NOTICE: THIS MATERIAL MAY BE
PROTECTED BY COPYRIGHT LAW
(TITLE 17, U.S. CODE)

THE ROLE OF MODELS IN COMPUTER SCIENCE

ABSTRACT

Taking Brian Cantwell Smith’s study, “Limits of Correctness in
Computers,” as its point of departure, this article explores the
role of models in computer science. Smith identifies two kinds
of modcls that play an important rol., where specifications are
models of problems and programs are models of possible solutions.
Both presuppose the existence of conceptualizations as ways of
conceiving the world “in certain delimited ways.” But high-level
programming languages also function as models of virtual (or
abstract) machines, while low-level programming languages
function as models of causal (or physical) machines. The resulting
account suggests that sets of models embedded within models are
indispensable for computer programming.

Keywords: specifications, programs, programming languages,
function, model, representation, abstraction, conceptualization.

The role of models in computer science appears to be even more
pervasive than has been generally acknowledged, even by sophisticated
students of the discipline. In his important study, “Limits of Correctness
in Computers” (1985/95), for example, Brian Cantwell Smith remarks that
the relationship between a program and its specification is that of one
model! (the program) to another (its specifications), where even the existence
of formal proofs that programs satisfy their specifications cannot guarantee
that a system controlled by that program will do what it is supposed to do
should that program be executed, because the specifications may or may
not refiect an appropriate relationship to the world.

Smith characterizes “specifications” as formal descriptions (usually in
a formal language) of what qualifies as proper behavior for a certain system,

“The Role of Models in Computer Science” by James H. Fetzer,
The Monist, vol. 82, no. 1, pp. 20-36. Copyright © 1999. THE MONIST, La Salle, Illinois 61301.

THE ROLE OF MODELS IN COMPUTER SCIENCE 21

while “programs” are formal descriptions (in a programming language) of
precisely how that behavior is to be achieved (Smith 1985/95, p. 463).
Thus, as it may be expressed, the specifications specify the outputs O that
are supposed to be derivable from the inputs I when the system is oper-
ating properly, where the program specifies the sequence of instructions P
by means of which those outputs are derived from those inputs. The
program might therefore be characterized as a function that maps specific
values within the range of a variable called “input” onto specific values in
the domain of a variable called “output.”! :

Smith emphasizes that computers, like people, are systems that par-
ticipate in the real world by taking actions that have consequences, where

one of their most important features is “that we plug them in.” Thus, for
example, he says,

They are not, as some theoreticians seem to suppose, pure mathematical ab-
stractions, living in a pure detached heaven. They land real planes at real
airports; administer real drugs; and—as you know all too well—control real
radars, missiles, and command systems. Like us, in other words, although
they base their actions on models, they have consequences in a world that in-
evitably transcends the partiality of those enabling models. Like us, in other
words, and unlike the objects of mathematics, they are challenged by the in-
exorable conflict between the partial but tractible model, and the actual but
infinite world (Smith 1985/95, p. 461).

In this passage and elsewhere, Smith drives home the point that computers
are complex systems that inhabit the real world and interact with other
things in the real world, with consequences that are capable of affecting
life and death.

It follows that computers are not merely abstract entities, but real
causal systems.2 If programs are to be envisioned as functions mapping
values from a range onto a domain, therefore, then those functions must
be entertained as causal in character.? Since most programmers utilize
“higher-level” programming languages, such as Pascal, LISP, and Prolog,
which are related to physical computers by means of interpreters and
compilers, however, these languages appear to qualify as models of yet
another kind. And reliance upon programming languages at the machine
or assembly language level seems to imply the existence of models of yet
another distinctive kind. The role of models in computer science extends
far beyond that of specifications and programs.

22 JAMES H. FETZER

The purpose of this article, therefore, is to pursue the leads provided
by Smith’s valuable study in an attempt to further elucidate the nature and
role of models in computer science. It wiil become evident that at least
four kinds of models pervade computer science, including those afforded
by programming languages themselves. Further consideration will be
given to whether Smith is right in his belief that, “at this point in intellec-
tual history,” we have no theory of the relationship of models to the world.
The answer to this question depends upon drawing a distinction—familiar
within the philosophy of science—between the context of discovery and
the context of justification. But I should begin with some general reflec-
tions regarding the nature of models themselves.

1. What are Models?

The concept of a model (what a model is, the kind of thing a model
can be) appears to be somewhat vague and more than a little ambiguous.
Models can range from physical replicas that resemble what they model
(such as a plastic model of a battleship) and working models that instanti-
ate the abilities of the things they model (such as a battleship prototype)
up to abstract models that preserve selected aspects of the thing modeled
while disregarding others (such as blueprints for the construction of a new
battleship). These distinctions are not necessarily exclusive, however, and
sometimes may even appear to be more a matter of difference of degree
rather than one of a difference in kind.

Like many others, I can vividly recall, as a young man, obtaining a
kit for constructing a plastic model of the battleship Missouri. The kit
contained at least two crucial ingredients and, if you were lucky, also a
third. These were, first, the parts of the model; second, the instructions for
putting the parts together; and third, a tube of glue. If there were too few

O too many parts, of course, or if the instructions were missing, you might ‘

have wanted to take it back and exchange it for another kit. The crucial
consideration turned out to be that there should be parts of the model cor-
responding to parts of the thing modeled, where these could be put together
to create a similar arrangement.

The underlying conception was that, at an appropriate level of detail
and scale, there should be a one-to-one correspondence between the parts
of the model and the parts of the thing modeled, on the one hand, and that,
as long as the model was assembled in accordance with the instructions,
the relations between the parts of the model should correspond with those

THE ROLE OF MODELS IN COMPUTER SCIENCE 23

of their counterparts on the thing modeled, on the other. The strong rela-
tionship that is involved here, of course—a one-to-one correspondence
that is relation-preserving—is known as an isomorphism, which is a concept
familiar to mathematicians in relation to abstract contexts, but one that
applies to physical contexts as well.

Appropriately conceived, isomorphic relations may be found in
many kinds of models, including the blueprints for a new construction and
even the prototype of a new weapon. Considerations of scale and of level
of detail turn out to be fundamental to models of all three kinds. In the
case of physical replicas, for example, there would be many functional
differences, inscfar as a model of the Missouri could fit into a bathtub but
wouid lack the spots of rust and chips of paint of the real thing. A working
model, by contrast, would need to possess the functional capabilities of
the real thing, where the limiting case would be a physical replica with the
same functional capabilities, i.e., another battleship.

2. Smith’s Conception

Smith acknowledges models of all of these kinds, while emphasizing
the role of models within computer science specifically in the form of
“representations’”:

To build a model is to conceive of the world in a certain delimited way. To
some extent you must build models before building any artifact at all,
including televisions and toasters, but computers have a special dependence
on these models: you write an explicit description of the model down inside
the computer, in the form of a set of rules or what are called representa-
tions—essentially linguistic formulae encoding, in the terms of the model,
the facts and data thought to be relevant to the system’s behavior. It is with
respect to these representations that computer systems work (Smith 1985/95,
p. 460).

Thus, to drive his point home, Smith suggests that it is this feature that
distinguishes computers from other kinds of machines: “they run by ma-
nipulating representations, and representations are always formulated in
terms of models. . . . [Thus] there is no computation without representa-
tion” (Smith 1985/95, p. 460).

To the extent to which programs per se are envisioned as “represen-
tations,” there would appear to be scant room to take exception to Smith’s
position here. As functions that map specific values of “input” variables
onto specific values of “output” variables, they do indeed provide the sets

24 JAMES H. FETZER

of rules that determine the behavior of computer systems. To the extent to
which they are based upon the use of models, moreover, it seems apparent
that, in the case of computers, there is indeed a “special dependence™ upon
these models, insofar as digital machines—as opposed to abaci, by com-
parison—could not perform without them: absent programs, these
machines would not be able to process “inputs” into “outputs.”

On the other hand, it may be appropriate to ask for whom sets of
rules that are loaded into machines (the form in which they exert their
causal influence) function as “representations.” The case of the abacus
becomes interesting here, since the sets of rules by means of which their
operations are performed are in the heads of their users. It remains correct,
no doubt, that their users manipulate these rows of beads in accordance
with models that infuse them with meaning, but it should be obvious that,
in this case, at least, whatever meaning these beads possess as representa-
tions are to be found in the heads of those who use them. These representa-
tions presuppose the existence of interpreters or minds.

This suggests that it may be crucial to distinguish between represen-
tations that are meaningful for use by a machine and representations that
are meaningful for the users of those machines (Fetzer 1988, p. 137). Rep-
resentations do not have to be meaningful for these machines to perform
their designated functions, which reflects the conception of computing
machines as mark-manipulating (or “string processing”) systems. So long
as those machines are capable of manipulating those marks (strings) in ac-
cordance with their programs, the marks (strings) they manipulate need
not be meaningful for those machines themselves. It may be sufficient that
the marks (strings) they process are meaningful to their users.

3. Representations

Indeed, Smith’s discussion of the role of models in computer science
can be easily amended to take this distinction into account, since his
position does not crucially depend on whether machines are the posses-
sors of mentality. It does suggest, however, that representations depend
upon the existence of interpretations, interpreters, or minds, which may be
properties of their programmers and users, as the abacus exemplifies. The
slogan, “no computation without representation,” therefore, might be
further extended to encompass the slogan, “no representation without in-
terpretation,” which implies there is “no computation without interpretation”
by means of interpreters or minds (Fetzer 1994, 1998).

THE ROLE OF MODELS IN COMPUTER SCIENCE 25

Insofar as Smith considers specifications and programs as “models”
and as “‘representations,” it should be evident that his concepts are somewhat
broader than those associated with isomorphic representations. In order to
illustrate what he has in mind, Smith advances a diagram (Figure 1),
which includes (on the left) a box labeled “cOMPUTER” and (on the right)
a sketch of a house as an occupant of the “REAL WORLD.” Mediating between
them is an oblong box labeled “MODEL.” Smith thus describes the connec-
tions between the three as follows:

You are to imagine a description, program, computer system (or even a
thought—they are all similar in this regard) in the left hand box, and the very
real world in [sic] the right. Mediating between the two is the inevitable
model, serving as an idealized or preconceived simulacrum of the world, in
terms of which the description or program or whatever can be understood.
One way to understand the model is as the glasses through which the
program or computer looks at the world: it is the world, that is, as the system
sees it (though not, of course, as it necessarily is) (Smith 1985/95, p. 462).

The sketch of a house as an occupant of the REAL WORLD, of course, is not
“in" a box but rather “on” the right, where the openness of the right-hand
side is meant to convey that both the MODEL and the COMPUTER are also in
the REAL WORLD.

REAL WORLD

\ P |
/\\/ H \l7°

COMPUTER

CfmooxX

N

Figure 1. Smith’s Diagram (Smith 1985/95).

26 JAMES H. FETZER

The suggestion that the model is “the glasses through which the
prog ram or computer looks at the world” should be interpreted metaphor-
ically rather than literally, since it seems to be investing inanimate objects
with human (or animal) properties in the spirit of anthropomorphism.
Nothing appears to be lost in relation to the content of Smith’s contentions
by refashioning his claims as meaning that the performance of the
computer is causally affected by the program that it executes, where that
program in turn has been designed as a model of the world vis-a-vis the
presumptive interaction of the computer-executing-the-program-in-the-
world. The only literal glasses required may be those worn by programmers.

That descriptions, programs, computer systems, or even thoughts
may occupy the left-hand box suggests that they, too, are “models” in
some appropriate sense, a sense that does not appear to be confined to the
somewhat narrow constraints of isomorphic relations. Descriptions, such
as “Snow is white” or ‘The computer is on the table,” for example, do
not—at least, in any obvious way—satisfy what would be required of
physical replicas, working models, or even abstract models as they have
been discussed above. Thoughts, at least when they are conveyed by
means of language, are obviously comparable. It thus appears plausible
that, in Smith’s language, the word ‘model’ means the same thing as ‘rep-
resentation’.

4. Models as Signs

This makes sense from the perspective of the theory of signs
advanced by Charles S. Peirce, who envisioned a sign as a something that
stands for something (else) in some respect or other for somebody (see
Fetzer 1990, 1991/96). It should be observed, however, that things
function as signs (in Peirce’s sense) only relative to sign-users, who have
the ability to use signs of those kinds and are not incapacitated from the
exercise of that ability, which is the property that makes them conscious
with respect to signs of those kinds. Then cognition occurs as the effect of
causal interaction between a sign of a certain kind and sign-user who is
conscious with respect to signs of that kind in relation to the user’s
context.

Several aspects of a Peircean account of minds as sign-using (or
“semiotic”) systems are relevant here. Peirce, for example, distinguished
between three kinds of signs, namely: icons as signs that resemble what

THE ROLE OF MODELS IN COMPUTER SCIENCE 27

they stand for; indices as signs that are causes-or-effects of what they
stand for; and symbols, as signs that are merely habitually associated with
that for which they stand. Of the three kinds of models discussed above,
physical replicas appear to be iconic models that resemble what they stand
for, while working models are indexical as well as iconic in resembling
their causal capacities. Abstract models, such as blueprints, attain resem-
blance relations by means of representations that are partially symbolic.

Indeed, in harmony with the broad conception Smith appears to have
in mind, it should be clear that linguistic descriptions are representations
that commonly stand for that for which they stand on the basis of habitual
associations between signs and things. The most familiar examples of
these linguistic symbols are the words that occur in ordinary languages,
including English, French, and German. Words such as ‘chair’ and ‘horse’,
for example, neither resemble nor are causes-or-effects of that for which
they stand, but are habitual associations that usually have their origins in
(spoken or written) linguistic customs, traditions, and practices, which,
when reinforced by institutions, assume the status of conventions.

It should therefore be apparent that “sign” and “representation” are
similar in meaning and that the use of “model” as a synonym is not inap-
propriate. Without elaborating the matter in detail, let us also assume that
the meaning of signs ultimately consists of concepts, understood as habits
of thought and as habits of action within specific contexts (Fetzer 1990,
Fetzer 1991/96). Then when Smith characterizes specifications and pro-
grams as “models,” we shall understand thereby that specifications and
programs stand for certain things in certain respects for those who use and
understand them, precisely because of their standing as signs. For something
to function as a sign, there must be a counterpart set of sign-users.

5. Smith’s Models

Were we to assume that linguistic understanding presupposes non-
linguistic understanding—that the use of words, for example, presupposes
the acquisition of concepts—many of Smith’s assertions would make
good sense. Thus, insofar as acquiring a concept (a habit of thought or a
habit of action) involves conceiving of the world in “a certain delimited
way,” it becomes apparent why, at least to some extent, as he suggests, it
1s necessary to build models (form concepts) “before building any artifact
at all.” Indeed, concepts themselves may be entertained as models that are

28 JAMES H. FETZER

appropriate for thought or for action within suitable specific contexts.
Building artifacts thus presupposes related models (concepts).

The two kinds of models that are of particular importance within
computer science on Smith’s account, therefore, are specifications (which
outputs O are supposed to be derivable from which inputs I), on the one
hand, and programs (which provide a sequence of instructions P for
obtaining output of kind O from input of kind I), on the other. An example
might be to generate an income tax return from inputs I concerning wages,
salaries, and other income sources together with various types of medical,
tax, and other deductions to calculate as output O the amount of addition-
al taxes due or the refund owed to you. A program P that would achieve
this objective would meet those specifications.

Not all programs that would achieve this objective are computer
programs, insofar as the sets of instructions that the IRS provides can be
implemented by any taxpaying citizen who can follow them; and not all
computer programs that can achieve this objective are equally useful (in
relation to their simplicity, economy. and efficiency). Some might actually
be Rube Goldberg contraptions. Nevertheless, Smith has clearly identified
two distinct kinds of models that are fundamental to computer science,
which here may be characterized as follows:

Specifications (Model S): a description in a (usually formal) language
that specifies the behavior desired from a sys-
tem; and,

The Program (Model P): a set of instructions in a programming language
indicating how that behavior is to be achieved.

Thus, when a program has been shown to meet its specifications—
whether formally (by means of “program verification”) or informally (by
means of “program testing”)—the programmer may be said to have “got
the program right!” As Smith eloquently explains, however, even when
Model P satisfies Model S, that only provides a “relative consistency
proof” that one model satisfies the other: it does not guarantee what will
happen should that program happen to be executed, because the specifi-
cations may or may not be suitably related to the world (Smith 1985/95,
p. 465). Only when the right relationship has been established with the
world has the programmer finally “got the right program!”

THE ROLE OF MODELS IN COMPUTER SCIENCE 29

6. The Right-hand Side

Smith has contributed a valuable analysis of the role of models in
computer science with respect to specifications and programs. When
COMPUTER stands for Model P and MODEL stands for Model S with respect
to Figure 1, therefore, the relationship between Model S and Model P
appears to be straightforward. Indeed, a whole discipline, known as “model
theory,” is devoted to its analysis (Smith 1985/95, pp. 461—62). While this
relationship is represented by the left side of Figure 1, Smith says that the
right side of Figure 1 is problematical:

The technical subject of “model theory”, as I have already said, is the study
of the relationship on the left. What about the relationship on the right? The
answer, and one of the main points I hope you will take away from this dis-
cussion, is that, at this point in our intellectual history, we have no theory of
this right-hand side relationship (Smith 1985/95, p. 462).

Thus, as Smith views the matter, we have “no theory” of the relationship
(in the crucial case before us) between the REAL WORLD and MODEL as
specifications.

In a previous critique of Smith’s paper, I suggested that he had
committed a blunder in overlooking the evident consideration that
empirical science may be described as the search for an adequate model
of the world, while philosophy of science, its complement, may be
described as the search for an adequate model of science (Fetzer 1996, p.
252-54). After considering the matter further, however, I now believe that
the situation is somewhat more complex in at least two respects, one of
which I shall discuss here, the other in my concluding Section 9. The first
concerns the development of specifications (Model S), while the other
concerns attempts to ascertain whether or not we have “got the right
system!” '

A traditional distinction with the philosophy of science separates
what has come to be called “the context of discovery” from “the context
of justification.” Thus, the context of discovery concerns the invention of
hypotheses and theories, which characteristically have the status of guess
or of conjectures; the context of justification, by comparison, concerns the
appraisal of hypotheses and theories with respect to their relative degrees
of evidential confirmation, which may include consideration of the clarity
and precision of the language in which they are couched, their scope of

30 JAMES H. FETZER

application for the purposes of explanation and prediction, the range of
evidence in their support, and their relative degrees of simplicity, economy,
or elegance (Hempel 1966, pp. 15-16).

The most important difference between them, for present purposes,
may be that the invention of hypotheses and theories seems to be a psy-
chological process, while the appraisal of hypotheses and theories seems
to be a logical procedure (Fetzer 1993, Chapter 7). If the invention of
specifications falls into the context of discovery, as it clearly does, then it
is an activity that is not governed by algorithms that might be applied to
problerns of this kind. Thus, to this extent, Smith’s contention that, “at this
point in intellectual history, we have no theory of this right-hand side re-
lationship,” makes a certain point, but with an ambiguity that surely needs
to be sorted out within computer science.

7. Conceptualizations

One way it might be explained is that the process of framing specifi-
cations presupposes a prior process of conceptualization. This stage of
software development deserves greater emphasis than it generally tends to
receive, perhaps for the reason Smith suggests (“we have no theory of this
right-hand side relationship™). On the other hand, it is important to realize
that conceptualization of the existence of a problem—grasping the
existence of a problem that might be solved by the creation of a program
P that takes values of the variable I as its input and that generates values
of the variable O as its output—is a psychological process that involves
creativity, intelligence, imagination, and experience.

Thus, to the extent to which the formulation of specifications presumes
the existence of prior conceptualizations, the use of a (usually formal)
language to describe the behavior that is desired of a system, as well as
their underlying conceptualizations, may appropriately be held to
represent problems to which programs represent possible solutions that
might be subject to empirical test:

Conceptualization (Model C): classifying, categorizing, or otherwise sub-

suming a problem as an instance of a cer-
tain kind.

The formulation of specifications (Model S) thus presupposes the avail-
ability of conceptualizations (Model C) as a prior psychological achievement.

THE ROLE OF MODELS IN COMPUTER SCIENCE 31

Without the conception of a problem to be solved, the formulation of
specifications by means of any language would be a pointless activity
highly unlikely to occur.

There appear to be at least two other kinds of models involved in the
software production process that may not be sufficiently addressed by
Smith’s otherwise illuminating study. These involve the production of the
program, on the one hand, and its execution by means of some machine,
on the other. Although Smith emphasizes that programs are themselves
models—indeed, they might be described as models of solutions—he does
not attend to the role of programming languages themselves as models of
another kind. And once we realize that higher-level languages, such as
Pascal, LISP, and Prolog, stand for virtual rather than physical machines,
it becomes plain that at least two more kinds of models have a role within
the context of computer science.

Indeed, higher-level languages are related to physical machines by
means of compilers and interpreters, which in some cases may not even
exist, as in the case of the mini-language CORE (Marcotty and Ledgard
1986). CorE was introduced by Marcotty and Ledgard as a means for ex-
plaining the features that are characteristic of programming languages
generally without encountering the complexities involved in discussions
of Pascal, LISP, and so forth. In these kinds of cases, the programming
language itself stands for a virtual machine as an abstract entity that may
or may not be causally connected to any physical machine. They therefore
exist as models of possible machines.

8. Models and Languages

It would be a mistake to suppose that programs as Models P are
already sufficient to account for virtual machines represented by higher-
level programming languages, especially because many—infinitely many
—different programs can be formulated using the same high-level language.
A high-level language thus functions as a model of an abstract machine,
whereas a program is a model of a potential solution to a problem that
might be executed by a machine of that kind. We might define these models
as follows:

High-level programming languages (Model H): a set of rules that model
behavior of an abstract
(or virtual) machine;

32 JAMES H. FETZER

where a virtual (or abstract) machine becomes a physical (or real) machine
by virtue of the existence of some corresponding compilers or interpreters.

Thus, insofar as programs as texts are written in programming
languages that model abstract machines, it remains the case that there may
or may not be a suitable correspondence between the commands that
occur within the language and the operations that are performed by some
physical machine. The function of interpreters and compilers, therefore, is
to create a causal mechanism whereby programs written in high-level
languages can be executed by machines whose operations are causally
affected by machine language, which typically consists of sequences of
zeros and ones, as numerals that stand for patterns of switches set on-or-
off, voltages that are high-or-low. and so on, depending upon the causal
character of the specific system.

The great advantage of programming by means of high-level
languages, of course, is that there s a one-many relationship between the
commands that can be written in a high-level language and the counter-
part operations that are performed by a machine executing them on the
basis of their translation into machine language. Programming in machine
language, indeed, is so difficult mentally that it is seldom encountered
outside of the context of computer engineering, where there is no way to
avoid it. So ordinarily the lowest-level language programmers use is
assembly language, where there is a more or less one-to-one correspon-
dence between commands and operations.

Both machine language and assembly language thus function as
models of physical machines in a manner analogous to that in which
higher-level languages function as models of abstract machines. The
machines they represent may or may not exist as well, since there is no
reason to deny the possibility of creating a mini-assembly language d la
CORE for which there is no counterpart physical machine. For present
purposes, however, we will assume that physical machines exist as causal
counterparts to these low-level languages:

Lower-level programming languages (Model L): a set of rules that model
the behavior of a physi-
cal (or causal) machine;

where a causal connection between higher-level languages (Model H) and
lower-level languages (Model L) depends upon interpreters and compilers.

THE ROLE OF MODELS IN COMPUTER SCIENCE 33

9. Embedding Relations

The relationship that obtains between programs (Model P), higher-
level languages (Model H), and lower-level languages (Model L) can be
represented by means of a simple diagram that schematizes their relations
as follows:

PROGRAM MACHINE

HIGH Pascal Abstract

LEVEL program —) machine
(Model P) - (Model H)

LowW Machine - Physical

LEVEL program — (causal)

(Model L) machine

Figure 2. Programs and Languages as Models

where the single-arrow represents a possible relation between a program
and the abstract machine represented by a high-level programming
language and the double arrow represents an actual relation between a
low-level program and the physical machine represented by its program-
ming language. The series of three dots thus stands for the possible
existence of compilers or interpreters that effect some causal connection
between them.

Thus, strictly speaking, since programs written in Pascal, LISP, and
other higher-level programming languages take for granted the existence
of a corresponding virtual machine, their relationship may be described as
that of one model (Model P) embedded within another (Model H). And
whenever there exists a corresponding physical machine to which that
higher-level language is related by means of a compiler or interpreter,
then the degree of embeddedness ascends yet another step, since now one
model (Model P) is embedded within another (Model H), which in turn is
embedded within a third (Model L). And these are indeed embedded
within the real world.

The conception of embedding may be envisioned as a logical relation
or as a causal relation, depending upon the existence or the non-existence
of a physical target machine. The construction of programs in CORE implies

34 JAMES H. FETZER

the existence of virtual CORE machine, but not the existence of a physical
target machine. A CORE program (Model P) is logically embedded in the
CORE machine, but it is not causally embedded in a target machine, while
a Pascal program (Model P) is logically embedded in Pascal (Model H)

and also causally embedded (via interpreters, compilers, and assemblers)
in machine language (Model L).+

10. The Embedding World

When programs are causaliy embedded (via interpreters, compilers,
and assemblers) in physical target machines, then they have the capacity
to causally interact with the world. This ordinarily occurs when they are
components of computer systems as (typically complex) arrangements of
computers, programs, and associated equipment that causally interact to
bring about landings of real planes at real airports, the administration of
real drugs. and the control of real radars, missiles and command systems.
The openness of the right-hand side of Smith's Figure 1, therefore, serves
as an important representation of the causal relation that obtains between
computers, models, and the embedding world in cases of exactly this kind.

When Smith observes that even formal proofs that a program satisfies
its specifications cannot guarantee that a system controlled by the program
will do what it is supposed to do should that program be executed, the
possible reasons why go beyond the consideration that those specifica-
tions may or may not stand in an appropriate relationship to the world.
The conceptualization of the problem to be solved (Model C) may indeed
be wrong and the specifications themselves (Model S) may be mistaken,
as Smith remarks, but problems may also arise with the program (Model
P), its embedding language (Model H) or its connections to the machine
(Model L). Successful performance depends on the proper interaction of

all the components of computer systems.

That the development and construction of a successful computer
system is inherently complex may be underscored by the realization that
different persons are typically responsible for different components of
these systems. The conceptualization of the problem to be solved (Model
C) may have originated with a product sponsor, but be translated into
formal specifications (Model S) by a knowledge engineer and encoded
into a program (Model P) by a team of programmers, which takes for granted
that high-level languages (Model H) are suitably implemented by inter-
preters and compilers, and that low-level] languages (Model L) are suitably

THE ROLE OF MODELS IN COMPUTER SCIENCE 35

implemented by assemblers. And yet the success of the system still depends
upon the interaction of its components.

The important role of empirical science within this context thus appears
to apply distinctively to evaluating the performance of computer systems
in the real world. Ideally, computer systems ought to be subjected to
repeated tests under variable conditions in order to acquire information
about their successful performance under those conditions. Data of this
kind in the form of relative frequencies for successful performance can
then be used to draw inferences about the causal propensities of these
systems in the real world (Fetzer 1993, Chapter 6). In the real world,
however, things seidom satisfy ideal standards. The consequential risks
can be immense (Fetzer 1996).

While the conceptualization of specifications falls within the context
of discovery, as we have found, the process of empirical test falls within
the context of justification. Smith has properly delineated the role of
models with respect to specifications and programs. Specifications are
problems for which programs are potential solutions. But the role of
models within computer science appears to be even more profound, where
the use of languages as models of other kinds has to be appreciated to
attain a sophisticated understanding of computer science. Indeed, even when
we fully comprehend the left-hand-side relationship between models of
one kind and models of -another, we must also understand the right-hand-
side relationship, if we are to surmise the role of science within computer
science.

James H. Fetzer
University of Minnesota,
Duluth

NOTES

1. A referee has suggested that, rather than characterizing the program as a function
that maps input onto output, it would be better to characterize the spectﬁcauon‘ as the
function, where a function is considered to be a certain kind of set input-output pairs. But
a specification as a representation of a specific problem typically does not exist as a
function but only as an invitation for the creation of a solution to that problem by means
of a program. ‘

2. A referee has proposed that the term ‘computer’ can be used in §uch a way as to
imply that computers exist as causal systems, necessarily, where qnly Turing machines, for
example, properly qualify as abstract entities. This approach, which seems to be the same
as that of Smith (whose notion I am characterizing), ignores the difference between ac.tual
computers as physical systems and virtual computers as abstract things, which receives
subsequent elaboration.

36 " JAMES H. FETZER

3. The same referee has also recommended that functions, as static sets of ordered
pairs, should be differentiated from algorithms as dynamic entities that have the capacity
to turn inputs into outputs. He concedes the possibility that algorithms might be taken as *
abstract entities, while programs are implementations of algorithms in forms that might be
suitable for execution by causal machines, which is the perspective adopted here, as sub-
sequent discussion will emphasize.

4. A referee has also observed that, while these distinctions are generally well-founded,
dedicated systems provide a special case for which they do not obtain. In dedicated Lisp
machines, for example, high-level programs written in LISP simultaneously function as
low-le vel assembly language programs, because the assembly language for dedicated LIsP
machines is Lisp itself. This useful point also reflects the relativity of the distinction
between “hardware” and “software.”

REFERENCES

Fetzer, J. H. (1988), “Signs and Minds: An Introduction to the Theory of Semiotic
Systems,” in J. H. Fetzer, ed., Aspects of Artificial Intelligence (Dordrecht, The
Netherlands: Kluwer Academic Publishers, 1988), pp. 133-61.

(1990), Artificial Intelligence: Its Scope and Limits (Dordrecht, The Netherlands:
Kluwer Academic Publishers, 1990).

(1991/96), Philosophy and Cognitive Science (New York: Paragon House, 1991);
2nd ed’n. (Minneapolis, MN: Paragon House, 1996).

(1993), Philosophy of Science (New York: Paragon House, 1993).

(1994), “Mental Algorithms: Are Minds Computational Systems?”. Pragmatics &
Cognition 2 (1994), pp. 1-29.

(1996), “Computer Reliability and Public Policy: Limits of Knowledge of
Computer Based Systems,” Social Philosophy & Policy 13 (1996}, pp. 229-66.
Reprinted in E. Paul, F. Miller, Jr,, and J. Paul, eds., Scientific Innovation, Philosophy
and Public Policy (New York: Cambridge University Press, 1996), pp. 229-66.

(1998), *“Thinking and Computing: Computers as Special Kinds of Signs,” Minds
and Machines 7 (1998), pp. 345-64.

Hempel, C. G. (1966), Philosophy of Natural Science (Englewood Cliffs, NJ. Prentice-
Hall, 1966).

Marcotty, M. and H. Ledgard (1986), Programming Language Landscape: Syntax/Seman-
tics/Implementations, 2nd ed’n. (Chicago: Science Research Associates, 1986).
Smith, B. C. (1985/95), “Limits of Correctness in Computers,” Technical Report SCLI:

85-35 (Stanford, CA: Center for the Study of Language and Information, 1985).
Reprinted in D. Johnson and H. Nissenbaum, eds., Computers, Ethics, & Social
Values (Englewood Cliffs, NJ: Prentice-Hall, 1995), pp. 456-69. References are to the

reprinted version.

