.

6.1 Dependencies

Dependencies allow the developer to define conditions that include or exclude
condition fragments from the condition tree depending on the end-user’s input.
Dependencies provide a flexible way to handle data irregularities and structural
variance in the input data and a declarative way to control the appearance of
visual fragments.

Definition 6.1. (Dependency). A dependency d is defined as a 3-tuple
〈 f , B, H〉 over a set of condition fragments F , where f ∈ F is the dependent
condition fragment and B is the condition of the dependency consisting of predi-
cates combined with the Boolean connectives ∧, ∨ and ¬. The predicates consist
of arithmetic and comparison operators and functions that use parameters from
the CTG and constant values as operands. The set H ⊆ F , called the head of the
dependency, contains the condition fragments that use at least one parameter
that appears in B.

A dependency d holds if each parameter pi in B is instantiated in a condi-
tion fragment in H that is active and B evaluates to true. In the presence of
dependencies, a fragment f is active if all its parameters are instantiated and
at least one of the dependencies, where f is the dependent condition fragment,
holds. Intuitively, a set of dependencies constrains the set of queries a query
set specification can generate by rendering inactive the dependent condition
fragments when none of their dependencies hold. For example, consider the
condition tree generator and condition fragments of Figure 10(a), and let us
define two dependencies d1 and d2 as follows:

〈 f2, $#BODY = “cylindrical”, { f1}〉 (d1)
〈 f3, $#BODY = “rectangular”, { f1}〉. (d2)

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 413

Fig. 10. Condition tree generator and dependencies graph.

Fig. 11. Dependencies on the query form page.

The condition fragment f1 uses the parameter $#BODY that appears in the
condition of both dependencies on f2 and f3. If a value is not provided for
$#BODY, then neither dependency holds, and f2 and f3 are inactive. If the value
“cylindrical” is provided, then f1 is active, the condition for d1 is true, and so
f2 is rendered active.

Dependencies affect the appearance of a query form. In particular, QURSED
hides from the query form page those visual fragments whose condition frag-
ments participate in dependencies that do not hold. For example, Figure 11
demonstrates the effect of dependencies d1 and d2 on the query form page of
Figure 3. The two shown sets of form controls are the visual fragments of the
condition fragments shown in Figure 10(a). For instance, the condition frag-
ment f1 applies a condition to the element node labeled with $BODY and its
visual fragment consists of the “Body Type” form control. End-user selection of
the “Cylindrical” option in the “Body Type” form control results in having d1
hold which makes the visual fragment for f2 visible (Figure 11(a)). Notice that
f2 is still inactive: values for “Diameter” and “Barrel Style” need to be provided.
Notice also that an inactive condition fragment whose dependencies do not hold
has no chance of becoming active in QURSED: its visual fragment is hidden,
so there is no way for the end-user to provide values for the parameters of the
condition fragment.

Obviously, circular dependencies must be avoided since the involved depen-
dent fragments can never become active. This restriction is captured by the
dependency graph:

Definition 6.2. (Dependency Graph). A dependency graph for a set of de-
pendencies D and a set of condition fragments F is a directed labeled graph
G = 〈V , E〉, where the nodes V are the condition fragments in F and, for every
dependency d in D, there is an edge in E from every condition fragment fi

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

414 • M. Petropoulos et al.

Fig. 12. QURSED editor architecture.

in the head H of d to the dependent condition fragment f , labeled with the
condition B of d .

The dependency graph for the dependencies d1 and d2 defined above is shown
in Figure 10(b). QURSED enforces that the dependency graph is acyclic.

The QURSED system activates the appropriate visual fragments (updating
the query form page) and condition fragments based on which parameters have
been provided and which dependencies hold. The algorithm for resolving the
dependencies to decide which fragments are active, called FragmentActivate,
is based on topological sort [Knuth 1973] (hence of complexity �(V + E)) and
is outlined in the following. Note that, when evaluating a condition b of a de-
pendency, any predicates that contain uninstantiated parameters evaluate to
false.

Algorithm FragmentActivate
Inputs: A dependencies graph G = 〈V , E〉, and a partial valuation v over P ,
where P is the set of the parameters that appear in the QSS.
Output: The set A of active condition fragments.
Method:
A ← � 1
Compute the set of fragments B, whose parameters are all instantiated 2
by v
For each edge (n, u) in E 3

Evaluate the condition on edge (n, u) 4
Repeat 5

Īf node u belongs to B and has no incoming edges 6
A ← {u} 7
Īf node u belongs to B, has an incoming edge (n, u), 8

where n belongs in A and the condition on (n, u) is true
A ← {u} 9

Until A reaches fixpoint 10
Section 7.2 describes how the developer can define dependencies using the

Editor.

7. QURSED EDITOR

The QURSED Editor is the tool the developer uses to build QFRs. Figure 12
shows the Editor’s architecture, how the developer interacts with the graphical
user interface, and how the Editor interprets these visual actions in order to
construct the QSS and the query/visual association of a QFR.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 415

Fig. 13. Building a condition fragment.

The developer builds a condition tree generator by constructing a set of
Boolean expressions based on the input XML Schema in the form of an EST
and the input XHTML query form page that are displayed to her. Internally,
the Editor interprets the set of Boolean expressions as the set of condition frag-
ments of the QSS and the query/visual association. The Editor constructs the
CTG by building each condition fragment f as if f was the only fragment of
the condition tree generator and then merging f with the CTG. A key step in
that process is that the Editor must check if f is meaningful by considering the
presence of CHOICE elements in the EST and, if necessary, manipulating f by
introducing heuristically structural disjunction operators (OR nodes). The de-
veloper also builds the set of dependencies on the set of condition fragments that
become part of the QSS. These processes are described in Sections 7.1 and 7.2.

For the construction of the result tree generator, the developer has two
choices that are illustrated as a diamond on Figure 12. Either an XTMHL
template report page is automatically constructed based on the EST (schema-
driven), or one is provided as an input (template-driven). Either way, the Editor
constructs internally an RTG that becomes part of the QSS. This process is de-
scribed in Section 7.3. The developer can also further customize the template
report page report by building Boolean expressions and adding dynamic pro-
jection functionality, presented in Sections 7.4 and 7.5.

A key benefit of the Editor is that it enables the easy generation of semistruc-
tured queries with OR nodes by considering the presence of CHOICE elements
in the EST. The following sections describe the visual actions and their trans-
lation to corresponding parts of the query set specification using the QSS of
Figure 8 and the QFR of Figure 3 as an example.

7.1 Building Condition Tree Generators

Figure 13(a) demonstrates how the developer uses the Editor to define the
condition fragment f1 of Figure 8(a). The main window of the Editor presents
the sample EST of Section 3.1 on the left panel and the query form page on the
right panel. The query form page is displayed as an XHTML tree that contains a
form element node and a set of form controls, that is, select and input element

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

416 • M. Petropoulos et al.

nodes [Raggett et al. 1999]. The XHTML tree corresponds to the page shown
on Figure 13(b) rendered in the Site WYSIWYG XHTML editor [Macromedia
2003]. Based on this setting, the developer defines the condition fragment f1
of Figure 8(a) that imposes an equality condition on the manufacturer’s name
by performing the four actions indicated by the arrows on Figure 13(a).

The developer starts by clicking on the “New Condition Fragment” button
(Action 1 of Figure 13(a) and providing a unique ID which is manufacturer name
in this case. The middle panel lists the condition fragments defined so far and
the expression editor at the bottom allows their definition, inspection, and revi-
sion. Then, the developer builds a Boolean expression in the expression editor
by dragging and dropping the equality predicate (Action 2) and setting its left
operand to be the element node name (Action 3). The full path name of the
node appears in the left operand box and is also indicated by the highlighting
of the name element node on the left panel. As a final step, the developer binds
the right operand of the equality predicate to the select XHTML form control
named man name select (Action 4), thus establishing a query/visual association
and defining as the visual fragment the “Manufacturer” form control shown in
Figure 13(b). Internally, the Editor creates the parameter $#NAME, associated
with the “Manufacturer” form control of Figure 13(b), and sets it as the right
operand of the Boolean expression as Figure 8(a) shows.

In order to build more complex condition fragments, Actions 2, 3, and 4 can
be repeated multiple times, thus introducing multiple variables and parame-
ters and including more than one XHTML form controls in the corresponding
visual fragment.

Note that, even though the visual actions introduce variables and parameters
in the condition fragment, the developer does not need to be aware of their
names. In effect, variables correspond to path names and parameters to XHTML
form control names. The Editor interprets the Boolean expression as a condition
fragment that contains all paths of the expression.

7.1.1 Automatic Introduction of Structural Disjunction. The semistruc-
turedness of the schema (CHOICE nodes and optional elements) may render the
Boolean expression meaningless and unsatisfiable. The Editor automatically,
and by employing a heuristic, manipulates a condition fragment f by introduc-
ing structural disjunction operators (OR nodes) that render f meaningful.

For example, consider the query form page of Figure 13(b), where the end-
user has the option to input two dimensions X and Y that define an envelope
for the sensors without specifying a particular body type. Sensors can be either
cylindrical or rectangular. The developer’s intention is to specify that either the
diameter is less than dimensions X and Y , or the height is less than dimension
X , and the width less than Y . The developer constructs the following Boolean
expression by following the previously described steps:

($DIA ≤ $#DIMX ∧ $DIA ≤ $#DIMY) ∨ ($HEI ≤ $#DIMX ∧ $WID ≤ $#DIMY).

The $DIA, $HEI, and $WID variables label the diameter, height and width
elements of the EST. The $#DIMX and $#DIMY parameters are associated with
the “Dimension X” and “Dimension Y” form controls.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 417

However, the query where the above Boolean expression is interpreted as
a condition fragment consisting of the paths to diameter, height, and width
elements is unsatisfiable since no sensor has all of them. The Editor captures
the original intention by automatically manipulating the ∨ Boolean connec-
tive and treating it as an OR node of TQL as the condition fragment f2 in
Figure 8(a) indicates. The OR node corresponds to the CHOICE node in the
EST of Figure 2(c). Two AND nodes are also introduced and are labeled with
the conjunctions in the initial Boolean expression: ($DIA ≤ $#DIMX ∧ $DIA ≤
$#DIMY) and ($HEI ≤ $#DIMX ∧ $WID ≤ $#DIMY). The manipulation of a condition
fragment is part of the ConstructCTG algorithm.

The ConstructCTG algorithm creates a condition tree generator by merging
the condition fragments. It operates incrementally by merging each condition
fragment f with the condition tree generator already constructed from the
previous condition fragments. The main step of the algorithm manipulates f
by employing a heuristic such that f produces meaningful satisfiable queries
given the Boolean expression b. In particular, the algorithm introduces struc-
tural disjunction operators to f by replacing Boolean connectives ∨ in b with
OR nodes as illustrated in the previously mentioned example. The manipula-
tion is driven by the CHOICE nodes and optional elements. An initial step of
the algorithm checks if f can be manipulated to produce meaningful, satisfi-
able queries. This is accomplished by bringing b to disjunctive normal form and
identifying at least one unsatisfiable conjunction. If there is one, then the algo-
rithm terminates, outputting an error. The final step of ConstructCTG merges
f with the input CTG. The order that the condition fragments are passed to
the algorithm does not matter.

The ConstructCTG algorithm assumes a function node($Vi) that, given a
variable name $Vi in b, returns the node ni of the EST that the variable corre-
sponds to, that is, the node of the EST that the developer dragged and dropped.
In the case of name variables, node($Vi) returns the parent of the node that
the developer dragged and dropped. It also assumes the existence of a function
copy(ni) that, given a node ni in the EST, returns the copy of it in f , if there
exists one, or null, otherwise.

Algorithm ConstructCTG
Inputs: A condition fragment f with a Boolean expression b labeling its root
AND node, a condition tree generator CTG, and an EST.
Output: The condition tree generator CTG where f has been added,
or an error if f cannot produce satisfiable queries.
Method:
Step 1: Satisfiability Check of f
Rewrite b in disjunctive normal form such that b = c1 ∨ c2 . . . ∨ cn, 1
where ci is a conjunction of predicates
If a conjunction ci , where 1 ≤ i ≤ n, uses two variables $Vix, $Viy 2
such that the lowest common ancestor of node($Vix) and node($Viy)
in the EST is a CHOICE node

Output an error indicating the unsatisfiable conjunctions 3
Step 2: Manipulation of f
// Introduces OR nodes to f based on CHOICE nodes in the EST
For any two variables $Vix, $Vjy used in conjunctions ci and c j of b, 4
respectively, where 1 ≤ i, j ≤ n and i = j

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

418 • M. Petropoulos et al.

Fig. 14. OR node introduction rules.

Īf both the paths from node($Vix) and node($Vjy) 5
to their lowest element node common ancestor nANSC in the EST
contain either a CHOICE node or an optional element, excluding nANSC

Apply the Rules 1 and 2 of Figure 14 6
// Label AND nodes with Boolean expressions
For each conjunction ci of b, 1 ≤ i ≤ n 7

Īn f , identify the lowest AND node ai that is the common ancestor 8
of all the element nodes labeled with the variables used in ci and
label it with Boolean expression ci
If the AND node is labeled with more than one conjunctions 9

Combine them with the ∨ Boolean connective 10
Step 3: Addition of f to the CTG
Set the children of the root AND node of f as children 11
of the root AND node of the CTG
Take the union of the sets of Boolean expressions labeling 12
the root AND node of f and the root AND node of the CTG and
label the root AND node of the latter with it

Line 6 of the algorithm covers two cases that are illustrated in Figure 14. In
the first case, the node copy(nANSC) does not have an OR child node and Rule
1 shows how the condition fragment f is manipulated. In the second case, the
node copy(nANSC) has an OR child node nOR, and the subtree treeix that contains
node($Vix) is a child of an AND child node nAND of nOR, and treejy that contains
node($Vj y) is a child of copy(nANSC). In this case, Rule 2 does not introduce a
new OR node, but places the subtree rooted at B under the existing OR node
instead.

Figure 15 illustrates an example of the application of the ConstructCTG al-
gorithm on the condition fragments defined on the EST of Figure 15(a). Assume
the developer has built two Boolean expressions b1 and b2, and the Editor has
created the corresponding condition fragments f1 and f2, shown in Figure 15(b)
and (c) respectively. f1 asks for sensors either having diameter less than the
parameter $#DIA or a protection rating equal to the parameter $#PROT1, while
f2 asks for sensors having either diameter less than the parameter $#DIA or
width less than the parameter $#WID so that they fit in a given space. Both con-
dition fragments pass the check of Step 1 of the ConstructCTG algorithm since
both conjunctions of b1 and b2 involve a single variable. In Step 2, structural
disjunction operators are introduced to both fragments, shown in Figure 15(d)
and (e), according to the rules of Figure 14. In f1, element node diameter is
under a CHOICE node in the EST and element node protection rating is op-
tional. So an OR node is introduced under their lowest common ancestor node

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 419

Fig. 15. Example of the ConstructCTG algorithm.

Fig. 16. Node elimination rule.

specs. Similarly, in f2, the nodes diameter and width are both under a CHOICE
node in the EST so an OR node is introduced under the node body type.

Step 3 of the ConstructCTG algorithm just puts f1 and f2 together, thus
constructing the merged CTG shown in Figure 17(a), where the two fragments
are indicated in two different tones of gray.

7.1.2 Eliminating Redundancies. The Editor eliminates redundancies on
the merged CTG in order to improve the performance of the generated TQL
queries. As shown in Amer-Yahia et al. [2001], efficiency of tree pattern queries
depends on the size of the pattern, so it is essential to identify and eliminate
redundant nodes. More specifically, according to the rule of Figure 16, the Editor
renders redundant an element node that has a sibling node labeled with the
same variable.

The application of the rule takes time linear to the number of nodes of the
CTG. The process of eliminating redundant nodes could also be performed on
TQL queries, instead of the CTG, at run-time. Either way, the final TQL query
is the same so it is preferable to perform the optimization at compile-time.

The rule is eliminating redundancies particularly those introduced during
the construction of the CTG as presented in the previous section. For example,
the ConstructCTG algorithm constructs the CTG of Figure 17(a) by merging
two fragments. The path from the sensors node to the specs node appears in
both condition fragments, and every element node along the path is labeled
with the same variable in both fragments. One of these paths is eliminated
by parsing the CTG top-down and iteratively applying the rule of Figure 16.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

420 • M. Petropoulos et al.

Fig. 17. Eliminating redundant nodes on the CTG.

Fig. 18. Building dependencies.

The resulting CTG is shown in Figure 17(b). Note that the rule preserves the
boundaries of the fragments as element nodes are being eliminated.

7.2 Building Dependencies

The Editor provides a set of actions to allow the developer to build a depen-
dency, that is, to select the dependent condition fragment and to construct the
condition of the dependency. As an example, Figure 18 demonstrates how the
developer builds dependency d1 : 〈 f2, $#BODY=“cylindrical”, { f1}〉 of Section 6.1

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 421

Fig. 19. Schema-driven constructed report page.

by performing a set of actions indicated by the numbered arrows. Dependency
d1 sets the condition fragment f2 on the cylindrical dimensions (Figure 10(a)
active if the parameter $#BODY is set to “cylindrical”.

First, the developer initiates a dependency (Action 1 of Figure 18) and enters
a descriptive ID. On the middle panel, a new row appears in the lower table
that lists the dependencies and the expression editor opens at the bottom. She
sets the dependent condition fragment to be the “cylindrical” one (Action 2)
and builds the condition of the dependency in the expression editor (Action
3). She specifies that the left operand of the equality predicate is a parameter
bound to the “Body Type” select form control (Action 4), and designates the
right operand to be the string constant “cylindrical” (Action 5). Note that only
constant values and parameters that bind to form elements can be used in the
condition of the dependency as defined in Section 6.1.

7.3 Building Result Tree Generators

The Editor provides two options for the developer to build the result tree gen-
erator RTG component of a query set specification, each one associated with a
set of corresponding actions. For the first (and simpler) option, called schema-
driven, the developer only specifies which element nodes of the EST she wants
to present on the report page. Then the Editor automatically builds a result
tree generator that creates report pages presenting the source data in the form
of XHTML tables that are nested according to the nesting of the EST. If the
developer wants to structure the report page in a different way than the one
the EST dictates, the Editor provides a second option, called template-driven,
where the developer provides as input a template report page to guide the result
tree generator construction. Both options are described next.

7.3.1 Schema-Driven Construction of Result Tree Generator. The devel-
oper can automatically build a result tree generator based on the nesting of the
EST. For example, Figure 19 shows a report page created from the result tree
generator for the data set and the EST of Figure 2. The creation of the result
tree generator and the template report page is accomplished by performing the

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

422 • M. Petropoulos et al.

Fig. 20. Selecting elements nodes and constructing the template report page.

two actions that are indicated by the numbered arrows on the Editor’s window
of Figure 20.

First, the developer uses the checkboxes that appear next to the element
nodes of the EST to select the ones she wants to present on the report page
(Action 1 of Figure 20). This action sets the report property of the selected ele-
ment nodes in the EST to true and constructs the result fragment f R indicated
in the condition tree generator of Figure 21(a). The variables that will be used
in the result tree generator are also indicated. Then the Editor automatically
generates the template report page (Action 2), displayed on the right panel
of Figure 20, as a tree of XHTML element nodes. Figure 21(c) shows how a
WYSIWYG XHTML editor renders the template report page. The Editor trans-
lates the above actions into a QSS as follows.

In Action 2, the Editor automatically generates the result tree generator of
Figure 21(b) that presents the element nodes selected in Action 1 using XHTML
table element nodes that are nested according to the nesting of the EST. For
illustration purposes, each table element node in Figure 21(b) is annotated
with the EST element node that it corresponds to. Notice, for example, that
the “product” table is nested in the “manufacturer” table as is the case in the
EST. The table headers in Figure 21(c) are created from the name labels of the
selected element nodes. In the tables, the Editor places the element variables of
the element nodes selected in Action 1 as children of td (table data cell) element
nodes. For example, in the result tree generator of Figure 21(b), the element
variable $NAME appears as the child of the td element node of the “manufacturer”
table.

We discuss next how each type of semistructureness of the EST is handled
by the Editor on the template report page.

Optional Element Nodes. When the developer includes an optional element
node in the result, the corresponding result fragment will produce results
whether this optional element is or is not present. Figure 21(a) demonstrates
the effect of the visual action to select the optional element image to appear on
the report page.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 423

Fig. 21. Automatically generated result fragment, RTG, and template report page.

Repeatable Element Nodes. The Editor handles the repeatable element nodes
in the EST by automatically generating corresponding table elements and
group-by lists in the result tree generator. For example, the path from the root
of the EST to the name element node that is selected in Action 1 contains the
manufacturer repeatable element node which results in the generation of the
“manufacturer” table element node shown in Figure 21(b), and the group-by
list of its tr (table row) child element node. This group-by list will generate one
table row for each binding of the $MAN element variable.

CHOICE Nodes. CHOICE nodes in the EST require the Editor to automat-
ically generate OR nodes in the result fragment f R as in the case where the
CHOICE node above the cylindrical and rectangular element nodes in the
EST is translated to an OR node in the result fragment f R .

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

424 • M. Petropoulos et al.

The complete algorithm, called AutoReport, for constructing the result frag-
ment and the result tree generator, is presented below. The AutoReport algo-
rithm inputs the EST where some or all of the element nodes are selected for
presentation on the report page, that is, their report property is set to true,
the result fragment f R , and proceeds in two steps. The first step manipulates
the result fragment f R by introducing OR nodes based on CHOICE nodes and
optional elements in the EST. The second step automatically constructs the
result tree generator.

The AutoReport algorithm assumes the existence of a function node($Vi)
that, given a variable name $Vi in f R , returns the node ni of the EST that the
variable corresponds to. In the case of name variables, node($Vi) returns the
parent of the node(s) that the name variable corresponds to. It also assumes
the existence of a function copy(ni) that, given a node ni in the EST, returns
the copy of it in f R , if there exists one, or null, otherwise.

Algorithm AutoReport
Inputs: The EST where some or all of the nodes are selected
for presentation on the report page, and the result fragment f R .
Output: The result fragment f R and the result tree generator RTG.
Method:
Step 1: Manipulation of f R
// Introduce OR nodes in f R based on
// CHOICE nodes and optional elements in the EST
Traversing f R top-down, for an element node ni 1

If ni is labeled with a variable $Vi and parent(node($Vi)) is a 2
CHOICE node and parent(ni) is not an OR node

If there is a sibling nj of ni labeled with a variable $Vj such that 3
node($Vj) is a sibling of node($Vi)

For all sibling element nodes nj of ni labeled with a variable $Vj 4
such that node($Vj) is a sibling of node($Vi)

Apply Rule 1 of Figure 22 5
Else 6

Apply the Rule 2 of Figure 22 // Treat ni as optional element 7
If ni is labeled with a variable $Vi and node($Vi) is optional, 8
or ni is named with a variable $Vi and
at least one child of node($Vi) is optional

Apply the Rules 2 and 3 of Figure 22 correspondingly 9
Step 2: Construction of the result tree generator RTG
Create a node nr named “html”, a node nb named “body”, 10
a node nt named “table”, and a node ntr named “tr”
Set nr as the root of the RTG, nb as a child of nr , 11
nt as a child of nb, and ntr as a child of nt
Traversing the EST top-down and left to right, ignoring SEQ, 12
CHOICE and ALL nodes, for an element node ni

BuildTable(ni , ntr) 13

BuildTable(ni , ntr)
If ni is either repeatable or parent(ni) is a CHOICE node 14

Create a node ntd named “td” and a node nt named “table” 15
Set ntd as a child of ntr and nt as a child of ntd 16
Create a node named “tr” and set it as the current ntr 17
If parent(ni) is a CHOICE node 18

Attach the Boolean expression var(ni) to nt 19

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 425

Fig. 22. OR node introduction rules for result fragment f R .

Fig. 23. Editing the template report page.

If ni is repeatable 20
Add var(ni) to the group-by list of ntr 21

If ni is a selected element node 22
Create a node nth named “th” and add it as a child of ntr 23
Create a node named name(ni) and add it as a child of nth 24
If ni is a leaf element node 25

Create a node named “td”, add it as a child of ntr, 26
and set it as the current ntd
Create a node named var(ni) and add it as a child of ntd 27
If var(ni) is not in any group-by list of an ancestor node 28

Add var(ni) to the group-by list of ntd 29
For every child element node nc of ni 30

BuildTable(nc, ntr) 31

The result fragment f R that is manipulated during Step 1 of the AutoReport
algorithm is merged with the condition tree generator CTG of a QSS according
to Step 3 of the ConstructCTG algorithm of Section 7.1.1 and redundant nodes
are eliminated using the rule of Figure 16 (see Figure 22).

7.3.2 Template-Driven Construction of Result Tree Generator. The devel-
oper can create more sophisticated report pages and result tree generators
by providing the Editor with a template report page she has constructed with
an XHTML editor. For example, on the report page of Figure 3, the developer
wants to display the manufacturer’s name for each sensor product, unlike the
report page on Figure 19 that followed the nesting pattern of the EST, where
the product is nested in the manufacturer element node. To accomplish this,
she constructs the template report page shown in Figure 23 and provides it to
the Editor.

On the right panel of Figure 24, the template report page is displayed. Using
the EST panel and the template report page panel, the developer constructs

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

426 • M. Petropoulos et al.

Fig. 24. Performing element and group-by mappings on the template report page.

the result tree generator of the query set specification of Figure 8. In particular,
the structure of the result tree generator is the structure of the template report
page. The rest of the result tree generator (element variables, group-by, and
sort-by lists) is constructed by performing the actions that are indicated by the
numbered arrows in Figure 24.

First, the developer creates a new element, group-by or sort-by mapping
(Action 1). Depending on what mapping was created, one of Actions 2, 3, or 4 is
performed.

In the case of element mapping, the developer drags element nodes from
the EST and drops them to leaf nodes of the template report page (Action 2).
This action places the variable labeling or naming the dragged element node
in the result tree generator, and adds the path from the root of the EST to the
dragged element node to the result fragment f R . For example, by mapping the
part number element node to the td element node on the template report page,
the $PART variable is implicitly placed in the result tree generator of Figure 8(b).

In the case of group-by mapping, the developer maps element nodes from
the EST to any nodes of the template report page (Action 3). For example, by
mapping the product element node to the tr element node of the outermost
table in the template report page, the $PROD element variable is added to the
group-by list of the tr. This action will result in one tr element node for each
binding of the $PROD element variable.

The case of sort-by mapping is the same as the group-by mapping except the
developer additionally specifies an optional order. For example, by mapping the
sensing distance element node to the tr element node of the outermost table,
the sort-by list of that element, shown in Figure 8(b), is generated. The Editor
automatically defines a group-by mapping for each sort-by mapping if one does
not exists. Note that the developer did not specify a fixed order, ascending
or descending, thus generating the ordering parameter $#O DIST. This choice
allows the end-user to choose the order or exclude sensing distance from the
sort-by list altogether.

Finally, the Editor automatically generates and appends the XHTML repre-
sentation of the “Sort by Options” and “Sort By Selections” drop-down lists to

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 427

the query form page of Figure 3 (Action 5). The “Sort by Options” list contains
the sort-by mappings defined in Action 4 for which a fixed order has not been
specified. The “Sort By Selections” list is initially empty. During run-time, the
end-user can select any item from the “Sort by Options”, select “ASC” or “DESC”
order, and, using the “+” button, add it to the “Sort By Selections” list. When the
end-user submits the query form, the corresponding ordering parameters are
instantiated with the order the end-user selected as explained in the QSS2TQL
algorithm in Section 6.

An engineering benefit from the way the developer builds the result tree gen-
erator is that the template report page can easily be opened from any external
XHTML editor and further customized visually even after the mappings have
been defined.

Based on the above actions, the result fragment f R is defined as the set
of variables used in the result tree generator that the developer manually
constructs. The f R is constructed by Step 1 of the AutoReport algorithm of
Section 7.3.1, merged with the condition tree generator of a QSS according to
Step 3 of the ConstructCTG algorithm of Section 7.1.1, and redundant nodes
are eliminated using the rule of Figure 16.

7.4 Building Result Boolean Expressions

In Figure 3, the manufacturer’s column does not display the name as text but
a corresponding image (logo) is presented instead. This effect is accomplished
by the three img elements, corresponding to the three possible manufacturers
shown in the result tree generator RTG of the QSS in Figure 8 and the Boolean
expressions that label them. These expressions are visually defined by the de-
veloper on the template report page and are translated by the Editor to Boolean
expressions labeling nodes of the RTG.

In order to build these Boolean expressions, the Editor provides the developer
with a set of actions that is similar to the actions provided for the specification
of dependencies as presented in Section 7.2. The setting of the Editor is the
same as the one in Figure 18 except that the “Report” tab is selected in the
middle panel and the “Template Report Page” tab is selected in the right panel.
The developer builds the Boolean expressions by performing the same set of
actions as the ones described in Section 7.2 with two differences.

—In Action 2, the developer selects a node from the template report page from
the right panel instead of a condition fragment to the expression editor’s
“Activate” box in Figure 18. The subtree rooted at the selected node will be
included in the report if the Boolean expression defined in the expression
editor evaluates to true during run-time.

—In Actions 4 and 5, the developer can not only specify parameters and con-
stants as operands of the predicates in the Boolean expression, but also any
variable by dragging any element node from the EST on the left panel.

The Boolean expressions that the developer defines on the template report
page are listed in the “Boolean Expressions” table of the middle panel of
Figure 24.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

428 • M. Petropoulos et al.

Fig. 25. Result Tree Generator with Boolean expressions for dynamic projection.

Note that the Boolean expressions containing variables are translated to
XQuery conditional expressions [Boag et al. 2005], according to TQL2XQuery
algorithm in Appendix A. For example, the three Boolean expressions that label
the img elements in Figure 4(b) are translated to three conditional expressions
as the XQuery expression in Appendix A shows. If the Boolean expressions
contain parameters, then they are evaluated during the formulation of the TQL
query as the QSS2TQL algorithm shows in Section 6. An example of Boolean
expressions containing parameters is given in the next section.

7.5 Dynamic Projection Functionality

On the query form page of Figure 3, the “Customize Presentation” section allows
the end-user to control which columns she wants to project on the report page
by selecting the corresponding checkboxes in the “P” column. This dynamic
projection functionality is provided through the use of Boolean expressions in
the result tree generator RTG of a QSS. Figure 25 shows the RTG of the QSS
of Figure 8 where Boolean expressions controlling the dynamic projection are
labeled td (table data cell) element nodes and are indicated with gray shade.
These Boolean expressions contain projection parameters that start with $#P
and correspond to the checkboxes of the “Customize Presentation” section on

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 429

the query form page of Figure 3. If a checkbox is checked, then the corresponding
Boolean expression evaluates to true and the subtree is included in the result
tree of the TQL query formulated during run-time. These Boolean expressions
are defined by the developer using the actions described in Section 7.4 but
instead of nodes from the EST, the developer sets as operands of the Boolean
expression the checkboxes from the query form page.

The above described process assumes that the developer manually constructs
the “Customize Presentation” table of Figure 3. The Editor has the ability to
construct this table automatically as part of the schema-driven construction of
the RTG described in Section 7.3.1. In this case, the “Customize Presentation”
table is constructed according to the nesting of the EST just as the template
report page is and is structurally the same as the header row of the template
report page. For example, observe that the “Customize Presentation” table on
Figure 3 is structurally the same with the header row of the report page, the
only difference is that it is oriented vertically.

More specifically, during Action 2 of Section 7.3.1, the Editor asks the de-
veloper if she wants to construct a “Customize Presentation” table. If so, the
Editor constructs a table based on the element nodes selected during Action 1
of Section 7.3.1 and lets the developer specify which of them she wants the
end-user to be able to include or exclude on the report page. For example, on
the “Customize Presentation” table on Figure 3, the end-user cannot determine
the projection of “Part Number” and “Sensing Distance”.

8. CONCLUSIONS

We have presented QURSED, a system for the generation of Web-based inter-
faces for querying and reporting semistructured data. We described the sys-
tem architecture and the formal underpinnings of the system, including the
Tree Query Language for representing semistructured queries, and the suc-
cinct and powerful query set specification for encoding the large sets of queries
that can be generated by a query form. We described how the tree queries
and the query set specification accommodate the needs of query interfaces for
semistructured information through the use of condition fragments, OR nodes,
and dependencies. We also presented the QURSED Editor that allows the GUI-
based specification of the interface for querying and reporting semistructured
data and described how the intuitive visual actions result in the production
of the query set specification and its association with the visual aspects of the
query forms and reports. An online demonstration of the system is available at
http://www.db.ucsd.edu/qursed/.

Future work in this area should consider extending the set of queries that
can be expressed with TQL to a bigger subset of XQuery and correspondingly
increase the power of the query set specification in order to capture richer form
(and source) capabilities. It will be a challenge to enhance the query power
while keeping the Editor’s interface as intuitive as it is now. Moreover, given
that the Editor employs heuristics in translating developer input into query set
specifications and (ultimately) QFRs, user studies are necessary to evaluate the
quality of these decisions as well as the usability of form generation systems
and their resulting forms in general.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

430 • M. Petropoulos et al.

QURSED is one of the first attempts to describe formally the logical capabil-
ities of query forms and reports and to clearly separate them from the form and
report presentation. The approach followed by QURSED, to model form capabil-
ities using query set specifications, is promising for other capability modeling
tasks such as the problem of describing and automatically integrating rich data
management-oriented Web services.

APPENDIX

A. TQL2XQUERY ALGORITHM

The algorithm TQL2XQuery works on TQL queries, presented in Section 4.
TQL2XQuery generates an XQuery expression equivalent to the input TQL
query. The XQuery expressions generated by TQL2XQuery include GROUPBY
expressions to efficiently perform the groupings. GROUPBY expressions are not
part of the latest XQuery working draft [Boag et al. 2005] but the draft includes
an issue regarding an explicit GROUPBY construct. Such a construct is presented
in Appendix B. The choice of XQuery augmented with GROUPBY expressions
has been made because of the importance of grouping operations for producing
nested XML and XHTML output. Explicit GROUPBY expressions enable easier
optimization of such grouping operations as shown in Deutsch et al. [2004].
As Appendix B shows, XQuery+GROUPBY expressions can always be translated
to XQuery expressions, often of significantly increased complexity. Their use
results in cleaner query expressions and more opportunities for optimization
but does not affect the generality of the algorithm.

TQL2XQuery inputs a result (sub)tree RT, rooted at nRT, of a TQL query. The
algorithm outputs an XQuery expression using nested FWOR (FOR-WHERE-ORDER
BY-RETURN) expressions and element constructors where FWOR expressions are
always nested in the RETURN clause of their parents. An FWOR expression e de-
fines a scope se. It follows that scopes are nested. Every variable $V in the
FOR clause of an FWOR expression e corresponds to a node n in CT as discussed
in Section 7.1, and we write n = node($V) and $V = var(n). We also write
scope($V) = scope(n) = se to denote the FWOR expression e that has $V in its
scope. In the algorithm, we represent the current scope by S and the current
FWOR expression by E . We define allvars(S) to be the set of all the variables
that are in S or in any scope that S is nested in, and we assume that the root
NCT of the CT is known to the algorithm.

Initially, the algorithm is called with TQL2XQuery(NRT, �, nil). NRT is the
root of RT for the TQL query under translation. The initial scope is empty as
is the initial FWOR expression.

Algorithm TQL2XQuery
Inputs: An RT node nRT, the current scope S, and the current FWOR expression E.
Output: An XQuery expression equivalent to the input TQL query.
Method:
Traverse RT top-down and left-to-right. For an element node nRT of RT:
Set V variables in the group-by list G of 1
nRT ←variables in the attached Boolean expression b of nRT
If S is empty and V is not empty then // Top-level group-by list 2

C̄reate a new FWOR expression e, with FOR clause: 3

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 431

“FOR var(child(NCT)) IN document(‘source.xml’)”
Set E ← e, S ← se 4
F̄or each child ci of child(NCT) 5
ApplyConditions(ci , V , E, S) 6
Ādd conjunctively to WHERE clause of E the 7

Boolean expression labeling the root AND node NCT
If there exists a variable $Vi ∈ V such that $Vi /∈ allvars(S) 8

// node($Vi) is under an OR node in CT
Create a new FWOR expression e, set E ← e, S ← se 9

For every distinct variable $V i ∈ V and $V i /∈ allvars(S) 10
GenerateResultVariable($Vi , E, S) 11

If the group-by list G of nRT is not empty 12
Add to RETURN clause of E the expression “GROUPBY G AS” 13

If nRT has an attached Boolean expression b 14
Add to RETURN clause of E the expression “IF b THEN” 15

If name(nRT) is a constant 16
Add to RETURN clause of E the expression <name(nRT)> 17
F̄or each child ci of nRT 18
TQL2XQuery(ci , S, E) 19
Add to RETURN clause of E the expression </name(nRT)> 20

Else if name(nRT) is a variable 21
// then the node is guaranteed to be a leaf node,
// see Definition 4.2 in Section 4
Add to RETURN clause of E the expression “{name(nRT)}” 22

If the sort-by list S of nRT is not empty 23
Add to ORDER BY clause of E the S list 24

ApplyConditions(nCT, V , E, S)
// nCT is the current node and V is the top-level group-by list
If nCT is an OR node, not denoting optional element, 25
and no var(nD) is in V , where nD is a descendant of nCT

F̄or each child AND node nAND 26
Create a new SOME. . .SATISFIES expression e′ 27
F̄or each child ci of nAND 28
ApplyConditions(ci , V , e′, se′) 29
Ādd conjunctively to SATISFIES clause of e′ 30

the Boolean expression labeling nAND
Ādd conjunctively to WHERE clause of E the disjunction 31

of all SOME. . .SATISFIES expressions
Else If nCT is an OR node and there is a var(nD) is in V , 32
where nD is a descendant of nCT

F̄or each child AND node nAND having a var(nD) is in V , 33
where nD is a descendant of nAND

F̄or each child ci of nAND 34
ApplyConditions(ci , V , E, S) 35
Ādd conjunctively to WHERE clause of E 36

the Boolean expression labeling nAND
Else If nCT is an AND node 37

F̄or each child ci of nAND 38
ApplyConditions(ci , V , E, S) 39
Ādd conjunctively to WHERE clause of E 40

the Boolean expression labeling nAND
Else 41

GenerateConditionVariable(nCT, E, S) 42
F̄or each child ci of nCT 43
ApplyConditions(ci , V , E, S) 44

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

432 • M. Petropoulos et al.

GenerateConditionVariable(nCT, E, S)
If nCT is an element node 45

Construct a path expression pe = var(parent(nCT))/name(nCT) 46
If nCT has a name variable 47

// refers to the XPath’s name() function [Malhotra et al. 2005]
Construct a path expression pe = var(parent(nCT))/name() 48

Add to FOR/SOME clause of E the variable declaration “var(nCT) IN pe” 49

GenerateResultVariable($V , E, S)
B ← � 50
Find in CT the lowest element node ancestor nLA of node($V) such 51
that, in RT, var(nLA) in allvars(S)
Construct a relative path expression pe initially consisting of var(nLA) 52
Walking down the tree path from nLA to node($V), 53
for a node nCT of CT on that path:

Īf nCT is an element node 54
Construct a path expression pe = var(nLA)/name(nCT) 55
Add to FOR clause of E the variable declaration “var(nCT) IN pe” 56
Īf nCT is an AND node with a Boolean expression b 57
Add b to B 58
Īf nCT has a name variable 59
Construct a path expression pe = var(nLA)/name() 60
Add to FOR clause of E the variable declaration “var(nCT) IN pe” 61
Set nCT as nLA and repeat from line 53 62

For every Boolean expression bi ∈ B 63
F̄or every variable $Vi used in bi and not in allvars(S) 64
GenerateResultVariable($Vi , S, E) 65

Add to WHERE clause of E the conjunction of the expressions in B 66

Initially, the algorithm produces a FWOR expression e for the top-level group-
by list of the RT and applies all conditions that appear in CT. This step ensures
that the top-level group-by list, and all subsequent ones, is applied on qualified
bindings only. All variables in CT that are not under an OR node are declared
in the FOR clause of e. The Boolean expression labeling the root AND node of CT
appears in the WHERE clause of e. For each OR node in CT, the algorithm produces
a SOME. . .SATISFIES expression e′. The set of e′ expressions are connected using
Boolean disjunction and placed in the WHERE clause of e. Nested OR nodes in
CT result in nested SOME. . .SATISFIES expressions. All variables in CT that
are under an OR node are declared in the SOME clause of some e′. Boolean
expressions labeling AND nodes that are children of an OR node appear in
the SATISFIES clause of some e′. This step is implemented in lines 2–7 and the
subroutines ApplyConditions and GenerateConditionVariable.

As a second step, the algorithm traverses the result tree depth-first and
produces a FWOR expression, nested in the RETURN clause of the enclosing FWOR
expression when it encounters a group-by list containing a variable labeling a
node under an OR node in CT (lines 8–9). The FOR clause of the FWOR expression
declares the variables in the group-by list by traversing the condition tree (lines
10–11 and subroutine GenerateResultVariable). If the nodes of the result tree
have an attached Boolean expression, then an IF. . .THEN condition expression
is added to the RETURN clause of the FWOR expression (lines 14–15). Each node
of the result tree either constructs an element or generates element content
in the RETURN clause (lines 16–22). Finally, if a node in the result tree has a

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 433

sort-by list, then an ORDER BY clause is added (lines 23–24.) The complexity of
the TQL2XQuery algorithm is polynomial in the size of the input CT and RT.

The following XQuery expression is generated from the TQL2XQuery algo-
rithm for the TQL query in Figure 4. Notice that the algorithm can be enhanced
easily to add a name attribute to all constructed nodes (on line 14) with the value
of the attribute being, for example, the complete path of the node. That would
allow us, for example, to name the different <tr>, <td> and <table> elements.

<html>
<body>
<table>{
FOR $root IN document(‘‘source.xml’’),

$S IN $root/sensors,
$MAN IN $S/manufacturer,
$NAME IN $MAN/name,
$PROD IN $MAN/product,
$PART IN $PROD/part number,
$SPEC IN $PROD/specs,
$DIST IN $SPEC/sensing distance,
$BODY IN $SPEC/body type,
$N BODY IN $BODY/name(),
$PROTS IN $SPEC/protection ratings,
$PROT IN $PROTS/protection rating,
$PROT1 IN $PROTS/protection rating

WHERE
$PROT1 = "NEMA3"
AND ((SOME $CYL IN $BODY/cylindrical,

$DIA IN $CYL/diameter,
$BAR IN $CYL/barrel style

SATISFIES $DIA <= 20 AND $DIA <= 40)
OR
(SOME $REC IN $BODY/rectangular,

$HEI IN $REC/height,
$WID IN $REC/width

SATISFIES $HEI <= 20 AND $WID <= 40))
ORDER BY $NAME DESCENDING, $DIST
RETURN
GROUPBY $PROD AS
<tr>{
<td>{
FOR $IMG IN $PROD/image
RETURN
GROUPBY $IMG AS
{$IMG}

}</td>,
<td>{
IF ($NAME = "Turck") THEN "turck.gif"
IF ($NAME = "Balluff") THEN "balluff.gif"
IF ($NAME = "Baumer") THEN "baumer.gif"

}</td>,
{
GROUPBY $PART AS
<td>{$PART}</td>
},
<td>{

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

434 • M. Petropoulos et al.

<table>{
GROUPBY $PROT AS
<tr>{
<td>{$PROT}</td>

}</tr>
}</table>

}</td>,
<td>{$DIST}</td>,
<td>{
<table>{
<tr>{
GROUPBY $N BODY AS
<td>{$N BODY}</td>

}</tr>,
<tr>{
<td>{
FOR $CYL IN $BODY/cylindrical,

$DIA IN $CYL/diameter,
$BAR IN $CYL/barrel style

WHERE
$DIA <= 20 AND $DIA <= 40

RETURN
GROUPBY $CYL AS
<table>{
<tr>{
GROUPBY $DIA AS
<td>{$DIA}</td>,
GROUPBY $BAR AS
<td>{$BAR}</td>

}</tr>
}</table>

}</td>,
<td>{
FOR $REC IN $BODY/rectangular,

$HEI IN $REC/height,
$WID IN $REC/width

WHERE
$HEI <= 20 AND $WID <= 40

RETURN
GROUPBY $REC AS
<table>{
<tr>{
GROUPBY $HEI AS
<td>{$HEI}</td>,
GROUPBY $WID AS
<td>{$WID}</td>

}</tr>
}</table>

}</td>
}</tr>

}</table>
}</td>

}</tr>
}</table>

</body>
</html>

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 435

B. GROUPBY PROPOSAL

The proposal extends the XQuery syntax with the following GroupBy expressions
(productions that follow extend those in http://www.w3.org/TR/xquery/#nt-bnf).

Expr ::= Expr ‘SORTBY’ ‘(’ SortSpecList ‘)’
| UnaryOp Expr
| Expr BinaryOp Expr
| Variable
| Literal
| ‘.’
| FunctionName ‘(’ ExprList? ‘)’
| ElementConstructor
| ‘(’ Expr ‘)’
| ‘[’ ExprList? ‘]’
| PathExpr
| Expr Predicate
| FlwrExpr
| ‘IF’ Expr ‘THEN’ Expr ‘ELSE’ Expr
| (‘SOME’ | ‘EVERY’) Variable ‘IN’ Expr ‘SATISFIES’ Expr
| (‘CAST’ | ‘TREAT’) ‘AS’ Datatype ‘(’ Expr ‘)’
| Expr ‘INSTANCEOF’ Datatype
| GroupBy
/********** new ********/

GroupBy ::= ‘GROUPBY’ VarList? HavingClause? ‘AS’ Expr
/********** new ********/
VarList ::= Variable (‘,’ VarList)?
/********** new ********/
HavingClause ::= ‘HAVING’ Expr
/********** new ********/

The rest of the grammar remains unchanged. A GroupBy expression returns
an unordered collection. The example below refers to the “Use Case XMP” DTD
and data (in http://www.w3.org/TR/xmlquery-use-cases).

EXAMPLE Grouping elements in the returned document. “For each author,
return the number of book titles she published as well as the list of those titles
and their year of publication”.

FOR $b IN document(‘‘http://www.bn.com’’)/bib/book,
$a IN $b/author,
$t IN $b/title,
$y IN $b/@year

RETURN
GROUPBY $a AS
<result> $a,
<number> count(distinct($t)) </number>,
GROUPBY $t, $y AS
<titleYear>
$t,
<year> $y </year>

</titleYear>
</result>

Notice how the same variable $t can be used both outside a GROUPBY and
inside a GROUPBY. Outside the GROUPBY its value is a collection, inside the GROUPBY
its value is a node. The same query can be expressed without GROUPBY as follows.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

436 • M. Petropoulos et al.

To construct an intermediate collection, we only need to apply ‘distinct’ to it and
then to iterate over it:

FOR $a IN distinct(document(‘‘http://www.bn.com’’)/bib/book/author)
LET $t = document(‘‘http://www.bn.com’’)/bib/book[author=$a]/title
RETURN
<result> $a
<number> count(distinct($t)) </number>
FOR $Tup IN distinct(
FOR $b IN document(‘‘http://www.bn.com’’)/bib/book[author=$a],

$t IN $b/title,
$y IN $b/@year

RETURN <Tup> <t> $t </t> <y> $y </y> </Tup>),
$t IN $Tup/t/node(),
$y IN $Tup/y/node()

RETURN
<titleYear>
$t,
<year> $y </year>

</titleYear>
</result>

ACKNOWLEDGMENTS

Our thanks to Spyros Magiatis, Angus Wong, Panagiotis Reveliotis and Clifton
McLellan for their contribution to the design and implementation of XSDesign,
a preliminary version of QURSED, which was part of the Enosys Integration
Platform [Papakonstantinou et al. 2003].

REFERENCES

ABITEBOUL, S., BUNEMAN, P., AND SUCIU, D. 2000. Data on the Web. Morgan Kaufman, San Francisco,
CA.

ABITEBOUL, S., SEGOUFIN, L., AND VIANU, V. 2001. Representing and querying XML with incom-
plete information. In Proceedings of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems.

AMER-YAHIA, S., CHO, S., LAKSHMANAN, L. V. S., AND SRIVASTAVA, D. 2001. Minimization of tree pattern
queries. In Proceedings of the ACM SIGMOD International Conference on Management of Data.

ATZENI, P., MECCA, G., AND MERIALDO, P. 1997. To weave the web. In Proceedings of the 23rd
International Conference on Very Large Data Bases. 206–215.

BEA SYSTEMS, INC. 2005. Liquid Data for WebLogic. http://bea.com.
BERNSTEIN, P. A., BRODIE, M. L., CERI, S., DEWITT, D. J., FRANKLIN, M. J., GARCIA-MOLINA, H., GRAY, J.,

HELD, G., HELLERSTEIN, J. M., JAGADISH, H. V., LESK, M., MAIER, D., NAUGHTON, J. F., PIRAHESH, H.,
STONEBRAKER, M., AND ULLMAN, J. D. 1998. The Asilomar report on database research. SIGMOD
Record 27, 4, 74–80.

BIRON, P. V. AND MALHOTRA, A. 2004. XML Schema Part 2: Datatypes Second Edition. W3C Rec-
ommendation (Oct.). http://www.w3.org/TR/xmlschema-2/.

BOAG, S., CHAMBERLIN, D., FERNANDEZ, M. F., FLORESCU, D., ROBIE, J., AND SIMÉON, J. 2005. XQuery
1.0: An XML Query Language. W3C Working Draft 11 (Feb.). http://www.w3.org/TR/xquery/.

CAREY, M. J., HAAS, L. M., MAGANTY, V., AND WILLIAMS, J. H. 1996. PESTO: An integrated
query/browser for object databases. In Proceedings of the 22nd International Conference on Very
Large Data Bases. 203–214.

CHAWATHE, S. S., BABY, T., AND YEO, J. 2001. VQBD: Exploring semistructured data. In Proceedings
of the ACM SIGMOD International Conference on Management of Data.

CLUET, S., DELOBEL, C., SIMÉON, J., AND SMAGA, K. 1998. Your mediators need data conversion! In
Proceedings of the ACM SIGMOD International Conference on Management of Data. 177–188.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

Graphical Query Interfaces for Semistructured Data: The QURSED System • 437

COHEN, S., KANZA, Y., KOGAN, Y. A., NUTT, W., SAGIV, Y., AND SEREBRENIK, A. 1999. EquiX—Easy
querying in XML databases. In Proceedings of the 2nd International Workshop on the Web and
Databases. 43–48.

COMAI, S., DAMIANI, E., AND FRATERNALI, P. 2001. Computing graphical queries over xml data. ACM
Trans. Inf. Syst. 19, 4, 371–430.

DEUTSCH, A., FERNANDEZ, M. F., FLORESCU, D., LEVY, A. Y., AND SUCIU, D. 1998. XML-QL. W3C Query
Languages Workshop.

DEUTSCH, A., PAPAKONSTANTINOU, Y., AND XU, Y. 2004. The NEXT logical framework for XQuery. In
Proceedings of the 30th International Conference on Very Large Data Bases. 168–179.

DRAPER, D., FANKHAUSER, P., FERNANDEZ, M., MALHOTRA, A., ROSE, K., RYS, M., SIMÉON, J., AND

WALDER, P. 2005. XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Working Draft (Feb.).
http://www.w3.org/TR/xquery-semantics/.

DRAPER, D., HALEVY, A. Y., AND WELD, D. S. 2001. The nimble integration engine. In Proceedings
of the ACM SIGMOD International Conference on Management of Data.

DUBINKO, M., KLOTZ, L. L., MERRICK, R., AND RAMAN, T. V. 2003. XForms 1.0. W3C Recommendation
(Oct.). http://www.w3.org/TR/2003/REC-xforms-20031014/.

EYAL, A. AND MILO, T. 2001. Integrating and customizing heterogeneous e-commerce applications.
VLDB J. 10, 1, 16–38.

FALLSIDE, D. C. AND WALMSLEY, P. 2004. XML Schema Part 0: Primer Second Edition. W3C Rec-
ommendation (Oct.). http://www.w3.org/TR/xmlschema-0/.

FERNANDEZ, M., MALHOTRA, A., MARSH, J., NAGY, M., AND WALSH, N. 2005. XQuery 1.0 and XPath
2.0 Data Model. W3C Working Draft (Feb.). http://www.w3.org/TR/xpath-datamodel/.

FERNANDEZ, M. F., FLORESCU, D., LEVY, A. Y., AND SUCIU, D. 2000. Declarative specification of web
sites with strudel. VLDB J. 9, 1, 38–55.

FERNANDEZ, M. F., MORISHIMA, A., AND SUCIU, D. 2001. Efficient evaluation of XML middle-ware
queries. In Proceedings of the ACM SIGMOD International Conference on Management of
Data.

FRATERNALI, P. 1999. Tools and approaches for developing data-intensive Web applications: A
survey. ACM Comput. Surv. 31, 3, 227–263.

FRATERNALI, P. AND PAOLINI, P. 2000. Model-driven development of Web applications: The AutoWeb
system. ACM Trans. Inf. Syst. 18, 4, 323–382.

GENESERETH, M. AND NILSSON, N. J. 1987. Logical Foundations of Artificial Intelligence. Morgan
Kaufman, San Mateo, CA.

GOLDMAN, R. AND WIDOM, J. 1998. Interactive query and search in semistructured databases. In
Proceedings of the 1st International Workshop on the Web and Databases. 52–62.

KAY, M. 2005. XSL Transformations (XSLT) Version 2.0. W3C Working Draft (Feb.).
http://www.w3.org/TR/xslt20/.

KNUTH, D. E. 1973. The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley.

LEVY, A. Y., RAJARAMAN, A., AND ORDILLE, J. J. 1996. Querying heterogeneous information sources
using source descriptions. In Proceedings of the 22nd International Conference on Very Large
Data Bases. 251–262.

LEVY, A. Y., RAJARAMAN, A., AND ULLMAN, J. D. 1996. Answering queries using limited external
processors. In Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems. 227–237.

LUDÄSCHER, B., PAPAKONSTANTINOU, Y., AND VELIKHOV, P. 2000. Navigation-driven evaluation of vir-
tual mediated views. In Proceedings of the 7th International Conference on Extending Database
Technology. 150–165.

MACROMEDIA, INC. 2003. ColdFusion. http://www.macromedia.com/software/coldfusion/.
MACROMEDIA, INC. 2003. Dreamweaver UltraDev. http://www.macromedia.com/software/

ultradev/.
MACROMEDIA, INC. 2003. HomeSite. http://www.macromedia.com/software/homesite/.
MALHOTRA, A., MELTON, J., AND WALSH, N. 2005. XQuery 1.0 and XPath 2.0 Functions and Opera-

tors. W3C Working Draft (Feb.). http://www.w3.org/TR/xpath-functions/.
MICROSOFT CORP. 2005. ASP.NET. http://www.asp.net/.
MICROSOFT CORP. 2004. BizTalk Server. http://www.microsoft.com/biztalk/.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

438 • M. Petropoulos et al.

MICROSOFT CORP. 2003. Visual InterDev. http://msdn.microsoft.com/vinterdev/.
MUNROE, K. D. AND PAPAKONSTANTINOU, Y. 2000. BBQ: A visual interface for integrated browsing

and querying of XML. In Proceedings of the 5th Working Conference on Visual Database Systems.
277–296.

ORACLE. 2004. XSQL. http://www.oracle.com.
PAPAKONSTANTINOU, Y., BORKAR, V. R., ORGIYAN, M., STATHATOS, K., SUTA, L., VASSALOS, V., AND VELIKHOV,

P. 2003. XML queries and algebra in the Enosys integration platform. Data Knowl. Eng. 44, 3,
299–322.

PAPAKONSTANTINOU, Y., PETROPOULOS, M., AND VASSALOS, V. 2002. QURSED: Querying and reporting
semistructured data. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data. 192–203.

PETROPOULOS, M., VASSALOS, V., AND PAPAKONSTANTINOU, Y. 2001. XML query forms (XQ-Forms):
Declarative specification of XML query interfaces. In Proceedings of the 10th International World
Wide Web Conference. 642–651.

POPA, L., VELEGRAKIS, Y., MILLER, R. J., HERNÁNDEZ, M. A., AND FAGIN, R. 2002. Translating Web
data. In Proceedings of the 28th International Conference on Very Large Data Bases. 598–609.

QUASS, D., RAJARAMAN, A., SAGIV, Y., ULLMAN, J. D., AND WIDOM, J. 1995. Querying semistructured
heterogeneous information. In Proceedings of the 4th International Conference on Deductive and
Object-Oriented Databases. 319–344.

RAGGETT, D., HORS, A. L., AND JACOBS, I. 1999. HTML 4.01 Specification. W3C Recommendation
(Dec.). http://www.w3.org/TR/html4/.

SCHÖNING, H. AND WÄSCH, J. 2000. Tamino—An Internet database system. In Proceedings of the
7th International Conference on Extending Database Technology. 383–387.

SHANMUGASUNDARAM, J., SHEKITA, E. J., BARR, R., CAREY, M. J., LINDSAY, B. G., PIRAHESH, H., AND

REINWALD, B. 2000. Efficiently publishing relational data as XML documents. In Proceedings
of the 26th International Conference on Very Large Data Bases. 65–76.

SILBERSCHATZ, A., STONEBRAKER, M., AND ULLMAN, J. D. 1990. Database systems: Achievements and
opportunities. SIGMOD Record 19, 4, 6–22.

SUN MICROSYSTEMS, INC. 2005. JavaServer Pages. http://java.sun.com/products/jsp/.
TIBCO SOFTWARE INC. 2005. XML Transform. http://tibco.com.
VASSALOS, V. AND PAPAKONSTANTINOU, Y. 2000. Expressive capabilities description languages and

query rewriting algorithms. J. Logic Program. 43, 1, 75–122.
ZLOOF, M. M. 1975. Query by example. In Proceedings of the AFIPS Conference. 431–438.

Received May 2003; revised November 2003; accepted December 2003

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.

