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Mathematical Logic and the
Origin of Modern Computers*

Martin Davis

The very word computer immediately suggests one of the main uses of .lhese re-
markable devices: an instrument of calculation. But it is a matter of wndesprea.d
experience that modern computers can be used for many pl'lrposes.haviflg no evi-
dent connection with numerical computation. The main thesis of this article is that
the source of this generalized conception of the scope of computers is to be f()und‘
in the vision of a computer as an engine of logic implicit in the abstract theory of
computation developed by mathematical logicians.

The connection between logic and computing is apparent even from the every-
day use of language: the English word “reckon” means both to calculate and to
conclude. Without trying to understand this connection in any very profound man-
ner, we can certainly see that computation is a (very restricted) form of reasoning,.
To see the connection in the opposite direction, imagine our seeking to demonstrate
to a skeptic that some conclusion follows logically from certain assumptions. We
present a “proof” that our claim is correct, only to be faced by the demand that. we
demonstrate that our proof is correct. If we then attempt a proof that our previous
“proof” was correct, we clearly are faced with an infinite regress. The way out that
has been found is to insist on a purely algorithmic criterion for logical correctness —
a proof is correct if it proceeds according to rules whose correct application can be
verified in a purely computational manner. o

There are many examples of important concepts and meth()qs first |ntrf)duced
by logicians which later proved to be important in computer science. Trac.mg .th'e
paths along which some of these ideas found their v./ay fm.m theory to pr.actlce‘ |.s'.1
fascinating (and often frustrating) task for the historian of ideas. The. s'ubjecl of this
Paper is Alan Turing’s discovery of the universal (or all-purpose) dlgltal computer
a$ a mathematical abstraction. This concept was introduced by Turing as part of

* This paper was first published in Studies in the History of Mathematics, ©1987 by The Mathematical
Association of America, and is reprinted here with their permission.
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his solution to a problem that David Hitbert had called the “principal problem of
mathematical logic™ (Hilbert and Ackermann 1928). We will try to show how thig
very abstract work helped o lead Turing and John von Neumann to the modern
concept of the electronic computer.

But tirst. before discussing the work of Alan ‘Furing. we will see how some of
the underlying themes of computer science had already appeared in the seventeenth
century in the work of G.W. Leibniz (1646-1716).

1. Leibniz' Dream

It is striking 10 note the many ditferent ways in which Gottfried Leibniz anticipated
what later came to be central concerns in ~omputer science. He made an impor-
tant invention, the so-called Leibniz wheel, which he used as carly as the 1670's
1o build a mechanical calculating machine that could add. subtract, multiply. and
divide. He showed keen awareness of the great advantages 1o be expected from the
mechanization of computation. Thus, Leibniz said of his calculator:

And now that we may give final prase to the machine we may say that #t will be desirable
to all whoare engaged in computanions . . . managers of financial affuirs, merchants, sur-
veyors, geographers, navigators, astronomers .. But limiting ourselves 1o scientific uses.
the old geometric and astronomic tables could be corrected and new ones constructed. ...
it will pay to extend.as far as possible the miajor Pythagorean tables: the wble of squares.
cubes. and other powers: and the tables of combination. variations, and progressions of all
Kinds, ... Also the astronomers surely will not have o continue to exercise the patience
which is required for computation. ... For it is unworthy of excellent men to lose hours
like slaves in the labor of computation. (Smith 7929, pp. 180-181)

Leibniz was one of the first (Ceruzzi 1983, p.40. footnote 11) to work out
the properties of the binary number system, which of course has turned out to be
fundamental for computer science. He proposed the development of a calculus of
reason or calculus ratiocinator and actually proceeded to develop what amounts to
a fragment of Boolean algebra (Parkinson /966, pp. 132-133: Davis 1983, pp.2-
3). Finally, there was Leibniz' amazing program calling for the development of a
universal language - a lingua characteristica — which would not only incorporate
the caleulus ratiocinator, but would also be suitable for communication and would
include scientitic and mathematical knowledge. Leibniz hoped to mechanize much
of thought. saying that the mind “will be freed from having to think directly of things
themselves, and yet everything will come out correctly”™ (Parkinson 7966, p. xvii).
Leibniz imagined problems in human affairs being handled by a learned committee
sitting around a table and saying (Kneale and Kneale 1962, p- 328): “Calculemus™
i.e.. "Let us calculate!™
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The importance with which Leibniz regarded these projects is clear from his
assessment:

For if praise is given 1o the men who have determined the number of regular solids —
which is of no use, except insofar as it is pleasant to contemplate - and if it is thought to
be an exercise worthy of a mathematical genius to have brought to light the more elegant
properties of a conchoid of cissoid, or some other figure which rarely has any use, how
much better will it be to bring under mathematical laws human reasoning, which is the
most excelient and uscful thing we have. (Parkinson 1966, p. 105)

It is at times amusing to imagine some great person from a past age reacting to
one of the marvels of the contemporary world. Confronted by a modern computer,
Leibniz would surely have been awestruck by the wonders of twentieth century tech-
nology. But perhaps he would have been better equipped than any other seventeenth
century person to comprehend the scope and potential of these amazing machines.

2. Alan Turing’s Analysis of the Concept of Computation

A century and a half ago, Charles Babbage already had conceived of an all-purpose
automatic calculating machine, his proposed but never constructed analviical engine.
Babbage's device was intended to carry out numerical computations of the most
varied kind that arise in algebra and mathematical analysis. To emphasize the power
and scope of his engine, Babbage remarked facetiously that “it could do everything
but compose country dances” (Huskey and Huskey /980, p. 300). A contemporary
computer expert seeking a figure of speech to bring home to a popular audience
the widespread applicability of computers would select a different example. For we
know that today’s computers can perfectly well be programmed to compose country
dances (although presumably not of the finest quality). While for Babbage it was
self-evident that calculating machines could not be expected to compose dances, it
does not strike us today as being at all out of the question. Clearly. our very concept
of what constitutes “computation” has been altered drastically. We shall see how the
modern view of computation developed out of the work in mathematical logic of
Alan Turing.

Babbage never succeeded in constructing his engine, in large part because of the
limitations of nineteenth century technology. In fact, it was only with some of the
electro-mechanical calculators that began to be built during the 1930°s (for example,
by Howard Aiken at Harvard University) that Babbage's vision was fully realized.
But during the 1930°s and 1940’s no one involved with this work suggested 'lhc
Possibility of designing an automatic computer that not only could do everything
that Babbage had envisioned. but also could be used for commercial purposes. or
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for that matter. to “compose coumtry dances™. Even as late as 1956, Howard Aiken,
himsell a pioncer of modern computing. could write:

IF it shoukd turn out that the basic logies of & machine designed for the numerical solution
of differential equations coincide with the togics of a machine intended 1o make bills for
a department store, [ would regard this as the most amavzing coincidence that | have ever
encountered. (Ceruzzi 1983, p.43)

If Aiken had grasped the significance of a paper by Alan Turing that had been
published two decades carlier (Turing 1936-7). he would never have found himself
in the position of making such a statement only a few years before machines that
performed quite well at both of the tasks he listed were readily available.

Alan Mathison Turing was born on June 23, 1912 in London. His father was
a civil servant in India. and Turing spent most of his childhood away from his
parents.! After five years at Sherborne, a traditional English public school he was
awarded 4 fellowship 1o King's College at Cambridge University, Turing arrived
at Cambridge in 1931, This was just after the young logician Kurt Gédel had star-
tled the mathenatical world by demonstrating that for any formal system adequate
for clementary number theory, arithmetic assertions could be found that were not
decidable within that formal system. In fact Godel had even shown that among
these “undecidable propositions™ was the very assertion that the given formal sys-
tem itsell is consistent. This Last result was devastating to Hilbert's program in the
foundations of mathematics, which called for proving the consistency of more and
more powerful formal systems using only very restricted proof” methods, methods
that Hilbert called finitistic. John von Neumann was probably the most brilliant of
the young people who had been striving to carry out Hilbert's program. In addition
to his contributions to Hilbert's program. von Neumann's intense interest in logic
and foundations is also evidenced by his early papers on axiomatic set theory (von
Neumann 7/961). However, after Gadel's discovery, von Neumann stopped working
in this field. In the spring of 1935, Turing attended a course of lectures by the topol-
ogist M.H.A. Newman on Foundations of Mathematics in which Hilbert's program
and Godel's work were among the topics discussed. In particular, Newman calied
the attention of his audience to Hilbert's Entscheidungsproblem. a problem which
Hilbert had called the “principal problem of mathematical logic™.

In 1928, a little textbook of logic by Hitbert and Wilhelm Ackermann, entitled
Grundziige der theoretischen Logik, had been published. The book emphasized first
order logic, the logic of and. or. not. if ... then, for all, and there exists. which
the authors called the engere Funktionenkalkiil. The authors showed how the various
parts of mathematics could be formalized within tirst order logic, and a simple set of

I In his authoritative biography. Andrew Hodges (1983, p. 132) quotes Turing as having. on at least
one occasion, attributed his homosexuality to his childhood in boarding schools in England far from
his parents in India. (Hodges himself makes it clear thit he does not accept this explanation. )
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rules of proof was given for making logical inferences. They noted that any inference
that can be carried out according to their rules of proof is also valid, in the sense
that in any mathematical structure in which all the premises are true, the conclu-
sion is also true. Hilbert and Ackermann then raised the problem of completeness:
if an inference is valid (in the sense just explained). would it always be possible,
using their rules of proof, to obtain the conclusion from the premises? This question
was answered affirmatively two years later by Godel in his doctoral dissertation at
the University of Vienna. Another problem raised in the Grundziige by Hilbert and
Ackermann was the Entscheidungsproblem, the problem of finding an algorithm to
determine whether a given proposed inference is valid. By the completeness theo-
rem from Godel’s dissertation, this problem is equivalent to seeking an algorithim for
determining whether a particular conclusion may be derived from certain premises
using the Hilbert-Ackermann rules of proof. The Entscheidungsproblem was called
the “principal problem of mathematical logic™, because an algorithm for the Entschei-
dungsproblem could, in principle, be used to answer any mathematical question: it
would suffice to employ a formalization in first-order logic of the branch of math-
ematics refevant to the question under consideration. Alan Turing’s attention was
drawn to the Entscheidungsproblem by Newman's lectures, and he soon saw how
to settle the problem negatively. That is, Turing showed that no algorithm exists for
solving the Entscheidungsproblem. The tools that Turing developed for this purpose
have turned out to be absolutely fundamental for computer science.

It a positive solution of the Entscheidungsproblem would lead to algorithms for
settling all mathematical questions, then it must follow that if there is even one
problem that has no algorithmic solution, then the Entscheidungsproblem itself must
have no algorithmic solution. Now, the intuitive notion of algorithm serves perfectly
well when what we only need to verify is that some proposed procedure does indeed
constitute a positive solution to a given problem. However, remaining at this intuitive
level, we could not hope to prove that some problem has no algorithmic solution.
In order to be certain that no algorithm will work, it would appear necessary o
somehow survey the class of all possible algorithms. This is the task that Turing set
himself.

Turing began with a human being who would carry out the successive steps
called for by some algorithm; that is, Turing proposed to consider the behavior of a
“computer™. Here the word computer refers to a person carrying out a computation;
this was how Turing (and everyone else) used the word in 1935. Turing then pro-
ceeded (Turing 1936-7), by a sequence of simplifications, cach of which could be
Seen to make no essential difference, to obtain his characterization of computability.

. Turing's first simplification was to assume that “the computation is carried out on
One-dimensional paper, i.e.. on a tape divided into squares™ since “it will be agreed
that the two-dimensional character of paper is no essential of computation™. Turiag
Continued:
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The Tallacy in this argument Ties 1 the assumption th
true if we could ehumerate the computable sequences by finite means, but the problem of
enumerating computable sequences is cyuivalent to the probiem of tinding owt whether 3
given [finite set of quinuples determines] a circle-free machin
process for doing this in a finite number of steps. In fuct, by
argument correctly, we can show that there cannot be

4t B is computable. It would be

¢, and we have no general
applying the diagonal process
any such general process.

In other words if there were such o “general process™
non-circle-free machines from an enumeration of
thereby producing an enumeration of “the computable sequences by finite means™,
But then B, as defined above. would be computable, and we would be led o a
contradiction. The only way out is to conclude that “there cannot be any such
general process™? The problem of determining whether the Turing machine defined
by a given finite set of gquintuples is circle-free has no algorithmic solution! OF course.
in this form the result depends on accepting Turing’s analysis of the computation
process. However, it is possible to state the result in the form of a rigorously proved
theorem about Turing machines. For this purpose. tet us imagine the very quintuples
constituting a Turing machine themsels es placed on a Turing machine tape. We could
then seek 1o construct o Turing machine Af which, hegun with a set of quintuples
defining any particular Turing machine N on its tape. will eventually hait with an
aftirmative or a negative message onits tape. according as N is or is not circle-free.

Turing’s argument can then be used prove that there cannot be such 3 Turing

machine M. (To muke this entirely precise. it is necessary (o be explicit as to how

the quintuples, as wéll as the affirmative and- negative output messages, are to be

coded on the tape in terms of some finite alphabet. But this causes no difficulty.)
Turing next showed that there is no algorithm for the:

. it could be used to delete
all possible finite sets of quintuples,

Blank Tape Printing Problem: To determine whethe

't a given Turing machine,
starting with a blank tape. will ever print some

particular symbol, say |.

Turing’s proof of this resuit proceeds by showing that if there were such an
algorithm, then there must also be an algorithm for determining whether a given
Turing machine is circle-free. This argument is a bit complicated.® and we outline
a simpler proof that uses another diagonalization. First we show that there is no
algorithm for the:

4 Turing recognized that although this proof s *
fecting that “there must be something wrong”*
not so closely approach paradox.

5 A remark for the knowicdgeable: the
circle-free is complete of degree 0",
problems.

‘perfectly sound™. it “may leave the reader with a
" and he therefore supplied another proof that does

problem of determining whether a given Turing machine is
and therefore can not be reduced 1o either of the printing
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General Printing Problem: 7o determine whether a given Turing machine, starting
with a given string of symbols on its tape, will ever print |.

Suppose there were an algorithm for this p.roblem. .Then. in.panicula.r. (h'e'rf
would be an algorithm to determine whether a given Turing tT]ilChme. sfarlmg ‘mu
its own set of quintuples on its tape, will ever print |. So, it would l()llowvtrm:\j
Turing's analysis that a Turing machine M could be conslr.l{cted that \fvould r-%[:;):
10 a set of quintuples on its tape by printing | if and ()nFy if the machine .dehne ‘ y
that set of quintuples never prints | when started with its own set of .qU|nlU[?Ies on
its tape. Now, what happens when M is started wilh its own .\:et of qurrx'n‘q.)le.\ (;‘n lts‘
tape? It eventually prints | if and only if it never prmfs | ! This contt'fldncuon' shows
that there can be no algorithm for the general pnmm.g problem. Finally, if fhere
were an algorithm for the blank tape printing pr()blcm: it could also be flsed' to .so‘IVC
the general printing problem. Namely, given the qumtuples constituting a Tl‘lrln‘g
machine M together with the string of symbols o on its tape, we can construct
a machine N that, beginning with a blank tape, first prints. the s.lrmg o, and thc.nv
behaves exactly like M. So N will eventually print | hcginn.mg with a blank tape if
and only if M will eventually print | beginning wilh the string o on lts.lu[.)e. X

Turing used the fact that there is no algorithm for the .blunk tape pnmm-g pro‘-
lem to show that Hilbert's Entscheidungsproblem is likewise unsol.vuble‘. With each
Turing machine M, he associated a formula a(M)'of first-order logic Wthh.. mflgfl(}l?/
speaking, describes the behavior of M starting with a blank tape. He conslruclt’ ‘l.
second formula 8 which has the interpretation that the Syfllh()l | eventually u;.)pcars
on the tape. it was then not difficult to see that 8 follows from a(M).hy the Hllt‘).crt-
Ackermann rules if and only if the Turing machine M evemuall)f prml‘s |. Thus, an
algorithm for the Entscheidungsproblem would lead to an algorithm for the blank

d inti roblem. ‘
tdpeTE:'r]\l(l:iir? of Turing machine was developed in order to solve Hivl.bcrt's Entsch.u-
dungsproblem. But it also enabled Turing to reuliyse that it was possible “T «.:ong‘clxe-
of a single machine that was capable of perf()rm.mg all p()S..ﬂlhle C(')mpuldh(ms. . :;
Turing expressed it: “It is possible to invent a single machine Wh-ICh cm'1 hc' useA
o compute any computable sequence.” Turing called such a lechmc .umver.\al.
Turing machine U was to be called universal if, when stzfrlcd with a (suitably coded)
finite set of quintuples defining a Turing machine M on its tape, U would pr()c.ecd‘ to
compute the very same sequence of 0's and 1's that M would cmﬁputC (hcgm.mng
with an empty tape). Now, intuitively speaking, there clearly C)flsls ;.ln ulgornhm.
that does what is required of the universal machine.U: the u!gnrnhm jUSl' ilm(tl:nl:
1Q carrying out the instructions expressed by M™s qu‘lnu.lplcs. lh'us, !hc cx‘lstc‘n,tc of
4 universal Turing machine is a consequence of Turing’s analysis of the umc‘cpl (l)d
Computation. On the other hand, it is a rather implausible C(.mscqu.cnc‘e‘. Why shuu !
we expect a single mechanism to be able to carry out algorithms for “the numerica
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solution of differential equations™ as well as those needed to “make bills for a depart-
ment store”? However, Turing did not simply depend on the validity of his analysis.
He proceeded to produce in detail the actual quintuples needed to define a universal
machine. Thus, in the light of the apparent implausibility of the existence of such a
machine, Turing was entitled to regard his success in constructing one as a signifi-
cant vindication of his analysis. The universal machine U actually given by Turing
can be thought of as being specified by what is nowadays called an interpretative
program. U operates by scanning the coded instructions (that is quintuples) on its
tape and then proceeding to carry them out. Of course, many interpretative programs
have been constructed in recent years to make it possible to run programs written
in such languages as BASIC, LISP, SNOBOL, and PROLOG, but Turing's was the first.

Turing’s analysis provided a new and profound insight into the ancient craft of
computing. The notion of computation was seen as embracing far more than arith-
metic and algebraic calculations. And at the same time, there emerged the vision of
universal machines that “in principle™ could compute everything that is computable.
Turing’s examples of specific machines were already instances of the art of program-
ming: the universal machine in particular was the first example of an interpretative
program. The universal machine also provided a model of a “stored program™ com-
puter in which the coded quintuples on the tape play the role of a stored program,
and in which the machine makes no fundamental distinction between “program” and
“data”. Finally, the universal machine showed how “hardware™ in the form of a set
of quintuples thought of as a description of the functioning of a mechanism can be
replaced by equivalent “software™ in the form of those same quintuples in coded
form “stored™ on the tape of a universal machine.

While working out his proof that there is no algorithmic solution to the Entschei-
dungsproblem, Turing did not suspect that similar conclusions were being reached
on the other side of the Atlantic. In fact, Newman had already received the first draft
of Turing’s paper, when an issue of the American Journal of Mathematics arrived in
Cambridge containing an article by Alonzo Church of Princeton University, entitled
“An Unsolvable Problem of Elementary Number Theory”. In this paper, Church
had already shown that there were algorithmically unsolvable problems. His paper
did not mention machines, but it did point to two concepts, each of which had been
proposed as explications of the intuitive notion of computability or, as Church put it,
“effective calculability”. The two concepts were A-definability, developed by Church
and his student Stephen Kleene, and general recursiveness, proposed by Gédel (in
lectures at the Institute for Advanced Study in Princeton during the spring of 1934)
as a modification of an idea of J. Herbrand. The two notions had been proved to be
equivalent, and Church’s unsolvable problem was in fact unsolvable with respect
to either equivalent notion. Although in this paper Church had not drawn the con-
clusion that Hilbert’s Entscheidungsproblem was itself unsolvable with respect to
these notions, volume 1 (1936), number | of the new quarterly Journal of Symbolic
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Logic contained a brief note by Church in which he did exactly that. A later issue of
volume 1 of the same journal contained an article by Emil Post, taking cognizance
of Church’s work, but proposing a formulation of computability very much like
Turing’s. Turing quickly showed that his notion of computability was equivalent to
A-definability, and he decided to attempt to spend some time in Princeton.

Thus, much of what Turing had accomplished amounted to a rediscovery of
what had already been done in the United States. But his analysis of the notion of
computation and his discovery of the universal computing machine were entirely
novel, going beyond anything that had been done in Princeton. In particular, al-
though Godel had remained unconvinced by the evidence available in Princeton,
that Church’s proposal to identify effective calculability with the two equivalent
proposed notions was correct, Turing’s analysis finally convinced him.®

Turing was at Princeton for two academic years beginning in the summer of
1936. Formally, he was a graduate student, and indeed he did complete the re-
quirements for a doctorate with Alonzo Church as his thesis adviser. His doctoral
dissertation was his deep and important paper Turing /939, in which he studied
the effect on Gédel undecidability of transfinite sequences of formal systems of
increasing strength. This paper also introduced the key notion of an orucle, which
made it possible to classify unsolvable problems,” and which is playing a very im-
portant role in current research in theoretical computer science.® Some writers have
been confused about the circumstances under which Turing was a graduate student
at Princeton, and have assumed that Turing's earlier work on computability had
been done at Princeton under Church’s supervision. A circumstance that may have
helped lead to this confusion is that the published account (Turing 1936-7) of the
work on computability concludes with an appendix (in which a proof is outlined of
the equivalence of Turing’s concept of computability with Church’s A-definability)
dated August 28, 1936 at “The Graduate College, Princeton University, New Jersey,
us.A»?

6 For a discussion of some of the historical issues involved in these developments, as well as refer-
ences, see Davis /982,
7 Thus suppose that we could somehow come to possess an oracle or “black box™ which can tell
us for a given set of quintuples whether the Turing machine defined by that set of quintuples is
circle-free. Then it is not difficult 1o show that it is possible to construct a Turing machine which
can solve either of the two unsolvable printing problems if only the machine is permitted to ask the
oracle questions and make use of the answers. However, this will not work in the other direction.
This is expressed by saying that the circle-free problem is of a higher degree of unsolvability than
the printing problems.
Many important open questions in computer science ask whether certain inclusions between classes
of sets of strings are proper. (The famous P = NP problem is of this character.) In many cases
A (including the P = NP problem). although the original question remains unresolved, it has proved
‘possible 1o obtain answers when the problem is modified to permit access to suitable oracles.
Actually even this appendix must have been completed before Turing left England. Turing’s depar-
ture was on September 23.

o
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Fine Hall'” in 1936 housed not only the mathematics faculty of Princeton Univer-
sity, but also the mathematicians who were part of the recently established Institute
for Advanced Study. The great influx to the United States of scientists fleeing the
Nazi regime had begun. The concentration of mathematical talent at Princeton during
the 1930°s came to rival and then surpass that at Gottingen, where David Hilbert held
sway. Among those to be seen in the corridors of Fine Hall were Solomon Lefschetz,
Hermann Weyl, Albert Einstein, and ... John von Neumann.'! During Turing’s sec-
ond year at Princeton, he held the prestigious Procter Fellowship. Among the letters
of recommendation written in support of his application was the following:

June 1, 1937
Sir,

Mr. A.M.Turing has informed me that he is applying for a Proctor [sic] Visiting
Fellowship to Princeton University from Cambridge for the academic year 1937-1938.
[ should like to support his application and 10 inform you that I know Mr, Turing very
well from previous years: during the last term of 1935, when | was a visiting professor
in Cambridge, and during 1936-1937, which year Mr Turing has spent in Princeton, |
had opportunity to observe his scientitic work. He has done good work in branches of
mathematics in which I am interested, namely: theory of almost periodic functions. and
theory of continuous groups. |emphasis added})

I think that he is a most deserving candidate for the Proctor [sic} Fellowship, and 1
should be very glad if you should find it possible to award one to him.

I am, Respectfully, John von Neumann (Hodges 1983, p. 131)

Thus, as late as June 1937, either von Neumann was unaware of Turing’s work
on computability, or he did not think it appropriate to mention it in a letter of rec-
ommendation. There have been tantalizing rumors of important discussions between
the two mathematicians about computing machinery, during the Princeton years, or
later, during the Second World War. But there does not appear to be any real evi-
dence that such discussions ever took place.'> However, von Neumann’s friend and
collaborator Stanislaw Ulam, in a letter to Andrew Hodges (Hodges 1983, p. 145),

10 Fine Hall in 1936 (and indeed through the 1950’s) was a low-level attractive red brick building.
The building where Princeton’s mathematics department is housed today is also called Fine Hall; it
is visible as a concrete tower from Highway US 1, a mile away.

11 Kurt Godel, who had lectured at the Institute for Advanced Study during the spring of 1934, was
unfortunately not in Princeton during Turing’s stay. Godel left Princeton in the fall of 1935 and did
not return until after the Second World War had begun.

12 In the doctoral dissertation Aspray 1980, (pp. 147-148) there is a reference to discussions between
Turing and von Neumann at this time, on the question of whether “computing machines could
be built which would adequately model any mental feature of the human brain”. Aspray based
his account on an interview with J.B. Rosser. However, in a conversation with the present author,
Aspray explained that Rosser had not claimed to have himself overheard such discussions, and that
Rosser had been unable to remember his source. Aspray indicated that he no longer believes that
such a conversation actually occurred. In a recent letter, Alonzo Church indicates that he neither
recalled nor could find any record of such “consultations”. See also Randell 7972.
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mentioned a game that von Neumann had proposed during the summer of 1938
when he and Ulam were traveling together in Europe; the game involved “writing
down on a piece of paper as big a number as we could, defining it by a method
which indeed has something to do with some schemata of Turing’s”.!? Ulam’s letter
also stated that “von Neumann mentioned to me Turing’s name several times in
1939 in conversations, concerning mechanical ways to develop formal mathematical
systems.” On the basis of Ulam'’s letter it seems safe to conclude that, by the out-
break of the Second World War in September 1939, von Neumann was well aware
of Turing’s work on computability and regarded it as important.

When did Turing begin to think about the possibility of constructing a physical
device that would be, in some appropriate sense, an embodiment of his universal
machine? According to Turing’s teacher, M.H.A. Newman, this was in Turing’s mind
from the very first. In an obituary article in The Times, Newman wrote:

The description that he then gave of a “universal” computing machine was entirely theo-
retical in purpose, but Turing’s strong interest in all kinds of practical experiment made
him even then interested in the possibility of actually constructing a machine on these
lines. (quoted in Hodges /1983, p. 545)

In Princeton, Turing’s “practical” interests included a developing concern with
cryptanalysis. Possibly in this connection, he designed an electro-mechanical binary
multiplier, and gaining access to the Physics Department graduate student machine
shop,'* he constructed various parts of the device, building the necessary relays him-
self. Another of Turing’s interests during this period — an interest which combined
the theoretical with practical computation — was the famous Riemann Hypothesis
concerning the distribution of the zeros of the Riemann ¢-function. Shortly after
Turing retumed to England in the summer of 1938, he applied for and was granted
$40 to build a special purpose analogue computer for computing Riemann’s {-
function,'S which Tusing hoped to use to test the Riemann hypothesis numerically
(Hodges 1983, pp. 138-140, 155-158). But even as Turing was beginning serious
work on this machine, the Second World War intervened and moved him in quite
another direction. The ¢-function machine was never completed.

13 This sounds very much as though von Neumann had anticipated the important Chaitin-Kolmogoroff
notion of descriptive complexity.

13 The Palmer Physics laboratory was located next door to Fine Hall — there was even a convenient
Passageway joining the two buildings.

15 The design of this computer was based on that of a machine in Liverpool which was used to predict
the tides.




148 Mathematical Logic and the Origin of Modern Computers

3. To Build a Brain

Turing spent the war years at Bletchley Park, a country mansion that housed Britain's
brilliant group of cryptanalysts. The Germans had developed improved versions of g
commercial encrypting machine. the Enigma. The task of breaking the enigma code
feli to the group at Bletchley Park. They were given a head start in their task by hav-
ing access to the work of a group of Polish mathematicians who had succeeded with
an earlier and considerably simpler version of the Enigma. Building on this work,
Turing and Gordon Welchman (an algebraic geometer from Cambridge) progressed
to the point where machines, called Bombes (the name first used by the Poles for
their much more primitive device) could be built to decode everyday German mili-
tary communications. Naval communications were Turing’s special province, and by
the summer of 1941, the information derived from the Bombes enabled the British
Admiralty to defeat the German submarine offensive against Atlantic shipping that
had been threatening to strangle a beleaguered Britain (Welchman 7982: Hodges
1983, pp. 160-210).'% But this great success was a precarious one. It was clear that
if the Germans introduced more complexity into their procedures, the Bombes would
be overwhelmed. And so. more ambitious machines (which indeed turned out 10 be
necessary) were constructed: first the Heath Robinson series, and later the Colossus.
The latter, constructed in 1943 under the direct supervision of M.H.A. Newman, used
vacuum tube circuits 10 carry out complex Boolean computations very rapidly. The
Colossus contained 1500 tubes and was built in the face of skepticism on the part
of the engineers that so many vacuum tubes could work together without a failure,
long enough to get useful work done. .

Thus, when the war ended. Turing had a solid basic knowledge of electronics,
and was aware that large scale computing machines could be constructed using
electronic circuits. The significance for Turing of this practical knowledge can not
be fully grasped without taking into account the new conceptual framework for
thinking about computing to which his work on computability had led him. For
Turing had been led to conclude that computation was simply carrying out the
steps in some “rule of thumb” process (as Turing expressed it in an address to the
London Mathematical Society (Turing 1947, p.107)). A “rule of thumb” process
is to be understood as one which can be carried out simply by following a list

el

16 Another of Turing’s contributions 1o this effort was the invention of new statistical methods for
dealing with the vast quantities of data contained in the Enigma “traffic”. These methods were later
rediscovered independently by the American statistician A. Wald who gave them the name sequential
analysis. Surely there cannot be many Britains.whose contribution to the ultimate victory approached
Turing's. A litle over a decade after the turning of the tide in the “Battle of the Atlantic™, being
duly convicted of performing acts “of gross indecency™, Turing was sentenced in a British court
of law to a one year probation term, during which time he was required to submit to a course of
hormone treatments that amounted to a temporary chemical castration. Such was the hero's reward!

i
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of unambiguous instructions referring to finite discrete conﬁguration's of whatever
kind. Turing’s work had also shown that, without loss of general.ny, one cquld
restrict oneself to instructions of an extremely simple kind. Finally, it was possible
to construct a single mechanical device capable, in principle, of carrying out any
computation whatever. “It can be shown that a single machine ... can be made to
do the work of all” (Turing 1947, p. 112). As exciting as this prospect mlfst h;.xve
appeared, it was only part of Turing’s remarkable vision. Turing darec.i to imagine
not only that computation encompassed far more than mere calculation, but that
it actually included the human mental processes that we call “thought”. He was
interested in much more than a machine capable of very rapid computation; A!an
Turing wanted to build a brain. This vision had been the subject of much dlscussmr:
at Bletchley Park, where Turing focused on chess as an example of human “thought”
that should be capable of mechanization. The full scope of Turing’s thought was
only exposed to the public later, in Turing /947 and in his now c.lassic_al essay
Turing 1950. In 1947 Turing was already speaking of circumstances in which “(?ne
is obliged to regard the machine as showing intelligence. As soon as one can provide
a reasonably large memory capacity it should be possible to experiment along these
lines” (Turing /1947, p.123). As we shall see, Turing was eager to help build such
machines. But for a second time, Turing’s professional life was profoundly affected
by developments in the Western Hemisphere.

4. Von Neumann and the Moore School

As has already been noted, by the summer of 1938 von Neumann was very much
aware of Turing’s work on computability. There is also evidence that, early on, he
perceived that Turing’s work had implications for the practice of computation. A
wartime colleague of von Neumann recalled that “in about 1943 or 44 von Neumann
was well aware of the fundamental importance of Turing’s paper of 1936 ... and
at his urging I studied it ... he emphasized ... that the fundamental conception
is owing to Turing ...” (Hodges 1983, pp. 145, 304). Herman Goldstine (who was
von Neumann's close collaborator) said, “There is no doubt that von Neumann was
thoroughly aware of Turing’s work ..." (Goldstine /1972, p. 174).

As with Turing, von Neumann's wartime work involved large-scale computa-
tion. But, where the cryptoanalytic work at Bletchley Park emphasized the discrete
Combinatorial side of computation, so in tune with Turing's earlier work, it was old-
fashioned, heavy, number-crunching that von Neumann needed. Although he had
tried to inform himself about new developments in computational equipment, von
Neumann learned of the ENIAC project quite fortuitously on meeting the young
Mmathematician Herman Goldstine at a railway station during the summer of 1944
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Von Neumann quickly became a participant in discussions with the ENIAC group
at the Moore School in Philadelphia.

The Colossus with its 1500 vacuum tubes was an engineering marvel. The ENIAC
with 18,000 tubes was simply astonishing. The conventional wisdom of the time
was that no such assemblage could do reliable work; it was held that the mean
free path between vacuum tube failures would be a matter of seconds. It was the
chief engineer on the ENIAC project, John Prosper Eckert, Ir., who was largely
responsible for the project’s success. Eckert insisted on extremely high standards of
component reliability. Tubes were operated at extremely conservative power levels,
and the failure rate was kept to three tubes per week. The ENIAC was an enormous
machine, occupying a large room. It was a decimal machine and was programmed
by connecting cables to a plugboard (Burks and Burks /981), rather like an old-
fashioned telephone switchboard.

By the time that von Neumann began meeting with the Moore School group,
it was clear that there were no important obstacles to the successful completion of
the ENIAC, and attention was focused on the next computer to be built, tentatively
called the EDVAC. Von Neumann immediately involved himself with the problems
of the logical organization of the new machine. As Goldstine (/972, p. 186) recalls,
“Eckert was delighted that von Neumann was so keenly interested in the logical

problems surrounding the new idea. and these meetings were scenes of greatest
intellectual activity.” Goldstine comments:

This work on the logical plan for the new machine was exactly to von Neumann's liking
and precisely where his previous work on formal logics [sic) came to play a decisive
role. Prior to his appearance on the scene, the group at the Moore School concentrated
primarily on the technological problems, which were very great; after his arrival he took
over leadership on the logical problems. (Goldstine 1972, p. 188)

A key idea emphasized in the meetings was that any significant advance over the
ENIAC would require a substantial capacity for the internal storage of information.
This was because communication with the exterior would be at speeds far slower than
the internal electronic speeds at which the computer could function, and therefore
constituted a potential bottleneck. Once again, John Eckert played a crucial role.
He had previously shown how to modify a device cailed a delay line (originally
developed by the physicist W.B. Shockley, who later invented the transistor) so
as to be a working component of radar systems. These delay lines (which stored
information in the form of a vibrating tube of mercury) were just what was needed.

The communication bottleneck Just mentioned would be evident in the case of
any computation involving the manipulation of large quantities of data. But it was

even more crucial for the instructions that the computer would carry out. Indeed, it

would make little sense for a computer to produce the resuits of a calculation rapidly,
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only to wait idly for the next instruction. The solution was to store the instructio,r}s
internally with the data: what has come to be called the “stored program conce!)t .

The computers of the postwar period differed from previous calculating devices
in having provision for internal storage of programs as well as .data. But.they were
different in another more fundamental way. They were conceived, des.lgned, and
constructed, not as mere automatic calculators, but as engines of logi.c, mcorporat-
ing the general notion of what it means to be computable and embodying a ph_ysncal
model of Turing’s universal machine. Whereas there has been a great deal .of discus-
sion concerning the introduction of the “stored program concept”, the significance of
this other great, but rather subtle, advance has not been fully appreciatefl. In fact, the
tendency has been to use the single term “stored-program concept” to include all' of
the innovations introduced with the EDVAC design. This terminological confusion
may well be responsible, at least in part, for the fact that there has b.een SO ml{ch
acrimony about who deserves credit for the revolutionary advances in computing
which tt;ok place at this time (see for example the report Aspray 1982).

The key document in which this new conception of computer first appeared was
the draft report von Neumann /945 which quickly became known as .the EPVAC
Report. This report never advanced beyond the draft stage and is quite evidently
incomplete in a number of ways. Yet it was widely circulated almf)st at onf:e and
was very influential. In fact the conception of computing machine it embodies has
come to be known as the *“von Neumann architecture”. One element of controversy,
which will probably never be fully resolved, is the question of how much of the
EDVAC report represented von Neumann’s personal contribution. Although l.ickert
and his consultant J.W.Mauchly later denied that von Neumann had contributed
very much, shortly after the report appeared they wrote as follows: '

During the latter part of 1944, and continuing to the present time, Dr. John von .Neun!ann
... has fortunately been available for consultation. He has contributed to many discussions
on the logical controls of the EDVAC, has prepared certain i.nstrucuon ct?des‘ and has
tested these proposed systems by writing out the coded instructions for specific problems.
Dr. von Neumann has also written a preliminary report in which most of the resuits of
earlier discussions are summarized. ... In his report, the physical structures and dev?ces

. are replaced by idealized elements to avoid raising engineering proble.ms which might
distract attention from the logical considerations under discussion. (Goldstine 1972, p. 191;
Metropolis and Worlton 1980, p.55)

Goldstine (apparently unaware of Turing’s claim to be mentioned in this connection)
Comments:

Von Neumann was the first person, as far as [ am concerned, who understood exPlicilly

« that a computer essentially performed logical functions, ... he .also made a precise and
"detailed study of the functions and mutual interactions of the various parts of a computer.
TOdéy this sounds so trite as to be almost unworthy of mention. Yet in 1944 it was a
major advance in thinking. (Goldstine /972, pp. 191-192)
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One way in which the EDVAC report betrays its unfinished state is by the large
number of spaces clearly intended for references, but not filled in. Almost every
page contains the abbreviation “cf.” followed by a space. All the more significant
is the one reference that von Neumann did supply: the reference, supplied in full,
was to the paper McCulloch and Pitts 7943 in which a mathematical theory of
idealized neurons had been developed. Von Neumann suggested that basic vacuum
tube circuits could be thought of as physical embodiments of these neurons. Here
there are two connections with Turing's ideas. The first, more obvious one, is that,
like Turing, von Neumann was thinking of a computer as being like a brain (or at
least a nervous system). In Ulam's letter to Hodges quoted above, Ulam alluded to
this confluence, writing in a postscript: “Another coincidence of ideas: both Turing
and von Neumann wrote of ‘organisms’ beyond mere computing machines.”!” But
a more explicit connection with Turing's work becomes evident on further study.
McCulloch (see von Neumann /963, p.319) later stated that the puper which von
Neumann did reference had been directly inspired by Turing 1936-7. In fact, the
paper itself cites the fact that a universal Turing machine can be modeled in a
suitable version of the neural net formalism as the principal reason for believing in
the adequacy of the formalism.

There is other evidence that von Neumann was concerned with universality in
Turing’s sense. Thus he spoke (Randell /982, p-384) of the “logical control” of
a computer as being crucial for its being “as nearly as possible all purpose™. In
order to test the general applicability of the EDVAC, von Neumann wrote his first
serious program, not for numerical computation of the kind for which the machine’s
order code was mainly developed, but rather to carry out a computational task of
a logical-combinatorial nature, namely the efficient sorting of data.'® The success
of this program helped to convince von Neumann that “it is legitimate to conclude
already on the basis of the now available evidence, that the EDVAC is very nearly
an ‘all purpose’ machine, and that the present principles for the logical controls are
sound” (Goldstine 71972, p.209). Articles written within a year of the EDVAC report
confirm von Neumann's awareness of the basis in logic for the principles underlying
the design of electronic computers. The introduction to one such article states:

In this anticle we attempt to discuss |large scale computing] machines from the viewpoint
not only of the mathematician but also of the engineer and the logician, i.e. of the ... per-

son or group of persons really fitted to plan scientific 100ls. (Goldstine and von Neumann
1946)

17 Fam grateful 10 Andrew Hodges for making a copy of this letter available 10 me.
18 The sorting algorithm that von Neumann implemented belongs to the family of so-called “merge”

sorts. For a very interesting discussion of this program and of the proposed EDVAC order code, see
Knuth 7970.
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Another article (Burks, Goldstine, and von Neumann 1946) clearly alludes to Tur-
ing’s work, even as it indicates that purely logical considerations are not enough:

It is easy to see by formal-logical methods that there exist codes that are in ab.stracto
adequate to control and cause the execution of any sequence of operanor.ls which are
individually available in the machine and which are, in their entirety, conoelvable.by tl'.nc
problem planner. The really decisive considerations from the present point of view, in
selecting a code, are of more practical nature: simplicity of the equipment demanded by
the code, and the clarity of its application to the actually important problems together
with the speed of its handling those problems. It would take us much too far afield to
discuss these questions at all generally or from first principles.

There has been much acrimony over the question of just what von Neumann had
contributed; indeed, this question even became the subject of extensive fitigation.
Much of the controversy concerns the relative significance of the contributions of
von Neumann on the one hand, and of Eckert and Mauchly on the other. In particular,
some recent studies challenge the belief that von Neumann’s technical contributions
were of much importance. (See the semi-popular history Shurkin /984 and the
meticulously researched Stern /981.) It is not difficult to understand why this should
be. The Turing—von Neumann view of computers is conceptually so simple and has
become so much a part of our intellectual climate that it is difficult to understand
how radically new it was. It is far easier to appreciate the importance of a new
invention, like the mercury delay line, than of a new and abstract idea.

5. The ACE

Meanwhile, what of Turing? His mother (quoted in Hodges 1983, p.294) reports
him saying “round about 1944 that he had plans “for the construction of a universal
computer”. During the war, he had been telling colleagues that he wanted to build
a “brain”. He proposed to construct an electronic device that would be a physical

- realization of his universal machine. Early in 1945, while on a trip to the United

States, J.R. Womersley, Superintendent of the Mathematics Division of the National
Physical Laboratory of Great Britain, was introduced to the ENIAC and to the
EDVAC report. As early as 1938, Womersley had considered the possibility of
Constructing a “Turing machine using automatic telephone equipment”. His reaction
to what he had learned in the United States was to hire Alan Turing (Hodges /983,
PP. 306-307). By the end of 1945, Turing had produced his remarkable ACE report
(Turing 1945). The excellent article Carpenter and Doran /977 contains an analysis
of the ACE report, comparing it in some detail with von Neumann’s EDVAC report.
They note that, whereas the EDVAC report “is a draft and is unfinished ... more
important ... is incomplete ...”, the ACE report “is a complete description of. a
Computer, right down to the logical circuit diagrams” and even including *“a cost
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estimate of $11.200”. Not surprisingly. Turing showed that he understood the scope
of universality. He suggested that his ACE might be able to play chess and to
solve jigsaw puzzles. The ACE report contains explicit mention of features such
as an instruction address register and truly random access to memory locations,
neither of which is dealt with in the EDVAC report. although both are already to be
found in Burks, Goldstine, and von Neumann /946. Although it is known (Goldstine
1972, p.218) that the ACE report quickly made its way across the Atlantic, it
seems impossible to determine whether the ACE report influenced the American
developments. :

It should also be mentioned that the ACE report showed an understanding of nu-
merous issues in computer science well ahead of its time. Of these perhaps the most
interesting are microprogramming, and the use of a stack for a hierarchy of subrou-
tine calls. We have already mentioned Turing’s address to the London Mathematical
Society in February 1947, in which he unveiled the scope of his vision regarding the
ACE and its successors. In this talk he explained that one of the central conclusions
of his earlier work on computability was that “the idea of a ‘rule of thumb’ process

and a ‘machine process’ were synonymous ... Machines such as the ACE may
be regarded as practical versions of ... the type of machine I was considering ...
There is at least a very close analogy ... digital computing machines such as the

ACE ... are in fact practical versions of the universal machine.” Turing went on to
raise the question of “how far it is in principle possible for a computing machine to
simulate human activities™. This led him to propose the possibility of a computing
machine programmed to learn and permitted to make mistakes. “There are several
theorems which say almost exactly that ... if a machine is expected to be infallible,
it cannot also be intelligent ... But these theorems say nothing about how much
intelligence may be displayed if a machine makes no pretence at infallibility.”

, Turing was much better at communicating in this visionary manner than he
was in dealing with the bureaucrats who actually allocate resources, and he had
considerable difficulty in getting his ideas put into practice. However, a machine
embodying much of the design in the ACE report was eventually constructed, the
Pilot ACE, and a successful commercial machine, the DEUCE, followed.

2350y
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computing continues to be a vital one, and the lesson of universality, of the possibil-
ity of replacing the construction of diverse pieces of hardware by the programming
of a single all-purpose device continues to be relevant. In fact the very existence of
personal microcomputers is the result of this lesson being learned anew in the case
of integrated circuit technology. In 1971, faced with the requirement for ever more
complex and diverse “chips” by his employer, the Intel Corporation, Marcian Hoff
found the solution: a single all-purpose programmable chip, and the microproces-
sor was born. We can foresee that this will happen again and again as technology
continues its march towards faster and smaller components.
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