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ABSTRACT

Part I of this nemo discusses minimal entailment and minimal completion suggested by McCarthy
(now included in his more general notion of circumscription) and Part II discusses the ‘‘non-
monotonic logic” of McDermott and Doyle. McCarthy attempts to capture an idea inherent in
Occam’s razor: only those objects should be assumed to exist which are minimally required by the
context. McDermott and Doyle approach the problem by discussing provability as a modality.

1. Minimal Entailment and Minimal Completion

1.1. Minimal entailment

We will work with a single sorted first-order language with equality and with no
function or constant symbols. Later we’ll take up needed modifications for dealing
with sorts and with function and constant symbols.

Let I' be a set of sentences. M 1s a minimal model of T if:

(1) M E A for each sentence A eI,
(2) For every substructure N of M, N ¥ A for some A e I.

We say that I' minimally entails C and write I" k,, C to mean that the sentence
C is true in all minimal models of I'. Thus I" k C implies I k_, C, but (as will soon
be apparent) not conversely.

Minimal entailment was suggested by John McCarthy to capture an idea
inherent in Occam’s razor: only those objects should be assumed to exist which
are minimally required by the context.

Artificial Intelligence 13 (1980), 73-80
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74 MARTIN DAVIS

Example 1. Let I" consist of the sentences:

3x.Z(x)

Vxy.[Z(x) A Z(y) o x = y]

Vx.3y.S(xp)

Vxy.[S(x,.y) > 71 Z(p)]

Vxy.[Z(y) 2 A(x,y,%)]

Yxyzuv. [A(x,y,2) A S(P,u) A S(z,v) > A(x,u,p)]
¥xy.[Z(y) = P(x,y,9)]

10.  Vxyzuv.[P(x,,2) A S(p,u) A A(z,x,0) D P(x,u,v)]

It is readily observed that there is a unique minimal model of I" namely the standard
model of arithmetic (with Z(x) interpreted as “x is zero”, S(x,y) interpreted as
*““y is the successor of x”, A(x,y,z) interpreted as “x+y = 2z’ and P(x,y,z) inter-
preted as “xy = z”). Hence, I" k,, C just in case C holds in the standard model of
arithmetic. Since the set of true sentences of arithmetic is not recursively enumer-
able (indeed not even arithmetic) it follows that the relation F,, regarded as a rule
of inference is infinitary.

For another example, let I' = . Since any structure is a model of &, the
minimal models of & are simply the structures whose domain consists of one
element. The sentences minimally entailed by & are then those which are true in
every one-element structure, e.g. Vxy.x = y. Let A = {dxy.x # y)}. The minimal
models of A are structures with two-element domains, and the sentences minimally
entailed by A are those true in every two-element structure. Hence we see that
there are sentences minimally entailed by I" that are not minimally entailed by A.
Minimal entailment thus lacks a basic monotonicity property common to all
usual notions of deduction.

N

Example 2. Let I consist of the sentences:

1. Vx.3y.S(x,»)

2. Jy.Vx.71 S(x,p)

3. Vxyz.[S(x,p) A S(x,z) o y = 2]

4. Vxyz.[S(y,x) A S(z,x) o y = z]
Then every model of I' contains a submodel isomorphic to the natural numbers.
But this submodel contains an infinite chain of sub-submodels corresponding to
the natural numbers > k for each k. Hence I' has no minimal model.

1.2. Minimal completions

For any formula ¥, we write W¥° for the closure of ‘P, that is, the sentence obtained
from ¥ by prefixing it by universal quantifiers with respect to all of the variables
which are free in . If A is a sentence and @ = ®(x) is a formula in which the
variable x (perhaps among others) is free, we write A® for the sentence obtained
from A by relativizing all quantifiers in A to @ (that is each universal quantifier
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¥t - - - is replaced by Vt.[®(t) = - - -] and each existential quantifier 3t. - - - is
replaced by 3t.[D(t) A - - -]).
Let A be some sentence of a given first order language. We write
AUA) = {[A® o Vx. (X))}

where @ ranges over all formulas of the given language in which the variable x
is free. The theory whose axioms are the elements of the set Q(A) v {A} is called
the minimal completion of A, written MC(A). We write A F, B to mean that
Fmcy B, and say that B is minimally inferable from A.
Example 3. Let our language contain a single unary predicate symbol Z. We con-
sider T = MC(3x.Z(x)). Here Q@x.Z(x)) = {3x.[P(x) A Z(x)] © Vx.D(x)}.
Taking ®(x) = Z(x), we see that FrIx.Z(x) o Vx.Z(x), and hence FrVx.Z(x).
Thus we have shown that
3Ix.Z(x) by Vx.Z(x)
It is obvious that also:
Ix.2(x) ky Vx.Z(x)
The main theorem (conjectured by John McCarthy) is:
Theorem. If A\, B then Ak, B.
Proof. Let M be a minimal model of A. Let C e Q(A).
Lemma. M E C.

Proof of Lemma. Let D be the domain of the model M. Let ® = ®(x,uy,u,, .. . u,),
where the exhibited variables are a complete list of those free in ®. Let a,,a,, . .
a, e D.

Let

-

Y(x) = O(x,a1,az, - - -, a,)
Then it suffices to verify that
MEAY o Vx. W(x).
Thus suppose that M F A¥. Let
D, = {ae D| M EY¥(a)}.
Let N be the structure obtained from M by restricting all relations to D,. _’IEJ
(as can be shown by an easy induction on the length of A), N F A. Since N is a

substructure of M and M is a minimal model of A, M = N. Then, D = D,.
Hence finally, M F Vx.¥(x).

Proof of theorem (concluded). Let A | B, i.e.
{A} uQA)FB.

By the lemma and the fact that M is a model of A,
ME {A} U Q(A),

so that M F B. This completes the proof.
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Example 1 (continued). Let A be the conjunction of 1.-10. Then as we already
have seen, A kg, C if and only if C is a true sentence of arithmetic. We proceed to
calculate MC(A). To do so, we first note that:

A® =12 A2°A -+ A 10°
Furthermore we observe that if P is a purely universal prenex sentence, then
P + P®. Thus we have Fmcay C if and only if

{AY U {[1° A 3° 5 Vx.O(x)]°} F C.
In other words what we have added to Axioms 1-10 is the scheme:

[3x.(Z(x) A @(x)) A Vx.(D(x) > Ty.(S(x,3) A PO))] = Vx. O(x).

But this is just the scheme of mathematical induction. Thus, MC(A) is just the
familiar theory: Peano arithmetic. In fact the idea underlying the notion of minimal
completion is to ‘complete’ any finite set of axioms in the way that the induction
scheme completes the Peano postulates.

Example 2 (continued). Let A be the conjunction of the four sentences of this
example. By our remark about purely universal prenex sentences, we have
3+ 3% 4+ 4% We let

®(z) = . SH,2),
so that we may take the axioms of MC(A) to be A
V¥x.[3z.5(z,x) = dy.(3z.S5(z,y) A S(x,y))]

and

3x.[3z.S(z,x) A Yy.(3z.S(z,y) > =1 S(y,x)].
But it is easy to check that these sentences are all consequences of A. Hence
Faceay V. 3y. S(p,x). But this contradicts sentence 2. We conclude that a consistent

set of sentences can possess an inconsistent minimal completion.
Example 1 shows that the converse of the main theorem is false. Below we give

a very weak partial converse:

Theorem. Suppose that (1) every model of A has a minimal submodel, and (2) whenever
B is true in such a minimal submodel it is also true in the orignal model, Then,
A ¥m B implies that A bp, B (and indeed that A + B).

Proof. Let K be a model of A. Let M be a minimal submodel of K. By hypothesis
we have M F B, and using the hypothesis again, K F B. We have shown that A  B.
Note. Hypothesis (2) is automatically satisfied if B is a purely existential prenex
sentence.

1.3. Sorts
It would have been easy to develop the above material in a many-sorted context.
But this is not necessary. We have only to construe a many-sorted logic as a single-
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sorted one in the usual way. The additional sort axioms need not be considered
explicitly in forming the minimal completion since they are purely universal prenex
sentences.

1.4, Function and constant symbols
It is well known how to eliminate function and constant symbols by introducing
new predicate symbols. Thus to eliminate the constant symbol @ we introduce the
predicate symbol Z and the axioms:

Ix.2Z(x)

Vxy.[Z(x) A Z(y) 2 x = y]
In forming Q(A) this will contribute:

Ix.[O(x) A Z(x)]
to the antecedent. In the original formulation, this is equivalent to ¢(a). Similarly
if fis a function symbol of (say) 2 arguments, elimination of f leads to a purely
upiversal axiom plus the axiom .

Vx y.3z.F(x,y,2)

whose contribution to the antecedent in forming the minirmal completion is
Vx y.[®(X) A ) 2 32.(P(2) A F(x,,2))]

In the original formulation this would have been simply the closure condition

Vx 3. [@(x) A @O) = S(f(x. )]

In spite of this equivalence, it can be advantageous to avoid function symbols.
Thus if Peano’s postulates are formulated using function symbols for successor,
addition, and multiplication, when we form the minimal completion, the antecedent
will contain the closure conditions:

Vx y.0(x) A O() 2 O(x+p),

Vx y.®0(x) A O(y) o O(xy),
and this is a weakening of mathematical induction. The fact that these closure
conditions are not necessary in the induction scheme, i.e. that a set containing 0
and closed under successor is automatically also closed under addition and multi-
plication, is expressed by the fact that the recursions for addition and multiplication
can be expressed in the predicate symbol formulation as purely universal prenex
sentences. (Cf. Example 1.)

1.5. Relativization
We write A,B k,, C to mean that C is true in every model of A U B which is a

minimal model of A.
This corresponds to the intuitive idea of minimizing only with respect to A.
This relativized notion reduces to the original one according to the following

theorem:
6
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Theorem. A,B &, C if and only if Ak, (B > C).

Proof. Let M be 2 minimal model of A, Then Mk (B > C) if and only if M E B
implies M E C.

We can similarly relativize the notion of minimal completion. Thus we write
MC(A,B) for the theory whose axioms are the elements of the set {A} U {B} U Q(A).
And, we write A,B b, C to mean that Fyca,3) C. Then we have:

Theorem. A,B +, C if and only if A +, (B > C).
Proof. We have at once that
{Alu{B}uQAFC
if and only if
{AJuQA)FEB > Q).
The above relativizations yield at once a relativized form of our main theorem:

Theorem. A,B +,, C implies A,B E,, C.

2. ‘Non-Monotonic’ Logic

In this brief memo, I won’t be especially concerned with the Al reasons motivating
the non-monotonic logic of McDermott and Doyle, but only with some technical
clarification. The memo is based on their MIT Al Memo 486 which has also appeared
in abbreviated form in the Proceedings of the Fourth Workshop on Automated
Deduction, Austin, Texas, February 1979.

2.1. A reformulation

One begins with a system of logic possessing the usual propositional connectives,
which may or may not have provision for quantifiers, but which does have a ““‘modal’
operator M. Thus for any formula ¥ the system will contain a formula MY whose
intended interpretation is the assertion that ¥ is consistent. The provability relation
in this system between a set of premises I' and a conclusion ¥ is as usual written

T Y.

The provability relation + is to be one of the standard monotonic relations in the
literature (e.g. propositional or predicate calculus) and is not required to take
account of the modal operator M (although it may). The relation + will be used to
define a non-monotonic relation t.. As usual the formula ¥ is said to be consistent
with the set of formulas I if it is not the case that I' F —.

Let {A;1i=1,2,3,---} = L be some enumeration of all of the formulas of the
given system. Let I” be a given set of premises and set:
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ITo=T

Tip = if for some feL MBeT, and I';+ B, then L;
else if I'; U {4;} is consistent, then I';u {M4;};
else I';.

Finally let I, = uT';. It is not difficult to see that I',, may well depend on the
particular enumeration of L. Thus (using an example from McDermott and Doyle)
let T = {MC > 7D,MD = —1C}. Then either MC or MD but not both will be
in T, according as C or D is encountered first in the enumeration. Now the
McDermott and Doyle definition of ‘non-monotonic’ deducibility amounts to:

TFYifT, Y,
for every enumeration of L. Thus in the above example:
Tt MC v MD.

For another example note that {MC = —C} b § for all e L. This is because
when C is encountered in the enumeration MC will be adjoined, so that at the
next step the first clause in the conditional expression will be activated and we will
have I', = L. The non-monotonic behavior is then vividly demonstrated by the
extension {MC > = C—,'C} from which MC cannot be derived (because the presence
ofIC blocks the adjungtion of MC). (Both examples are again from McDermott
and Doyle.)

2.2. Compactness
McDermott and Doyle state:

“The most striking result shows that the analogue of the compactness theorem
of classical logic does not hold for non-monotonic theories. This has important
repercussions on the methods useful in comstructing ‘models’ of theories
incrementally.”

Now the compactness property for a system of logic can be formulated in various
ways which are all equivalent for monotonic logics. But since the key element (from
which the notion derives its name) is that in an inference from an infinite set of
premises the infinite set can be replaced by a finite subset, it seems clear that the
notion of compactness is simply not relevant for a non-monotonic provability
relation. The statement on ‘important repercussions’ is entirely obscure. (See
Section 2.6 below.)

2.3. The non-modal case

Call a formula non-modal if it can be built up using only propositional connectives
from formulas none of which is of the form MB. Thus non-modal formulas may
contain ‘M’ but only in the scope of quantifiers (so the occurrences are opaque
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with respect to propositional calculus). Then it is easy to see that if " is a set of
non-modal formulas and ¥ is a non-modal formula then

T'F Y ifandonlyif
either T - W or ¥ = 18, where § is consistent with T.

2.4. The propositional calculus

It is easy to see that when the original logical system is the classical propositional
calculus, there is an algorithm for testing whether I' I W, where T is a finite set
of premises. Namely one simply tests all finite sets of subformulas for truth
functional consistency with I", and is thus presented with a finite list of possible
adjunctions to I'. McDermott and Doyle give a detailed procedure for this case.

2.5. The predicate calculus; degrees of unsolvability

In the general case, the decision problem is of the same degree of unsolvability as
the decision problem for the classical predicate calculus, which of course has the
same degree of unsolvability as the halting problem. However, the provability
relation k. is not recursively enumerable so there can be no semi-decision procedure.
To see this, note first that the procedure outlined in Section 2.4 can be used in the
general case if we possess an “oracle’” for predicate calculus to be used in carrying
out the needed consistency tests. Hence the degree of unsolvability is no greater
than that for predicate calculus. On the other hand the set of provable formulas
as well as the set of non-provable formulas are each many-one reducible to F.

2.6. Model theory

In McDermott and Doyle’s discussion of model theory, no way is given of associat-
ing a truth value (in the interpretation) with MJ given a value for 8. Hence their
definition is incomplete. What is worse, the problem seems fatal: there is no obvious
way to complete it.

Received 16 September 1979
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ABSTRACT

The need to make default a iptions is frequently encountered in reasoning_about incomplerely
specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be
modified or rejected by subsequent observations. It is this property which leads to the non-monotonicity
of any logic of defaults. 3 .

In this paper we propose a logic for default reasoning. We then specialize our treatment to a very
large class of commonly occurring defaults. For this class we develop a complete proof theory and
show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under
which the revision of derived beliefs must be effected.

The gods did not reveal, from the beginning,

All things to us, but in the course of time

Through seeking we may learn and know things better.
But as for certain truth, no man has known it,

Nor shall he know it, neither of the gods

Nor yet of all the things of which I speak.

For even if by chance he were to utter

The final truth, he would himself not know it:

For all is but a woven web of guesses.

Xenophanes

1. Introduction and Motivation

Various forms of default reasoning commonly arise in Artificial Intelligence.
Such reasoning corresponds to the process of deriving conclusions based upon
patterns of inference of the form *“‘in the absence of any information to the
contrary, assume...”. Reasoning patterns of this kind represent a form of
plausible inference and are typically required whenever conclusions must be
drawn despite the absence of total knowledge about a world.
Artificial Intelligence 13 (1980), 81-132
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