The MIT Press Series in Computer Science

1.

- Research Directions in Software Technology, edited by Peter Wegner; associate

editors, Jack Dennis, Michael Hammer, D. Teichroew, 1979

- What Can Be Automated? The Computer Science and Engineering Research Study,

edited by Bruce Arden, 1980

- Data Models: A Semantic Approach for Database Systems, Sheldon A . Borkin, 1980

What Can Be Automated?

The Computer Science and Engineering Research Study

(COSERS)

Bruce W. Arden, Editor

NOTICE: THIS MATERIAL MAY BE
PROTECTED BY COPYRIGHT LAW
(TITLE 17, U.S. CODE)

© g0 WEINER'S STORES
The MIT Press LIBRARY.

Cambridge, Massachusetts, and London, England

Reserve-stud

Joseph F. Traub
Columbia University

Stephen S. Yau
Northwestern University

What Can Be Automated?

The COmputer Science and Engineering Research Study

(COSERS)

It is truly difficult to capture with a single question the essence of research
in a diverse and very active area of science and technology, but the query in the
title comes very close. This questions was first posed by the late Professor
George Forsythe of Stanford University as the underlying rationale for research
in computer science, and this study supports his perception. The many
different questions, which are posed explicitly and implicitly in these chapters,
can be interpreted as special cases of ‘‘What Can Be Automated?’’ The growing
realization that the answers to this question are of increasing importance in a

crowded world with many interdependent segments is one of the main motiva-
tions for this etfort.

The initial planning for the Computer Science and Engineering Research
Study (COSERS) commenced in 1974 and the study was subsequently under-
taken in 1975 with the goals of completing the work in three years and publish-
ing the report in 1978. The National Science Foundation (Grant GJ-43540 and
DCR74-18460) has supported a major part of this effort in the belief that a
readily accessible record of past research in computer science and computer
engineering, as well as some projections of future research directions, would be
useful. These research areas are still relatively new and not well defined in the
minds of many technical people not actively involved in such research.

In language often used in the implementation of large computer projects,
the schedule “‘slipped.’” Self-description is an important aspect of several areas
of computing research, and it may be appropriate that the generation of this

report should exhibit some of the same problems that the described research
addresses.

Needless to say, the subject areas considered are rapidly changing.
Research in computing is truly a moving target. New chapters, additions and
major revisions appeared well into 1979.

At the outset, the decision was made to heavily edit the submitted
manuscripts in an effort to remove jargon, to introduce some uniformity of
style, and to avoid ‘“‘journalese’ that would tend to restrict readers to those
with some familiarity with the subjects. In short, the goal was to produce prose
that would be readily accessible to a layman having a general knowledge of sci-
ence and technology. Such an excursion into language transformation and
semantics is an ambitious and humbling experience, it renews one’s apprecia-

COSERS Report

it tSome time after the generation of chapters had started, many of the con-
lbutors advocated that the drafts be maintained by computer text-processing

- « - - an
rmportant application of computers. In retrospect this was a very good decision

way with changing text processing progra

g . . ms

and the unfamll.lanty of conventional editors and publishers with the n:,ediga and

gr(:g.rtams L!SEd In computer phototypesetting. It isa powerful, complex tool
ut 1t requires an understanding of computers and programming, if not exper:

tise. Hele again the Study il|usll ated pr Oble -
.
- 4 ,. ms Shaled wlth many Otllel com

chapter. Much of the burden of producing this publication has fallen to these

chairmen; their commitment t ini i
: N 0 obtaining an accessible ex ositio i
their subject areas has sustained the study. g " of research in

Whoseln :a;id.mon to the. contriputing authors there have been many readers

mh pa:é;slc:;ms of. specific sections or points have been helpfui. On behalf of

' IS assistance is gratefully acknowledged. 1 few i

Interaction of readers was such that i nount {0 participaen s e
at it was tantamount to participation i

panel and these readers are listed with the panel contributors. P i the

cach ::;Ll:eih:t;ﬁi;:;i?: of the :‘)verview, Applications, and COSERS Statistics

‘ cover the significant research results in th ‘

identify outstanding problems or. ; ections, Thend 10
i . » In other words, future directio T

Inevitably major differences in the , oo, the roire
chapter formats but, in all cases, th

. : s , the refer-

ences are representative, not comprehensive. For the most part, references to

Preface

a chapter-end bibliography are simply indicated by numbers in the text although
some results are so closely associated with particular investigators that
identification by name is expedient.

As mentioned, the study was made possible by the support of the
National Science Foundation. In particular, Dr. Fred Weingarten has been of
great assistance. Also Bell Laboratories has assisted in several important ways.
The enthusiastic support of Steering Committee member Dr. William O. Baker
has been an inspiration to everyone with whom he interacted. The text pro-
cessing and phototypesetting was done at Princeton and Bell Laboratories on
computer systems operated under UNIX™ a widely used operating system
developed by the Laboratories. The expertise of Dr. Michael Lesk, one of the
designers of the UNIX text processing software, was an invaluable asset in the
preparation of camera-ready copy for publication.

Several people at Princeton have been involved in editing, text processing
and figure preparation. Mr. Roy Grisham initially edited much of the material
and entered it in computer files. Mrs. Betty Steward, the departmental secre-
tary, has handled the correspondence and the many organizational details asso-
ciated with such a large, protracted effort.

In summary, it has been a lengthy study of rapidly changing subjects.
Only the commitment and the enthusiasm of investigators and the promise of
increasingly beneficial computer applications seem constant. Computing
research and development have made systems of enormous complexity possi-
ble, but many questions need to be answered before the exploitation of the full
potential is commonplace.

B. Arden
Princeton University
July, 1979

1 COSERS OVERVIEW

Bruce W. Arden
Princeton University

COSERS Overview

It would be inappropriate to consider at length the impact digital comput-
ers have had on the industrialized world. Many books, special journal issues,
and popular articles have been devoted to the ‘‘computer revolution”’ or the
“age of the computer.”’3:# According to a recent prediction, the U.S. gross
national product attributable to computers will exceed that of automobiles
within a decade. The growing interdependence of the various segments of
society increases the need for the transmission and processing of information.
This trend, which is relatively energy conservative in comparison to means of
coordination which depend on the transportation of people, will very likely lead
to the realization of the prediction.

The explosive growth of computer-related business attests to the per-
vasive applicability of computers. The expanding market for innovative com-
puter programs, technology, and service has provided the incentive for corpora-
tions to actively engage in computer oriented research and development.
Indeed, it is occasionally argued that this market-motivated development makes
it less necessary to support research in computer science and computer
engineering from nonindustrial sources. The acceptance or rejection of this
argument depends upon an assessment of the importance to society of sponsor-
ing long term research. For the most part, industrial research personnel con-
centrate on studies motivated by the prospect of imminent commercial exploita-
tion. Is it important that these efforts be augmented by parallel, but not
directly applicable, work in, say, the development of an underlying theory, the
design of radically different computer organizations, or the design of specialized
programming systems? A standard answer to this question is that the develop-
ment and augmentation of a body of .knowledge, in itself, is sufficient
justification for such a concurrent effort. This answer is well supported by. the
history of science, which describes many instances where undirected research
has radically altered scientific thought. For example, in this century studies of
spatial and temporal relativity, physical measureability, and mathematical prova-
bility have markedly changed scientific research. One of the exciting prospects

of the computer era is that equally influential concepts relating to feasibility
may be formulated.

In an ideal world such goals would be sufficient to justify the support of
research, but in a pragmatic world, beset by many problems, the case is more
persuasive if the avoidance or solution of societal problems can be anticipated
as a result of the work. Such results are almost as hard to predict as conceptual
breakthroughs, but one thing is certain: decisions based on computers and
communication will shape the society of the future. With many people looking
beyond near term developments, the chances of undesireable side effects of the
computer age will be reduced.

4 COSERS OVERVIEW

Looking back to the commencement of an earlier **
have had remarkable applicability; they have had a profound
system of the present automotive i
refined along certain lines in res
wonders whether, in the early y » @ vigorous research
program involving effects and al i
could have shaped a better trans
pated problems. While the anal
have the potential to shape futu

found as those of the automobi
the more important to
identify and avoid, if possible, the negati
panied other technological revolutions.

In 1966 C. P. Spowl!
tion that could be made with

age,” automobiles
effect on the social

portation system, one less pl
ogy is imperfect, the comput
re society in ways that will p

le. In anticipating such an j
perform the long-

agued by unantici-
er revolution does
robably be as pro-

mpact, it seems all
term study and research, in order to

ve social side effects that have accom-

looked further back in history and made a predic-

revolution which made the present shape of the United States.

In the subsequent discussion of the im

We shall also need many peopl
évery step of the way studying
computer revolution’s] effects.
ancestors’ not foreseeing the effec
There is no excuse this time.

pending revolution, he issued a warning:
e of different abilities, who are at
» controlling, and humanizing [the
There was some excuse for our
ts of the first industria revolution,

The primary purpose of this rep

what has been accomplished under
research” and ‘‘com

ort is to describe

the headings
puter engineering research”’
e future. This introduction, then, is intended to cover the
tional issues, to describe the trends that are relevant to the
ew the various chapters of this report, and to relate them to
any major group-writing effort

» it is necessary to divide the
rea, to reduce it to manageable subtasks. Here, too, this has

, for technical laymen,
of “‘computer science
and to make some limited

each other. In

COSERS OVERVIEW 5

i ibuti uthors and,
chapters do reveal the enthusiasm of the.many contributing a
gzqe:c?nantly, the developing cohesion of the topics.

About Names and Labels

i i i ing or, to
The Latin verb computare has the meaning pf arlthmetlg ::floi‘:xnittls gv aril)us
not;er old word, of reckoning. If the meaning had gzl:tls T
doriv: tives, ‘‘numerical computation’ wpuld be 1:edun un"lerical T ety
der}(\)/: if n;)t dominant, aspect of computing todgylls nox:lnmribme.of foahond
inclus ithmeti ipulation of symbols as a .
i i non-arithmetic manipu 1 : t of comptia-
u‘mluissl(::x ci)f'nportant instance of the rapidly expanding meanings of
tion r
tives of the Latin word.

i ; idely used
The terms computer science and computer engmeermlgil are r\l:ewll-:sl(tfb{ished,
to categorize the work described in these ;:aprtlzrst.haftio;ug:l;z ted by the word
. . o
s given them connotatlor_ns y hat curacete. a
amfii lilt?zies 1tlli‘emgslelves. Along these lines, the adjeﬁtlvg cotp;i;;m;eeraso:g oy
o rlll'ne—or to use the current jargon, “hardwar'e. . or e is, many
heople. 1 tt’le field think the more general adjective, comp u't or rolatad
peoplerilanle This term can include machines as well as Otheern(:::llpcandidate -
?ppirc:)spsuct{ as algorithms and programs. An evenhmo;elsg e o o
.OP tion science. But in this country, tt}at term has b soecific topics ag
;?(J(:ir;" ?)f’ libraries and communication media, as wlell taisc :1uCSign:‘s P
i i s-time electr .
is and processing of contmuou. (o com.
:xtrleuggag;ltsthe Slfbject is that comprehens'lve, and t}:eti\:;grd ;ggnf:g ot Somr
gt-) is too closely identified with nume:rlcal computa ;,1 arithmotic compu.
‘gztlenrgs are general symbol-processing devices, with tth:.v l':les: e word inormation
i i aren
i i rtant special case, is more app] o
}atlon ;) Tll lv'vlg(;r the difficulty with such broafily genencl exgrers;lgrlly s e
151 used. no(t) maké useful distinctions. 1nteres}mgly, a relatea ;vay Ty comed
w::ld ?n/brmatics, is gaining general acceptange (lll'; Sﬁx;g?:e.Thr; sema;nic oo
. j is . €
a label for a new subjgct area is des 1 meaning
?h:f‘:u::vt?r: :vsord or phrase acquires is not prejudlciege:)if‘ gthreo;omlx::othe e
rea-la . nited
re they have assumed an ar abel 0 e
(ij :he ‘;g\tzfv:: f(t)he adjeyctive computer preceding ‘‘science’ or ‘‘engineering
ates, s v
is now well established.

istinction
The argument over labels raises again the old debate all)m:eg:; cclh:tsu;csys-

¥ i ing.”’ Science is commonly .
“‘science’’ and ‘‘engineering. ; ined as a sys-
:)etwf'mbofic;e:f knowledge with accompanying explana}torybmt‘;filsegzv(; fpetes
I?ln;:i:;xtiﬁc research the emphasis is on thf: augme?;:tils(i):)\r,‘ Zf S0 des’criptive

i or
he concomitant extension i B criptive
:(:ow'le:gelt ?:(ilsltmlly understood that the observations comprtllsi::r;lg atrl;enm ;’ub-
Socoifl i i tural systems w
i i e obtained from given, na : . sub-
i o smenr;e():;ﬁcation. That is, the facts are observations lof g:;:n,tgeories
ftftt:r:gr:::;anParemhetically, it is worth noting that the explanatory

6 COSERS OVERVIEW

vary greatly in extent, formality, and style from one science to another. At one
extreme the science may be simply a systematic codification or taxonomy of the
observed information, as in classical botany, At the other €xtreme, such as

argumentation.

If one grants the dependence of a science on natural phenomena, then
mathematics would not be classified as a science, nor would studies related to
<computing. Although in the past, this kind of reasoning has led to describing
mathematics as an ‘“‘art,” mathematics is also commeonly called the “‘queen of
the sciences’”. Based on human-produced systems, it is concerned with the

development of deductive structures, many of which are applicable to the
theoretical aspects of other scie i

theories, the identification of
extremely close. Therefore, it is not surprising that
ics, the distinction between art and science becomes b
usage, mathematics is often enigmatically included under the heading of
‘““mathematical sciences,” a phrase which, it would seem, should mean those
sciences that are based on natural phenomena, whose principal explanatory
theories are formulated as mathematical systems.

Computer science shares some of
the objects of study are man-made, an
lating theories and models in the oth,
science uses mathematical models to

the attributes of mathematics. Whereas
d while it is widely applicable in formu-
er sciences, for the most part, computer

formulate the underlying theories, When
labels are acquired through common usage, paradoxical situations are readily

produced. It would appear, then, that ‘“‘computer science’ is a mathematical
science, and moreover, that there are some sciences which use computer scij-
ence heavily and which might thus be called ‘“‘computer science sciences.” [t
would be less confusing, as well ag a better display of hierarchy, to say that
informatics is a mathematical science and that there are certain “informatical
sciences.” But even with this formulation, we would not avoid the issue that
computer science, like mathematics, is not based on natural phenomena and,
hence, does not qualify, by the commeon definition, as a science, Before dis-
cussing this issue, though, it is useful to consider the distinctive aspects of
engineering.

Engineering covers a wide spectrum of activity,
science-oriented, creative designs to the short-
on a detailed knowledge of the properties and
ogy. In its approach, it is often characterize
empirical, with implementation, rather than un
scie nce is often regarded as a Synonym for “‘e
the application of existing sciences to the solu

ranging from highly
term solution of problems based
applicability of current technol-
d as being both pragmatic and
derstanding, as the goal. Applied
ngineering,”” which suggests that
tion of technological problems is

COSERS OVERVIEW 7

lying rationale. Since there are usually many. qqfere.nt t\:vayﬂ :3 l;?il;l:n
the undery oe ne of the dominant engineering activities is the C(;’ﬁc p i
mednt ealegis;iméf (;lternatives. This results in a su:fiy o{‘ lcl;:s;tis; n(ot:) ea . (l:n ply'e ’;
S hich i isticati rithmetic calc g !
e nati \;a;y rrlrrllui:)t‘i)grlxsntc: tili(:nrcll i:(;::sta,no: optimal, solution. It ?s mter?tlrr:)g.
mathematlcaf (c))mputer sc’ience is concerned with the cost or e?ﬁcxency oofpthe
e mucl’(nl ol irithms an efficiency that is usually measpred in tgrm: ter
B outor &'lge or s;orage required. In computer science anf ;: mputer
corqpute}' tlrr:his reoccupation with efficiency, in a hierarchy o alg s
Crging fron roc:dures for arithmetic to very large systems sucl} as alrnd e
T v s, makes it difficult to distinguish betweep the science ai d the
confrol‘grogl‘:sm éts of computer science. Perhaps thg Sinﬂ'grence betwee
;g:;;‘ ei::ilgrstaieding and implementation, is the best distinction.

. . . of

Sometimes a division between the ?cTn::li::t‘iio :ng;;:t:ril;lg“:;p::t:r 3

i I . s ;
'computing . p{OPO:SSI;r; ‘hl;:ul:?;saﬁfeggy:ﬁ:n computer system§ are mlgrop:g:
S engl?:lel;l?sg the eler.nentary ‘““machine operations"’ are garqed m;t s):l (;:h -
e ot mor eiementary steps), this, too, is an elusive criterion. :1 iy
niliox ° r{:gfe a computing system involves, in large measure, wrlld mga;t) o
e oot 123 cing new physical entities. Beyond that, .pe'ople wor .nghle "
Bvels of s luin computer systems strongly beligve it is not deslraco .
et dev; o bitween the machine level and hlgh.er, more macros; ¢ gm:
have' t bounl a?l,lort there is currently an operational difference bmvlv_eeto om-
algorlthn}s. nand camputer engineering, which corre'sponds rou_gl": y > how
tlose intorest to the levels of physical implementation of .algont msl,l [
ot 'mterCStT al-](;ecause of the emphasis on the cost of algorithms at.;lic t;,t it;
hm:v(\::ivnei h:l‘:: 'point of division between the tiwo ist notth‘:ez;rl;s;g: d‘;f :at)\; o
’ istincti ise is due to ;
nll:kringne:;e ;g;:tx:g(r:rt::a :}?;:e g:(e:ll::ation is the raison d'etre for other sci-
phe .

ences.

. Definitions .)
SomeMan ople have attempted to produce a succinct, pnnversallitz:::e}?;a;ﬂiet
definition):,onmputer science. Since 'compm?;-engtu;ee:: %t’xen:aze definition
i ts ultimately ’
is distingui from computer science, res 1Y tion that
;f glssu:g:“gs::;irated independent candidates for d_o:ﬁnmon.h Th:o:fl‘gfre:s to the
seems to have the greatest acceplance tf)f(imyttluse 32?1e:lyailng phenomena that
iti tioned above, in that it specifies 4 ing theories.
deﬁ?}? + objects of observation and which are explained by f;:rm‘:?;;gr::lated to
g;;ci;ca“; the proposed observational base is s1(mpl¥1 the: % er(:? ire) and biok
t . as the study .
computers.® This fits the pattern of astronomy he art-versus-science enigma
ogy (as the study of living systems); it resolves the a " ena specified are
r::ntioned earlier. It is still true, however, that the phenom

8 COSERS OVERVIEW

the result of man-made machines, not natural systems. While there are other
instances where this is true (for example, library science), it does raise the
question of why one should observe and model a system that has been created
by human effort. To anyone who has worked with modern computers, the
answer is obvious: although computers, in principle, are completely determinis-
tic, in practice, the enormous complexity that can result from the hierarchical
development of computer programs precludes a deterministic approach to many
systems. The complexity of the interaction of the many executing programs
often leads to situations in which the only feasible approach to comprehension
is observation and analysis independent of the system of programs that were
created originally. Due to.the man-made nature of the phenomena under
study, however, there is a cavear. In the effort to adopt the methods of natural
science, the obvious, simple knowledge of a system must not be ignored. As
an overstated example, someone who determined experimentally that computer
instructions take integral multiples of a time quantum would be subject to criti-
cism of his colleagues, since detailed knowledge of the design of the processor
under study would produce this relationship directly, without experimentation.

There is another pitfall which arises from the synthetic nature of the
phenomena under study. In most sciences the very existence of the domain of
study is sufficient reason for observation and explanation by developing models
and theories. In computer science, however, in order for this motivation to
exist, there must be some rationale for generating the complex system. It
makes little sense to generate a highly complex system (but one without func-
tion) and then study it in detail. That would be like producing the axioms and
rules of inference for a mathematical system and then constructing and observ-
ing the many examples that can be derived from the postulated system. If the
given premises are arbitrary, the system is interesting only if an analytic reduc-
tion can be obtained. Alternatively, the premises may have been prompted by
some external problem, in which case there is a reason for studying the system
that has been synthesized. There is little point in studying, for its own sake,
complexity that does not yield to analytic organization. On the other hand,
such study can be justified if there is external motivation such as the existence
of the complex system in nature or the fact that the complexity arises from use-
ful computer applications. In sciences with a given natural corpus—in contrad-

istinction to a generated corpus—the question of whether phenomena are worth
studying does not arise.

The preceding remarks have to do with another succinct characterization
of computer science, one that is expressed as a comparison with mathematics.
“‘Mathematics deals with reducible complexity, while computer science is con-
cerned with irreducible complexity.” This comparison appeals to those who have
worked with large computer programs in which the strong interaction of the
wvarious parts defies attempts to separate the parts for independent analysis.
Yet, on reflection, this paradoxical definition cannot be sustained. Without
some kind of reduction or partitioning of complex problems, increased under-

COSERS OVERVIEW 9

standing is not possible. To be sure, the techniques of reductipn @n cqmpu.ter
science are different and often are not susceptible to the analytic mmphﬁcaltop
that arises from properly posed mathematical systems. In ' spite of this
shortcoming, however, the characterization emphasizes tw9 'sahen't aspects of
computer science; the given computer phenomena often ongmate in large sys-
tems that verge on the incomprehensible, due to _the .mt'eractlon gf .the
numerous parts of the systems; and the techniques for identifying, quantnfymg,
and managing complexity are central to the various branches of computer sci-
ence. Incidentally, such often-used anthropomorphic references to f:omputers
as ‘‘the computer thinks’’ and ‘‘the computer sees” originated partly in th?’per-
ceived complexity of computer systems. Just as ‘‘thinking and feelmg_ are
used to describe unknown human processes, the complex but dete{mlnlstlc
results of computer programs are similarly described as a convenient, if some-
what misleading, figure of speech.

The relationship of computer science to mathematics has .been argu.ed‘ in
considerably more detail.8 As observed earlier, the two discjplmes are Slmllflr
in that they deal with synthesized systems, but they differ markqdly in
emphasis. Mathematics deals with theorems, infinite processes, and static .rela-
tionships, while computer science emphasizes algorithms, finitary constructnqns,
and dynamic relationships. If accepted, the frequently quoted mathematical
aphorism, ‘‘the system is finite, therefore trivial,”” dismisses much ot: cqmpuler
science. It is true that the properties of a finite system can, in prnqcnple, be
determined by enumerating the possibilities and exhaustively considerlmg them.
The usual infeasibility of such an approach, however, leads to many important
analytic techniques and algorithms. These distinctions might lead one to th.e
conclusion that the study of algorithms is the unifying thread of computer sci-
ence. However, even though all the levels of the hierarchy which comprise
computer systems can be interpreted as algorithms, the sfudy of algorithfns and
the phenomena related to computers are not coextensive, since there_are impor-
tant organizational, policy, and nondeterministic aspects of computing that do
not fit the algorithmic mold.

It is tempting to try to combine the various aspects of th.ese deﬁni'tions
into a single statement—at the risk of producing the proverbl.al cpmr?‘lttee-
produced, all-purpose result. Such a definition would be something like “com-
puter science is the study of the design, analysis, and execution of algorithms,
in order to better understand and extend the applicability of computer sys-
tems’’. Frankly, there is little hope that people in cqrppuler science and
engineering will be able to agree on such a simple definition, any more th.an
such agreement is possible in the other sciences. In any event, it does raise
further questions about what exactly is meant by these gene.ral phr:ases.
Indeed, the COSERS report is intended to be just such an elaboration. It is an
loperational definition, in that it describes the research done in‘ reFent years in
the various computer science and computer engineering areas indicatéd by the
present chapters. Some limited projections are also made.

10 COSERS OVERVIEW

This discussion came about because of the need to somehow describe the
domain of the research and to argue that the collection has a coherence or
overlying rationale. Before leaving this subject, it might be worthwhile to
include one more approach—to list a set of general questions which computer
science and engineering research is intended to answer, in the hope that the
relationships between chapters will become clearer. The all-inclusive question

is, What can be automated?2 Somewhat more specific sample questions are the
following:

1. Are there useful, radically different computer organizations yet to be
developed? s

2. What aspects of programming languages make them well suijted for the
clear representation of algorithms in specific subject areas?

3. What principles govern the efficient organization of large amounts of
data?

4. To what extent can computers exhibit intelligent behavior?

5. What are the fundamental limits on the ¢

omplexity of computational
processes?

6. What are the limits on the simulation of physical systems?

7. How can processes be distributed in a communicating network to take
advantage of microtechnology ?

8. To what extent can numerical computation be replaced by the computer
manipulation of symbolic expressions?

9. Is it possible to replace a major part of system observation and testing
with automated proofs of the correctness of the constituent algorithms?

As it turns out, each of these questions fits naturally in one or more of the
wategories of the COSERS report. They are merely samples of deep general
questions, and not the principal question in an area of research. It is clear that
each of these questions is a special case of the general question, What can be

automated?, and that the answers will involve algorithms and their computer
implementation.

A Brief History

There are now several histories of digital computing.6 1% Although much
of their detail is not relevant to the research emphasis of this report
worthwhile to consider the recent evolution in order to understand
macroscopic level, the patterns of motivation and response that have cha
ized the field. This provides a basis for predicting future developments.

, it is
, at a
racter-

COSERS OVERVIEW 11

The beginning of modern, digital, electronic comguting is generally
marked by the construction of the ENIAC in 1946 at the Umver§1ty of Pennsyl-
vania, although there were some earlier design attempts:7 While ENIAC was
built to meet the requirements of computing ballistic trajfectory t.ables and was
controlled in its computational steps by a panel of wired instructions, thg gen-
erality of the machine and its extension to a stored program were envisaged
almost from the beginning of its development. In the late 1940s and e}arly 50s,
construction of several binary, fixed-word-size, stored-program machines was
undertaken. The general design, sometimes called the ‘‘von .Neumann
machine,”” was the progenitor of the wide variety of current machines. The
vacuum tube technology of the wartime years was adequate for the deve!op-
ment of computers to this level of generality. Very quickly, as machines
became operational at universities and in government laboratories, the demand
for greater size and reliability spurred an intensive effon. t‘o improve the. tgchno-
logical base, which, in turn, led to increased applicability, thus providing an
incentive for more device research and technological development. Interest-
ingly, in 1978 this cause and effect seems to be interchangeq. The appearance
of large-scale integrated (LSI) digital electronics such as microprocessors and
random access memory chips has prompted research efforts in effective, general
and specialized ways of exploiting the resultant “‘point’’ concentrations o.f com-
puter power. The role of technology as the driving force commenced with the
introduction of discrete transistor circuitry and ferrite core storage. It now
appears that technological improvements are continuing at an increasing rate,
with the development of programs and operating systems unable to keep pace.
To close the gap will require substantial research.

It is popular to divide the 30-year history of digital computers intq eras, or
‘““‘generations,” which correspond roughly to the dominant technology in use at
the time. The first generation was that of vacuum tube technology. It lasted
from the commercial versions of the von Neumann machines to about 1958.
The discrete-transistor versions constituted the second generation and contin-
ued to about 1965. The third generation corresponds to medium-scale integra-
tion, in which a relatively small logical function is contained on an integrated
circuit chip. Contemporary large computers are still in this categor)f, alth'ou.gh
fast machines, using LSI *‘bit-sliced”’ microprocessors as the basic building
blocks, are beginning to appear. As with all genealogies, branches appear and a
simple generation specification is no longer descriptive. In computmg, the
important branches are minicomputers and microcomputers, whlch' have 3
significantly higher degree of circuit integration than do the large ‘‘mainframe
machines.

Within these major divisions of time are other technological, org'aniz.a-
tional, and economic changes, which were influenced by research and which, in

"turn, influenced later research. The first machines resuited from the need to

solve mathematically formulated scientific problems numgrically. There. was
rapid progress in developing numerical methods and adapting well-established

WEINER'S STORE

L'RRATY

12 COSERS OVERVIEW

finite-difference formulations for use on electronic machines. The computer-
oriented research of the time was dominated by numerical analysis. Not only
was it a matter of reaching the original machine design goals, but the short time
between machine errors and the inefficiency of input and output made these
self-contained mathematical problems a good match for the machine charac-
teristics. The input/output bottleneck arose because the computer’s central
processor was directly involved in the relatively slow transfer of information to
and from mechanical devices which read and wrote external media.

The processor’s commitment to the sequential transfer of information to
or from the main storage of the machine meant that, in general, it could not
carry out arithmetic steps when information was being transferred. An early
augmentation of the von Neumann design was the addition of special-purpose,
subordinate processors which, under the control of the central processor, could
carry out the input/output transfers from a common main storage concurrently
with the computational processing. These additions, called ““channels,” greatly
improved the computational efficiency of the machines, in addition to making
them more applicable to record-keeping and data-handling applications. How-
ever, the concurrency also greatly complicated programming. To use the capa-
bility, programmers had to provide for input buffering or “‘reading ahead’’ —
that is, transferring input information to the main storage before it was needed
in the computation task. Similarly, buffering by *‘writing after”” permitted the
output operation to continue while the central processor began another task.
The proper control of the organization and timing of these buffering steps—
details introduced to increase machine efficiency —placed a substantial burden
on the programmer, one that was extraneous to the logic of the problem he was
trying to solve. Indeed, much of the research in computer science and com-
puter engineering has been prompted by the need to avoid this burden. While
computers have the innate ability to execute algorithms of great complexity, it
is obvious that their application will be artificially limited unless their descrip-
tion (for computer execution) can be reduced to succinct, well-organized state-
ments free of the details imposed by the computer implementation. Histori-
cally, the subjects of operating systems, programming languages, database Sys-
tems, and programming methodology originated from the desire to automate
such efficiency-motivated programming, as well as to identify and implement
programming languages that permit the minimal, understandable specification
of certain classes of algorithms. The development of list processing techniques

and recursive program formulation did much to relieve the burden of storage
management and to permit the succinct statement of programs.

During the transistor generation, advancing technology made possible a
reduction in the cost of high-speed (ferrite core) main storage. This develop-
ment permitted larger storage capacities, making it economically feasible to
simultaneously store several independent programs at various stages of process-
ing. It was then possible to automate the buffering simply by suspending pro-
gram execution when an input/output step was invoked and beginning another

COSERS OVERVIEW 13

. This “buffering by program” (or “multiprogramr_mng") was
?r‘lzz'zdrgzgigl;ar:utomated than the highly problem-dependent buffering of datta‘i
although, as systems developed, the latter problem also responded to automate:
treatment. . .

The line of development discussed above has produced machines ‘;'ll?;
many highly interconnected parts, which have access to common stor:a_%;. e
high cost of these systems, which is.largely a result of t.he m}ercpm:gc Idevelo -
plexity, mandates well-loaded, efficient, usage. At this point in (teh miz[;_
ment of computers, such ‘‘mainframe’’ systems are not. amenable _to e :1 liza-
tion of large-scale integrated circuits, although_ medium-scale mteﬁra llO -
readily employed. Partly for this reason, mmngomputers, theht'ec no.ct)ﬁ ”
offspring mentioned above, have flourished. Thl'S type of malcisllne,dwl; h s
simpler processor and channel structure, can eﬂ'ectlvely employ afn e v
from the resulting cost reduction to the point where hlgh efficiency of use l?l ‘nh
longer the dominating criterion of system design. Mlcrocomputerst, mdwﬁlgn
the processor is on a single circuit chip, benefit furthgr from the cos rehuc 1o
that results from advanced technology; but they are simpler anfi slower than g
minicomputers. It should be emphasized, however, tha.t chip costs are S’;l';
that it is not difficult to justify either low use or specnal'-purpose use. e
economics of the LSI components argue that tht?y be used in a‘conc:e_:rtezii way,
to give large concurrent computing power but 'wnhou‘t thﬁ: co§t-mdu_c§ng tf:s:l;;ne
of a closely connected switching network. This motivation, in addltlgn o ne
need to connect geographically dispersed computer systems, has increas
interest in computer networks.

With this ‘‘broad-brush,’’ technology-oriented history, t}}e cu_rrent state (r)lf
the art of computing is reached. Computer science and engineering research,
which have contributed heavily to this history, have been motivated by the 'nev;
capabilities produced along the way. Clearly, harfiware systems are tl)e bastls of
this development. Work in the area has been driven by t'he astomshmg' ra .13’(0
device invention; but it has also resulted from the Perccnved negd to simpli);,
to encapsulate detailed functions in hardware algorithms (or microprograms).
And, as mentioned before, it is apparent that the recent advances in cqmputer
hardware have not yet been fully assimilated in programs and operating sys-
tems.

Applications

Over time, the programs run on computers havg inc‘reased markedly in
size and sophistication. But it is difficult to_prod\{ce a historical sequepce,lsmc?
the development is a many-branched one in whngh each new operatlonad prciv
gram of a particular type depends on earlier expe‘:nex}ce, new msnght?, ;n tneh_

- System capabilities. Many programs develop quite independently of the ecnd
nology. That is, the work is limited by a knowledge of the problgng areat_a nd
the ability to produce an operational program that solves the informatio

14 COSERS OVERVIEW

processing problem in an acceptable length of time. Such problems are usually
referred to as “‘applications,” because their solution depends on a particular
subject area, as opposed to being concerned with computers per se. It is a
difficult distinction to make. If every application of computers is considered to
be in the realm of computer science and engineering, these fields will be nearly
all-inclusive. Whether the applications should be so included depends primarily
on the specificity of the underlying problem. It is more reasonable to include
the development of algorithms for the solution of a class of problems, as
opposed to a specific problem, under the heading of ‘“‘computer science”. The
usual property of such generality is that the dominant component of the
researcher’s expertise has to do with computers and algorithms. Thus the
development of a program to reduce x-ray diffraction data for crystallographic
analysis would depend heavily on a knowledge of crystallography and a lesser
knowledge of computing. On the other hand, a program for automating the’
collection and reduction of data from various experimental environments
would, more than anything else, require expertise in computing. A program for
symbolically manipulating algebraic expressions would have many uses and
would depend on sophisticated data structures and the transformation of symbol
strings. Conversely, a program for generating the coefficients of a particular
series depends more directly on the detailed structure of the series.
that there are many shades of grey in these distinctions.

Special topics such as the generation of natural languages and the process-
ing and manipulation of symbols are in this category of widely applicable,
problem-driven work which depends largely on expertise in computing. So,
too, does much of the work in artificial intelligence, where research is not lim-
ited by computers as much as by the need to understand and algorithmically
emulate intelligent behavior. In this sense, that part of numerical analysis in
which mathematicai developments are motivated by the ultimate goal of
effective computer execution is an application; the resulting algorithms are
applicable to various problems. The underlying problem is the discovery of
algorithms which permit the solution of mathematically posed problems of
many kinds, using the necessary discrete digital representation. In fact,
emphasis on computers provides a demarcation in the well-established subject
of numerical analysis. If the emphasis is on the existence of solutions, and the
methods are primarily those of classical real and complex variable analysis, the
subject is readily accommodated in mathematics. If the emphasis is on effective
computer implementation, it is closer to computer science and is sometimes
called ‘“‘numerical methods”’, This label is not completely appropriate, how-
ever, since the nature of the work is analytical.

In addition to the generally applicable, problem-driven applications so
closely related to computer science and engineering, there are certain specific
applications that bear the same relationship. These applications arise from
large, special-purpose computer systems. Although highly specific in design,
the implementation is dominated by a range of computer issues, for example,

It is clear

COSERS OVERVIEW 15

essor organization, operating systems, digital communication, r;lxgblhty,
D ror recovery. The implementation of air traffic control systems is in th_ns
an e(:r Another system with the same characteristics, which is less cle.arly‘ in
fﬁteefiorz:ain of computer science and engineering, is digital teleppone swntc}:ju:g
and communication. The reason the lattgr, ur)llke the former, 1: more lwt z iyr
regarded as a problem in telephom? engineering seems to be IS(OI‘I(;il ;)f Al
traffic control has developed as a major apph'catlon of interest, as a t{.esu of the
development of large, reliable diglta} machlr}es. Telephone switc mgt; o th
other hand, is an engineering specialty which pre(.iated compute_rs ; e); mIt 381
decades, but the current implementation technqlogy is computer orien 'f lw
not surprising that much of the research §xpert|se sought for the de§|gn od neic
digital communication systems is emphasn.zed l?y graduate programs in academ
departments of computer science and engineering.

In summary, the applications of computers are myriad, and certamly_ most
of them cannot be listed as products of computen: science or computer engineer-
ing research other than indirectly through the ex1§tence of computerg, ;?lrorgram-
ming languages, effective algorithms, and operatn.ng systems. In a glmn:l. wag’,
the use of mathematics in various research areas is usuz'illy.not considered to be
mathematical research. However, there are some apphcatnops wher'e the don:-
inant expertise is in subjects related to computing or where innovative compltx -
ing must be done to succeed. Obviously, research on com'put'ers and t?ompu ei
systems per se is in this category. Systems of general application, sulg as s;;ms
bol manipulation or graphics, are in this category because the genera ity implie
that there is no other dominant discipline. Lastly, l.arge specnahz‘ed systems,
such as traffic control systems, are also in the do:pam of computmg research
because the central concern is the effective integration of a variety of programs
and digital components.

Patterns of Publication

The much-used metaphor about the tree of knowledge—wit_h its dorrpant,
sometimes withering, branches, as well as those in full t')loom—ls as pertinent
to computer science and engineering as it is to other squec} areas. In the ic_:ase
of computing, however, the image that comes to mind is more one o a;n
accelerated movie of plant growth than of increm;nlal, segsonal changes. In
this report the topics of current growth are em9hasnzed. It is apparent that the
length and amount of research activity varies widely fron.1 one area to the rlxext.
Partly as a rationale for the subdivisions chosen fo.r this report and par.t y }o
obtain a view of the shifting emphases in research, it helps to look at editorial
groupings perceived as being important over the years.

Formed in 1948, the Association for Computing‘ Machinery (ACM) ‘has

" been an influential professional organization for thqse. interested in computing.
As the name suggests, the early work of the association was dominated by an
interest in machines, or “*hardware”. The first issue of the Journal of the ACM

16 COSERS OVERVIEW

in January 1954 gives a brief account of the publishing activity in the preceding
years. The American Institute of Electrical Engineers and the Institute of
Radio Engineers formed a computer committee in 1949, and in 1951 these
organizations created a professional group. With ACM, they sponsored Joint
Computer Conferences, whose proceedings, in addition to those arising from
ACM conferences, provided a means for research dissemination. The entry of
these engineering societies (which later merged to become the present Institute
of Electrical and Electronic Engineers) was regarded as an: opportunity for the
ACM to “‘direct its effort to other phases of computing systems such as numer-
ical analysis, logical design, application and use, and to programming.”’

Although the journal did not list editorial areas until 1970, it was apparent
that the ACM was organized shortly after its inception to accommodate
research interests in areas not directly related to machine constructjon.
Interestingly, the first issue of the journal contains articles on a programming
system, an insurance premium-billing program, a new commercial machine,
multiplexed analog-to-digital systems, and two articles on analog computing.
Diversity was as apparent then as it is today.

Parenthetically, it

machinery-emphasizing name is misleading for an association wit

aspects of the subdivisions.

The Communications of the ACM was established in 1958 as a technical
publication with a shorter article submission-to-publication time; this was
intended to make it more responsive to the rapidly changing subject matter. In
1960 the publication listed the following editorial groupings: standards, algo-
rithms, techniques, scientific applications, and business applications. By 1977
the list had grown to 10, although at one point there were 12, with subjects
being dropped, added, and renamed along the w
were artificial intelligence and language processing, computer systems, graphics
and image-processing, management applications, management
science/ operations research, operating Systems, programming languages, pro-
gramming techniques, scientific applications, and the social impact of comput-
ing.

In the COSERS report the categori
cal computation, hardware systems, da
programming languages, operatin;
and applications. With the exce
COSERS report are included in t

es are: theory of computation, numeri-
tabase systems, software methodology,
8 systems, special topics, artificial intelligence,
ption of the first two categories, those in the
he ACM list, although the division of subjects

COSERS OVERVIEW 17

i i itorial groups recognized by the ACM are
slightly. Also, not all of the edi : \
iv:crllgcsied 8in the present categorization. The exclusions are bls:se(; o:vlhz[:hisrm;:;a:g
ivity in the areas, as well a

e amount of research activity in . y w
ogn:guter-oriented publications are the primary oqtlet for publlshmg reseatl;:l;
: sults in the areas. Obviously, this raises questions about the‘ mnssl;:!g o
zztegories While the Journal of the ACM has beenlone of tth:.i ;:ant:yp::o 1::! e:; !

: i ical computation,

for research results in theory and_ numerical : |
ﬁ:;l?ttsbeen the sole outlet. When editorial categories were listed in 19"17(}, thea);
included, along with several of the headings gfiven ab(tw:, au:i(:‘r:::aargr; . :n:ln "

y i i the theory of computation, , an
languages, combinatorial theory, : t joar slgcbra, and
i ion. These topics are still strongly rep
the mathematics of computation : e o
ightly differently under the headings:

1979, but now they are grouped sligh ines. iheory
y ion; i i h theory; automata, computability,
computation; combinatorics and grap } : ability, ar
t?(frmal ?anguages; computational structures; and numerical computatlon. topl:s
which are subsumed in the COSERS list under theory ol:' corrtlputaug::s aare
ri i thods used in these two ar
numerical computation. The research me! l as are

ical; i tive research predates the developm
strongly mathematical, in fact, ac ea i iy
ic digi i ng, then, that there are

electronic digital computers. 1t is not surprisi ! pub
icati i h procedure of literature re s
lication outlets and that the classic researc : .

isi ication-is better established in these areas.
theory revision, and subsequent publicationis
In th:se terms,these fields of research are more mature than the more recently
identified specialties.

Because of their early research history aqd the variety of Journa:s fotrh[;z:)-
lishing the results of research, the quest.ion arises whether ﬁeldsts:c absrm(:hei
of computation and numerical computauon'would be better treate: tasf ranches
of mathematics than as part of computer science. Counterargume: ti) ofa uch a
classification are the computational motivatlor_l of the 're'sear.ch an ? :elated
the contributors concentrate on journals which specialize in computer-
topics and have computer-oriented readers.

Although the creation and deletion of editorial groups in jOI'HnﬂlS is :1:?;
cative of the currently perceived research areas, as wgll. as pemg a g; neral
admission, imperfect. For examete, there 1s some opportuniom i (he selertion
admission, imperfect. For example, here . on

i ith the individual influences which are not truly represen
?if\;: (::;'otrt?e z:l:tgfesv:; of the research community. The exnsteqce of a pamc;x'lx
editorial classification does not necessarily mean that the specialty has an acti
group of contributors and readers.

Another possible approach to determining publicatipn patterns is . to
analyze the published articles and the references to tpese amc'les, :o <ietzlter:1insnf1
whether affinity (or specialty) groups do, indeed, eg;‘xs:‘. dA:inr;ltl;:; yl,las ea:ready

. . . . o
ossibility of circularity in this process, since publis ' '
Eeen acczpted under some heading and references to (lit may be lll:lrirllli]tir(‘ic:das?sy
i i i i ich has been done on a li y
that designation. Still, such analysis, which ' 1 3
reinforcei the observations one can make on the basis of the evolution of edi

18 COSERS OVERVIEW

torial subdivisions, or more simply, by lookin
ing. Limited studies along these lines!
tation and numerical computation are
with “‘clusters of inter-referenced stu
database and software methodology do
research publication and reference.

categories are intermediate. The typ
obvious problems in this sort of clust
application is composed of work in a
reference pattern. But listing suc
language generation, and graphical

g at the recent history of comput-
have verified that the theory of compu-
areas which are most easily identified
dies, and that the much newer areas of
not yet have a well-developed pattern of

By these measures, the other COSERS
es of applications, discussed earlier, pose
ering analysis. To the extent that a given
narrow area, one can expect a small inter-

h topics as formula processing, natural

systems under a heading such as “‘special
topics” is an artifice for avoiding many small subject headings. The

comprehensive special-purpose system (for example, medical record-keeping or
air traffic control) suffers from the fact that, with many such systems, commun-

irect, not through journals that are generally

sonably large, unknown audience;

reports would better fill the need for communication. The digital-system type
of application often draws on the research results in more specific subject areas.
Primarily, it contributes the innovative integration of these results in a new sys-
tem. Generally, the details of this important integrative work are of interest
only to those who are undertaking the design of a similar system.

Trends

The word rend im
decreasing longevity, the COSERS subject areas are: numerical ¢
theory of computation, hardware systems, programming languages, artificial
intelligence, operating systems, database systems, and sofiware methodology.
The two types of applications, separated under ““special topics’ and “‘applica-
tions,” are not readily ordered, since they are collections of topics. Again, the
applications may concern particular problem areas where progress depends not
S0 much on improving computer technology as on new knowledge of the prob-
lem; or, on the other hand, they may involve computer systems as a whole,
where the integration of many aspects of computing is the dominant property.
The diversity of applications suggests a case approach to the consideration of
trends. Several examples are included in the chapter on applications.

Numerical computation. Numerical analysis is a venerable topic. 1t is a
natural outgrowth of man’s ancient interest in reckoning,

, which was
the existence of numerical approximations than
with developing constructive, effective procedures for implementing them. For

example, the precomputer topic, “‘calculus of finite differences,” emphasized
the formulation of difference operators in compact functional form. For the

COSERS OVERVIEW 19

t part, the computer interpretation of functions whose‘component;i ar:l
$g'serence,operators is not an effective procedure; het}l?:, lhltS we.ll;di:/:ﬂc()pzn

i i i i tation. e extensiv

ic is of little interest in numerical compu :)
top:floltis for the manual computation of mathematical tables, _whlch predate:
xrll:ctronic machines, is more interesting. But here, too,. there is no Iong: n:) ;
:mphasis on interpolation (to reduce manual compu!atlon) and se}quenc o
erations, which produced organized and economical formats ordr?an ;
?:cording ' As a counter-trend, the analysis of the trade-off of space an lrfm: hls
of increasing interest and is subsumed under the general description o e

complexity of algorithms.

In numerical computation an important questior_'n of possible agtomatliﬁn
concerns the extent to which physical 'systems can be simulated. T(t;e l:l:r:z;irgg
use of simulation to obviate the creation of phys!cal mode}s dep:n S, (o8 large
extent, on numerical computation. The underlying guestlpn re uce(fd to one of
how to represent continuous plhysica! SYSttemtsl';eu:::tgialdl;icl;;:':ni?al eql,.lations
discovery of effective numerical so uuox.ls o ' . . duations

ibi hysical phenomena is crucial in answering this question. t an
?e?:lnglfngul:ofnatio:, it is becoming increasingly important that algo(riltl:vrir:tsmt‘ﬁ
developed for selecting methods, so computer_ use can be :anblzm rolving
requiring that researchers be aware of the detanlgd aspec?s of prol) solving
introduced by using computers. Ideally, a dynamlf: analysis of an ongoi ;g‘ -
tion would select and change solution metl}ods; 1nQeed, sqch program .pathe
ages’’ for the solution of ordinary differential equ.auons exist. Progress in the
automatic selection of algorithms is being fnade in other areas. ;fn ?umerlm-
computation the development and certification of demonstrat_)l:'l et ;c M:egg o
puter algorithms is a natural, active r.esea:rch area. Along with other :v eas of
computer science, numerical computation is concerned more apdd mored yith the
complications introduced by concurrence. A length¥, nearly in e;:en e i sub-
computation may be preferable to a shorter, more interdependen ’h e.quformu-
step, because the first approach permits more concurrence. Retse.arc] ;:;in
lating general algorithms for concurrent, or parallel, execution is increasing.

The branch of classic numerical analysis concen:ned with the devel'opment
and analysis of algorithms for implementation on digital compute'rs contmuestto
be a vital part of computer science. The subject dogs n(:t domnr::;:iz?:: z;

i iod: This i$ not due to any di
Science as it did in the early penod: This is no ' .
importance, but, rather, from the rapid expansion of .nonnumencal. pro?lessm:..
The consumers of (and often the contributors to) this work are primarily co
cerned with applications.

A f computation also predates the elec-
Theory of computation. The theory ol e

tronic ag:.’y I{ the theory is taken in the sense qf explanatory mggels ai

Opposed to computing devices such as those of Leibniz, Palscal, tang Itii:(am asveh:h

igi i i i i inal contribution, ‘
originated with Turing’s work in the 1930s. His semi or

Wag motivated by questions in logic, was to p_roduce a.deﬁnmon of cog'wputable

that agreed with the generally accepted intuitive meaning of an unambiguous,

20 COSERS OVERVIEW

deterministic, terminating sequence of steps. Turing’s definition was based on

a simple, hypothetical machine —now called the Turing machine —which could -

read characters on a movable, extendable tape and, on the basis of what was
read, select different sequences of the elementary reading, writing, and moving
operations. Any algorithm that could be executed by such a machine was con-
sidered ‘‘computable” and, conversely, all others were ‘‘noncomputable’. This
definition was strengthened when several other independently produced
definitions were shown to be equivalent. An algorithm which simulated the
elementary machine itself, in much the same way that a general-purpose com-
puter decodes instructions, is an important member of the computable class.

Although Turing’s dichotomy is important, the problems of practical
interest were in the computable class, and a refined categorization was needed,
which would quantify ‘‘how-computable’’. The Turing machine and its variants
were used in this quantification. Use was made of such measures as the
number of elementary instruction steps and the amount of tape used as a func-
tion of given input. Alternatively, the machine could be limited to, say, two
passes over the tape, thereby specifying a subclass of the computable problems.

€ most primitive restriction of this type is the finite automaton. In essence,
it is the “‘control”’ part, the Turing machine without tape storage. The automa-
ton has a finite number of positions, or states, which are selected from a

specific history of symbol reception. These states constitute the machine’s
storage, or memory.

While researchers remain interested in the categorization of algorithms by
the specification of such hypothetical machines, interest is growing in measures
more directly comparable to real machine performance. More specifically, using
independent problem size variables, such as matrix dimension or character
string length, expressions for quantities such as the number of multiplications
or comparisons or, alternately, the amount of time or storage required, are
obtained. Such results are readily related to actual programs and also produce a
more useful division of the class of computable algorithms. A well-known
example of the utility of this kind of analysis is the number of comparisons
needed to put n unordered items in ascending (or descending) order. The
straightforward procedure of comparing the first with the y—1 others, and inter-
changing whenever an item less than the current first element is found, leads to
n(n—1)/2 comparisons. A more sophisticated procedure, involving the
repeated splitting of one unordered list into two unordered lists, in which all
the elements of one list are smaller than all the elements of the other, produces
a comparison count on the order of n log n. For the usual values of n, the
Latter is clearly preferable. Measures of complexity often appear as polynomials
in the size variable, n. For example, the standard method of multiplying two »
by n matrices requires n3 multiplications. This functional form introduces

another interesting classification of complexity: the class of algorithms whose
complexity measure can be expressed by a polynomial. The complexity of algo-
rithms that demand more time or space is characterized by an exponential

COSERS OVERVIEW 21

jion i ich the size variable appears as an exponent. Currently, an
?;%l:rsts::ln rg;e‘:rt::l: question is whether there is avcon_lplexity catego_ry .whose
characterization lies between these _two. Thxs devel‘c‘)pmg taxono,r’nyI is l|1mpor;
tant, since it distinguishes the “‘feasible” within the compu{able. ' “n E‘e ptlas
there were many instances of ngive.attempts‘ to solve combinatorially “‘explo-
sive”’ problems because the complexity analysis was not known or done.

Formalisms for systematically generating sgntence_s in a langugge have
obvious relevance for computer science. In pgrtlcular, if the generation rulc:ls
are well defined, sentence recognition and parsing procedux:es can be produc;e ,
which can be used in translating high-level programming statements !ntg
equivalent machine-language sequences. Early work in this area en.lphaswe
the structural, or syntactic, aspects of the process. Sentence-generating rules,
or ‘“‘grammars,” were classified according to whether context dppendenc_:y
existed in sentence generation, that is, whether phr_ases could be inserted in
sentences being generated only in specific surroundm.g'contexts. .(_)f greatest
practical interest was the context-free category. In addition, the .abxhty to gen-
erate the same sentence with more than one sequence of generation steps leads
to an undesirable ambiguity in recognizing such sentences. T‘hu's tl?e presence
and detection of ambiguity are also matters for grammar dlstmctlop. Other
language categories were created by limiting the gl:ammars.to categoneg wh_ere
the generated sentences could be analyzed by specific algorlth.ms. Specnﬁcatlpn
of these categories has permitted the association of complexity measures with
these parsing procedures, which break down sen}enges, or s.tatements, into ele-
mentary parts which can then be related to machine instructions.

Recently, the emphasis in research has shifted to seman.lic questions
which complement the now well-understood processes of generating and pars-
ing on the basis of syntax. If the automatic verification of program correctness
is to reach a useful level, the meaning of algorithm-describing statements must
also be precisely formulated. This research goal i§ shared by se\feral specnalu.es
within computer science. There is a growing feeling that there is a complexity
threshold that cannot be surmounted unless programs can be verified or pro_ved
correct automatically. It is a highly introspective version of the question,
““What can be automated?”’ The underlying problem is roughly analogou}s to
the reliability threshold of early vacuum tube computers. Given the relatively
short time between failures of the vacuum tubes, machines whose tube. c.ount
€xceeded a critical number were rarely operational. Similarly, the probability of
logical errors in programmed system components limits the number of com-
ponents that can be expected to work together.

Hardware sysems. The trends in hardware Qevelopment were previewed
in the description of technological generations. With the ‘usual computer pace,
three major technological generations have been pacl;ed lpto one human gen-
eration. In this period the research areas of artificial intelligence, programming
languages, operating systems, database systems, and software methodf)logy have
been created and profoundly changed. The progression from vacuuni tubes and

22 COSERS OVERVIEW

Operation and
access times have gone from tens of microseconds (10~ second) to tens of

nanoseconds (10~° second), while main memories have increased from 16
thousand characters (or bytes) to 16 million bytes. Random access auxiliary
storage, such as disc storage, has developed from nonexistence to 64 gigabyte
(10° byte) or larger. If the price of these central machines is taken as being

age has dropped by three

orders of magnitude, not counting the increased utility of accessing the main

storage unit a thousand times more often. Beyond these major trends in com-
puting, large-scale integration has been extended to microprocessors and
memory, to produce second-generation capabilities in computers priced in the
range of several thousand dollars. Apparently, “‘bit slice” organization will

soon push these integrated-circuit machines into the speed range of tens of
nanoseconds.

Artificial intelligence. Ever since the early days of computing, the speed
and logical processing capability of electronic computers have inspired attempts
to develop programs that exhibit intelligent behavior. Though “intelligent
behavior” is difficult to define, and is currently under

requirement is that there be something unstructured, something nondeterminis-
tic, for the solution process to qualify as intelligent. Another is that it depends
on the knowledge that must be used in obtaining the solution, or on the
methods used. As is often true of new fields of research, the initial efforts

COSERS OVERVIEW 23

he structure of languages was far more than could be‘accommodgted b){1 tls:
o ly syntactic and statistical procedures known at the time. .Expenence, 0
oo yhsy fostered fruitful research in developing systems whlf:h make use of a
:::;t, d::l more knowledge about grammar and about th: subJTct_mz}tz)?tf ;rt:g
i romising results in the analysis
messahgt?s tl?tsaCh\l’:‘r,ﬁ)\:rs] lll((;}rldrsngt{ egz:)mes havge provided a good testing gro‘vzx‘nd fqr
speecl: l'[rlxp s&ne techniques that have proven useful for more general “‘intelli-
devf”or: s%ems. The same is true of attempts to prove general t.heorems by
g(e)rr:'nputeyr. The mixed success achieved in the lat‘ter case has aglalgn slerve& ::;
highlight the lesson learned in the language ana!ysns work d— tl:)at B rng:ni::cel s of
performance require that large amounts of specific knowledge be org
brought to bear on the problem.

As an area of research, artificial intelligence has been criticized (largel)"rgy
those within the field) for these attempts to soll\]/e very gertllerall gr(t)(t:lzt:;i.ﬁon;
i i | problems has currently le
early experience with such genera ‘ 0 additional
i irecti ller problem domains an e
search in the natural direction of smalle ' ! °
;:;eciﬁc use of knowledge of these domains in the solution. Tpe mountn;gsssi:;
i i ttern recognition, image proc ,
cess of this approach — in such areas as pa Of e,
i i i i d recognition — has often appea
medical diagnosis, and speech synthesis an -cogniti : neared
j tificial intelligence. Such *“‘loca
to remove the subjects from the realm of artificis “loc
i;)ecri” research areas tend to become indistinguishable frothl:e applllc)aetru:)r}
i “ i ics”’ in the present report. Yet a num
areas, which are called ‘‘special topics {n ' : '
common threads run through these applications. Eor example, one bi‘l?l(‘: rectul"re
ring problem is that of searching a large solution space and codi fyl‘r‘llg "
knowledge that is relevant to the solution in such a way that th(_e use o . oc:'nch
knowledge reduces the amount of searching. Evendwnh lc'fduc(t)lt(;]n,rs::iChseiilasic
i i i ici emands. e
can be wide ranging with unanticipated storagf: :
problems include discovering the knowledge which mgst be broug.ht to bear :)r}
solving these application probiems, finding comppta.tlonally efficient ways o
representing this knowledge symbolically and de51gnnng con}rc?l strategies o
accessing the knowledge when it is appropriate. Various §ophlstlcatf:d comput ;e
tional techniques developed by A.L researchers (the earliest of 'v./hlch w;re
list processing techniques now so widely used) have greatly facilitated the pro-
gramming of such problems.

Another important aspect is the use of heuristic rules of the klml;i hurr:‘:::;
use to solve problems. Although, in general, such rules _Ca“f“: f\fe bt
effective, they often lead to solutions. Some computer s::lneﬂurstii zilalg o that
heuristic programming better describes the ﬁeld now calle' a ;_ c oo
gence,” in addition to avoiding the emotional connotations o ffrs lign the:
Though various alternative names have been proposed, many {esea{c "i o reln.
field feel that the current name is appropriate, since it emphasizes th ¢ °Sawned
tion to the study of human processing techniques. The ﬁel(} as sp ey
Several related areas of research and is the basis for some manu actunr:g ggn_
cations which are nearing production. Among the latter are computer

24 COSERS OVERVIEW

trolled ‘‘visual searching for flaws in cir
controlled orientation and assembly steps.
illustrates a number of other important
computer-aided instruction and medical diagnosis, and applications to areas of
science and mathematics. Its impact on psychology has also been far-reaching.
In addition, though perhaps more significant as a matter of general interest than
as an important scientific achievement, chess playing programs have reached
the expert level, which is the rating just below ‘‘master.”5 A program
developed at Northwestern University won the Minnesota Open in 1977,

although it seems that the most recent successes are due mainly to faster com-
puters.

cuit boards and some computer-
The discussion in this section also
areas of achievement, including

Programming languages. The continuing research and development in pro-
gramming languages is a good example of the process of enlarging the number
of computer activities that can be automated. Before the appearance in the
mid-1950s of algebraically oriented languages, the programming of computers
seemed to be a “‘black art” practiced by a handfu] of people who had mastered
the octal or hexadecimal representations of machine instructions and data.
High-level languages suppressed this detail, greatly increased the number of
programmers, and increased the complexity level of programs that could be
i mplemented successfully. As always, the complexity barrier was not elim-
inated, just moved. The work continues in such directions as machine code
Optimization, programs to generate language translators or compilers, tech-
niques for language extension, high-level languages, very succinct languages,
language constraints to enhance program verification and comprehension, and
the incorporation of more complex data structures. There are two obvious
facets of these efforts, which characterize computer science and engineering in
general: the dependence on other areas of research activity and the continuing
presence of computational efficiency as the dominant requirement. Regarding
the latter, the feeling has reemerged, with each major technological improve-
ment, that increased machine performance makes acceptable the substantial
inefficiency that might result from a very high level of programming. However,

the increasing requirements of application programs at such points of techno-
logical improvement have brought pressure for the increased productivity to be
made available to application programs.

It is extremely difficult to determine th
suppression of computer-oriented detail in the
the improved computer efficiency that can
specification. Analogous to the construction of physical systems, it is necessary
to accept some inefficiency in the interest of achieving manageable organization.
I constructing multichassis electronic systems, the “efficiency’” of point-to-

point wiring is sacrificed for the superior organization of connecting blocks and

cables. But the trade-offs in computing are often far from obvious. In princi-

ple, an extensible language may permit it to be hand-tailored for a particular
problem domain, but the complexity of the language for extension can elim-

€ proper balance between the
specification of algorithms and
be achieved with detailed

COSERS OVERVIEW 25

inate the advantage gained. There is evidence that,' given langu.age
e ifications, the use of a program that produces translators is a better choice.
i:) ei? I:ss cor;lplex and more efficient to develop a new speciallzed_lgnguage,
with its related compiler or translating program, than to 'extend an exnstmgdo?;é
Greater knowledge of this process of compiler cor.lstructlor! ha's encourag e
development of languages dedicated to spec1ﬁ.c application ?re?s.res rhe
inefficiency of using an all-purpose language that mclu@es mal;y eal.: ot
used in a particular application have also encouraged tt}xs deve! opmenh. Such
unavoidable considerations of efﬁciency' have resulted in greater emgd asis on
optimizing the code, or machine instructlor_l sequences that are produc as 0 "
put from a compiler. This, in turn, has ralsgd ques}nons about the senéan ics [
programming languages and the design of instruction se'ts at the hm}'1 ware, 0
machine, level. The interdependent r.lat‘ur'e of the various research areas is
apparent in programming languages, as it is in many other areas..

Operating systems. In the hierarchical view of a cs)mpu.ter system,I _opﬁrat-
ing systems are those programs that interface the .machme wn_h the al;;p 1c:a 1?}1::
programs. The main function of these systems is to dynamically alloca eh '
shared system resources to the executing programs. As such, .the research in
this area is clearly concerned with the management and‘ sched}llmg of memol:y,
processors, and other devices. But the interface with adjacer'xt. level§ as
shifted, and continues to shift with time. Functions that were orl_gmally incor-
porated as part of the operating systems programs have mlgrate_d in succeeding
systems to the hardware. On the other side, programmed functions extrane(t):;
to the problems being solved by applications programs have‘been automa
and are included in the operating system. Perhaps this e\(olutlon can be better
viewed as the insertion of levels in the hierarchy,' since many of these
automated functions are large and complex algorithm.s in .thelr own ngh.t. Thg
best-known example, and one that illustrates migrgthns in botl} dxrectlor.as, |sl
the incorporation of virtual memory. The asspcnatlon of logical or ertua
addresses and their assigned physical storage locatnoqs has_ moved from being ;n
operating system function to being a hardware alg.onﬂam in a processor. By t.t;
same token, the programmer’s task of ‘“‘overlaying’ the limited storage wi
different parts of his executing program has been subsumed as an operating sys-
tem function.

The persistent quest for the extension of computer system applicability by
simplifying high-level programming through t.he autorpatxon of suchhprgigratrl?-
ming steps continues. The chailenge is to devise algomhms_that can han 7 ﬁle
large variety of application programs with acceptaple e@cnency. Generaf e
System operations are examples of this trend. The mcrgasmg{y 1mportanld llx)nc-
tions of file protection and authorization must necessarily be lmplemeqtf yta
central program or operating system. An ofteq usefi analog)f may help il zs;;ra e
these goals. If a program could store and retrieve mformgtnon frorp an address
Space labeled in a manner similar to that of a ljbrary decimal classnﬁcatlon sys-
tem, storage allocation problems would be eliminated. In such a logical system,

26 COSERS OVERVIEW

information could be inserted or removed without
with integer addresses. In fact, information in a computer is stored in fixed
size blocks in a variety of storage devices. Input/output programs, with associ-
ated buffering, are required to access the various parts of the information,
Insertions involving ““pointers” to other locations or the restructuring of large
storage regions are often needed. But it is conceivable, if not efficiently imple-
mentable yet, that application programs could use such an address space and

have the operating system generate and execute all of the implied input/output
steps.

the restriction of dealing

Database systems. The automatic management of a storage hierarchy is

obviously a central concern in the implementation of database systems as well,
Indeed, the lines that separate this emerging s

omating the updating,
retrieval and security aspects of such information repositories.

Modern operating systems must have a file system for the use of both
system and user programs. For the most part such fileg are uninterpreted by
the system. That is, the files are simply a string of characte

executed, or lines of characters that can be changed or edited, but the more
detailed interpretation as, say, personnel files, sales records, or student files is
done by another level of programs. It is this very complex set of functions that
is the realm of database systems.

The appropriate storage organizatio
tern of use. If an entire set of relativel
in the same order, a strictly sequent
known subsets are occasionally sought,
the sequential file by internal pointers.
directories giving the location of recor

n for a database depends upon its pat-
y unchanging records are always recalled
ial organization is the best. If certain
these records can be linked together in
If even more flexible retrieval is likely,
ds with specified attributes can become

COSERS OVERVIEW 27

f the database structure. The database structur.es are many, and n?odetrlrll,
pill’t{l::i:nt systems must be able to use different organizations wg;le :(eiplr;% th:
¢ i from complicating the tas

i the various storage structures : |
detalclesst:rf of information. One of the current challenges is to devise sqn:e
Li?:litive database operations which can provide an mt?rfacet:et;vecel? sam\l/::ir::dy

database storage formats. Su -
uestor languages and the many ‘
iozfeae?qransactions” are needed to extend operating systei‘ntlls t% ;(t:;or:';lr:c:gzt;
izati i In terms of flexibility,
ny organizational variants of databases: \
thi;laal :pprzches are subsumed under the title of relational database sys}ertnhs.
%Sith this scheme any consistent, unanticipated reqlfest ’Eor a subset1 _g_ e:
stored data can be satisfied. The necessary “rglatlons between l i .erfen
records are determined by matching values of attnbuteﬁ. hFor exampl f:,l l: e;l]'
ion i i identified with the same social -
ation in two different records that were i ‘ i
:'I':ty number could be related. If this could be done on an gﬂ}cnent basis foxt'1 all
kinds of requests, it would obviate the need for a mpltnphcnty of approaches.
Further research on the various component algorithms is needed.

Just as modern operating systems have a stan.dardized user intg;i"a.ce,
efforts are underway to design a standarized database K\terfac? Tl'(lje g‘eis ;::::)n
i i in that direction. As mentioned, -

-of elementary transactions is a step in t this
lem would be simplified if relational database schemes could be op_tlr;snzed tg
the point where they would have an acceptable response for all kinds, ev:t-
often repeated, inquiries. However, given th(_a ‘varlety of database‘ ust;ge dgta-
terns, it may be necessary to design self-organizing sys'tems. That 1s,0det e
base storage structure is dynamically modified t(;1 eﬁ(iiflently ?Fgo::::i d :qflests
i it is sti le to handle unanticip .
uently occurring requests but it is still abl . -
%he nicessary algorithms for storage restructuring and management are com

plex and under study from several different approaches.

Software Methodology. A topic that grises in .all qf th_e programxgg::gt
oriented specialties is the most recent candidate for identification as a Z‘;ri‘n
area. Programming or software methodology, 'also called goftware engmt img’
is concerned with the generation of programming conveptlons, gnd constra : ,
which will facilitate the specification, programming, testing, venﬁcatloq, p;)r a
bility, and comprehension of large systems' of programs. These goalfaz:rn;nssi n:loz;
the pressing need to manage the complexnt‘y gnherent in larg_?i ‘prog s and to
minimize the reprogramming that is endemic in an era of rapidly ctar!gt ﬁf -
puter technology. The techniques of interest range from the cons ramratioﬁ o
grams to readily understandable or verifiable forms, .the automatic gs;xe 2ton of
test data, and the automatic imposition of program interface (!atz;. ?iﬁed m
programming, where the macroscopic algorithm is progrgsswe.f. re ied into
sub-algorithms is an example of the first of these. The imposi 10% o @ sub-
process structured program design also enh?r}ces .the comprehensi uy.t he
use of computers to record programming decisions in files and then'con.cz: eface
these files to the design of other parts of the planned .system avougsl inter| e
inconsistency or omissions. Beyond that, the managerial aspects of large p

28 COSERS OVERVIEW

gram development are generally enhanced by such a computer-
cedure. It becomes possible to oversee a development in much the spirit of
conventional machine production—an assembly is .composed of sub-assemblies
which are composed of sub-assemblies, etc. Additional declarations at the time
of programming can, in some cases, be automatically utilized to generate trial

data values for testing which are more comprehensive than those usually pro-
duced by human means,

assisted pro-

Automatic program verification is an important but elusive goal. In
€ssence, a program is accompanied by an independent description, or set of
assertions, at various entries in the program. It is possible, in some cases
where the programming constructions are suitably restricted, to prove that the
intermediate and final output assertions logically follow from preceding asser-

approaches to programs of significant size and ¢
desirable. As with theorem proving in general, it seems that interactive
schemes which involve human surveillance of the successive assertion proofs
may well be the most effective approach.

Software engineering is a specialty in its infancy,
the research goals of computer science and computer
motivated by the need to increase the level of manage

Interrelations. 1t is evident from even a casual |

and it pervades many of
engineering. It is clearly
able complexity.

0ok at the chapters of this

with many of the same goals but from a point of vi
area name. The basic question of ‘““What can be

automated?”’ can be para-
phrased as ‘“What are the limits,

imposed by complexity, on the application of
computers?.”” Recurring themes are: the efficiency of computation; the suc-

cinct, comprehensible statement of algorithms free of detail extraneous to the
problem; the automatic choice of algorithms for applications and computer
facility management; exploitation of concurrent computation; and the
verification and testing of programs. These concerns can be viewed from the

perspective of major applications as well. Several illustrations appear in the
chapter on applications.

The Hierarchical World

Computer systems are almost always hierarchically structured, Many of

the research specialties correspond to a level in this structure—with sizable
overlaps of neighboring levels, Thus hardware interfaces with operating sys-
tems which, in turn, interact strongly with applications, as well as supporting
the functions of database systems and programming languages. The latter two
are used directly by all types of application programs. Computer science theory
attempts to construct and classify algorithms that are relevant at all levels, while

COSERS OVERVIEW 29

. . . o
the concern of software methodology with the process of implementing pr
grams is similarly comprehensive.

This description is reminiscent of the popular hjs?ori;s of fscnetntiz ::((11
iscovery, which start from the stratification and specnah_zatl_on of :: u > anc
g;?c(::ed t’hrough social structures to the multi-level 0'?8“‘?“19“, :g sy;:vms gt(;
ion i toms, to molecules, to proteins, to ivi ,
The progression is from a oms, ot S iatty 1o the
i i i to human communities, an
the diversification of species, ‘ ety {0 he
The remarkable accomplis
hierarchy of knowledge and science. . r N P onporting strats
i been possible without the many sup,
highest level would not have : ot it o the frst
hematical theory had to sta , 5 i irs
below that level. If every mat e Hiovare e
inci i ess would have been glacial. e
principles of counting, progr hav e s ot o
i e the most complex sy
in modern computing systems may we c ot dicolas many
i i i hich has been a collective effort, disp!
ised by man. This synthesis, w e s o
i tural systems. Programming
of the evolutionary features of na ming languages ‘al
i i H the pressure of technological prog :
into disuse; systems change under > nolo D st
lishments and applications a
obsolescence. Here, too, the accomp : he nighest
ini le, if every program ha
level would have been minimal, for'examp , 4 e irouit ohin
he transistors on each integrate | :
expressed as the state of t ® | creut chep.
i i has evolved well beyond suc p dia
Although the computing hierarchy] : nowiedge it 18
i it i ith the historical development o
point, when it is compared wit d : vt comput.
rly Renaissance. In any » comp!
probably no further along than, say, ear 1 e conmoin
i i inextricably related. Man’s !
ing and social development are now . ey by b
i i i ledge will be shaped largely
social evolution and augmentation of know_ { ar ; oy
ili Itiplying complexities of a c ,
ability to understand and manage the mu of 2 crowded,
i isi 1 of manageable complexity by i
interdependent world. Raising the leve] : oy continu
i ication systems, which can be exp!
ing to develop computer and communica
raﬁid]y and reliably, is imperative if these problems are to be understood and
solved.

Prognostication ‘
For the most part, this report avoids the temptamén lto be z;ﬁ?lzri:tmzt
i d, the underlying p
the details of the future computer age. Indeed, > that
i i t should be automated can only
the basic question of what can and wha : '
answered \('l/ith study and research. Nonethele?s, thetpot:r;t::ll ::pfi?;::il::::rtshs
i id for system:
S0 well known that many plans are being lai 2PPic 'S the
i i i that range from national to pe .
will change operational behavior at levels 1g¢ | 4
In the c:mm‘:lts that follow, a few of the motlva‘atlo.ns for plans in (tj'f)t:n:fé
information retrieval, industrial production, and individual consumpti
given.

In a world armed with increasingly sophisticated weapons, n(l;hta;y :I:]c;r:y
Munications and control systems must be develqpe‘d. which co:)r lg:em any
computers with the necessary high speed.and rellablllt)} anl:! yeanp(;'ecism,n |
readily comprehensible form, the information necessary for hum

30 COSERS OVERVIEW

With knowledge doubling every seven years, the limitations to progress
may not be knowledge itself, but timely access to what is known. As an exam-
ple, health care would be improved if practitioners had better access to medical
literature and recent research results. Planning is underway to establish an
accessible national medical information repository using large computers.

The economic pressure for increased productivity is very difficult to
satisfy. In areas such as agriculture and electronics, where the country enjoys a
leading position, retention of this advantage will require even more coordina-
tion and optimization— for which computers are already heavily used. In indus-
trial production, the need for highly skilled workers, or artisans, is increasing.
The use of computers for complex but routine tasks, like wiring and system
installation, can effectively amplify the skills of such people. They are able to
devote more effort to the judgmental aspects of their tasks rather than the rou-

tine mental activity that accompanies many technical jobs in an advanced
society.

The burgeoning recordkeeping arising from increasing interdependency
imposes a similar mental burden which can be lightened by further use of
computer-communication systems. In what has been called *‘office automa-
tion,” inter-office communications are augmented to the point where informa-

On the consumer side, the era of communication from residential televi-
sion is at hand. Communication is rapidly moving to digital signals with com-
puters for switching and message control, and fiber optics effectively increase

microcomputers introduce the possibility of optimizing residential systems. The
most obvious application is the timed, environment sensing control of energy
consuming devices such as heaters, heat pumps, and furnaces.

a simpler era. Return is impossible even if it were truly desirable, but, impor-
tantly, computers and communications do offer the possibility of automatically
handling, without undue human burden, the complex tasks that persistently
arise. However, it is vital, in the literal sense of the word, that social and

technical bounds on such automation be continually developed, refined, and
explained.

COSERS OVERVIEW 31

REFERENCES

Private communication from Gerard Salton.

Attributed to George E. Forsythe.

““Electronics,”” Science 195(4283) (March 18, 1977).

Scientific American 237(3) (September 1977). . §

H. Berliner, ‘““‘A Chronology of Computen: Chess and Its Literature,

Ariificial Intelligence 10(2), pp. 201-214 (April 1978). |

6. H. H. Goldstine, The Computer from Pascal o Von Neumann, Princeton

Univ. Press (1973).

7 J. Howlett, N. Metropolis, and G-C. Rota (editors), A4 History of Comput-
. ing in the Twentieth Century, Academic Press (1979). o

8 D. E. Knuth, “Computer Science and Its Relation }o Mathematics,
" American Mathematical Monthy 81(4), pp. 323-343 (April 1974).

9 A. Neweli, A. Perlis, and H. Simon, “Computer Science (letter to the
" editor),” Science 157(3795) (September 1967).

10. B. Randell, The Origins of Digital Computers, Springer-Verlag (1973).

11. C. P. Snow, “Government, Science, and Public Policy,” Science, 151,

pp. 650-653 (February 11, 1966).

[R A S

