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Teaching Mathematical induction:
An Alternative Approach

W z artly as a result of an increase in computer technol-
ogy, iterative and recursive miethods are becoming
more common.. If taught well, mathematical induc-
tion can help students' understanding of these
methods grow. Principles and Standards for School
Mathematics recommends that 'students should
learn that certain types of results are proved using
the technique of mathematical induction" (NCTM
2000, p. 345).

When students are learning mathematical induc-
tion, they usually begin by proving such summation
formulas as

(, (nln + 1)
2-

and similar formulas. This standard way of teach-
ing induction may be common in both high school
and college classrooms because these types of prob-
lems appear in textbooks. Unfortunately, Baker
(1996) found that several difficulties arise with this
type of learning. Students often have little experi-
ence with summation notation, so before they even

Students begin, the traditional instruction presents a stum-
bling block. Another problem frequently arises dur-

think that ing the inductive step of the proof because students
they are think that they are assunming what they are thying

assuming to prove. Even students who have experience in
logic and proof, which most high school students

what they are lack, may have this belief. Another danger is that
trying to students may become proficient at induction algo-

prove rithms while gaining little or no understanding of
why induction works. In particular, students can
learn to verify summation formulas by induction
without understanding what they are doing or why.

Thlis article presents my experience in a class-
room setting using a new approach to teaching
induction that is being developed by the Mathemat-
ical Methods in High School project. I recorded my
detailed observations and an assessm-ent in journal
form. The basic idea behind the new approach is to
use induction to prove that two formulas, one in
recursive form and the other in a closed or explicit
fonn, will always agree for whole numbers.

1 taught the unit on induction for five days in
a precalculus class at Delavan High School, in

Delavan. Illinois. It is a rural high school with a
total enrollment of 171 students. IPrecalculus is the
highest-level mathematics class offered at the
school. No class at Delavan has an "honors" desig-
nation, but the students are predominantly college
bound. The class consisted of ten girls and eight
boys; six were juniors, and twelve were seniors. Lit-
tle technology was used in the class; however, stu-
dents who had graphing calculators were allowed to
use them. The lack of technology required adjust-
ments in teaching the recursion section because the
textbook encourages the use of computers to show
examples with large numbers.

TEACHING JOURNAL
Day 1-functions, patterns, and rules
We began class with a brief review of functions.
Then we made an iaput-output table for f(n) = n2

,

as shown in figure 1. Next we looked at tie three
tables shown in figure 2. 1 instructed the class to
find functions that matched each table. Ib make
sure that everyone understood, we did table A first
and discussed it as a class. As I had anticipated,
the students looked at the problems differently. For
example, most students quickly observed that table
A could describe the function f(n) = 2n, but at least
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one student claimed that the answer was f(n) = n + n
before quickly realizing that the answers were
equivalent. The convention that we used was f(n)
for the explicit form, or what we called the closed
forn, and h(n) for the recursive form, where n is a
whole number.

After the students broke into groups, most of
them quickly obtained finctions that fit tables B
and C. The majority gave the functions for table B
as f(n) = n2 + n and for table C as f(n) = n2 + 2n.
One group, however, gave the solution as the prod-
uct of n and "the next one", that group wrote the
answers as f(a) = n(n + 1) and f(a) = n(n + 2). I
asked one student who made this realization to pre-
sent it at the board. Most of the students still pro-
claimed that they preferred the first method, but
more than one student applied the latter method on
the homework.

While students worked the problems, they began
to develop their own strategies for completing them.
For example, they quickly realized that iff(0) = C,
then f (n) should end in +C. Also, many students
commented that if a table was decreasing, 'it had to
have a minus in it." The classroom teacher noted
that students who usually struggled in his class
were holding their own during this lesson and
sometimes outperformed students who regularly
outpaced them in class. Many students took the ini-
tiative" to complete the unassigned problems.

Day 2-recursive definitions

I was apprehensive going into the second day's les-
son because recursive thinking is very different
from what most high school students have experi-
enced. As I had expected, they found the second
day's material more difficult than that covered on
the previous day.

As suggested in the Mathematical Methods in
High School materials, we began class by looking at
table D, shown in figure 3. I explained that a new
way to match a function to a table would be to use
the previous term in the sequence instead of simply
manipulating the input, n.

A few students pointed out that this function
could be generalized to the form h(n) = h(n - 1) + 5,
but not all the students saw it immediately. The
textbook suggested proceeding to problems where
the students are asked to generate input-output
tables from a recursive function. I thought that
working on problems where the students looked at
a table and found the related function would be
more beneficial. However, that decision was proba-
bly a mistake.

The students found these problems to be particu-
larly difficult. The students who attempted to work
the problem by the method shown in the materi-
als-that is, writing it out in the form h(4) = h(3) +
1, h(3) = h(2) + 1,. . . -were far more successful

than the students who tried to skip straight to the
answer. I asked one student who had mastered this
method to demonstrate it on the board, and that
presentation seemed to help some of the students
who had been confused.

We went back to the previous page of the materi-
als to discuss problems similar to the one in figure
4. The students were given a recursive function and
asked to generate the input-output table in that fig-
ure. Th my surprise, students picked up on this
process much more quickly. A common comment
that I heard during group work was tbat "you just
have to keep going down until you hit zero and then
go back up." I then began to recognize a shortcoming.
Several students proclaimed that they could do
these problems, but finding the function from the
table still confused them. They did not realize that
the two problems were tightly connected. I had
hoped that they would realize that problems of the
second type are the reverse of the first type. Gener-
ating tables apparently comes more naturally than
finding the function.
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Table A Table B Table C
n [(iT) n [(n) n f RnH
0 0 0 0 0 0
1 2 1 2 1 3
2 4 2 6 2 8
3 6 3 12 3 15

FPg. 2
Examples of tables used to generate functions of the closed, or explicit, torrn

Table D Students noticed this trend:
n [(it) [(4) = f(3) + 5
0 1 f(3) =f(2) + 6
1 6 f(2) =f(l) + 5
2 11 f(1) =f(O) + 6
3 16
4 =21 Fig. 3

Students found a recursive pattern for th s table.

Recursive
thinking is
very different
from what
most high
school
students
have
experienced

Given: Answer:

[2 if n = 0 _n f(n) 10 + 4 = 14
f 1) fn-1 +4i 3 If2)+ 4 110+4= 14

f(n-1)+4ifn>0 -2 fl+4 6+4=101

1 If(O)+4 2+4= 61
Find f(3) 0 2 21

Fig. 4
Most students organi7ed their work similarly to this.
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The textbook includes problems and examples of
difference tables similar to the one shown in figure
5. I had planned to discuss this method with the
students and even assign a problem or two of this
type in the homework. I was surprised to find that
doing so seemed unnecessary. Because almost every
student began generating these differenice charts
with no prompting on my part, I believe that
searching for these differences is an idea that
comes naturally to the students

f(n)
0

_6__
2

Fg. 5
Stodents should recogni7e that an ircrease of 2h

occurs frorn one term to the next.

Overall, most students seemed to grasp the
basics of the ideas presented in the recursion sec-
tion, but they were still more comfortable with the
closed form. I believe that having access to comput-
er technology would have been especially useful on
this day. With only a simple recursive progTam or a
spreadsheet, the students could have obtained
results for much larger values of a.

Day 3-review and introduction
to mathematical induction
The st-udents had difficulty doing the homework
problem shown in figure 6. We discussed it as a
class, and they found two distinct ways of looking at
the problem. Some preferred to use a function simi-
lar to the rest of the homework: h(n) = h(n - 1) -
(2n + 3). A surprisingly large number of students,
though, had instead realized that another possibility
was h(t) = (Ihi(n - 1I + 1)2. Since each solution was
recursive and fit the chart, I accepted both solutions.
I used this opportunity to poinit out that many
equivalent solutions may exist for a given function.

One student made the interesting observation
that in the problems that he had worked, the addi-
tive term in the recursive definition related to the
derivative of the closed definition. For example, if
f(x) = x2, then

h(x)=h(x-1)+f'(xO+C
= h(x - I) + 2x + C,

where C = -1. The classroom teacher asked the stu-
dent to explain why he thought that the derivative
was related, and the student explained that the
recursive definition depends on the rate of change
of the function.

We next moved on to an introduction to induc-
tion. We looked at figure 7. With relative ease, stu-
dents were able to deduce both the closed and
recursive definitions of the function, which we
named f(ni) = 3n + 1 and h(n) = h(n - 1) + 3, respec-
tively. J asked the students whether the two func-
tions were equal. 'No," came the initial response,
"because they don't look the same." I then asked
what it means for two functions to be equal. Sonme
students thought that if f (n) and h(n) are equal for
every whole-number value of a, then the functions
are equal. They were reasonably certain that f(n)
and h( ) are equal for these values, even though
the table went to only n = 3. 1 said that we should
try to verify that f(n) and h(n) are the same for a
value of n that was not on the chart.

n _, .
0
1
2

1 __
4
7

3 10

Fig. 7
An ntroduction to iridction

I next asked the following question: Since we
know that f(3) = h(3), can we venrit whether f (4) =
h(4)?" The class agreed that we could easily do so
by calculating f(4) and h(4). However, the students
also agreed that this approach would be more diffi-
cult for really large values of n. I said that we
would develop a way to show that if [(3) = h(3),
then f (4) = h14). I wrote h(4) on the board, skipped
a few lines, and wrote = f(4). With a little prodding,
the students obtained the following proof:

h(4) = 3) + 3
=(3) + 3
= (3 * 3 + 1) + 3
= (3 * 3 + 3) + 1
=(3 3+ 3.- 1)+1
=3(3+ 1)+1
= 3(4) + 1
= f(4)

(because f(3) = h(3))
(because f(3) = 3 * 3 + 1)
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Fig 6
A Ahomoework prob em
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Day 4-introduction to
mathematical iniduction

To begin the day, we finished the argument involv-
ing the closed form f(n) 3n + 1 and the recursive
form

h(n) = Iifi= 0
h(n- 1 +3 if n >0.

I asked students to find both the closed and recur-
sive forms and show that knowing that f(4) = g(4)
implied that f(5) = g(5). Most students were able to
come up with the argument, and those who did not
seemed to understand it when it was written on the
board.

I next tried to help the class generalize the
method. I pointed out that we knew that f(5) = h(5),
and I asked whether we could do anything with
that information. Several students pointed out that
the same argument would work for f(6) = h(6). I
asked what we could do with that infonnation. The
students began to realize that the method could be
done enough times to show that f(n) = h(n) for any
n that they wanted to show. One student said that
this argument meant that the functions were equal
everywhere. I asked him how many cases we would
have to show. The class agreed that we would have
to show every number, and that exercise was not
practical.

Someone stated that we should put in n's. I
asked him to clarify what he meant, and I then led
the class to the following proof:

h(n + 1) = h(n) * 3

= 3n + 1 + 3
= (3n +3) +1

=f(n + 1)

I explained that because we had a starting point of
f(0) = h(0) and because we had a rule that said that
if the functions were equal at one value of n, they
were equal at the next one, we could truly say that
the functions were equal. I did not have time to dis-
cuss the "starting point" as thoroughly as I had
wanted to, so I saved that discussion for the final
day of the lesson.

The students continued to gain insighlt into the
similarities between closed and recursive forms and
the idea of induction. One girl pulled me aside to
point out that she had noticed that on a linear func-
tion in closed form, the constant in front of x would
be the constant added in the recursive fborm. She
said that she was sure that this result had occurred
on every problem that we had attempted. The class-
room teacher and I briefly discussed with her that
the constant slope in a linear function determines
how much of an increase in f (x) exists for an
increase of 1 in the x-value.

Another student asked me after class why she
could not start with f(n + l) and end up with h(n + 1).
I explained that either order was acceptable; I had
started with h(n + 1) only because the materials
used it arid because I thought that it might be the
easier direction to understand.

Day 5-introduction to
mathematical induction concluded

On the last day, all that remained was to formalize
the induction arugument. Almost all students were
confident-perhaps too much so-of their ability to
show the inductive step of the proofs from the
homework problems. Common remarks included,
"This was easy," or 'I taught this to a student who
missed class yesterday"

We still had to formalize the induction proof, so I
used the old-fashioned domino argument. We
looked at a problem from the homework. The induc-
tive step was on the board, but the basis step was
not. Before I had a chance to ask the class, one stu-
dent asked me whether the inductive step was
enough to show that the functions were equal. I
opened discussion of this question up to the stu-
dents, some of whom disagreed. I claimed that even
though we had a rule that would show that if our
claim held for n, then it would hold for n + 1, we
needed something more. WVe needed an initial point
that would get the rule started.

I offered the domino example. I set up a row of
dominoes on the desk and asked the class what
usually happens when someone sets up a row of
dominoes. They gave me the obvious answer that
each domino knocks over the next one, 'Then I
asked why the dominoes were still standing if we
had a rule that says that each domino knocks over
the next. "Ohhh . . . ," came the reply, "we have to
knock over the first."' The entire class seemed satis-
fied with this explanation of why we had to show
f (0) = h7(0) for the proof to be complete.

In retrospect, I realize that I should have offered
a counterexample. Finding one that results in a false
proof is not difficult. For example, let f(n) = 3n + 1
and

h(n) = 2ifn=0
h(n -1) +3 ifn >0.

We can still prove the inductive step, but the two
functions are not equal. Clearly, the basis step is
necessary.

Because the students had primarily been using
linear functions, all of which have similar inductive
proofs, I thought that I would finish by showing
them a situation that had a different proof. We
looked at the exponential function defined by the
table in figure 8. This problem is analogous to one
that was assigned in the homework. I used induc-
tion to show that the closed form f (Oi = 4' is equiv-
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step of the
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alent to the recursive form h(n) = 4 * h(n - 1). The
students were uncomnfbrtable with the slightly dif-
ferent proof; but they seemed to understand it.
They had more trouble finding the two functions
than doing the inductive proof

The
approach

circumvented
many

difficulties
in the

traditional
method for

teaching
induction

0
1
2
3

'T-_ I ,n)__

6I
116

64

Fig. 8
Ar exponent al furiction

ASSESSlMENT
My teaching experiment concluded with an exami-
nation that included four questions. The first ques-
tion asked the students to find the closed form of a
function for two input-output tables; the second
question asked for the recursive form; the third
question asked the students to do two induction
proofs, one on a linear function and one on an expo-
nential function; and finally, question 4 asked them
to explain the two steps of induction.

Not surprisingly, the students had little trouble
with the first and second questions. During the
week, they had become comfortable with both the
closed and recursive forms. In the third question,
the students successfully did the inductive proof
with the linear function. Howe-ver, only half the
students could do the exponential problem, which
had been discussed only briefly in class. All but a
few students gave a coherent explanation of the
inductive step in the final question, and many gave
excellent answers. Interestingly, students had a
harder time explaining the reason for the basis
step. Still, most of them again gave a reasonable
answer.

REACTMN
The outcome of this project suggests that this
approach may interest teachers who teach induc-
tion, especially teachers whose students have
learned to define funct.ions iteratively or recursive-
ly. The approach circumvented many difTiculties
encountered in using the traditional method for
teaching induction. The students seemed to become
comfortable with closed and recursive forms in a
short period of time. No student objected that he or
she started by assuming what had to be proved.
After doing the proof with several specific values,
the students could clearly see why doing so with
variables is safe.

Of course, the most important question is
whether the students really learned induction. The
results from the examination were encouraging but
not overwhelmingly favorable. Few students made
incorrect statements in their explanations of the
steps of induction, but many of them did not
include enough information. They perhaps have not
had enough practice putting mathematical phe-
nomena into words.

A major concern about the induction section of
the textbook that uses the new approach was the
lack of variety in the problems. Most problems
involved linear functions, and a few were exponen-
tial. Perhaps high school students can identify only
so many functions from an input-output table.
Regardless, more types of functions are necessary
so that students can see the variety of ways in
which induction can he applied.

With a good introduction to mathematical induc-
tion, teachers should find that their students are
comfortable with it in a variety of contexts. Another
use that should not present notational problems is
using induction to prove that certain quantities
have certain factors. For example, one can use
induction to show that 3 is a :actor of 4" - 1
(UCSMP 1992). The author hopes that this intro-
duction might make other, more traditional prob-
lems, such as proving summations, easier for stu-
dents to understand. Of course, a creative teacher
will use irduction in appropriate places throughout
the curriculum.
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