Progress of the Noun Definition Algorithm During the
Fall 2002 Semester

Scott Napieralski
stn2@cse.buffalo.edu

December 17, 2002

Abstract

This document describes work on the Contextual Vocabulary Acquisition project
that was conducted during the Fall semester of 2002 under the supervision of Dr.
William Rapaport. A detailed description of changes that were made to the noun
definition algorithm is given. Some modifications to the demonstration programs and

the motivation for these changes is also discussed.

1 Introduction

The work described in this paper was performed as part of the Contextual Vocabulary
Acquisition project. Researchers from the University at Buffalo Departments of Computer
Science & Engineering and Learning & Instruction are cooperating to develop a greater
understanding of the human process of learning new vocabulary from context clues. In order
to improve our understanding and test our theories, we have made use of a computational
algorithm that attempts to model the human process of defining an unknown noun based

on context.



The goal of the work that was performed during the fall semester was to ensure that all
of the demonstration programs developed by Karen Ehrlich for her dissertation [Ehrlich 1995]
produced at least as much information using the new noun definition algorithm [Napieralski 2002]
as they produced using the original noun definition algorithm.

The noun definition algorithm implements a theory of how an unknown word can be
learned based on the passages of text in which the unknown word occurs. The information
that is contained in a passage is first encoded as a SNePS network [Shapiro 1999]. Then,
when asked to provide a definition for the unknown word the algorithm searches the SNePS
network for certain types of information. When all the relevant information in the network
has been found, the algorithm reports it as a definition for the unknown word.

In addition to the large effort of updating the demos, some changes were also made to the
noun definition algorithm itself. The majority of these changes were of a minor nature and
were intended to fix errors discovered while testing the demos. There were, however, several
changes to the algorithm implemented new features or changed the way that information

was retrieved from the network.

2 Changes to the Algorithm

The most significant changes to the algorithm involve the type of information that is retrieved
from the SNePS network. The original algorithm searched for both basic level information
(represented using the “member-class” case frame) and nonbasic level information (repre-
sented using the “objectl-rel ISA-object2” case frame). These two different categories were

useful for distinguishing information that should be reported in a definition from information



Figure 1: Representation of “Dog is a basic level category” in the current version of the
algorithm.

that was either too general or too specific to report as part of a definition. However, having
two different ways to represent class membership caused an explosion in the number of search
paths that needed to be considered when designing the algorithm. In order to make the code
more manageable, we decided to eliminate the “object1l-rel ISA-object2” case frame and use
“member-class” to represent both basic level and nonbasic level information.

Although the nonbasic case frame was removed from the algorithm it is still necessary
to distinguish between information that is basic level and information that is nonbasic level.
To solve this problem, we created a “basic ctgy” node and label basic level categories as
members of the class “basic ctgy” (Figure 1). In this version of the algorithm, anything that
is a member of the class “basic ctgy” is a basic level category. Anything that is not explicitly
labeled in this way is assumed to be a nonbasic level category.

This scheme does have some drawbacks. Most significantly, it implies that the mind
being modeled by our system is aware of the term “basic level category”. Further, the
person being modeled by our system is able to identify which categories are basic level and

which categories are not. It may also imply that when teaching our method to a human, the



supeXxclass

Figure 2: When defining “dog” class_filter eliminates “animal” and reports “mammal”.

concept of a basic level category must also to be taught.

If the CVA team decides that it is no longer desirable to use the structure described
above, an alternative has been proposed. Stuart Shapiro suggested that it might be possible
to use a path of some sort to identify basic level categories. This proposal has not yet been
seriously investigated.

After the algorithm was changed to use only “member-class” for class membership, a
related change was made to the class_filter function. The purpose of this function is to remove
all but the most significant class inclusions from the definition. In the original version of the
algorithm, the function worked by searching for the most specific class inclusions and only
reporting those inclusions. For example if the unknown noun was “dog” and the network
contained the knowledge that “dogs” are “mammals” and “animals” and that “mammals”
are “animals” then class_filter would remove “animal” from the list of class inclusions, leaving
only “mammal” (Figure 2).

In the new version of the algorithm we retain this behavior, but we add an additional

check. The class_filter function first determines whether the unknown noun is a member of



class subcfass supeXxglass

Figure 3: In this case, class_filter would eliminate “mammal” and report “animal” because
“animal” is labeled as a basic level category.

any basic level category. If it is determined that the unknown word is a member of some basic
category then that category is reported and any other class memberships are not reported
(Figure 3). If the unknown word is not a member of any basic level category then class filter
uses its original behavior.

The way that the class_ filter function is invoked has also been changed in this version of
the algorithm. In the original program, class_filter was called from inside the functions find-
ClassInclusions and findProbableClassinclusions so that whenever this information was used,
the filtered form was returned. Unfortunately, this resulted in some unnecessary code dupli-
cation, since the section of code that searches for synonyms made use of the same logic but
worked with the unfiltered class inclusions list. In order to simplify the code and reuse the
logic in findClassInclusions and findProbableClassInclusions, the call to class_filter was moved
outside the the class inclusion functions and into the definition function, defineNounTeaching.
This scheme allows the algorithm to work with the full list of class inclusions internally while
still displaying only the filtered list to the user.

The rest of the changes to the algorithm took place in the section that is responsible for



finding synonyms of the unknown word. This section consisted of two distinct parts. The
first part searched for information that was explicitly labeled as a synonym of the unknown
word. The second part attempted to find information that shared enough common traits
with the unknown word to be labeled a “possible synonym”. Since some members of the
research group noted that the second type of information was really not a synonym at all,
this section was given its own function, findPossibleSynonyms, and its own line in the output,
“Possibly similar items”.

In order to make the output generated by the findPossibleSynonyms function more closely
match the original output, several changes were made. Most importantly, probable and
possible information is now being taken into account when searching for possibly similar
items. This information was considered by Ehrlich’s original version of the algorithm, but it
was removed in the initial revision of the code [Napieralski 2002] due to changes in the way
information was represented internally in the algorithm. Unfortunately, when probable and
possible information was not considered, the findPossibleSynonyms returned incorrect results,

therefore it has been reintroduced.

3 Changes to the Demos

The majority of the semester was spent working on the “brachet” demo. The goal of this
work was to alter the demo so that it would produce the same output when run with the
new algorithm as it had when run with the original algorithm.

The first task that needed to be accomplished was to convert all of the class membership

information in the demo from the “object1-rel ISA-object2” case frame to the “member-class”



case frame. When this was accomplished, many of the rules in the background knowledge for
the demo became duplicates. The existence of these duplicate rules significantly increased
the running time of the demo, so the demo was carefully searched and all duplicate rules
were removed.

The brachet demo was finally coerced into giving the correct output by a combination of
three factors. First, the background knowledge, which was previously added to the SNePS
network using the assert keyword, is now added using the add keyword. This has the effect
of triggering forward inference whenever a new rule is added to the background knowledge,
rather than when the first piece of information in the demo is added. Second, the algorithm
was slightly altered. Originally, when compiling the lists of class inclusions and actions, the
network was simply searched for information using find. In the new version of the algorithm,
SNePS is first asked whether it can infer any new class inclusions or actions using deduce and
then the information is retrieved from the network as in the original algorithm. Finally, the
order that information is retrieved from the SNePS network was changed. Actions are now
the last piece of information retrieved from the network rather than the second. This change
allows the brachet demo to correctly report that brachets hunt after it learns that brachets
bay. Unfortunately, it is still not clear why this change makes a difference, determining the
reason behind it could be an area of further investigation in the future.

Although the brachet demo does produce correct output, some of the results for the “Pos-
sibly Similar Items” category may seem strange. For much of the middle part of the brachet
demo this category reports that the possibly similar items for “brachet” are “mammal”

and “pony”. On first inspection, this does not seem correct, however it does conform with



Ehrlich’s theory of what should be included in her “Possible Synonyms” category. According
to Ehrlich’s theory two nouns are possibly similar if they share two or more class inclusions
and they have more class inclusions in common than class inclusions that are different. These
rules in combination with the particular set of background knowledge in the brachet demo
result in the strange list of possibly similar items described above. This situation could be
remedied by adding more class inclusion information for each of the elements in the list so
that they would have less in common with brachet.

During the process of modifying the brachet demo, a problem with inferred subclass/superclass
relationships was discovered. In the background knowledge for the brachet demo, some com-
bination of rules and paths was leading SNePS to infer “animal is a subclass of animal”,
“mammal is a subclass of mammal”, and so on. This problem was never completely re-
solved, but it was ameliorated by making some the rules in the background knowledge more
specific. This same problem has cropped up in the cat demo. After the system is told “Frisky
is a cat”, it infers “animal is a subclass of animal”. This inference leads the noun definition
algorithm (specifically the class filter function) to eliminate animal as a class inclusion for
cat. Unfortunately, there was insufficient time in the semester to investigate this problem

further.

4 Future Work

The immediate next step that should be performed by the next researcher to work on this
project is to examine the “cat” demo to discover why “animal is a subclass of animal” is

being inferred. Once the cause of this error is identified, it should be corrected and the demo



should be tested to determine whether the change has resulted in correct output. Assuming
that the problem can be found and fixed, other existing demos should be carefully checked
to see if they exhibit the same problem.

Once the “cat” demo has been modified so that it produces the correct output, Ehrlich’s
other noun demos should be examined. There are two demos, the “hackney” demo and the
“tomato” demo, that have not yet been throughly examined.

In the more distant future, researchers might want to consider the possibility of adding
the functions category back into the noun definition algorithm. In the most recent version of
the algorithm, the functions category, which was present in the original version, was removed
because we believed that all the information in that category should also be picked up by
the action categories [Napieralski 2002]. However, Stuart Shapiro and J.P. Koenig suggested
that there might be some cases where a noun serves a specific function that is not an action.
A specific example of this problem is “key”. The function of a key is to unlock something,
but it is the person holding the key, not the key itself, who performs the action of unlocking.
This problem will need to be addressed at some point in the future, but since there are
relatively few words that exhibit the problematic property this task should not be given a

high priority.

A Running the Algorithm

The following instructions for running SNePS and the noun-definition algorithm assume that
the commands are being executed on a computer at the University at Buffalo Department
of Computer Science and Engineering with access to the /projects filesystem.

e Type composer to start Allegro Common Lisp (or in Emacs type M-x run-acl).



e At the lisp prompt type (load “/projects/snwiz/bin/sneps”). Note: This algorithm has
been tested with SNePS 2.6.0. The algorithm may or may not be compatible with
previous versions of SNePS.

e Type (load “/projects/stn2/CVA /defun_noun.cl”) to load the noun-definition algorithm.

e Type (sneps) to start SNePS.

e Type (demo “/projects/stn2/CVA/demos/some-demo.demo” ) to run a demo. Note: you
should replace “some-demo” with the name of the demo you want to run.

B Location of Files

/projects/stn2/CVA /defun_noun.cl
The noun definition algorithm.

/projects/stn2/CVA /demos
Contains all of the demos and supporting files.

Online;:

http://www.cse.buffalo.edu/ stn2/cva/index.html

References

[Ehrlich 1995]

[Napieralski 2002]

[Shapiro 1999]

Ehrlich, K. (1995), “Automatic Vocabulary Expansion through Narrative
Context”, SUNY Buffalo Computer Science Technical Report 95-09.

Napieralski, S. (2002), “An Enhanced Noun Definition Algorithm”
[http://www.cse.buffalo.edu/ stn2/cva/summer02/summer-report.pdf].

Shapiro, S. (1999), “SNePS 2.5 User’s Manual”
[http://www.cse.buffalo.edu/sneps/Manuals/manual25.ps].

10



