Current State of the Noun Definition Algorithm and Associated
Demonstrations

Scott Napieralski
stn2@cse.buffalo.edu

May 1, 2003

Abstract

This document describes work on the Contextual Vocabulary Acquisition project that was conducted
during the Spring 2003 semester under the supervision of Dr. William Rapaport. The majority of the
work during this semester was focused on updating, improving and annotating the various demonstration
programs that were originally created by Karen Ehrlich. These changes will be described in detail. In

addition, a short examination of the verb algorithm was performed. This work will also be described.

1 Introduction

The work described in this paper was performed as part of the Contextual Vocabulary Acquisition project.
Researchers from the University at Buffalo Departments of Computer Science & Engineering and Learning
& Instruction are cooperating to develop a greater understanding of the human process of learning new
vocabulary from context clues. In order to improve our understanding and test our theories, we have made
use of a computational algorithm that attempts to model the human process of defining an unknown noun
based on context.

The noun definition algorithm implements a theory of how an unknown word can be learned based on
the passages of text in which the unknown word occurs. The information that is contained in a passage is
first encoded as a SNePS network [Shapiro 1999]. Then, when asked to provide a definition for the unknown
word the algorithm searches the SNePS network for certain types of information. When all the relevant

information in the network has been found, the algorithm reports it as a definition for the unknown word.

The major goal of the research performed this semester was to complete work on the demonstration
programs that was begun during the previous semester [Napieralski 2002B]. There are several demonstration
programs derived from Karen Ehrlich’s dissertation [Ehrlich 1995] that illustrate the various capabilities of
the noun algorithm. In order to similarly demonstrate the capabilities of the improved noun definition
algorithm [Napieralski 2002A], these programs required some updates and modifications. Specifically the
“brachet”, “cat”, and “hackney” demos have each been updated, so that they generate definitions that are
at least as complete as the definitions created by the original demos in combination with Ehrlich’s original

noun definition algorithm [Ehrlich 1995].

2 Changes to the Demos

The first task undertaken this semester was to complete the work on the “brachet” demo that was left
incomplete after the fall semester. This consisted of thoroughly annotating the demo and changing the order
in which the information was entered. Previously, the information in the background knowledge file had
been in nearly random order. In the updated file, semantically similar facts and rules are grouped together.
This does not have any effect on SNePS or the algorithm, but it does make the file easier for a human to read
and understand. The completed demo was then sent to Fran Johnson to be included in the set of standard
SNePS demonstrations.

The next task was to examine the “cat” demo and attempt to update it so that it would produce a
definition that was at least as good at the definition given by Ehrlich’s original demonstration. The major
problem with this demo was the difficulty of inferring that cats are mammals after we learn that Pyewacket
bears kittens. At this point in the demonstration, we know that Pyewacket is a mammal and Pyewacket is
a cat and we want to infer that cats are mammals. In order to make this inference, a new rule (figure 1)
was developed (with the help of Dr. Shapiro). The rule is as follows: if X is a member of some class Y and
X is a member of some class Z and Y is an unknown word and Z is not (known to be) a subclass of Y, then
presumably Y is a subclass of Z. In order to make the part of the rule that says “Z is not (known to be)

a subclass of Y” work we used SNeRE, the SNePS Rational Engine [Shapiro 1999]. Although this makes

‘describe
(assert
forall ($x Sy $z)
&ant ((build member "x class "y)
{build member *x class *z)
(build object *y property (build lex "unknown"1))
cq (build
when (build member *x class *y)
do (build action snif
objectl ((build condition
(build subclass "z superclass "y)
then (build action noop))

(build else
(build action believe
objectl
(build mode (build lex "presumably")
object

(build subclass "y superclass *z)))))))))|

Figure 1: This rule allows us to infer that cats are mammals.

for a more complicated rule, it does not change the way that the demo is invoked or used. In addition, to
prevent degenerate situations where SNePS could infer that X is a subclass of Y and Y is a subclass of X,
we added the antecedent that says “Y is an unknown word”. By marking the target word as unknown, we
are modeling the cognitive agent’s awareness that it does has encountered and unknown word and that it is
trying to compute a definition. In order to trigger this antecedent, it was necessary to add some information
to the demonstration. At the beginning of the demo, “cat” is now explicitly marked as a unknown word.
This marking is accomplished by using the “object-property” case frame [Shapiro 1996] where “cat” is the
object and its property “unknown”.

The final noun demo that has been modified is the “hackney” demo. This demo required the fewest
modifications, it immediately provided the same definition using the new noun definition algorithm that it
had provided using Ehrlich’s original noun definition algorithm. Unlike the other demos, changes that were
made to this demo were designed to exploit some information that the original demo had not picked up,
rather than to fix errors or incomplete definitions.

Early in the demo we learn that King Arthur gets on a hackney, then a short time later we learn that
he has jumped off of a horse. Based on this sequence of events, we believed the system should conclude
that hackneys are horses. In order to achieve this goal, the following rules were added to the background
knowledge. The first rule states that if X leaps onto Y and sometime later X leaps off of Z then Y and

7 are equivalent. The second rule says that if two individuals are equivalent and they are each a member

(describe
{add forall ($leaper $thingl $thing2 $timeS $timeT)
&ant ((build agent *leaper
act (build action (build lex "leap onto")
object "thingl)
time "timeS)
(build agent “leaper
act (build action (build lex "leap from")
object *thing2)
time “timeT)
(build before "timeS after "timeT))
cqg (build eguiv "thingl equiv ”IhingEj]l:d

Figure 2: If something leaps onto Y and then leaps off of Z, Y and Z are equivalent.

(describe
(add forall ($3eql Jeqg? 3clsl Jcls2)
&ant ((build eguiv "egl equiv "eg?2)
(build member "egl class "cls1)
(build member "eq? class "cls2)
(build object *clsl propery (build lex "unknown")})
cg (build subclass "clsl superclass ”::I52):l]l|

Figure 3: This rule allows us to infer that cats are mammals.

of some class where the class is unknown, then the unknown class is a subclass of the known class. The
latter rule requires that “hackney” be marked as an unknown word, just as “cat” was previously marked as
“unknown”.

Unfortunately, these rules did not provide the results we were seeking without further modification of
the demo. When the system was told that King Arthur got off of a horse (using the “add” command)
[Shapiro 1999] the forward inference procedure failed to conclude that the thing King Arthur got on and
the thing that he got off of were equivalent. In order to get the system to infer this information, it was
necessary to issue the “clear-infer” [Shapiro 1999] command immediately before adding the knowledge that
King Arthur jumped off a horse. With the addition of a “clear-infer” the system was able to infer the
necessary information.

Currently, the algorithm correctly reports that a hackney is a type of horse, but it does not report this
information as quickly as expected. After we learn that King Arthur jumped off a horse, horse only appears

in the definition as a possible class inclusion. The algorithm does not report the fact that a hackney is

definitely a type of horse until it is asked to provide a definition three more times. At the conclusion of my
work this semester, the reason for this behavior is still unknown. I suspect that it might be caused when
“deduce” commands [Shapiro 1999] embedded in the algorithm find the information at a later time, but I
cannot be sure. The next researcher to work on this project should investigate this matter, both to resolve

the problem and as an excellent way to familiarize himself/herself with the noun algorithm.

3 The Verb Algorithm

The other major task that I performed this semester was an examination of the verb algorithm that was
created during the summer of 2002 by Justin Del Vecchio [Del Vecchio 2002]. Unfortunately, the spring
semester came to a close before I could complete a detailed examination of how the algorithm operates and
compare it to Ehrlich’s original verb definition algorithm [Ehrlich 1995].

During the relatively short period of time that I did work on the verb algorithm, several changes were
made. In order to get the verb algorithm to correctly run on the UB CSE systems under ACL 6.2, several
minor modifications were necessary. These changes were all syntactic in nature, such as adding empty
argument lists to functions that take no arguments. The only other change to the Del Vecchio’s verb
algorithm was that the trace level argument to the main function (defineVerb) was made optional, with the
default set to no tracing.

In order to test the verb algorithm, it was necessary to create a demonstration program for a verb. I
chose to recreate the “joust” demo described in Ehrlich’s dissertation [Ehrlich 1995]. In recreating this demo,
I attempted to follow Ehrlich’s demonstration as closely as possible. Despite this fact, several changes to
the “joust” demo were made, but they all were minor changes. Specifically, the case frames were changed
to conform to the set of case frames expected by the most recent versions of the noun and verb definition
algorithms. The “joust” demo was tested using both the noun and verb algorithms, but there was no time

for a detailed examination of this demo so no major changes to the demo were performed.

4 Future Work

The immediate next step for my successor should be to investigate the strange behavior of the “hackney”
demo that is described above. Specifically, the next researcher should attempt to determine why using “clear-
infer” produces better results and why the algorithm only reports “horse” as a superclass of “hackney” after
the third request for a definition.

Another issue that the next researcher may wish to investigate is the possibility of merging all the
background knowledge files. Currently, each demonstration program has its own set of background knowledge
(contained in files with the extension “.base”). Ehrlich’s original intent was to have a single set of background
knowledge that was used for all of the demos. Fortunately, all of the background files are fairly similar. It
should be possible to merge them into a single file containing all the knowledge that is common to each of
the background files plus all the background information that is unique to each demo. However, if such a
merger is attempted, a thorough examination of each of the demos will be required to insure that the change
has had no unexpected effects. If my experience working on this project has taught me anything, it is that
even the most seemingly benign changes can wreak havoc in a complex system such as SNePS.

Once work on the noun demonstrations has been successfully completed, the researcher should investigate
the verb algorithms, both Del Vecchio’s version and Ehrlich’s version. Neither of these algorithms has been
nearly as well researched and implemented as the noun definition algorithm. In the future, significant effort
should be devoted to creating a verb definition algorithm that is at least as complete as the noun definition
algorithm. After the next investigator has developed a thorough understand of the verb algorithms by
examining them and attempting to develop new demos for them, a longer term goal should be to improve
Del Vecchio’s algorithm. This can probably accomplished by incorporating some of Ehrlich’s old ideas and

implementing some new techniques.

References

[Del Vecchio 2002] Del Vecchio, J. (2002), “Summer Research - 2002 - Verb Algorithm”,
[http://www.cse.buffalo.edu/ jmdv/summer2002-verbalgorithm-jmdv/].

[Ehrlich 1995] Ehrlich, K. (1995), “Automatic Vocabulary Expansion through Narrative Context”,
SUNY Buffalo Computer Science Technical Report 95-09.

[Napieralski 2002A] Napieralski, S. (2002), “An Enhanced Noun Definition Algorithm”
[bttp://www.cse.buffalo.edu/ stn2/cva/summer02/summer-report.pdf].

[Napieralski 2002B] Napieralski, S. (2002), “Progress of the Noun Definition Algorithm During the Fall 2002
Semester”, [http://www.cse.buffalo.edu/ stn2/cva/fall02/reportFall02.pdf].

[Shapiro 1996] Shapiro, S., et. al. (1996). “A Dictionary of SNePS Case Frames”
[http://www.cse.buffalo.edu/sneps/Manuals/dictionary.pdf].

[Shapiro 1999] Shapiro, S. (1999), “SNePS 2.5 User’s Manual”
[ttp://www.cse.buffalo.edu/sneps/Manuals/manual25.ps].

A The Noun Algorithm
(in—package :snepsul)

(defvar sdmode* nil
?Indictates whether algorithm should operate in definition mode (t) which
uses Ehrlich’s logic to decide which information should be reported and
which infomation should be ignored, or teaching mode (nil) which reports
all information that can be found.”)

(defstruct ndefn
?A structure to store and report definitions of nouns”
noun
classInclusions
probableClassInclusions
possibleClassInclusions
structuralElements
probableStructuralElements
possibleStructuralElements
actions
probableActions
possibleActions
properties
probableProperties
possibleProperties
owners
synonyms
possibleSynonyms
agents
spatial
namedIndividuals)

function: defineNoun
created: stn 2002

(defun defineNoun (noun &optional (lexicographicMode t) (traceLevel —1))

” Generates a definition for ’'noun’. If the optional argument
lexicographicMode is t then Ehrlich’s theory will be used to exclude
some information from the definition, else all info will be reported.
If the optional argument traceLevel is specified tracing/debugging will
be enabled. The values of traceLevel are 0—4 where 0 means no

tracing and 4 means trace all functions.”
;5 the default for tracelLevel is —1 so that any tracing set up manually
by the user will not be overridden by the program when the optional
;3 argument traceLevel is not specified.
(setTraceLevel traceLevel)
(setq xdmodex lexicographicMode)
;; get the requested definition and print it in human readable format.
(prettyPrintDef (if lexicographicMode
(defineNounLexicographic noun)
(defineNounTeaching noun))))

L]

N function: defineNounLexicographic
created: stn 2002

”
(defun defineNounLexicographic (noun)
”Makes a list of information that is known about the noun and reports only
the information that is deemed relevant according to Ehrlich’s theory.”
(let (definition)
;5 get all the info
(setf definition (defineNounTeaching noun))
;35 Now examine all the info and eliminate parts that Ehrlich’s theory
says are unnecessary.

;5 if there are class inclusions, don’t report probable class inclusions
(if (ndefn—classInclusions definition)
(or (setf (ndefn—probableClassInclusions definition) nil)
(setf (ndefn—possibleClassInclusions definition) nil)))
;; if there are probable class inclusions, don’t report possible
HN class inclusions
(if (ndefn—probableClassInclusions definition)
(setf (ndefn—possibleClassInclusions definition) nil))
if there are structural elements don’t report probable or possible
;35 struct. elems.
(if (ndefn—structuralElements definition)
;5 using “or” is just a way to make sure that both setf statements
HH get evaluated
(or (setf (ndefn—probableStructuralElements definition) nil)
(setf (ndefn—possibleStructuralElements definition) nil)))
if there are probable structural elements don’t report possible
;5 structural elements
(if (ndefn—probableStructuralElements definition)
(setf (ndefn—possibleStructuralElements definition) nil))
;; if there are actions don’t report probable or possible actions
(if (ndefn—actions definition)
(or (setf (ndefn—probableActions definition) nil)
(setf (ndefn—possibleActions definition) nil)))
;5 if there are probable actions don’t report possible actions
(if (ndefn—probableActions definition)
(setf (ndefn—possibleActions definition) nil))
;5 if there are any type of actions, don’t report agents
(if (or (ndefn—actions definition)
(ndefn—probableActions definition)
(ndefn—possibleActions definition))
(setf (ndefn—agents definition) nil))
;; if there are properties, don’t report probable or possible properties
(if (ndefn—properties definition)

L]

L]

(or (setf (ndefn—probableProperties definition) nil)
(setf (ndefn—possibleProperties definition) nil)))
;; if there are probable properties, don’t report possible properties
(if (ndefn—probableProperties definition)
(setf (ndefn—possibleProperties definition) nil))
;; if there are class inclusions or probable class inclusions,
HK don’t report named individuals
(if (or (ndefn—classInclusions definition)
(ndefn—probableClassInclusions definition))
(setf (ndefn—namedIndividuals definition) nil))

;; now return the revised definition
definition

)

N function: defineNounTeaching
S created: stn 2002

(defun defineNounTeaching (noun)
"Makes a list of all information that is known about the noun.
This information makes up the definition.”
(let (definition)

;5 get a new instance of the structure ndefn

(setf definition (make—ndefn))

;5 populate the fields of the definition structure

;3 the noun itself

(setf (ndefn—noun definition) noun)

;5 class inclusions

(setf (ndefn—classInclusions definition) (findClassInclusions noun))

;; probable (with ’mode presumably’) class inclusions

(setf (ndefn—probableClassInclusions definition)
(findProbableClassInclusions noun))

;5 possible class inclusions

(setf (ndefn—possibleClassInclusions definition)
(classFilter
(findPossibleClassInclusions noun

(append (ndefn—classInclusions definition)
(ndefn—probableClassInclusions definition)))

noun))

;3 structure

(setf (ndefn—structuralElements definition) (findStructure noun))

;5 probable structure

(setf (ndefn—probableStructuralElements definition)
(findProbableStructure noun))

;5 possible structure

(setf (ndefn—possibleStructuralElements definition)
(findPossibleStructure noun (ndefn—classInclusions definition)))

;5 properties

(setf (ndefn—properties definition) (findProperties noun))

;3 probable properties

(setf (ndefn—probableProperties definition) (findProbableProperties noun))

;3 possible properties

(setf (ndefn—possibleProperties definition) (findPossibleProperties noun))

;; owners

(setf (ndefn—owners definition) (findOwners noun))

;3 spatial information

(setf (ndefn—spatial definition) (findSpatial noun))
;; synonyms
(setf (ndefn—synonyms definition) (findSynonyms noun))
;3 possible synonyms
(setf (ndefn—possibleSynonyms definition)
(findPossibleSynonyms noun
(union (ndefn—structuralElements definition)
(ndefn—probableStructuralElements definition

(union (ndefn—classInclusions definition)
(ndefn—probableClassInclusions definition))
(ndefn—owners definition)
(ndefn—synonyms definition)))
;3 agents who act on 'noun’s
(setf (ndefn—agents definition) (findAgents noun))
;; names of specific 'noun’s
(setf (ndefn—namedIndividuals definition) (findNamedIndividuals noun))
;3 actions
(setf (ndefn—actions definition) (act_filter (findActions noun) noun))
;5 probable actions
(setf (ndefn—probableActions definition)
(act_filter (findProbableActions noun) noun))
;5 possible actions
(setf (ndefn—possibleActions definition) (findPossibleActions noun))

;35 we are done using it, so we can run class filter on class inclusion info
(setf (ndefn—classInclusions definition)

(classFilter (ndefn—classInclusions definition) noun))
(setf (ndefn—probableClassInclusions definition)

(classFilter (ndefn—probableClassInclusions definition) noun))

;5 return the definition
definition))

”

function: traceLevel

input: An integer 0—4 representing the amount of tracing info that
should be given:
0 — no tracing
1 — trace only definition function (defineNoun)
2 — trace different definition types (lexicographic,
teaching)
3 — trace top level info finding functions
4 — trace all info finding functions.

created: stn 2002

”

(defun setTraceLevel (level)

(case level

(0 (untrace defineNoun defineNounTeaching defineNounLexicographic
structureOfAll findStructure indiv_struct
findProbableStructure struct—rule struct—presume
findPossibleStructure
struct—indiv findClassInclusions findPossibleClassInclusions
class—indiv findProbableClassInclusions class—sub—sup
class—rule findActions findProbableActions findPossibleActions
act—object—rule act—object—&—rule act—object—presum—rule
act—object—presum—&—rule act—object—noun

10

(1 (trace
(2 (trace
(3 (trace

(4 (trace

obj—act—indiv obj—act—presume—&—rule obj—act—presum—rule
obj—act—&—rule obj—act—rule
findProperties findProbableProperties
findPossibleProperties prop—rule
prop—presume prop—indiv findOwners owner—rel
owner—poss rel—for—owner
syn—sub—sup syn—syn findSynonyms findPossibleSynonyms
eliminateDissimilarClasses similarSuperclassesp noAntonymsp
antonymp eliminateDissimilarStructure similarStructurep
eliminateDissimilarOwners findSpatial
similarOwnersp removeElement findNamedIndividuals named—indiv
findAgents agent—object action—object prop—relation—1
prop—& prop—&-relation—1 prop—&-relation—1—presume
prop—relation—1—presume prop—&—presume prop—relation—2
prop—&—relation—2 prop—relation—2—presume
prop—&-relation—2—presume prop—indiv prop—relation—1—indiv
prop—relation—2—indiv obj—rel—1 obj—&-rel—1 obj—rel—2
obj—&—rel—2 obj—rel—1—presume obj—&-rel—1—presume
obj—rel—2—presume obj—&—rel—2—presume obj—rel—1—indiv
obj—rel—2—indiv loc—prop loc—cls loc—str loc—act—obj
loc—rel loc—own loc—prop—cat loc—cls—cat loc—str—cat
loc—act—obj—cat loc—rel—cat loc—own—cat
))
defineNoun))
defineNoun defineNounTeaching defineNounLexicographic))
defineNoun defineNounTeaching defineNounLexicographic
indiv_struct structureOfAll findStructure findProbableStructure
findPossibleStructure findProperties findProbableProperties
findClassInclusions findProbableClassInclusions
findPossibleClassInclusions
findPossibleActions findActions findProbableActions
findPossibleProperties
findOwners findSynonyms findPossibleSynonyms findSpatial))
defineNoun defineNounTeaching defineNounLexicographic
structureOfAll findStructure findSpatial
findProbableStructure struct—rule struct—presume
findPossibleStructure
struct—indiv findClassInclusions findPossibleClassInclusions
class—indiv findProbableClassInclusions class—sub—sup
class—rule findActions findProbableActions findPossibleActions
act—object—rule act—object—&—rule act—object—presum—rule
act—object—presum—&—rule act—object—noun
obj—act—indiv obj—act—presume—&—rule obj—act—presum—rule
obj—act—&—-rule obj—act—rule indiv_struct
findProperties findProbableProperties findPossibleProperties
prop—rule prop—presume prop—indiv findOwners
owner—rel owner—poss rel—for—owner
syn—sub—sup syn—syn findPossibleSynonyms
findSynonyms eliminateDissimilarClasses
similarSuperclassesp noAntonymsp
antonymp eliminateDissimilarStructure similarStructurep
eliminateDissimilarOwners
similarOwnersp removeElement findNamedIndividuals named—indiv
findAgents agent—object action—object prop—relation—1
prop—& prop—&—relation—1 prop—&-relation—1—presume
prop—relation—1—presume prop—&—presume prop—relation—2
prop—&-relation—2 prop—relation—2—presume
prop—&—relation—2—presume prop—indiv prop—relation—1—indiv

11

prop—relation—2—indiv obj—rel—1 obj—&-rel—1 obj—rel—2
obj—&—rel—2 obj—rel—1—presume obj—&-rel—1—presume
obj—rel—2—presume obj—&-rel—2—presume obj—rel—1—indiv
obj—rel—2—indiv loc—prop loc—cls loc—str loc—act—obj
loc—rel loc—own loc—prop—cat loc—cls—cat loc—str—cat
loc—act—obj—cat loc—rel—cat loc—own—cat

)

I function: prettyPrintDef
S created: stn 2002

(defun prettyPrintDef (definition)
?”Prints human readable version of the definition generated by the
algorithm to standard output.”
(format t ”"& Definition of "A: 7 (ndefn—noun definition))

(if (not (null (ndefn—classInclusions definition)))
(format t ”"& Class Inclusions: “{7A, "}”
;; call lexicalize on each element of the list of
;5 class inclusions and then print each of them,
;5 separated by commas
(report (ndefn—classInclusions definition))))
(if (not (null (ndefn—probableClassInclusions definition)))
(format t ”"& Probable Class Inclusions: “{7A, ~}”
(report (ndefn—probableClassInclusions definition))))
(if (not (null (ndefn—possibleClassInclusions definition)))
(format t ”"& Possible Class Inclusions: “{7A, ~}”
(report (ndefn—possibleClassInclusions definition))))
(if (not (null (ndefn—structuralElements definition)))
(format t ”"& Structure: “{7A, "}”
(report (ndefn—structuralElements definition))))
(if (not (null (ndefn—probableStructuralElements definition)))
(format t ”"& Probable Structure: “{ A, "}”
(report (ndefn—probableStructuralElements definition))))
(if (not (null (ndefn—possibleStructuralElements definition)))
(format t ”"& Possible Structure: “{7A, “}”
(report (ndefn—possibleStructuralElements definition))))
;55 If functions are put back into the algorithm, they will go here
(if (not (null (ndefn—actions definition)))
(format t ”"& Actions: “{7A, "}”
(report (ndefn—actions definition))))
(if (not (null (ndefn—probableActions definition)))
(format t ”“& Probable Actions: “{7A, "}
(report (ndefn—probableActions definition))))
(if (not (null (ndefn—possibleActions definition)))
(format t ”“& Possible Actions: "{7A, "}
(report (ndefn—possibleActions definition))))
(if (not (null (ndefn—agents definition)))
(format t ”"& Actions performed on a "A: "{7A, “}”
(ndefn—noun definition)
(report (ndefn—agents definition))))
(if (not (null (ndefn—properties definition)))
(format t ”"& Properties: "{7A, “}”
(report (ndefn—properties definition))))
(if (not (null (ndefn—probableProperties definition)))

12

(format t ”“& Probable Properties: “{7A, ~}”

(not

(report (ndefn—probableProperties definition))))
(null (ndefn—possibleProperties definition)))

(format t ”“& Possible Properties: “{7A, "}

(not

(report (ndefn—possibleProperties definition))))
(null (ndefn—spatial definition)))

(format t ”"& A is a place where: "{7A, "}

(not

(ndefn—noun definition)
(report (ndefn—spatial definition))))
(null (ndefn—owners definition)))

(format t ”"& Possessive: "{7A, "}”

(not

(report (ndefn—owners definition))))
(null (ndefn—synonyms definition)))

(format t ”“& Synonyms: “{7A, “}”

(not

(report (ndefn—synonyms definition))))
(null (ndefn—possibleSynonyms definition)))

(format t ”“& Possibly Similar Items: “{7A, "}”

(not

(report (ndefn—possibleSynonyms definition))))
(null (ndefn—namedIndividuals definition)))

(format t ”"& Named Individuals: “{7A, “}”

(report (ndefn—namedIndividuals definition))))

function: report

created :

stn 2003

”

(defun report (nodes)

”Returns a list of the human language representations of the input list
of nodes with any duplicates removed.”
(cond ((null nodes) nil)
(t (union (lexicalize (first nodes))
(report (rest nodes)) :test #’string=))))
I function: lexicalize
I created: stn 2002

”

(defun lexicalize (nodes)

?Finds and returns the human language representation of the sneps
nodes listed in ’nodes’ if one exists. If no human language
representation can be found, the node itself is returned.”

(let (humanRep)

(cond
if the list is empty return the empty string
null nodes) nil)

(
(

(

(
;5 if we have a list of lists process each sublist individually
(

and (listp nodes) (listp (first nodes)))
(append (lexicalize (first nodes)) (lexicalize (rest nodes))))

;5 if we have a list consisting of two nodes, process them and

; concatenate the result
(and (listp nodes) (eql (length nodes) 2)

(list

(not (listp (first nodes))) (mnot (listp (second nodes))))
(concatenate ’string (first (lexicalize (first nodes)))
(first (lexicalize (second nodes))))))

13

” 9

;5 look for lex arcs coming from the node
((setf humanRep #3! ((find lex— “nodes)))
(list (nodes2string humanRep)))
;; look for mod/head arcs coming from the node
((setf humanRep (append #3! ((find (compose mod— lex—) “nodes))
#3! ((find (compose head— lex—) “nodes))))
(list (nodes2string humanRep)))
;5 if the node itself is not named, see if it is a member of a named class
((setf humanRep
(removeAllSuperclasses
#3! ((find (compose lex— class— ! member) “nodes))))
(list (nodes2string humanRep)))
;5 if the node is part of a skolem function, just use ”something”
;5 Note: the setf here is unnecessary, but leaving it out was confusing
((setf humanRep #3! ((find skf— “nodes)))
(list ”something”))

;; other possible representations would go here
;35 if we can’t find a human language representation, return the

;5 mname of the sneps node
(t (list (nodes2string nodes))))))

»”

B function: removeAllSuperclasses

I Due to path—based—inference making class—sub—sup transitive,

H extraneous superclasses were being added to the definition;

I this function removes them.

I —— This function may need to be applied to other areas of lexicalize.
N created: stn 2002

(defun removeAllSuperclasses (inList &optional outList)
”Returns all elements of the input list that do not have any subclass
in the list.”
;; if we are done checking the incoming list, check the outgoing list
(if (null inList) outList
(let (subs)
;5 find all subclasses of the first element of inList
(setf subs #3! ((find (compose lex— subclass— ! superclass lex)
“(first inList))))
;; if there are no subclasses in the rest of the input list
;5 or in the current output list
(if (null (intersection subs (append (rest inList) outList)))
;5 add the element to the output list and process the rest
HN of the input list
(removeAllSuperclasses (rest inList) (cons (first inList) outList))
;5 otherwise, omit the element from the output list and
HN process the rest
(removeAllSuperclasses (rest inList) outList)))))

55 function: nodes2string
355 created: stn 2002

(defun nodes2string (nodes)
”Converts a list of sneps nodes into a string consisting of the names

14

of the nodes, separated as spaces.”

(cond ((null nodes) 77)
((not (listp nodes)) (getNodeString nodes))
;5 this is just a hack to remove extra spaces that were showing up
((and (eql (length nodes) 1) (mnot (listp (first nodes))))
(getNodeString (first nodes)))

(t (concatenate ’string (getNodeString (first nodes))

7 7 (nodes2string (rest nodes))))))

355 CLASS INCLUSIONS SECTION

N function: findClassInclusions
N created: stn 2002

(defun findClassInclusions (noun)
?Find all superclasses of 'noun’. Find all things Y such that, if X
is a 'noun’ then X is a Y.”
(let (superclasses)
;; see if we can infer any class relationships that we don’t
;5 explicitly know about yet —— after inference we will find this
;5 info in subsequent steps
;#3! ((deduce superclass (build lex $spr) subclass (build lex “noun)))
;; now extract any relevant info
(cond
;5 get superclasses represented using sub—sup case frame,
;5 in definition mode return them, in teaching mode
;5 continue accumulating information
((and (setf superclasses (append superclasses (class—sub—sup noun)))
sdmode*)
superclasses)
;3 superclasses represented using a rule
((and (setf superclasses (append superclasses (class—rule noun)))
xdmode)
superclasses)

;5 if we are in teaching mode, return all the accumulated info
;5 if we are in definition mode, superclasses must be nil here,
;5 so return nil
(t superclasses)))

N function: findProbableClassInclusions
N created: stn 2002

(defun findProbableClassInclusions (noun)
”Find all superclasses of 'noun’ that are marked with the
"mode presumably’ tag.”
(let (superclasses)
(cond
;5 SN: I don’t know why Ehrlich uses deduce here, this is the
;5 only place in the algorithm that it is used —— I am leaving
;5 1t as it is until I understand it

15

((and *dmode* #3! ((deduce mode (build lex ”presumably”)
object (build subclass (build lex ~noun)
superclass (build lex $maybesuper

(setf superclasses (append superclasses (class—sub—sup—presum noun))))

;; superclasses represented using a presumable rule

((and (setf superclasses (append superclasses (class—rule—presum noun)))
xdmode)

superclasses)

;3 if we are in teaching mode, return all the accumulated info
;5 if we are in definition mode, superclasses must be nil here,
HE so return nil
(t superclasses)))

N function: findPossibleClassInclusions
N created: stn 2002

(defun findPossibleClassInclusions (noun classIncls)
”Find possible superclasses of noun. If some X is a member of the
class 'noun’ and X is also a member of the class Y, then Y is
listed as a possible class inclusion for ’noun’.”
;; eliminate any items that would be duplicates of class inclusions
;5 or probable class inclusions from the list of possible class inclusions
(set—difference (class—indiv noun)
;; eliminate classIncls and the noun itself from the list
(append classIncls #3! ((find lex "noun)))))

M function: class—sub—sup
S created: stn 2002

(defun class—sub—sup (noun)
?Finds superclasses of 'noun’ represented using the subclass/superclass
case frame.”
#3! ((find (compose superclass— ! subclass lex) “noun)))

M function: class—rule
3o created: stn 2002

(defun class—rule (noun)
?Finds superclasses of 'noun’ represented using a rule”
#3! ((find (compose class— cq— ! ant class lex) “noun
(compose class— member member— class lex) “noun)))

M function: class—sub—sup—presum
N created: stn 2002

(defun class—sub—sup—presum (noun)
”Finds things that are presumably superclasses of

noun’.”

16

#3! ((find (compose superclass— subclass lex) “noun
(compose superclass— object— ! mode lex) ”presumably”)))

function: class—rule—presum
created: stn 2002

(defun class—rule—presum (noun)
”Finds superclasses of 'noun’ represented using a rule”
#3! ((find (compose class— object— cq— ! ant class lex) “noun
(compose class— object— mode lex) ”presumably”
(compose class— member member— class lex) “noun)))

N function: class—indiv
created: stn 2002

(defun class—indiv (noun)
?Finds possible level superclasses of a level noun.”
#3! ((find (compose class— ! member member— ! class lex) “noun)))

M function: classFilter

input: a list of superclasses as output by ”classes”, an empty list,
and the noun to be defined.

output: a list of classes not redundant with the rest of the definition

calls: mostSpecificSuperclassp, classFilter recursively

(defun classFilter (superclasses noun &optional filtered)
”Removes any superclasses of 'noun’ which less specific than other
superclasses of 'noun’ from the list of class inclusions and returns
the result. For an example of the heirarchy of class inclusions see
the documentation for mostSpecificSuperclassp.”
(cond ((null superclasses) filtered)
;;if first element of input is a list
((listp (first superclasses)) ;;add classFilter of car &
(append filtered ;5 classFilter of cdr to output
(list (classFilter (first superclasses) noun filtered))
(classFilter (rest superclasses) noun filtered)))
;5if car input is an ok atom
;;add it and classFilter of
;;cdr to output.
((basicLevelp (first superclasses))
(list (first superclasses)))
((mostSpecificSuperclassp (first superclasses) noun)
(append filtered (list (first superclasses))
(classFilter (rest superclasses) noun filtered)))
;;otherwise car input not ok.
;;add classFilter of cdr to output.
(t (classFilter (rest superclasses) noun filtered))))

function: basicLevelp
created: stn 2002

17

(defun basicLevelp (word)
?1f *word’ is basic level return T else return nil.”
#3! ((deduce member ~word class (build lex ”basic ctgy”))))

. function: mostSpecificSuperclassp (a predicate)

M input: a noun to be defined and a superclass attributed to <noun>
N returns nil if the class can be deduced from other elements of the
N definition, t otherwise.

(defun mostSpecificSuperclassp (class noun)

”Returns t if there are no classes between ’'class’ and ’noun’ in a
superclass—subclass relation, nil otherwise. For example if
class = vertebrate, noun = cat and vertebrate is a superclass of
mammal which is a superclass of cat, mostSpecificSuperclassp would
return nil because mammal is a class between cat and vertebrate.”

(not #3! ((find (compose superclass— ! subclass lex) “noun

(compose subclass— ! superclass) “class))))

353 ACTIONS SECTION

M function: act—object—rule
1o created: stn 2002

(defun act—object—rule (noun)
?Finds actions performed by all ’noun’s and the objects that those
actions are performed on”
(let (actions)
(setf actions
#3! ((find (compose action— act— ! cq— ! ant ! class lex) “noun
(compose action— act— ! agent member— ! class lex) “noun)))
;5 find objects associated with each of the actions
(mapcar #’(lambda (act) (obj—act—rule noun act)) actions)))

M function: obj—act—rule
3o created: stn 2002

(defun obj—act—rule (noun action)
”Finds the objects that ’noun’ performs ’action’ on.”
(let (objects)
(setf objects
#3! ((find (compose object— act— ! cq— ! ant ! class lex) “noun
(compose object— action) Taction)))
(if (null objects) action
(mapcar #’(lambda (obj) (list action obj)) objects))))

e function: act—object—&—rule

18

. created: stn 2002

(defun act—object—&—rule (noun)

”Finds actions performed by all ’noun’s and the objects that those
actions are performed on”

(let (actions)
(setf actions

#3! ((find (compose action— act— ! cq— ! &ant ! class lex) “noun
(compose action— act— ! agent member— ! class lex) “noun)))

(mapcar #’(lambda (act) (obj—act—&—rule noun act)) actions)))

e function: obj—act—&—rule
R created: stn 2002

(defun obj—act—&—rule (noun action)
”Finds the objects that ’noun’ performs ’action’ on.”
(let (objects)
(setf objects
#3! ((find (compose object— act— ! cq— ! &ant ! class lex) “noun
(compose object— action) ~action)))
(if (null objects) action
(mapcar #’(lambda (obj) (list action obj)) objects))))

HE function: act—object—presum—rule
D created: stn 2002

(defun act—object—presum—rule (noun)
”Finds actions that are presumed to be performed by all ’noun’s and the
objects that those actions are presumed to be performed on.”
(let (actions)
(setf actions
#3! ((find (compose action— act— object— mode lex) ”presumably”
(compose action— act— object— cq— ! ant class lex) “noun
(compose action— act— agent member— class lex) “noun)))
(mapcar #’(lambda (act) (obj—act—presum—rule noun act)) actions)))

- function: obj—act—presum—rule
s created: stn 2002

(defun obj—act—presum—rule (noun action)
”Finds the objects that ’noun’ presumably performs ’action’ on.”
(let (objects)
(setf objects
#3! ((find (compose object— act— object— cq— ! ant class lex) “noun
(compose object— action) ~action)))
(if (null objects) action
(mapcar #’(lambda (obj) (list action obj)) objects))))

N function: act—object—presum—&—rule
N created: stn 2002

19

”
(defun act—object—presum—&—rule (noun)
”Finds actions that are presumed to be performed by all ’noun’s and
the objects that those actions are presumed to be performed on.”
(let (actions)
(setf actions
#3! ((find (compose action— act— object— mode lex) ”presumably”
(compose action— act— object— cq— ! &ant class lex) “noun
(compose action— act— agent member— class lex) “noun)))
(mapcar #’(lambda (act) (obj—act—presume—&-rule noun act)) actions)))

- function: obj—act—presum—&—rule
s created: stn 2002

(defun obj—act—presume—&—rule (noun action)
”Finds the objects that ’noun’ presumably performs ’action’ on.
(let (objects)
(setf objects
#3! ((find (compose object— act— object— cq— ! &ant class lex) “noun
(compose object— action) ~action)))
(if (null objects) action
(mapcar #’(lambda (obj) (list action obj)) objects))))

”

I function: act—object—noun
S created: stn 2002

(defun act—object—noun (noun)

”Finds actions performed by at least one member of the category ’'noun’ and

the objects that those actions are performed on.”
(let (actions)
(setf actions
#3! ((find (compose action— act— ! agent member— ! class lex) "noun)))
(mapcar #’(lambda (act) (obj—act—indiv noun act)) actions)))

M function: obj—act—indiv
Yo created: stn 2002

(defun obj—act—indiv (noun action)
”Finds the objects that ’'noun’ performs ’action’ on.
(let (objects)
(setf objects
#3! ((find (compose object— act— ! agent member— ! class lex) “noun
(compose object— action) ~action)))
(if (null objects) action
(mapcar #’(lambda (obj) (list action obj)) objects))))

”

I function: findActions
N created: stn 2002

»”

(defun findActions (noun)

20

"Find actions (and the objects that those actions are performed on,
if any) that are performed by all 'noun’s.”
(let (results indivNoun)
;5 get an individual noun so that we can use it in the deduce
(setf indivNoun (first #3! ((find (compose member— ! class lex) “noun))))
;; see if we can infer any actions that we don’t explicitly kow about yet
(if (not (null indivNoun))
#3! ((deduce agent ~indivNoun act $someAct)))
;; now extract any relevant info
(cond
;; definite rule, or—entail
((and (setf results (append results (act—object—rule noun))) *dmodex)
results)
;;definite rule, &—entail
((and (setf results (append results (act—object—&—rule noun))) xdmodesx)
results)

;35 If we are in teaching mode, return all the info we have accumulated.
;5 If we are in definition mode results = nil so return nil.

(t results))))

I function: findProbableActions
N created: stn 2002

(defun findProbableActions (noun)
"Find actions (and the objects that those actions are performed on,
if any) that can be presumed to be performed by all ’noun’s.”
(let (results)
(cond
;; 7presumably” rule, or—entail, transitive
((and (setf results (append results (act—object—presum—rule noun)))
xdmode)
results)
;; " presumably” rule, &—entail, transitive
((and (setf results (append results (act—object—presum—&—rule noun)))
xdmode)
results)

;35 If we are in teaching mode, return all the info we have accumulated.
;5 If we are in definition mode results = nil so return nil.
(t results))))

M function: findPossibleActions

M input: a noun to be defined

e output: a list of actions attributed to any object of type <noun>
R modified : mkb 2002
133 modified : stn 2002

(defun findPossibleActions (noun)
"Find actions (and the objects that those actions are performed on,
if any) that are performed by at least one ’noun’.”
(act—object—noun noun))

;33 THE FOLLOWING IN UNNECESSARILY COMPLICATED BECAUSE WE ONLY HAVE ONE

21

CHECK TO DO IF MORE CHECKS ARE ADDED IN THE FUTURE THIS VERSION OF
FINDPOSSIBLEACTIONS SHOULD BE UNCOMMENIED AND USED. —— IF WE BECOME
;33 REASONABLY SURE THAT NO MORE CHECKS WILL BE ADDED THEN WE SHOULD JUST
;33 RENAME ACT—OBJECT-NOUN TO FINDPOSSIBLEACTIONS

IR

LRI

(let (results)
(cond
;35 find actions performed by at least one member of the class
. ((and (setf results (append results (act—object—noun noun)))
*xdmode)
results)

LRI

’noun’

if we are in teaching mode, return all the information that we
accumulated above,
otherwise, return results (= nil).

results))))

function: act_filter
input: a list of actions as output by ”acts”, an empty list, and the

noun to be defined.
output:
calls: act_filter

non_redundant_act , recursively

(defun act_filter (act—list noun &optional
(cond
;35 if we are done filtering,
((null act—1list) filtered)

filtered)

return the filtered list

a list of actions not redundant with the rest of the definition

;; if the first element is
((listp (first act—list))
(append filtered
(list (act_filter
(act_filter (rest
;5 if first element is not
((non_redundant_act (first
(

a list, filter recursively

(first act—list) noun filtered))
act—list) noun filtered)))

redundant add it to filtered and filter
act—1list) noun)

rest

append filtered (list (first