SOFTWARE, ABSTRACTION, AND ONTOLOGY

ABSTRACT

This paper analyzes both philosophical and practical assump-
tions underlying claims for the dual nature of software, including
software as a machine made of text, and software as a concrete
abstraction. A related view of computer science as a branch of
pure mathematics is analyzed through a comparative examina-
tion of the nature of abstraction in mathematics and computer
science. The relationship between the concrete and the abstract in
computer programs is then described by exploring a taxonomy
of approaches borrowed from philosophy of mind.

Keywords: Computer science, mathematics, software, abstraction,
ontology, philosophy of mind.

1. INTRODUCTION

Traditional philosophical problems concerning what kinds of things
there are, and how to classify certain individual things, rarely hold more
than academic interest. The outcomes of debates over the ontological
status of bare particulars, for example, will not make headline news or
affect the lives of non-philosophers very much. Of course, a decision to
make an ontological commitment often does affect how we do science, as
when the conjecture that over 90% of the universe is composed of unob-
served “dark” matter prompts lengthy and risky experiments to capture a
fleeting glimpse of a neutrino. Still, although the outcomes of these exper-
iments hold enormous implications for cosmology, they will not affect the

day-to-day lives of ordinary people whose work involves business, finance,
trade, or technology.

“Software, Abstraction, and Ontology” by Timothy R. Colburn,
The Monist, vol. 82, no. 1, pp. 3-19. Copyright © 1999, THE MONIST, La Salle, illinois 61301,

4 TIMOTHY R. COLBURN

However, the ontological status of computer software has emerged as
an issue that may hold interest both for academic philosophers and for
those involved in the formation of public policy for the international mar-
ketplace. As reported in a recent issue of Scientific American [Wallich
(1997)], the apparent dual nature of software has sparked a debate
involving free speech and the applicability of the International Traffic in
Arms Regulations. A related controversy conceming policy governing in-
tellectual property rights [Davis er al. (1996)] also appears to have its
roots in a perceived dual nature of software.

The aim of this paper is not to propose solutions to these debates, but
to bring to light and analyze the philosophical assumptions underlying
them. [will describe the primo facie reasons for upholding scftware’s
duality, along with the ontological impiications. Along the way, 1 will
expose two misconceptions, namely that software is a machine made out
of text, and a related view that computer science is merely a branch of
pure mathematics. By describing the actual practice and infrastructure sur-
rounding software creation today, | will support a view of software as a
concrete abstraction, and try to explain what this could mean from an on-
tological point of view.

2. THE DUAL NATURE OF SOFTWARE

At the center of one of the debates are cryptography programs.
Although the philosophical questions raised by them are also raised by
any computer program, they have emerged as a focus because of their
value to a wide cross-section of society. Computer cryptography involves
both the encryption and decryption of data that is passed along non-secure
electronic communication lines, so that an eavesdropper on such a line
would find only data that is unintelligible. Encryption and decryption al-
gorithms are essential to ensure the privacy of data such as credit-card
numbers used in Intemet commerce, electronic funds transfers, and
personal e-mail messages. These algorithms are encoded in the text of a
computer programming language.

The controversy reported in [Wallich (1997)] concerns an author of
- a book on applied cryptography who was prohibited by the State depart-
ment from exporting the book because it included as an appendix a floppy
disk containing program text expressing algorithms for encryption software.

SOFTWARE, ABSTRACTION, AND ONTOLOGY 5

The software was deemed a national security risk, since encryption software
that is strong enough could allow unfriendly governments or internation-
al terrorists to send one another encrypted messages without the eaves-
dropping U.S. government being able to decrypt them. On this view, a piece
of strong encryption software is a dangerous machine, just like a cluster
bomb or laser-guided missile. However, were the floppy disk not included
with the book, the book would have been freely exportable even though
the program text on the floppy disk was also printed in the book. As text
on the printed page, the software was simply a product of every American’s
right to free speech. But as magnetic representations of the same software
on a different medium, it qualified as part of a potentially dangerous mech-
anism and a threat to national security.

The philosophically interesting aspect of this controversy is that the
two sides naturally appeal to ontological characterizations of software that
appear to be inconsistent: the libertarian side wants to see software as text,
and therefore freely distributable, while the regulatory side wants to see
software as mechanism, and therefore subject to export restrictions.

3. SOFTWARE AS A MACHINE MADE OF TEXT

The text/mechanism dichotomy is also at the root of controversies
over software copyrighting. At issue is the faimess of the practice of
certain software companies quickly “cloning” the look and feel of other
companies’ successful products, then drastically underselling them to gain
quick market share, at the expense of the original companies’ large in-
vestment in research and development. In [Davis et al. (1996)], the
authors point out how laws implementing copyright and patent policy
were written at a time when copyright was only considered to apply to
literary work, while patents were only considered to apply to the artifacts
of technology, and these were mutually exclusive domains. But software,
the authors argue, possesses a unique nature that engenders controversies
when placed in this strict categorical scheme, so they propose to relax the
constraint that the categories of text and mechanism are mutually exclusive:

We have attempted to capture some of this conceptual confusion with a
pseudo-paradox, pointing out that software is a machine whose medium of
construction happens to be text. This captures the inseparably dual nature of
software; it is inherently both functional and literary, both utilitarian and

——-—h—

6 TIMOTHY R. COLBURN

creative. This seems a paradox only in the context of a conceptual framework
(U.S. law) that cannot conceive of such objects. [p. 23]

The important assertion here is that “software” is a machine whose
medium of construction happens to be text.” From a philosophical point
of view this assertion raises two obvious questions: (1) How can a
machine be constructed out of text? and (2) How can software, which is
constructed using statements written in a formal programming language,
be considered a machine?

The first question can be answered by distinguishing between physical
and virtual machines. Physical machines cannot be constructed out of text,
but virtual machines, which are painstaking descriptions of operations and
data structures which may or may not be realized in a particular physical
system, are abstract specifications describable by text. The relationship
between a virtual machine and its realizations in hardware or software is
similar to the relationship between a blueprint for a house and all the
various ways it can be built. So when we distinguish between physical and
virtual machines the first question ceases to be puzzling.

The second question, however, gets 10 the heart of the purported
duality of software, and cannot be explained by appeal to the physical/
virtual distinction. Software seems to be at once both textual and machine-
like. After all, when one looks at a printout of a program one sees a lot of
statements written in a formal language. But when cone holds the same
program on a floppy disk in one’s hand, one feels the weight of a piece of
a machine. But the nature of software’s duality can be illuminated by un-
derstanding the distinction between software’s medium of description and
its medium of execution.

Strictly speaking, when one looks at printed program text, what one
sees is not the software itself, but the encoding of an algorithm, or formal
description of a computational process. As pointed out by [Fetzer (1993)],
algorithms are logical structures akin to functions for the derivation of
outputs when given inputs [p. 342]. Like a function, an algorithm is an
. abstract object, exemplifiable by many different textual descriptions. As
Fetzer put sit, “As an effective decision procedure, an algorithm is more
abstract than is a program, insofar as the same algorithm might be imple-
mented in different forms suitable for execution by various machines by
using different languages” [p. 343]. So although an algorithm may have
many different concrete embodiments as text, whether they be ink on

SOFTWARE, ABSTRACTION, AND ONTOLOGY 7

paper or phosphors glowing in a cathode ray tube, the algorithm itself is
an abstraction. The ontological status of this abstraction, as debated by,
say, the opposing theories of platonic realism or constructivist idealism, is
an interesting issue, but it is not germane to the point being made here.
Programs, which cause machines to execute the computational process
specified by algorithms, are constructed not out of text, but out of electron
charges, magnetic fields, pulses of light, etc., which are not abstractions,
but to which we give an interpretation as binary numbers. The idea that
software is a machine built from text gives rise to the notion that software
is some kind of mysterious entity which is both abstract and possesses
causal power. Fetzer, however, in analyzing the practice of formal
program verification, has clearly pointed out the philosophical problems
with confusing abstract and causal systems [Fetzer (1993)). If we are
puzzled by the difference between software’s medium of description,
which is formal language, and its medium of execution, which is circuits
and semi-conducting elements, the response should not be to conflate the
categories of text and mechanism into a yet more puzzling category that
admits of both. It is not necessary to introduce into our ontology entities
such as (non-virtual) machines constructed out of text if we study more

~ carefully the relationship between software’s medium of description and

its medium of execution.

Software’s medium of description is, of course, text, constructed out
of many possible levels of formal language. Languages such as C++ and
Java are considered high-level because the terms involved in them are not
about machines at all, but abstract entities like variables and operations on
numbers, as in the program statement c = a + b, which instructs a
processor to add the values in locations a and b and store the result in
location c. A programming tool called a compiler allows programmers to
think in more abstract terms than the state of semiconducting elements,
because of its ability to transform one kind of program representation into
another. Typically, this other representation is assembly language.

One assembly language representation, among many, of the high-
level statement ¢ = a + b is: .

copy a, regl
add b, regl
copy regl, c

8 TIMOTHY R. COLBURN

These statements accomplish the same task as the high-level statement,
but they reveal something about a specific machine’s architecture while
doing so, namely, the existence of a piece of hardware called a register

(regl in this example). Prior to the widespread availability of compilers,

most programmers had to write in languages like this. Now, hardly any
programmer does, because the creation of this type of program is
automated. But while this description involves concrete objects like
registers and memory locations, it still has no relation to the medium of
execution, which is circuits etched in silicon. Also, it is not written in the
language of a central processor, which is the binary language of ones and
zeros. Another programming tool called an assembler transforms
assembly language representations of programs into machine language
Tepresentations, whose elements are ones and zeros. One type of assembler
would translate the above assembly language instructions into the following
machine language instructions:

00010001000100010000011110111000
10000001000100010000011110111010
00010001001100010000011110111100

This is the only type of program representation that a central processor
“understands.” It obliquely refers to operations, registers, and memory
locations through a complicated encoding method called a machine code
format. If you were a programmer in the dark days before language trans-
lators, you endured painstaking hours creating a program like this on a
piece of paper, and then you had your time with the machine. You labori-
ously “loaded” the program into memory by flipping switches on the front
panel of the machine, up or down depending on whether you were loading
a zero or one. The physical effect of this was to place bi-stable memory
elements, be they vacuum tubes, magnetic core drum elements, or tran-
sistors, into one of two states which, through an act of stipulative defini-
ti(?n, could be regarded as a one or a zero. A “category shift” in the program-
ming process between text and mechanism occurred therefore with this at
once physical and intentional act of placing some material into one of two
states and giving the state an interpretation as a binary digit, or bit.

. The situation is in principle no different today. Instead of flipping
switches or otherwise loading a machine language program full of bits by

SOFTWARE, ABSTRACTION, AND ONTOLOGY 9

hand, a program called a link-loader does it for you. The incalculable
power and utility of tools like compilers, assemblers, and link-loaders
conceal the fundamental fact that to program a machine is to put its
memory into a state which when presented as input to circuits will
produce more states of a desired kind. The various levels of formal
language which we today use to describe these states are abstract tools to
achieve this. So, the remarkable thing about software is not how it is a
machine whose medium of construction is text, but how a textual de-
scription of a piece of software is involved in its own creation as states of
memory elements. The development over time of tools many program-
mers take for granted is the reason we can do this relatively easily. Formal
languages are indispensable abstractions for thinking about software, but
there is no reason to think that software is a machine made of text.

4. SOFTWARE AS A CONCRETE ABSTRACTION

But the role of formal language in the creation of software does
introduce a question of the role of abstraction in computer science. Some
accounts are unabashed that a duality of abstract vs. non-abstract is at the
heart of the discipline. For example, an undergraduate textbook, called
Concrete Abstractions: An Introduction to Computer Science {Hailperin et
al. (1997)], freely switches between the poles of this duality right from the
start of its preface:

At first glance, the title of this book is an oxymoron. After all, the term ab-
straction tefers to an idea or general description, divorced from actual,
physical objects. On the other hand, something is concrete when it is a par-
ticular object, perhaps something that you can manipulate with your hands
and look at with your eyes. Yet you often deal with concrete abstractions.
Consider, for example, a word processor. When you use a word processor,
you probably think that you have really entered a document into the
computer and that the computer is a machine which physically manipulates
the words in the document. But in actuality, when you “enter” the document,
there is nothing new inside the computer—there are just different patterns of
activity of electrical charges bouncing back and forth between capacitors. . . .
Even the program that you call a “word processor” is an abstraction—it’s the
way we humans choose to talk about what is, in reality, yet more electrical
charges. Yet at the same time as these abstractions such as “word processors”
and “documents” are mere convenient ways of describing patterns of electri-
cal activity, they are also things that we can buy, sell, copy, and use. [p. 5]

10 TIMOTHY R. COLBURN

The juxtaposition of seemingly incompatible ontological categories
in a “concrete abstraction™ may strike philosophers as puzzling. After all,
the similarly curious duality in the nature of microphenomena asserted by
the Copenhagen interpretation of quantum mechanics caused philosophi-
cal tremors for physicists and philosophers of science alike. [Reichenbach
(1953), Hanson (1967)) The particle and wave characterizations of light
were both physical characterizations. By contrast, the duality inherent in
a “concrete abstraction” crosses metaphysical categories, and deserves at
least as serious philosophical scrutiny as the Copenhagen interpretation.
While computer scientists often enthusiastically embrace this duality, a
metaphysician will view it as a puzzle to be explained. How can something,
namely a computer program, be at once concrete and abstract? We will
return to this question later, but first we will entertain a misconception that
often arises whenever computer science is characterized as being concerned
with abstractions, concrete or not. This is the persistent misconception by
some that computer science is just a branch of pure mathematics.

5. COMPUTER SCIENCE AND PURE MATHEMATICS

_ That this point of view is widely held by influential computer scien-
tists is carefully pointed out by Fetzer. In [Fetzer (1993)] and [Fetzer
(1991)), he analyzes the practice and claims of formal program verifica-
tionists, who are most inclined to hold this view, and he concludes that the
activity of computer programming is fundamentally different from the de-
liberations of pure mathematics. In what follows I shall come to the same
conclusion, but by examining the nature of abstraction in the two activi-
ties. This will also illuminate the stage for examining the meaning of a
“concrete abstraction.”

Abstraction in Mathematics

Both mathematics and computer science are marked by the introduc-
tion of abstract objects into the realm of discourse, but they differ
fundamentally in the nature of these objects. I will suggest that the differ-
ence has to do with the abstraction of form vs. the abstraction of content.

Traditionally, mathematics, as a formal science, has been contrasted
with the factual sciences such as physics or biology. As natural sciences,

SOFTWARE, ABSTRACTION, AND ONTOLOGY 11

the latter are not concerned with abstraction beyond that offered by math-
ematics as an analytical tool. The literature is full of strict bifurcations
between the nature of formal and factual science in terms of the meanings
of the statements involved in them. Camap, for example, separates them
using the analytic/synthetic distinction. [Carnap (1953)] Since analytic
statements are valid according to the transformation rules of a system, and
not by virtue of the truth or falsity of any other statements, then formal,
mathematical, or deductive systems do not say anything empirically sig-
nificant. In fact, says Carnap:

The formal sciences do not have any objects at all; they are systems of auxiliary
statements without objects and without content. [p. 128]

Thus, according to Carnap, the abstraction involved in mathematics is one
totally away from content and toward the pure form of linguistic transfor-
mations.

Not all philosophers of mathematics agree with Carnap that mathe-
matics has only linguistic utility for scientists, but there is agreement on
the nature of mathematical abstraction being to remove the meanings of
specific terms. Cohen and Nagel, for example, [Cohen (1953)] present a
set of axioms for plane geometry, remove all references to points, lines,
and planes, and replace them with symbols used merely as variables. They
then proceed to demonstrate a number of theorems as consequences of
these new axioms, showing that pure deduction in mathematics proceeds
with terms that have no observational or sensory meaning. An axiom
system may just happen to describe physical reality, but that is for exper-
imentation in science to decide. Thus, again, a mathematical or deductive
system is abstract by virtue of a complete stepping away from the content
of scientific terms.

As a final example, consider Hempel’s assessment of the nature of
mathematics while arguing for the thesis of logicism, or the view that mathe-
matics is a branch of logic:

The propositions of mathematics have, therefore, the same unquestionable
certainty which is typical of such propositions as “All bachelors are unmarried,”
but they also share the complete lack of empirical content which is associat-
ed with that certainty: The propositions of mathematics are devoid of all factual
content; they convey no information whatever on any empirical subject matter.
[Hempel (1953), p. 159] ‘

12 TIMOTHY R. COLBURN

In each of these accounts of mathematics, all concern for the content
or subject matter of specific terms is abandoned in favor of the form of the
deductive system. So the abstraction involved results in essentially the
elimination of content. In computer science we will see that content is not
totally abstracted away in this sense. Rather, abstraction in computer science
consists in the enlargement of content. For computer scientists, this allows
programs and machines to be reasoned about, analyzed, and ultimately ef-
ficiently implemented in physical systems. For computer users, this allows
useful objects, like documents, shopping malls, and chat rooms to exist
virtually in a purely electronic space.

Abstraction in Computer Science

Understanding abstraction in computer science requires understand-
ing some of the history of software engineering and hardware development,
for it tells a story of an increasing distance between programmers and the
machine-oriented entities which provide the foundation of their work.
This increasing distance corresponds to a concomitant increase in the re-
liance on abstract views of the entities with which the discipline is funda-
mentally concemed. These entities include machine instructions, machine-
oriented processes, and machine-oriented data types. I will now try to explain
the role of abstraction with regard to these kinds of entities.

Language Abstraction

At the grossest physical level, a computer process is a series of changes
in the state of a machine, where each state is described by the presence or
absence of electrical charges in memory and processor elements. But as
we have seen, programmers need not be directly concerned with machine
states so described, because they can make use of software development
tools which allow them to think in other terms. High-level language programs
allow machine processes to be described without reference to any partic-
ular machine. Thus, specific language content has not been eliminated, as
in mathematical or deductive systems, but replaced by abstract descriptions
with more expressive power.

Procedural Abstraction

Abstraction of language is but one example of what can be consid-
ered the attempt to enlarge the content of what is programmed about.

SOFTWARE, ABSTRACTION, AND ONTOLOGY 13

Consider also the practice of procedural abstraction that arose with the
introduction of high-level languages. Along with the ability to speak about
abstract entities like statements and variables, high-level languages intro-
duced the idea of modularity, according to which arbitrary blocks of state-
ments gathered into procedures could assume the status of statements
themselves. For example, consider the following high-level language state-
ments:

for i =1 to n do
for j =1 tom do
read(A[i,]]):
for 3 =1 tom do
for k = 1 to p do
read(B[j,k]);

for i =1 to n do
for k = 1 to p do
Cli,k] = 0;

for j = 1 tom do
Cfi,k] = C{i,k] + A[i,j] * B[], k]

It would take a studied eye to recognize that these statements describe a
process of filling an n X m matrix A and an m X p matrix B with numbers
and multiplying them, putting the result in an n X p matrix C such that Cix-
= I, A;; B;:. But by abstracting out the three major operations in this
process and giving them procedure names, the program can be written at
a higher, and more readable level as:

ReadMatrix (A,n,m);
ReadMatrix (B,m,p);
MultiplyMatrices (A,B,C,n,m,p)

These three statements convey the same information about the overall
process, but with less detail. No mention is made, say, of the order in
which matrix elements are filled, or indeed of matrix subscripts at all. Of
course, the details of how the lower level procedures perform their actions
must be given in their definitions, but the point is that these definitions can
be strictly separated from the processes which call upon them. What we
have, then, is the total abstraction of a procedure’s use from its definition.

14 TIMOTHY R. COLBURN

Where in the language example we had the abstraction of the content of
computer instructions, here we have the abstraction of the content of whole
computational procedures. And again, the abstraction step does not eliminate
content in favor of form as in mathematics; it renders the content more ex-
pressive.

Data Abstraction

As a last example, consider the programmer’s practice of data ab-
straction. Machine-oriented data types, like integers, arrays, floating point
numbers, and characters, are, of course, themselves abstractions placed on
the physical states of memory elements i..ierpreted as binary numbers.
They are, however, intimately tied to particular machine architectures in
that there are machine instructions specifically designed to operate on
them. They are also built into the terminology of all useful high-level
languages. But this terminology turns out to be extremely impoverished if
the kinds of things in the world being programmed about include, as most
current software applications do, objects like customers, recipes, flight plans,
or chat rooms.

The practice of data abstraction is the specification of objects such as
these and all operations that can be performed on them, without reference
to the details of their implementation in terms of other data types. The
specification and construction of such objects, called abstract data types,
are primary topics in undergraduate computer science curricula, as
evidenced by the many textbooks devoted to these topics. (See [Dale
(1996), Carrano (1995), Bergin (1994), Hailperin et al. (1997)] for some
of them.) But this again is a type of abstraction which does not eliminate
empirical content, as in mathematics, but rather enlarges the content of
terms by bringing them to bear directly on things in a non-machine oriented
world.

Abstraction in computer science therefore serves to enhance the pro-
gramming process by distancing the programmer from the drudgery of
concerning herself with machine processes and data types. As such, ab-
straction is a tool used in the construction of an artifact, namely a computer
program. This program, being encoded in physical memory elements, is
concrete, but its description, in text at any level, is abstract. Hence the
term ‘concrete abstraction’. We now return to the metaphysical question:

SOFTWARE, ABSTRACTION, AND ONTOLOGY 15

what is the relationship between the concrete and abstract in a computer
program?

6. THE ONTOLOGICAL STATUS OF CONCRETE ABSTRACTIONS

This question brings to mind one of similar form which is also
motivated by prima facie conflicting kinds of entities. This is the question
concerning the mind/body problem: What is the relationship between the
physical and mental in a person? I introduce this question into the current
discussion not because of a supposed analogy between programs and persons,
but because of the methodological framework employed by philosophers
to approach the mind/body problem. I believe that the taxonomy of solutions
in terms of monism and dualism provides a useful metaphor, if not an entirely
appropriate language, for describing programs as concrete abstractions.

Monism

Monism holds that the metaphysical duality apparent in talk about
persons in terms of the mental and the physical is an illusion, and that a
person is but one kind of entity. A variety of monism called the double-
aspect theory asserts that there is but one kind of entity, and the mental
and the physical are simply aspects of this kind of entity. This theory is
largely discredited because of problems with describing both this other-
kind of entity and what exactly an aspect is. [Shaffer (1967)] A double-
aspect theory for computer programs would suffer structurally from the
same kinds of objections. In fact, the incorrect view expressed above in
[Davis et al. (1996)] that software is a machine made of text is a kind of
double-aspect theory of computer programs.

In the other kinds of metaphysical monism, namely materialism and
idealism, one of the two apparent kinds of entity involved in the duality
of persons is embraced as “real” while the other is not. Or, talk about one
of the two kinds of entity can be eliminated, theoretically if not as a practical
matter, in favor of talk about the other. Such attempts at reduction, for
example, the identity theory in philosophy of mind, or phenomenalism in
epistemology, often encounter difficulty when trying to translate talk
about one kind of entity (for example, physical objects) into talk about a
wholly different kind of entity (for example, sense reports). A reduction of

16 TIMOTHY R. COLBURN

statements of formal programming language, even zeroes and ones, to
statements about physical states of memory elements is even more difficult,
precisely because the characterization of physical state in machine
language as zeros and ones is itself an abstraction; the kinds of physical
state that this language “abstracts” are limitless. They may be the elec-
tronic states of semiconductors, or the states of polarization of optical
media, or the states of punched paper tape, or the position of gears in
Babbage’s 18th-century analytical engine, etc.

It is worth pointing out, however, that on the abstract side of the
abstract/concrete dichotomy lies one of the most successful reductivist
projects ever undertaken. The whole history of computer science has seen
the careful construction of layer upon layer of distancing abstractions
upon the basic foundation of zeros and ones. Each time a programmer
writes and executes a high-level program, these layers are stripped away
one by one in elaborate translations from talk of, say, chat rooms, to talk
of windows, to talk of matrices, to talk of variables, registers, and memory
addresses to, finally, zeros and ones. As an abstraction, this translation is
complete and flawless. The concrete embodiment of the zeros and ones in
physical state, however, is not an abstract process, but an intentional act
of stipulative definition.

Dualism

Since double-aspect or reductivist attempts to characterize the abstract/
concrete dichotomy for computer programs seem destined to fail, we turn
to dualism. Within the mind/body problem methodology, dualism asserts
that persons are composed of both mental and physical substances, or
described by both mental and physical events, accounting for their having
both mental and physical properties. The dualistic analogue for the
computer science problem is that programs are both abstract and concrete;
more specifically, it does not say what the relation is between the abstract
and the concrete. For the mind/body problem, elaborations of dualism emerge
in the form of dualistic interactionism, epiphenomenalism, and parallelism.

Dualistic interactionism posits a causal relation between the physical
and the mental in both directions. So burned flesh causes a feeling of pain,
and a feeling of pain causes removal of the hand from the fire. Epiphe-
nomenalism allows causation in one direction only: burned flesh causes a
feeling of pain, but the removal of the hand from the fire is caused by

SOFTWARE, ABSTRACTION, AND ONTOLOGY 17

certain neuro-physiological events. The feeling of pain has no causal
efficacy, but it exists as an “ontological parasite” on the burned flesh. It
should be clear, however, that neither of these accounts is possible with
respect to the abstract and the concrete in computer programs. As Fetzer
has pointed out, there can be no causal power exerted in either direction
between an abstract, formal system and a physical system. [Fetzer (1993)]
For the mind/body problem, specifying the causal relation between the
two sides is merely problematic; for an explanation of concrete abstrac-
tions it is in principle impossible.

Pre-Established Harmony

That leaves a dualistic account of the concrete vs. the abstract char-
acterizations of programs without any causal interaction between them.
For the mind/body problem, this would be called a parallelistic account,
and it would be mentioned only as a historical curiosity. The reason it is
not entertained much today is that, without the benefit of a causal relation
between mental and physical events, either (1) the observed correlation
constantly being affirmed by science between the mental and physical is
just a random coincidence, or (2) this correlation is deliberately brought
about through a “pre-established harmony,” presumably by God. Both of
these alternatives are difficult to justify.

But the pre-established harmony thesis is well suited for explaining
the high correlation between computational processes described abstract-
ly in formal language and machine processes bouncing electrons around
in a semiconducting medium. For, of course, it is not necessary to appeal
to God in accounting for this correlation; it has been deliberately brought
about through years of co-operative design of both hardware processors
and language translators. An analogy used to describe parallelism in the
mind/body problem imagines two clocks set and wound by God to tick in
perfect synchrony forever. For the abstract/concrete problem we can
replace God by the programmer who, on the one hand, by his casting of an
algorithm in program text, describes a world of multiplying matrices, or
resizing windows, or even processor registers; but on the other hand, by his
act of typing, compiling, assembling, and link-loading, he causes a sequence
of physical state changes that electronically mirrors his abstract world.

The “parallel” nature of the abstract and the concrete is a defining
characteristic of the digital age. From the notion of cyberspace, to online

18 TIMOTHY R. COLBURN

shopping malls, to virtual communities, worlds exist with no impact
outside their boundaries. The same is true of the world of the programmer.
Programmers today can live almost exclusively in the abstract realm of
their software descriptions, but since their creations have parallel lives as
bouncing electrons, theirs is a world of concrete abstractions.

Timothy R. Colburn
Department of Computer Science
University of Minnesota at Duluth

REFERENCES

(Bergin (1994)) Bergin, J. (1994), Data Abstraction: The Object-Oriented Approach Using
C++, McGraw Hill.

{Camap (1953)} Camnap, R. (1953), “Formal and Factual Scicncc.'_' Readings in the Phi-
losophy of Science, H. Feigl and M. Brodbeck. eds., Appleton-Century-Crofts.

[Carrano (1995)), Data Abstraction and Problem Solving with C++: Walls and Mirrors,
Benjamin Cummings.

[Cohen (1953)] Cohen, M. and Nagel, E. (1953}, “The Nature of a Logical or Mathemat-
ical System,” Readings in the Philosophy of Science, H. Feigl and M. Brodbeck, eds.,
Appleton-Century-Crofts.

[Cormen e al. (1990)] Cormen, T. H., Leiserson, C. E,, and Rivest, R. L. (1990), “The
RSA Public-Key Cryptosystem,” Introduction to Algorithms, M.LT. Press, 831-36.

[Dale (1996)] Dale, N. and Walker, H. M. (1996), Abstract Data Types: Specifications, Im-
plementations, and Applications, Heath.

[Davis et al. (1996)) Davis, R., Samuelson, P., Kapor, M., and Reichman, J. (1996), “A
New View of Intellectual Property and Software,” Communications of the ACM
39(3): 21-30.

[Fetzer (1993)] Fetzer, J. (1993), “Program Verification: The Very idea,” Program Verifi-
cation: Fundamental Issues in Computer Science, T. Colburn, J. Fetzer, and T.
Rankin, eds., Kluwer Academic Publishers, 321-58. The paper originally appeared in
Communications of the ACM 31(9): 1048-63.

[Fetzer (1991)] Fetzer, J. (1991), “Philosophical Aspects of Program Verification,” Minds
and Machines 1(2): 197-216. Reprinted in Program Verification: Fundamental Issues
in Computer Science, T. Colbumn, J. Fetzer, and T. Rankin, eds., Kluwer Academic
Publishers, 1993..

[Hailperin er al. (1999)] Hailperin, M., Kaiser, B., and Knight, K., (1999), Concrete Ab-
stractions: An Introduction to Computer Science, PWS Publishing, in press.

[Hanson (1967)] Hanson, N. R. (1967), *Philosophical Implications of Quantum
Mechanics,” The Encyclopedia of Philosophy, volume 7, MacMillan, 41-48.

[Hempel (1953)] Hempel, C. (1953), “On the Nature of Mathematical Truth,” Readings in
the Philosophy of Science, H. Feigl and M. Brodbeck, eds., Appleton-Century-Crofts.

SOFTWARE, ABSTRACTION, AND ONTOLOGY 19

[Reichenbach (1953)) Reichenbach, H. (1953), “The Principle of Anomaly in Quantum
Mechanics,” Readings in the Philosophy of Science, H. Feigl and M. Brodbeck, eds.,
Appleton-Century-Crofts.

[Shaffer (1967)] Shaffer, J. (1967), “Mind-Body Problem,” The Encyclopedia of Philoso-
phy, vol. 5, MacMillan, Inc., 336-46.

[Wallich (1997)] Wallich, P. (1997), *“Cracking the U.S. Code,” Scientific American April
1997: 42,

