| ROELANTS

ce-dimension. ;
of idealization, such as ignoring the
ignoring storage restrictions of actual

Is and Machines 3, pp. 283-312.

del.

Turing Algorithms, and Elementary
Colloguium *69, Amsterdam: North-

ss’, in J. Barwise, H.J. Keisler, and K.
olland, pp. 123-148.
al Continuous Functions’, Fundamenta

Computers, Minds, and the Laws of

\pplication to the Entscheidungsprob-
2, 42, pp. 230-265.

Effective Procedures and Computable Functions

CAROL E. CLELAND

Department of Philosophy and Institute of Cognitive Science, University of Colorado, Boulder, CO,
US.A.

Abstract. Horsten and Roelants have raised a number of important questions about my analysis of
effective procedures and my evaluation of the Church-Turing thesis. They suggest that, on my
account, effective procedures cannot enter the mathematical world because they have a built-in
component of causality, and, hence, that my arguments against the Church-Turing thesis miss the
mark. Unfortunately, however, their reasoning is based upon a number of misunderstandings.
Effective mundane procedures do not, on my view, provide an analysis of our general concept of an
effective procedure; mundane procedures and Turing machine procedures are different kinds of
procedure. Moreover, the same sequence of particular physical actions can realize both a mundane
procedure and a Turing machine procedure; it is sequences of particular physical actions, not mundane
procedures, which “enter the world of mathematics.” 1 conclude by discussing whether genuinely
continuous physical processes can “‘enter” the world of real numbers and compute real-valued
functions. 1 argue that the same kind of correspondence assumptions that are made between
non-numerical structures and the natural numbers, in the case of Turing machines and personal
computers, can be made in the case of genuinely continuous, physical processes and the real numbers.

Key words. Church-Turing thesis, effective procedure, mundane procedure, Turing machine pro-
cedure, isomorphism, compute, mirror, follow.

Horsten and Roelants (1995) raise some important questions about my analysis
and evaluation of the Church-Turing thesis (Cleland, 1993). In order to bring
these questions into sharp focus, however, we need to clear up some basic
misunderstandings. These misunderstandings can be encapsulated as follows: (1)
none of the versions of the Church—Turing thesis that I address is the Church—
Turing thesis; (2) the notion of mundane procedure provides a complete analysis
of our general concept of procedure; (3) my concept of effectiveness has a built-in
component of causality. Once my position on these issues has been clarified, we
can focus on the central question, which is whether a physical device, exploiting
genuinely continuous, physical quantities and processes, could be said to “com-
pute” a non-algorithmic function in the same sense in which a Turing machine or
my personal computer can be said to “compute” an algorithmic function.' I
contend that the answer is yes and that this is enough to cast the truth of all but
the most narrow interpretation of the Church-Turing thesis into serious doubt.

Horsten and Roelants intimate that neither of the three versions of the Church-
Turing thesis that I discuss is the Church-Turing thesis” As I discuss in the
introduction to my paper (pp. 283-285), there are a large number of variants of
the Church-Turing thesis. In its original form, the thesis was very narrow, being
concerned only with determining the capacities of idealized humans to consciously

Minds and Machines 5: 9-23, 1995.
) 1995 Kluwer Academic Publishers. Printed in the Netherlands.




10 C. E. CLELAND
compute number-theoretic functions. It amounted to the claim that any number-
theoretic function that a human being, given an unlimited amount of time and
memory, could compute in a step by step fashion could be computed by a Turing
machine, and vice versa. In other words, the original version of the thesis did not
address computation in general. It had nothing to say about the capacities of
continuous devices to compute functions or the computation of functions defined

on sets such as the real numbers. Thus, while the original version of thf.‘
Church—Turing thesis is probably true, its interest is limited. It didn’t take long,
however, for broader interpretations of the Church-Turing thesis to be proposed.
Indeed, Turing conjectured, fairly early on, that the thesis could be extended to
machines in general and mental phenomena in general (1964, pp. 20 and 22), and
many contemporary thinkers have followed him in construing it as making a very
general claim about computation.’

In my paper, I discuss three different theses which have been identified with the
Church-Turing thesis and are more general than the original thesis:

CT, Every effectively computable number-theoretic function is Turing-comput-
able.

CT, Every effectively computable function is Turing-computable.

CT, Every effective procedure is Turing-computable.

While 1 sympathize with those who feel that CT, ought not to be considered a
bona fide version of the Church—Turing thesis, on the grounds that it really isn’t a
thesis about computation," I do not sympathize with those who would reject CT
and CT, on the grounds that they are not the original thesis. In the first place,
CT, and CT, are both theses about computation, theses which include the
original thesis as a special case. Moreover, Turing, himself, considered something
stronger than CT,, but, perhaps, weaker than CT,, to be a natural extension of
his original thesis; he did not discuss functions in general. Most importantly,
however, theses CT, and CT, reflect a view that many scientists and scholars
suspect is true, viz., that Turing machines provide some kind of ultimate limit to
the possibilities for computing functions. The interesting question is whether they_
are right about this, not whether there are historical reasons for thinking that it is
a mistake for them to call their conjecture the “Church-Turing thesis.” From the
point of view of computer science, for example, the really interesting question is
whether there are functions, number-theoretic or otherwise, which could be
computed by physical devices but not by Turing machines. Similarly, neuro-
scientists and cognitive scientists wonder whether the computational capacities of
biological brains (vs. conscious minds) might not exceed those of Turing
machines. In short, to dismiss CT, and CT, on the grounds that they are not the
original version of the Church—Turing thesis is to miss the point and engage in a
mere verbal disagreement.

This brings us to the second and third misunderstandings, which are interre-

EFFECTIVE PROCEDURES AND COMPUTABLE FUNCTIONS 11

lated. Despite what Horsten and Roelants say, I do not consider mundane_'
procedures to provide a more general or complete analysis of our concept of
procedure than do Turing machine procedures. Mundane procedures are or-
dinary, everyday procedures such as recipes for making Hollandaise sauce and
methods for starting camp fires; they are methods for manipulating physical things
such as eggs and pieces of wood. Turing machine procedures, on the other hand,
are methods for “manipulating” abstract symbols. Neither kind of procedure
provides a more prototypical example of procedure than the other. For, on my
analysis, “. .. our general concept of procedure is the concept of something to
follow, and what one follows, when one follows a procedure, are instructions
specifying that certain kinds of action be performed in a certain order in time” (p.
297). Both mundane procedures and Turing machine procedures fit this charac-
terization of procedure equally well, which is why I consider them both to be
equally good examples of procedure.

Mundane procedures differ, however, from Turing machine procedures in that
the action-kinds they specify have causal but not formal consequences; they have
causal consequences insofar as the objects manipulated are physical things. In
contrast, the actions specified by a Turing machine procedure have formal but not
causal consequences, since the objects manipulated are abstract symbols, as
opposed to physical things. As a result, no Turing machine procedure can qualify
as a mundane procedure, or vice versa. In brief, on my analysis, mundane
procedures don’t include Turing machine procedures as a special case but, rather,
represent a completely different kind of procedure.

Nevertheless, it is possiblé for a sequence of concrete (particular, physical)
actions to realize both a Turing machine procedure and a mundane procedure.
For a concrete action may involve the manipulation of something which is both a
physical object and a symbol, and, hence, may have both causal and formal
consequences (pp. 298-299). In other words, it is important to distingui_sﬂ
procedures, which are general and repeatable, from the sequences of concrete
actions which instantiate them. Physical devices, whose actions are always
concrete, can realize both Turing machine and mundane procedures, but Turing
machines (whose actions are not concrete) cannot realize mundane procedures.
This is why physical machines can enter the world of mathematics, but Turing
machines cannot enter the physical world.

Where the consequences of the action-kinds specified by a procedure become
important is in the notion of an effective procedure. Intuitively speaking, a
procedure is said to be “effective” if following it consistently results in a certain
sort of outcome. The outcome (with respect to which a given procedure is said to
be effective) may be either a causal or a formal consequence of the action-kinds
specified by the procedure. In the case of an effective mundane procedure such as
the recipe for Petit Mont Blanc, the outcome (a pastry) is a causal consequence of
the activity of a cook on various physical substances, e.g., sugar, butter, flour.
The outcome of a Turing machine procedure, on the other hand, is a formal




12 C. E. CLELAND

consequence of the manipulation of strings of symbols; it is only in virtue of the
fact that the strings of symbols on the machine’s tape are taken to stand for
certain numbers that a Turing machine program for computing averages, for
example, can be said to yield an average. That is to say, on my account, a
procedure is effective in virtue of invariably having certain consequences (when
followed), and these consequences need not be causal. Hence, Horsten and
Roelants are wrong in concluding that my notion of effectiveness has a built-in
component of causality. The source of their misunderstanding of my position can
be traced to either a failure to distinguish a procedure from its implementations
(in sequences of concrete actions which have both causal and formal conse-
quences) or a failure to recognize that Turing machine procedures and mundane
procedures are fundamentally different kinds of procedure.

One might suspect, from the above characterization of effectiveness, that no
procedure which failed to terminate in a final outcome (e.g., a pastry, a number)
could qualify as effective. If this were the case, my account would be inadequate,
since it is clear that implementations of many Turing machine procedures require
the performance of an infinite number of actions, which is impossible, and some
mundane procedures, €.g., Crop rotation, are non-terminating. As I suggested in
my paper, however, it is possible to accommodate such procedures by focusing on
the individual steps of a procedure, independently of whether the procedure ever
terminates when followed.

My proposal is closely related to Minsky’s suggestion that we classify a
procedure as effective if “...the next step is always clearly determined in
advance” (1967, p. 105). To appreciate this, it is important to distinguish steps
from instructions and consequences. As mentioned earlier, a procedure can be
viewed as a set of instructions specifying that certain kinds of action be performed
in a given order in time. A step is not an instruction. It is a stage in the
implementation of a procedure. More specifically, a step is an action-kind (which
is specified by an instruction) having a particular position in the sequence of
action-kinds ‘specified by a procedure’s instruction set. The performance of an
action-kind has consequences insofar as it does something to something, e.g.,
erases a symbol, changes a physical object. In other words, steps are not
consequences; they have consequences (when executed).

A step can be said to be clearly determined in advance if the identity and
position of its constituent action-kind, in the sequence of action-kinds, is
determined in advance of its performance. In the case of Turing machine
procedures, this is achieved by using a set of conditional instructions, whereas in
the case of mundane procedures, this is often achieved by lists of unconditional
instructions. In either case, however, the position of the next step is determined
in advance of its performance by the instruction currently being followed, since
that instruction specifies, either in virtue of its content or its position, the next
instruction to be followed. The next instruction to be followed will secure the
identity of the action-kind if it “precisely describes” it’ In short, procedures
which are “effective” in Minsky’s sense predetermine time ordered sequences of

EFFECTIVE PROCEDURES AND COMPUTABLE FUNCTIONS 3

action-kinds, independently of whether the total number of actions is finite,
infinite or indefinite.

On my view, however, this isn’t enough to get us effectiveness. In addition,
cach action-kind must consistently have a certain kind of causal or formal
consequence (when performed). That is to say, on my proposal, a procedure,
whether Turing machine or mundane, can be classified as effective if and only if
(i) it meets Minsky’s condition and (ii) each of the action-kinds it specifies
invariably has (under normal conditions) a certain kind of consequence. Corre-
sponding steps in different implementations of such a procedure will invariably
have the same result, regardless of whether the number of steps is finite, infinite
or indefinite. Thus, a procedure for computing f(x) = x*, defined over the set of
all positive integers, can be said to be effective, even though the computation can
never be completed. For at each and every stage of its implementation, the
procedure invariably “pairs” those strings of symbols corresponding to the
appropriate integers in the domain and range of the function. On the other hand,
if the number of steps specified by the procedure is finite, its implementations will
terminate in a final outcome, an outcome which may be defined in terms of either
the consequence of the final step (e.g., the final string of symbols on the tape, the
final chemical reaction as the batter bakes) or a series of consequences, each
corresponding to one (or more) of the finitely many steps (e.g., the range of
f(x) =x’ restricted to the set of integers {1,2,...,100}). In this context, it is
important to keep in mind that a procedure may be said to be effective for a
number of different outcomes (see Cleland, 1993, p. 293). As an example, the
same Turing machine procedure may be effective for computing the integer 7 and
for printing three consecutive $,’s on an otherwise blank tape.

In summary, on my account, effective mundane procedures and Turing
machine procedures both qualify as bona fide effective procedures, and neither is
more prototypical of effective procedures than the other; they are fundamentally
different in kind. It follows that my notions of effectiveness and procedure are not
the same as those analyzed by Church, who was interested only in mathematical
procedures. But it is not obvious to me that the concepts I have analyzed are
different from those Turing purported to be analyzing. For Turing claimed to be
analyzing our general concept of an effective procedure, and that is exactly what I
claim to be doing. Indeed, it is my contention that Turing’s analysis failed to
capture the general notion of an effective procedure, because he ignored the
existence of effective mundane procedures. Insofar as my analysis encompasses
both Turing machine procedures and effective mundane procedures, 1 contend
that my analysis is a significant improvement over Turing’s.

I

We are now in a position to begin addressing the question of whether continuous
Physxcal systems (e.g., an object moving at unit speed in space and time) can be
interpreted as computing real-valued functions (the identity function on the



i
l

14 C. E. CLELAND

reals). As Horsten and Roelants note, Turing machines and electronic, digital
computers are said to compute number-theoretic functions in virtue of certain
assumptions about their relations to the natural numbers. According to Horsten
and Roelants, the assumptions in question are “jsomorphism assumptions”’;
Turing machines and personal computers are characterized as being, in some
sense, isomorphic to “the natural number structure”. They contend that one
cannot make these assumptions in the case of continuous physical systems and the
real numbers, and, therefore, that continuous physical systems cannot be
interpreted as computing real-valued functions. But is it really the case that
isomorphism to the natural number structure is required for interpreting Turing
machines and electronic, digital computers as computing number-theoretic
functions? In this section, 1 argue that the answer is no. Moreover; 1 show that
the correspondence assumptions that do seem to be required for interpreting
Turing machines and electronic, digital computers as computing number-theoretic
functions can be made in the case of continuous physical processes and the real
numbers.

Let us begin with the question of whether isomorphism assumptions are
required for interpreting Turing machines as computing number-theoretic func-
tions. Isomorphism is a technical mathematical concept which is designed to
capture the notion of structural identity. Two mathematical structures are said to
be isomorphic if and only if there exists a one-to-one correspondence among their
elements which preserves all functions, relations and constants® Unfortunately,
however, the “‘usual” mathematical structure for the Universal Turing Machine is
not isomorphic, in the technical mathematical sense, 10 the usual structure for
arithmetic (the positive integers with addition and multiplication). For the usual
structure for the Universal Turing Machine does not have the same similarity type
as the usual structure for arithmetic, e.g., the former includes three binary
functions (the “next place” function, the “next symbol” function, the “next state”
function) whereas the latter includes only two binary functions (addition and
multiplication).

Perhaps there is an informal, intuitive sense in which the usual structure for the
Universal Turing Machine can be said to be isomorphic to the usual structure for
arithmetic. After all, one can define on the usual structure for the Universal
Turing Machine all the algorithmic, number-theoretic functions that one can
define on the usual structure for arithmetic. Nevertheless, there arc number-
theoretic functions that can be defined on the usual structure for arithmetic which
cannot be defined on the usual structure for the Universal Turing Machine, since,
as is well known, there are non-algorithmic, number-theoretic functions. More-
over, to any given algorithmic, number-theoretic function, there corresponds
more than one Turing machine function; for the Universal Turing Machine can
achieve the requisite pairings of finite strings of Turing machine symbols
(designating the appropriate pairs of positive integers) by different routes, viz., by
erasing and printing symbols in different orders. In other words, despite the fact

EFFECTIVE PROCEDURES AND COMPUTABLE FUNCTIONS |

that one can define all the algorithmic, number-theoretic functions on it, the usual
mathematical structure for the Universal Turing machine is quite different from
the usual structure for arithmetic, and, hence, cannot be said to be isomorphic, in
even a non-technical sense, to the usual structure for arithmetic. If Tur’ing
fnuchines can be said to compute number-theoretic functions, it is not in virtue of
lson.mrphism assumptions about their relations to the usual structure for arith-
metic.

This brings us to the correspondence assumptions made in interpreting
clectronic, digital computers as computing number-theoretic functions. From
.what has just been said, it should be clear that they don’t have to include being
isomorphic to the structure of the positive integers. Indeed, the relation of
electronic, digital computers to the positive integers is typically handled indirect-
ly, -through the medium of Turing machines and their presumed relation to the
positive integers. As Horsten and Roelants note, an electronic, digital computer is
’comlmonly said to be a Turing machine. If this is true and if, as everyone admits,
Turing machines can compute number-theoretic functions, then electronic, digital
computers can compute number-theoretic functions. The question is in what sense
can an electronic, digital computer be said to be a Turing machine? Subsequently
we \.avill return to the correspondence assumptions required in order to interpret a;
T'uring machine as computing a number-theoretic function.

Turing machines are frequently characterized as abstract mechanisms. They are
mechanism-like to the extent that the instructions in their instruction sets are
normally expressed by conditional statements, i.e., statements having the same
structure as statements expressing causal relations. They are abstract in the sense
that structure is all that they have in common with singular causal occurrences. In
othf?r words, Turing machines represent formal processes. It is for this reason that
Turing machines can be treated as purely mathematical structures, i.e., as entities
consisting of only sets, functions, relations, and constants. Viewed from this
pcrs'pcctive, it is clear that no physical device can be said to be identical to a
Turing machine, and vice versa, since physical machines have both structural and
nog-st_ructural (physical) properties and Turing machines do not, and, by
Lelbmzjs lz_lw, two things can be the same thing only if they have all the same
properties in common.

But this doesn’t mean that there couldn’t be something about a physical device,
such as an electronic, digital computer, and a Turing machine which is the same.
lnc!ced, although Turing machines cannot have any of the non-structural prop-
E’,l‘tlﬁ.:S of physical devices, it seems possible, at least in principle, for a physical
de.\uce to have the same structural properties as a Turing machine. And this
brings us back to the concept of isomorphism. If a physical device had the same
struf:tural properties as a Turing machine, it could be construed as isomorphic to a

Tum.xg machine. To repeat, this wouldn’t be enough to secure the identity of the
physical device and the Turing machine, since the physical machine would still
have properties which the Turing machine lacked. On the other hand, there



16 C. E. CLELAND

wouldn’t be any properties had by the Turing machine (except, perhaps,
abstractness) which the physical device lacked. So there would be a sense in which
the physical machine could be said to be a Turing machine, but not vice versa.
Viewed from this perspective, the «¢” involved in the claim that a personal
computer is a Turing machine is the “is” of predication, as opposed to the “is” of
identity, and, quite frankly, I think that this is the right way to view such claims.
Turing machines ought to be construed as very complex, structural properties
which could be, at least in principle, instantiated by a physical device. Any
physical device which instantiated such a property would be: isomorphic to a
Turing machine of that sort.

Nevertheless, there are good reasons for supposing that being isomorphic to a
Turing machine is not required for the computation of number-theoretic func-
tions. For there are physical machines which are widely acknowledged to compute
number-theoretic functions and, yet, are not isomorphic to any Turing machine,
namely, analog computers. In other words, although electronic, digital computers
may be construed as being isomorphic to Turing machines, it is not necessary that
they be so construed in order to make sense of the claim that they compute
numbc—_:r—thcoretic functions. Moreover, as we saw earlier, isomorphism to the
usual structure for arithmetic isn’t a necessary condition for interpreting a device
as computing a number-theoretic function either; otherwise, Turing machines
couldn’t be said to compute number-theoretic functions. S0 what kind of
correspondence assumptions are necessary for interpreting a physical device or a
Turing machine as computing a number-theoretic function?

Adders are computational devices which compute only a single function, viz.,
addition; they are not interpreted as computing any other function on the positive
integers. This suggests that the computation of a number-theoretic function
requires only that the device doing the computing be in correspondence with the
function concerned. The device need not, as Horsten and Roelants seem to think,
be in correspondence with more complex structures, of which the function is a
part. The correspondence relation between the device and the function, however,
must be very fine-grained, since the device must uniquely represent any function
that it can be said to compute; no device can be said to compute a function which
it can’t differentiate from other functions. In this context, I propose that the
correspondence condition which a device must meet in order to be interpreted as
computing a number-theoretic function is that it mirror (represent the detailed
structure of) the function. On the set theoretic notion of a function (as a set of
ordered pairs), this amounts to claiming that (i) the device includes a set of

distinct objects which are in one-to-one correspondence with the set of positive
integers in the field (domain and range) of the function and (ii) the device pairs
each and every object corresponding to an integer in the domain of the function
with the object corresponding to the appropriate integer in the range of the
function!® It is my contention that this — mirroring the function — is the only
correspondence assumption that we need to make in order to interpret a device

EFFECTIVE PROCEDURES AND COMPUTABLE FUNCTIONS 17

(whether a Turing machine, an electronic, digital computer, or an anal
cumputer) as computing a number-theoretic function. l o

.lt is clear that Turing machines mirror the number-theoretic functions they are
said to c?mpute. For any Turing machine which computes a function is such that
}l}er‘e exists (i) a one-to-one correspondence between a set of distinct strings of

lunn% machine symbols and the set of positive integers in the field of the function
and (ii) a sequence of Turing machine operations which transforms (pairs) each
and every string of Turing machine symbols, corresponding to an integer in the
domain of the function, into the string of Turing machine symbols correspondin,

to the appropriate integer in the range of the function. It is not so obviousg
however, that electronic, digital computers mirror the functions they are said tc;
compute. The problem is that, unlike Turing machines, physical devices eventuall

break dolwn or wear out. As a consequence, no electronic, digital computer cag
ever achieve all the pairings of physical structures required in order to mirror a
total fu'nction on the positive integers.'" Thus, electronic, digital computers seem
to be l.m?ited, on the proposed analysis, to the computation of partial functions

But thl_s is contrary to what we ordinarily say about electronic, digital computers'
We claim that they can add and subtract, and, technically speaking, addition ami
subtractiqn are total functions on the positive integers. ;

Thc_re is more to the structure of a physical device, however, than its actual
pehavmr. To appreciate this, suppose that my Texas Instrument TI-85 calculator
is destroyed. Now consider some partial function on the positive integers that it
never' cmgputed; there will be many, but let’s choose one having a very small
domain, viz., the set of integers from 0 to 30. Despite the fact that my calculator
never computed this function, it remains true that it could have computed it
Why? Bcn-:ause the actual behavior of my calculator does not exhaust its capacit-
for behavior. The behavior of my calculator comes under causal laws which havz
coupterfactual force. It is part of the nature of my calculator that it would have
achle.ved all of the requisite pairings of physical structures if it had received
certain f:qmmands (which it did not). The same can be said for total functions on
the.p(.nsmve integers. If my calculator never broke down or wore out (and had
unlirfuted memory) it would achieve all of the countably infinite pairings of
physical structures needed in order to explicitly mirror the function of addition. In
other words, the physical structure of my calculator includes counterfactual- as
well as factual, pairings of physical structures. Accordingly, it seems that ’m
calculator can be said to mirror total functions on the positiv’e integers after ally

Iq conclus_ion, the only correspondence assumption that seems to be requireci
for mte-rpretmg a device, whether concrete or abstract, as computing a number-
theoretic function is that the device mirror the function. Moreover, I see no
reason to suppose that this result can’t be extended to functions othe,r than the
numb(?r-theorctic functions. The question thus becomes are there devices which
can mirror non-algorithmic functions (functions which cannot be computed by any
Turing machine)? In the next section, I will argue that there are such devices,




18 C. E. CLELAND

viz., genuinely continuous devices. Whether or not there exist any genuinely
continuous, physical devices is, of course, an open question. But the mere
possibility of such devices is enough to make my point, viz., that it is possible for
a device to mirror a non-algorithmic function. Subsequently, we will address the
crucial remaining question, namely, is mirroring a function a sufficient condition

for computing it?

11

Consider an object moving at unit speed in space and time. Suppose that space
and time are both genuinely continuous, then every interval of space and time,
no matter how small, consists of an uncountably infinite number of distinct places
and times. Further suppose that motion is a genuinely continuous process —a
process of occupying different places at different times in such a way that every
intervening place and time along the path of motion is, at least, passed through. If
these suppositions are true (and they may not be), a moving object will associate
an uncountably infinite number of distinct places with an uncountably infinite
number of distinct times.

Any object which pairs places and times in the above manner mirrors @
function. Admittedly, the function is not a numerical function, but, from a set
theoretical point of view, it is still a bona fide function. Moreover, the function in
question cannot be computed by any Turing machine, since a set consisting of an
uncountably infinite number of places or times can’t be placed in one-to-one
correspondence with the set of all distinct Turing machine symbols; there aren’t
enough strings of symbols. In short, regardless of whether it can be said to mirror
a real-valued function, the moving object can be said to mirror a non-algorithmic
function.

In order for the moving object to mirror a real-valued function, however, there
needs to be a one-to-one correspondence between the set of real numbers in the
field of the function and the sets of, respectively, places and times “occupied” by
the object during its motion. Let us take as our function the identity function on
the positive reals. Granting that the object “occupies’’ an uncountably infinite
number of places and times, there will be a one-to-one correspondence between
the real numbers in the field of the function and the set of places/times
“occupied” by the object. In this context, it is important to keep in mind that it
doesn’t matter whether any human being could actually match each and every
positive real number to a distinct time or place, or, for that matter, given any
particular time or place, pick out the corresponding real number. From a
mathematical point of view, a one-t0-one correspondence is nothing more than an
abstract relation among the elements of two sets. In other words, mirroring, as 1

have defined it, is an abstract, but, nevertheless, objective, relation among
structures. It is simply a fact about a physical system, which we may or may not
discover, that it mirrors some function. As a consequence, all that is required for

EFFECTIVE PROCEDURES AND COMPUTABLE FUNCTIONS 19

a moving object to mirror the identity function on the positive reals is that the
ubov_e physical assumptions be true, i.e., that space, time and motion be
genuinely continuous. Whether or not we can describe the moving object as
cump_uting the identity function on the positive reals, however, is another
question — a question which we shall soon take up. :

Horsten and Roelants, however, would object to this conclusion on the grounds
that the function being mirrored isn’t “uniquely determined.”'* There are many
one-to-one correspondences between the set of positive real numbers and a set
uogsvstmg of an uncountably infinite number of places or times. Depending upon
wh.u:h positive real numbers are paired with which places and times, the mofr)in
t.)b]E‘oC-t will mirror different real-valued functions. But as discussec:’l earlier ni
tun.cuon can be said to mirror (represent the detailed structure of) a func’tion
which it doesn’t represent as distinct from other functions. Accordingly, it seems
t.hat a moving object cannot be said to mirror (let alone compute) th;: identit
function on the positive reals after all. S

Insofar as there exist many different one-to-one correspondence relations
betwelen the set of positive real numbers and the sets of places and times in
question, the moving object mirrors many different real-valued functions
Nevertheless, each mirroring is different, since each one-to-one correspondence is'
dl‘fferent. Pick out a particular one-to-one correspondence and the moving object
will represent a unique real-valued function. That is to say, it is only within ]the
co'ntext of a definite one-to-one correspondence, that the moving object can be
said to uniquely determine a real-valued function.

Admittedly, there aren’t any obvious natural assignments of real numbers to
places and times; space and time do not seem to have an absolute origin, for
example. Indeed, “. . . we can associate real numbers with places and times ir; an
way we like.” But this shouldn’t be viewed as posing a special problem fo):'
phy:.su:al systems, since it is also true of Turing machines. Like physical devices
Turing machines do not operate directly on numbers; they transform strings o,f
S)_Jm-bo!s. Insofar as there are different possible assignments of positive integers to
dfstmct strings of Turing machine symbols, a given Turing machine mirrors
different number-theoretic functions. In order to uniquely determine a function
computed by a given Turing machine, one must select a particular one-to-one
corr.csponclence between the set of positive integers and the set of strings of
Tl.mng machine symbols. This is standardly done by convention. It is simpl
§.npulated that the symbol S, stands for the integer 0, the symbol S stands for ch
mt-egef 1, and the right most symbol, in a string of symbols, is allways taken as
being in the.“one’s” place (i.e., the first power of the base 2). Similarly, one can
use convention to associate real numbers with places and times, and, d:apending
upon what convention one settles upon, the moving object will determine a
unique function. In short, an object moving at unit speed in a continuous space
and tl'me can be said to uniquely determine the identity function on the positive
reals in the same sense that a Turing machine can be said to uniquely determine




20 C. E. CLELAND

the function of addition on the positive integers, viz., in the context of a definite
one-to-one correspondence.

It is important to keep in mind here that our inability to provide a unique,
discrete (discontinuous) physical representation for each and every real number
does not preclude the possibility of establishing a definite one-to-one corre-
spondence between the set of real numbers and a set of continuous physical
quantities. Moreover, there aren’t any a priori reasons to suppose that there
couldn’t be a physical device which was sensitive to differences among distinct but
continuous physical quantities, despite the fact that it couldn’t produce a unique,
discrete physical quantity for each real number. Ignoring, for the sake of
argument, certain quantum mechanical considerations, one can imagine a con-
tinuous physical device which mirrored the characteristic function of the set of
irrational numbers by printing a 1" every time it detected the physical quantity
corresponding to an irrational number and a “0” every time it detected the
physical quantity corresponding to a rational number. Although we couldn’t use
this machine to uniquely identify or count real numbers, we might, nonetheless,
have good reasons (e.g., inference to the best explanation, simplicity) for
believing that the machine was mirroring the characteristic function of the
irrationals (which is, of course, a non-algorithmic function). Analogously, we
have good, but not conclusive, reasons for believing that electronic, digital
computers mirror total functions on the positive integers; for as discussed earlier,
any physical device will break down or wear out long before it can achieve all of
the requisite pairings of integers. In other words, our situation with respect t0 the
question of whether a continuous physical device mirrors a non-algorithmic
function is not much different from our situation with respect to the question of
whether my TI-85 calculator really does mirror the detailed structure of addition:
It depends upon whether the causal processes and physical quantities involved
have the right structures.

So this brings us to the pivotal question: Is there a difference between mirroring
a function and computing a function? From an intuitive standpoint, it seems that
there is. Surely, falling rocks don’t compute functions, even supposing that they
mirror them. That is to say, there seems 10O be a difference between a mere
representation of a function, no matter how detailed, and the computation of a
function. But what could this difference amount to? A natural suggestion is that
computation requires not only the mirroring of a function but, also, the following
of a procedure; falling rocks don’t compute functions because they don’t follow
procedures.

There is a major problem with this proposal, however, and that is that Turing
machines are frequently construed as purely mathematical objects. They are
defined in terms of the same kinds of basic entity (viz., sets, functions, relations
and constants) as other mathematical structures. A Turing machine is said to
compute a number-theoretic function if a function can be defined on its mathe-
matical structure which has the same detailed structure as the number-theoretic

EFFECTIVE PROCEDURES AND COMPUTABLE FUNCTIONS 21

function concerned; there isn’t a distinction, in Turing machine theory, between
Fumputing a function and defining a function. Indeed, Turing machines can be
instantiated by static, physical systems, and such systems can no more be said to
follow procedures than the structure of the positive integers can be said to follow
a procedure. What a Turing machine really does is to represent the detailed
structure of a number-theoretic function in a peculiar way, viz., as a sequence of
scparate transformations of strings of symbols. While such a representation
mirrors a procedure (as well as a function), it does not amount to the following of
a procedure, and that is the crux of our problem. If computing a function
presupposes following a procedure, then neither Turing machines nor falling
rocks can be said to compute functions.

In .this light, one might wonder whether it is a mistake to construe Turing
machines as purely mathematical objects. After all, they are characterized as
(abstract) mechanisms too. Indeed, perhaps mechanisms, whether physical or
abstract, have special representational features which are relevant to the compu-
tation of functions but which can’t be captured in terms of the notion of a
mathematical structure. But, again, what could these features be? They can’t
amount only to the presence of genuinely dynamic processes, since falling rocks
are genuinely dynamic objects. Perhaps, as is often suggested, Turing machines
represent a very special kind of mechanism, viz., an idealized human mind, and
cor.nputin.g a function amounts to mirroring a function in the way that human
pemgs mirror functions. On this proposal, a function would be computable only
insofar as its detailed structure could be consciously reconstructed by an idealized
person,.viz., in a step-by-step fashion. Thus, a falling rock would fail to qualify as
comp}mng a real-valued function on the grounds that no human being could
consciously reconstruct such a function in a step-by-step fashion. But why restrict
the c$)ncept of computation to the impoverished representational capacities of
conscious human minds, particularly given that we commonly characterize non-
human mechanisms, such as personal computers, as computing functions?
Moreover, as Jim Fetzer (1994, pp. 22-24) has recently pointed out, there are
kinds of human reasoning (heuristics and asymmetrical decision procedures)
whicp cannot be successfully analyzed as instances of following an algorithmic
(Tun.ng_ machine like) procedure but might, nevertheless, be analyzed as in-
s.tarmatmg or as satisfying “procedures”, understood a disciplined step satisfac-
tion. Perhaps even human beings sometimes compute functions by performing
mental operations that do not, strictly speaking, follow algorithmic procedures?

.In conclusion, it isn’t obvious that there is a significant distinction between
n?lrroring a function and computing a function. If there is, then Turing machines
e¥ther don’t compute functions or are not purely mathematical structures. In
either case, we need a new analysis of computation, and it isn’t at all obvious
v‘vhat form it will take. On the other hand, if there isn’t a distinction, then the
limits to physical computation are set by the physical structure of the world, and
either the first or the second version of the Church-Turing thesis (CT, or CT;)




22 C. E. CLELAND

could turn out to be, in fact, false. For if there are genuinely continuous causal
processes and physical quantities, then, Horsten’s and Roelant’s arguments
notwithstanding, physical systems compute non-algorithmic, real-valued func-
tions. Similarly, there may be physical systems which compute non-algorithmic,
number-theoretic functions. Whether we could ever discover that such physical
systems exist, let alone exploit them, is another question, a question which is,
alas, beyond the scope of this paper. In any event, however, my point remains,
and that is, barring a significant distinction between mirroring a function and
computing a function, the truth of CT, and CT, depends upon the physical (vs.
logical) structure of the world.”

Notes

'In order to avoid confusion over functions which are computable in Turing’s sense and functions
which are computable in some other (not Turing’s) sense, | will reserve the term “algorithmic
function” for a function which is computable in Turning's sense. Thus, 1 won’t be caught in the
seemingly contradictory position of speaking of computable, uncomputable functions.

2 This objection has been advanced by a number of other people too, e.g., David Israel (in a personal
communication).

* See the introduction to my paper (1993, pp. 283-285) for further details and references.

“ Nevertheless, it has been advanced in the literature as a version of the Church-Turing thesis (see my
1993 paper, pp. 284-285, for details), which is why 1 take it under serious consideration. In this
context, it is important to keep in mind that CT, is a thesis about procedures, albeit not computational
procedures. (1 should, perhaps, note here that Horsten and Roelants do not explicitly object to CT,
being identified as a version of the Church—Turing thesis, although a number of other readers have
done s0.)

5 In this context, it is worth noting that some neuroscientists and cognitive scientists have a tendency 10
confuse computing with causally producing, thus conflating CT, with CT,. More specifically, they
speak of the brain as computing sensations, consciousness, or intuitions, mental phenomena that seem
very different from mathematical functions.

¢ As I discussed in my paper (1993, pp. 291-293), the notion of an instruction precisely describing a
given action-kind is problematic, since no mere description of what to do can (just by itself) exclude
the possibility of error in the case of either a human follower or a device. Indeed, as I argue, the
notion of an instruction precisely describing an action-kind must be relativized to an idealized
follower, such as a Turing machine, which, by definition, cannot fail to print an S, when asked to print
an S, or an idealized chef, who by definition, understands precisely what to do when asked to cream
the butter. The upshot is that there is no reason to think that the action-kinds specified by a mundane
procedure are less precisely described than those specified by a Turing machine procedure; the
instructions of both need to be relativized to idealized followers. The problem with mundane
procedures is that we don’t have a theory of idealized followers, €.g., chefs (in the case of recipes),
mechanics (in the case of instructions for rebuilding an engine), travelers (in the case of geographic
directions).

" Technically speaking, all Turing machine procedures are effective, but not, of course, for any old
outcome. ‘For each and every stage of implementation of a given Turing machine procedure will
always result in the same string of symbols on the tape, and, hence, the procedure can be said to be
effective for producing a certain series of strings of symbol.

¥ The correspondence is actually one-one and onto, but, for the sake of simplicity of exposition, 1 will
follow mathematical tradition and, misleadingly, refer to the correspondence as a “‘one-to-one
correspondence.”’

1 am assuming here that the structure on the natural numbers that Horsten and Roelants have in
mind by “the natural number structure” is the usual structure for arithmetic. Also, it is important to

EFFECTIVE PROCEDURES AND COMPUTABLE FUNCTIONS 23

note !Ilut, technically speaking, there isn’t a so-called “‘usual” structure for the Universal Turing
Machine, as there is for arithmetic. Different mathematicians and computer scientists define the
structure for the Universal Turing Machine in different ways, viz., in terms of different functions and
tcl.n.mns, according to the problem at hand. Moreover, many mathematicians and computer scientists
provide only a piece of the structure, assuming that the rest could be filled out in an obvious wa
Almost all of the proposed structures for the Universal Turing Machine, however, have in commc:;
the assumption that they ultimately “include” the same set of functions and relations, i.e., the union
of the set of functions and relations in terms of which the structure is defined and the ,set (;f functions
.an relations which can be defined on the structure are the same for different structures for the
Universal Turing Machine. So, for simplicity of exposition, I have elected to call one particular
wlruf:l_ure for the Universal Turing Machine the *“‘usual” structure, viz., the structure consisting of (in
addition to a finite set of states, a finite set of symbols, and the initial state) three binary functions
(the *next-place” function, the “next symbol” function and the “next state” function) Somé
structures for Turing machines combine these functions into fewer functions; see, for example. Lewis
& ll’apadimitriou (1981, p. 170), who define the structure for the Universal Turing Machine in t::rms of
a single (next state-symbol-place) function.

l.u conversation, Horsten has informed me that this is really all that he had in mind when he spoke
of isomorphism, even though he referred to the “natural number structure.” While I agree that any
structure which mirrors a function can be construed as isomorphic to a structure consisting of the set of
clements T the ﬁeldlof the function and the function itself, I prefer to use the term “‘mirroring”, since
e A o T S i o oA i o e S
" h 2 . ntly insists that no physical device
unvt‘)e s:aud to “compute,” in the strict, mathematical sense of the term, any total function on the
p'usmve integers.

e Horstcn and Roelants (1995) articulate this objection in the context of the claim that a moving
ub}‘ecllcomputes the identity function on the positive reals. But, on my view, what they were really
tl.bjectlng Iolis the claim that a moving object mirrors the function.

*1 would like to than Jerry Malitz and Jan Mycielski, of CU’s Mathematics Department, for a

number of very enjoyable and helpful discussions. Any mistakes and all outrageous claims are, of
course, my own! :

References

(:‘leland, Carol E. (1993), ‘Is the Church-Thesis True?', Minds and Machines 3, pp. 283-312.
Fetzer, _Jf—)mcs H. (1994), ‘Mental Algorithms: Are Minds Computational Systems?’, Pragmatics &
Cognition 21(1), pp. 1-29.
Horsten, Leon & Roelants, Herman (1995), ‘The Church-Turing Thesis and Effective Mundane
Procedures’, Minds and Machines 5, pp. 1-8 (this issue).
Lewis, Harry R. & Papadimitrious, Christos H. (1981), Elements I
1 . b of the Th
F:‘nglewood Cliffs: Prentice-Hall. Y e Theoey o TR
N:lm'sky, Marvin (1967), Computation: Finite ans Infinite Machines, Englewood Cliffs: Prentice-Hall.
'lunug,.Alan (1964), ‘Computing Machinery and Intelligence’, in A. Anderson, ed., Minds and
; M:fchmes, New Jersey: Prentice Hall, pp. 4-30.
Turning, Alan (1965), ‘Systems of Logic Based on Ordinals’, in M. Davis, ed., The Undecidable, New
York: Raven Press, pp. 155-222. :



