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Abstract

We have implemented an incremental lexical ac-
quisition mechanism that learns the meanings of
previously unknown words from the context in
which they appear, as a part of the process of
parsing and semantically interpreting sentences.
Implementation of this algorithm brought to light
a fundamental difference between learning verbs
and learning nouns. Specifically, because verbs
typically play the predicate role in English sen-
tences, whereas nouns typically function as argu-
ments, we found that different mechanisms were
required to learn verbs and nouns. Because of
this difference in usage, our learning algorithm
formulates the most specific hypotheses possible,
consistent with the data, for verb meanings, but
the most general hypotheses possible for nouns.
Subsequent examples may falsify a current hy-
pothesis, causing verb meanings to be general-
ized and noun meanings to be made more spe-
cific. This paper describes the two approaches
used to learn verbs and nouns in the system, and
reports on the system's performance in substan-
tial empirical testing.

Introduction

This paper describes the lexical acquisition system
Camille (Contextual Acquisition Mechanism for Incre-
mental Lexeme Learning (Hastings 1994)). Camille
learns the lexical category and meaning of unknown
words based on example sentences.

Acquisition systems are crucial to NLP systems that
process real-world text. Because the complete range of
the text cannot be specified, gaps in lexical knowledge
are bound to occur. Such an occasion can either be
disruptive for the NLP system, preventing it from pro-
cessing the rest of the text, or the system can take
advantage of the situation and learn something about
the unknown word.

Camille is implemented as an extension of the LINK
NLP system (Lytinen & Roberts 1989) which is a
unification-based chart parser which integrates syn-
tactic and semantic information. Unlike statistics-
based acquisition mechanisms which require large cor-

pora (Brent 1993; Church & Hanks 1990; Hindle 1990;
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Resnik 1992; Yarowsky 1992), Camille uses its domain
knowledge when inferring the meaning of unknown
words. The actual process of meaning inference, how-
ever, is not dependent on any particular domain hier-
archy. It is a weak method that searches the hierarchy
for an appropriate node for the ineaning of a word.
By relying on this hierarchical knowledge structure,
Camille not only gains representational and inferential
power, but it also reveals an interesting fundamental_
principle of language. The search that Camille uses
to identify the appropriate node in the semantic hier-
archy for the meaning of an unknown word is data-
driven; that is, the search is guided by the data pro-
vided by example sentences. Because different types
of words tend to provide different data, we found that
different search processes were required for different
syntactic categories of words. In particular, because
verbs typically fill the predicate role in English sen-
tences, whereas nouns typically function as arguments.
our learning algorithm formulates the most specific hy-
potheses possible, consistent with the-data, for V.efb
meanings, but the most general hypotheses possi e
for nouns. Subsequent examples may falsify a curl"ent
hypothesis, causing the system to search up the hier-
archy for verbs (i.e., generalize the hypothesis), but t0
search down the hierarchy for nouns (i.e., make the
hypothesis more specific). L
The next section describes the structure of Camille®
semantic hierarchy, and the formal nature of _the
noun/verb dichotomy. . The organization of the hier’
archy and its constraints on noun learning is most 2"
parent when Camille is faced with ambiguous noun*
The system’s mechanism for inferring their mean? %
is described in the following section. The section aﬁ}fe
that describes the more difficult process of learning th .
meanings of verbs. After reviewing related work, 'tta-
paper concludes with a discussion of Camille’s i
tions, other aspects of the system, and future wors-

The Nature of the Knowledge -]

P
The knowledge representation for LINK COnSlStsand
an inheritance hierarchy of domain-independen® *

domain-specific concepts. Figure 1 shows sorm
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Figure 1: The pruned object tree

LINK’s domain-specific object concepts from the Ter-
rorism domain that served as the testing ground for
ARPA’s third and fourth Message Understanding Con-
ferences (Sundheim 1992) (the shading will be ex-

plained later). The structure of the hierarchy forms

an IS-A inheritance tree. Figure 2 shows some of the
actions from the domain. Action concepts provide the
relational structure that binds together the representa-
tion of the meaning of sentences. These concepts also
constrain the types of arguments that can be attached
as their slot-fillers (also included in fig 2).

The nodes in LINI’s concept hierarchy serve as its
basic units of meaning. Learning the meaning of an un-
known word reduces to finding the appropriate node in
the hierarchy — a graph search problem. To drive the
search, the semantic constraints, which are normally
used to limit attachment of slot-fillers to the Head verb,
interact with the evidence provided by example sen-
tences. But the interaction works in different ways for
different classes of words. Nouns (as the Heads of noun
phrases) normally scrve as the slot-fillers of sentences
and thus, as the items which are constrained. For ex-

ample, in the sentence “Terrorists destroyed a ﬂarge,"""

the word “destroy” rcfers to the concept Destroy which
has the constraint [Object = Phys-Targ]. When “flarge”
is attached as the object of the verb, the constraint
places an upper bound on its interpretation as shown
in figure 1. The shaded-out nodes cannot be a valid
interpretation of the meaning of “flarge”.

For unknown verbs, however, the situation is quite
different. Because they usually map to the actions in
the domain, the verbs apply the constraints. Thus, the
constraints place an upper bound on the interpretation
of unknown verbs.! The shaded areas of figure 2 show

!Note that negative examples, for example, “You can’t
say ‘Terrorists froobled the civilians”’, would provide the
opposing bound (upper for unknown verbs, lower for
nouns). Then Mitchell's candidate-elimination approach
(Mitchell 1977) to narrowing the hypothesis set might work.
Unfortunately, negative examples are rare in human speech

the concepts that are ruled out for an example sen-
tence like “Terrorists froobled the headquarters.” It is
important to note that this is not just an artifact of
LINK’s knowledge representation structure. It is due
to a fundamental principle of language. Because ac-
tions serve as the relational elements of sentence struc-
ture, they are the only logical place for the constraints

to reside.

Because of this dichotomy, Camille must have dxf-—\
ferent strategies for learning verbs and learning nouns.
They can be stated most succinctly as follows:

For nouns, choose the most general consistent
hypothesis.

For verbs, choose the most specific ,
hypothesis. 5

This difference is prescribed by the nature of the knowl-
edge and it is consonant with psycholinguistic theories
which maintain that humans treat verbs and nouns
differently (Gentner 1978; Huttenlocher & Lui 1979;
Graesser, Hopkinson, & Schmid 1987; Behrend 1990;
Fernald & Morikawa 1993). ‘

The implications of the noun-learning strategy are
seen most clearly in the acquisition of ambiguous nouns
as described in the next section. The following sec-
tion describes the more difficult acquisition problem
for verbs.

Learning Ambiguous Nouns

Word sense ambiguity has been a thorn in the side of
NLP for a long time (Small & Cottrell 1988). The ma-
jority of the research on this issue has targetted meth-
ods for selecting the appropriate sense of an ambigu-
ous word. For lexical acquisition, a different problem
exists: how can a system recognize that a word has
multiple senses and make a suitable definition?

If the system cannot learn ambiguous words, it will
run into a parsing impasse. Consider two examples of
the use of the word “lines” taken from the Terrorism
corpus:

We have broken the defensive lines of the
enemy.

The Lempa River Hydroelectric Commission
reported that one of the country’s main power
lines was out of service on 1 June because a
number of pylons were destroyed.

If the system does not know the word “lines” when it
encounters the first sentence, it should infer a meaning
like Military-Unit because within the domain, that is
likely to be the target of Break. If the system cannot
recognize ambiguity while processing the second sen-
tence, it will either create an erroneous parse or fail
altogether. Camille creates definitions for ambiguous ;

and non-existent in this and most other information extrac-
tion domains.
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Figure 2: The pruned action tree

nouns through a simple extension of its noun-learning
mechanism,.

As previously stated, the constraints on actions pro-
vide an upper bound for the interpretation of unknown
nouns. This provides the basis for a simple and elegant
mechanism to acquire noun meanings. When an un-
known noun is attached as the slot filler of a verb,? the
unification procedure (because it returns the more spe-
cific concept) gives the representation of the meaning
of that word the concept specified by the constraint.
All Camille must do is to collect these induced defini-
tions after the parse is complete.

When a word is ambiguous, the parser will try
to unify incompatible concepts (Military-Unit and
Electricity-Source in the example above). If the ini-
tial definition was inferred by Camille, however, it is
marked as tentative. The unification procedure was ex-
tended to recognize such a situation and to infer a dis-
junctive definition for the word, for example (Military-

Unit V Electricity-Source).

This mechanism was tested by removing the defini-
tions of all 9 of the ambiguous nouns within the Terror-
ism domain: branch, charge, lines, others, plant, post,
quarter, state, and system.? Although many of these

2Camille’s morphology component provides some indi-
cation of the lexical category of an unknown word. Consis-
tent interpretations are entered into the parse. The appli-
cation of syntactic constraints is usually sufficient to resolve
the word’s lexical category.

3Like the word “others”, some additional words in the
lexicon were vague. {{Lytinen 1988) also contains a dis-
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words were not “targets” for the domain (i.e. they were
not specified as interesting for the information extrac-
tion task), Camille, after processing 100 examples from
the corpus which contained the words, created ambigu-
ous definitions for five of the nine words: lines, others,
post, state, and system.?

The scoring system used in the MUCs was adapted
to facilitate evaluation of the empirical tests of
Camille’s lexical acquisition. The measures were de-
fined as: Recall is the number of correct hypotheses
created by the system divided by the total number of
undefined words. Precision is the number of correct
concepts in the hypotheses divided by the total num-
ber of concepts generated. Accuracy is the number of
correct hypotheses divided by the number of hypothe-
ses generated.

The systemn hypothesized 5 out of 9 ambiguous def-
initions. Recall, counting the correct definitions, was
8 out of 18 possible definitions, or 44%. Precision an
Accuracy were 8 out of 12, or 67%. As will be shown

cussion of dealing with vague versus ambiguous words.)
“Others” was the only vague word tested because it 0¢
curred prominently in such examples as, “11 others were
wounded.”

*It also created single definitions for many other words
that had been overlooked in the system development'
For example the word “impunity” was inferred to be 3%
Instrument-Object.

5In this paper, a hypothesis refers to a set of concepts
that Camille generates as the tentative meaning of an U
known word.



in the next section, these scores are more descriptive
for the larger verb-learning tests.

The importance of the ambiguity mechanism to the
noun/verb dichotomy is that it highlights the diffex:?
ence between the conservative and liberal approaches
to meaning inference. The conservative approach se-
lects the concept specified by the verb’s constraint be-
cause it is consistent with the data. The liberal ap-
proach searches under that concept for a more specific
node (perhaps one which is not already the label of
some other word).®

As described in the next section, when learning verb
meanings, Camille must take a liberal approach, favor-
ing the most specific hypotheses, in order to get usable,
falsifiable hypotheses. For learning ambiguous nouns,
Camille must use the the conservative approach. If the
system used the liberal approach and later encountered
a conflicting use of the noun, Camille would not know
if it had found an ambiguous word, or if it had made
a wrong initial guess about the referent of the word.
This produces the two-part strategy described abovg_

Learning Verbs

As previously mentioned, verbs tend to play the role |
of the predicate in language. Thus, they serve to orga-
nize the overall semantic structure of a sentence, with
arguments such as the subject and direct object at-
taching to them in various “slots.” This makes verbs
both more important and more difficult to learn, since
a sentence with an unknown verb is missing its head
concept.

As with nouns, Camille learns verb meanings by
searching through the concept hierarchy for an ap-
propriate concept. Because the knowledge represen-
tation imposes a lower bound on the interpretation of

unknown verbs, the system must either settle for an
overly general hypothesis (for example: Action but not
Hijacking or Kidnapping) or inductively set its own up-
per bound. In order to increase the usability and the
falsifiability of its hypotheses, Camille takes the latter
approach.

To learn nouns, the system merely applied the con-*
straints from the actions to the unknown slot fillers.
Because verbs refer to the actions, however, the sys-
tem cannot know which constraints apply. It must
therefore infer the meaning of an unknown verb by
comparing the slot fillers that are attached to it with
the constraints of the vartous action concepts. Camille
does this incrementally, adjusting the definition as each
slot filler is attached, and as each example of the word’s;
use is processed.

As when it learns nouns, the system initially places
a default definition into the parse structure for an un-
known verb and gives it the default meaning Action.

8A psycholinguistic theory, Mutual Exclusivity (Mark-
man 1991), suggests that children use a similar approach to
“fill gaps” in their lexical knowledge and thereby reduce the
computational complexity of their early lexical acquisition.

As each slot filler is attached, Camille checks which
descendants of the current meaning hypothesis have
constraints that are compatible with the slot flier.
For example, with the sentence, “Terrorist froobled the™
headquarters”, “headquarters” is initially attached as
the Object of “froobled”. All of the non-shaded nodes
in figure 2 have constraints which are consistent with
this Object. Because Camille wants to induce an upper
bound on this hypothesis set, it eliminates from con-
sideration all but the most specific members of this set.
That is, if any node in the set is the parent of another
node in the set, the parent is eliminated. To make the
set even more specific, the distance in the hierarchy
between the slot-filler concept and the constraint con-
cept is computed for each concept, and only the closest
matches are kept in the hypothesis set. For example,
Arson’s Object constraint is Building which is the par-
ent of Headquarters and therefore has a distance of one.
Human-or-Place, the Object constraint for Attack has
a distance of four from Headquarters, so Attack is re-
moved from consideration. This process is repeated as
each slot filler is attached for this and future sentences.
After each sentence is processed, Camille stores new or
modified word definitions in the lexicon.

By trimming down the hypothesis set as described,
Camille would infer the single concept Arson as the
meaning of “frooble”. Note that other concepts (At-
tack and Bombing, for example) are consistent with
the evidence, but these concepts would not be as eas-
ily disconfirmed. For example if the system encoun-
tered the sentence, “Terrorists froobled the pedestri-
ans”, the Arson hypothesis would be disconfirmed but
not the others. This is a key to Camille’s success in
learning word meanings. By choosing the most specific
concepts, Camille makes the most falsifiable hypothe-
ses. Thus further examples will be more likely to con-
flict with an initial hypothesis, invoking the generaliza-
tion procedure. This procedure searches the hierarchy
starting at the current hypothesis until a concept is
found which has constraints that do not conflict with
all of the slot fillers that have been encountered. If
another example of the the unknown word does not
conflict with the initial hypothesis, the falsifiability of]
that hypothesis increases the likelihood that it was cor-
rect. ~

To empirically test Camille’s verb-learning mecha-
nism, 50 sentences were randomly selected from the
corpus. The definitions of the 17 verbs from those sen-
tences were removed from the lexicon. The average
length of the sentences was 24 words, and the average
number of repetitions of each unknown word was 2.7.
After processing the sentences, Camille had produced
15 hypotheses of which 7 were correct (i.e. the hy-
pothesis set included a correct concept). The average
number of concepts per hypothesis was 2.5. This re-
sulted in scores of 41% Recall, 19% Precision, and 47%

Accuracy.” For comparison, the average of six runs in

"Camille was also tested in another domain which con-
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which meaning assignments were generated randomly
from a weighted distribution produced scores of 22%
Recall, 10% Precision, and 23% Accuracy. :

Related Work

Other systems have concentrated on the acquisition of
specific kinds of words. Granger noted the importance
and difficulty of acquiring verbs in his description of
Foul-Up (Granger 1977) which used heuristic methods
to learn verbs based on the prepositions in a sentence.
Zernik’s Rina (Zernik 1987) concentrated on learning
verb-particle combinations using interactive training
and extensive domain knowledge. Unfortunately, nei-
ther was evaluated on real-world data. The extent of
special-purpose knowledge that these systems required
would have made that extremely difficult to do.

Salveter, Selfridge, and Siskind have developed cog-
nitive models which perform lexical acquisition {Sal-
veter 1979; Selfridge 1986; Siskind 1990). These sys-
tems are interesting from the psychological point of
view, but they each focus on such a limited acquisi-
tion task as to render them inapplicable to real-world
processing.

On the other hand, Cardie’s and Riloff’s systems
(Cardie 1993; Riloff 1993) were specifically oriented
toward the processing of real-world texts. Cardie’s
case-based system, MayTag, did not infer meanings
for verbs though. Riloff’'s AutoSlog learned what
amounted to pattern-based production rules. One rule,
for example, matched on some subject noun phrase
followed by the passive tense of “kidnap” and then as-
signed the subject to the victim slot of a database form
which described the text. These rules could be viewed
as definitions for the words. But the system knew so
little about the words that it required separate rules
for active and gerund uses of the same word. It also
required a separate set of rules for related words like
“abduct”. AutoSlog created a large set of rules which
required filtering by a human user. Both AutoSlog and
MayTag were batch systems which performed one-shot
learning. '

Although the scores reported above for Camille’s
performance are significantly lower than the hit rates
reported by Cardie’s system, which was also set within
an information extraction task, Cardie’s scores were
combined scores of all different lexical categories, and,
as mentioned previously, MayTag made no concept hy-
potheses for verbs.

Camille’s approach to lexical acquisition is incremen-
tal so its processing and storage requirements are mini-
mized. The system learns automatically from example

tained much simpler sentences (average length: 4.3 words).
Scores in this domain were considerably higher: Recall
71%, Precision 22%, and Accuracy 76%. As discussed be-
low, the complexity of the test sentences in the Terrorism
domain considerably decreased Camille’s ability to learn
because it received noisy data.
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sentences so it does not require guidance from a hu-
man trainer. Camille doesn’t need additional knowl-
edge sources. It uses only the knowledge that is present
for standard parsing. -

Limitations and Future Work

An obvious limitation of the system as it is described
here is that it assumed that every aspect of meaning
about the domain was a priori represented in the con- |
t hierarchy. This conflicts With our intuitions that"
lexical and concept learning interact, at least to some
extent. Another aspect of Camille’s implementation
partially addresses this limitation, allowing the addi-
tion of object nodes. Because Camille has no other |
window on the world than its linguistic input, how-
ever, learning action concepts is a much more difficult
problem and will be left to future research.

The basic Camille approach does have some weak-
nesses. The production of large sets of concepts in
hypotheses was not completely mitigated by the elimi-
nation of less-specific concepts. Many sets of concepts
remain that are indistinguishable based only on the
use of slot fillers. The full implementation of Camille
also includes a mechanism which uses scripts (Schank
& Abelson 1977; Cullingford 1977) to further refine
hypotheses.

The learning procedure is sensitive to noisy input.
Because it uses an inductive procedure, Camille as-
sumes that if one of its hypotheses conflicts with sub-
sequent evidence, then the original guess was incor-
rect and the hypothesis should be altered. Noise can
be produced by a number of sources, most commonly
incomplete parses and ungrammatical input. The do-
mains on which Camille has been tested contain mostly
grammatical text. The Terrorism corpus was so com-
plex, however, that it caused great difficulty for the
parser, and incorrect or incomplete parses were com-
mon. (Camille always produces definitions for un-
known verbs that it encounters. The fact that it cre-
ated no definitions for 2 of the 17 in the test set signi-
fies that no parses or parse fragments containing these
words were passed to Camille.) Noisy input can cause
Camille to infer that a word takes a larger range of slot-
fillers. As a result, the system will make an overly gen-
eral hypothesis for a word’s meaning. One approach
to handling noise is suggested by the Camille’s mecha-
nism which handles ambiguous words. The implemen-
tation of this addition is left to future research.

Because Camille was implemented with the goal of
using only the knowledge that LINK requires for pars-
ing, it is unable to make certain inferences about word
meaning. The representation for action concepts de-
scribes only their names, their IS-A relationships to
each other, and their constraints on slot fillers. Al-
though the script mechanism allows Camille to make
inferences based on sequences of actions, the system
has no knowledge of the results of actions, their causes,
or what goals they might achieve. The addition of such




. knowledge would enhance Camille’s learning abilities,

but it would also impose an additional resource re-
quirement.

Conclusion

The task of lexical acquisition for Camille reduces to
searching for an appropriate node in the domain repre-
sentation. This abstraction of the task reveals an im-
portant distinction between learning nouns and learn-
ing verbs. The constraints on actions provide a nat-
ural upper bound on the interpretation of unknown
object labels. For action labels, no such upper bound
exists. Thus, in order for Camille to make useful infer-
ences about verb meanings, it must inductively limit
its search space. Camille does this by choosing the
most readily falsifiable hypotheses. This gives Camille
the best chance for correcting its mistakes. Thus the
system uses a two-part strategy to quickly converge on

-an appropriate hypothesis for many unknown words.
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Abstract

This paper conjectures a computational account of
how children might learn the meanings of words in
their native language. First, a simplified version of
the lexical acquisition task faced by children is mod-
eled by a precisely specified formal problem. Then, an
implemented algorithm for solving this formal prob-
lem is presented. Key advances of this algorithm over
previously proposed algorithms are its ability to learn
homonymous word senses in the presence of noisy in-
put and its ability to scale up to problems of the size
faced by real children.

Introduction

When learning their native language, children must ac- ]

quire a lexicon that maps the words in that language
to their meanings. This paper explores one way that
they might accomplish that task, adopting as few as-
sumptions as possible. In particular, the techniques
explored in this paper do not rely on children hearing
single-word utterances in situations in which they can
unambiguously determine their meaning from context.
Consider, for instance, a child hearing a multi-word
utterance such as Mommy raised the ball, in a context
where she was uncertain as to whether that utterance
as a whole meant that Mommy raised the ball, that
Mommy was holding the ball, or that Mommy wanted
the ball. In this situation, the child would have to de-
termine both that ‘Mommy raised the ball’ was the
correct meaning of the utterance as a whole, and that
the words Mommy, raised, and ball meant ‘Mommy,’
‘raised,” and ‘ball’ respectively. In doing so, the child
must somehow come to rule out many plausible but in-
correct mappings—such as the mapping from Mommy
to ‘ball,” raised to ‘Mommy,” and ball to ‘raised—
despite the fact that such mappings would be consis-
tent with the utterance just heard.

*Supported in part by ARO grant DAAL 03-89-C-
0031, by DARPA grant N00014-90-J-1863, by NSF grant
IRI 90-16592, by Ben Franklin grant 91S.3078C-1, and by
the Canadian Natural Sciences and Engineering Research
Council. Part of this work was performed while the author
was a postdoctoral fellow at the University of Pennsylvania
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This paper presents a computational study of this
lexical acquisition task. It first attempts to character-
ize the task by defining a simplified formal approxima-
tion of the actual task faced by children. It then dis-
cusses a precise and implemented algorithm for solving
this simplified formal task.

The proposed model of the task attempts to make
as few assumptions as possible. First, it makes no as-
sumption that utterances heard by the child refer to
the immediate perceptual context. It requires only
that the child be able to hypothesize from context a
set of meanings for the complete utterance that usu-
ally, though not necessarily, includes the correct one.
That utterance meaning need not refer to the here-and-
now. Second, it makes no assumption that children
can uniquely determine the meaning of each utterance
from context. It allows for referential uncertainty: sit-
uations where the child is unsure of the meaning of
an utterance. Referential uncertainty is modeled by
allowing the child to hypothesize a set of potential
meanings for each utterance heard. Third, it makes no
assumption that the child is always successful in hy-
pothesizing a set of potential meanings that contains
the correct meaning of each utterance heard. It allows
for noisy input: situations where the child unknowingly
hypothesizes only incorrect meanings for an utterance.
Fourth, it makes no assumption that each word has a
single meaning. It allows words to be homonymous.

With high accuracy, the algorithm to be described
learns a lexicon containing precisely the correct senses
for each word heard. This ability to learn de-
spite the presence of referential uncertainty, noisé;
and homonymy in the input are key capabilities
which distinguish this algorithm from those proposed
by Granger (1977), Salveter (1979), Berwick (1983),
Pustejovsky (1988), Rayner et al. (1988), Pinker
(1989), Gleitman (1990), Suppes et al. (1991), Regier
(1992), and Fisher et al. (1994). Unlike some of these
algorithms, the algorithm presented here has no prior
access to any language-specific information. Further-
more, unlike some of these algorithms, the algorithm
presented here can scale up to tasks of the size faced

by children.




The Mapping Problem

The algorithm presented in this paper solves a precisel)i]
specified formal problem called the mapping problem.
While this formal problem is simplified and abstract,
it is likely that it accurately reflects the lexical acquisi-
tion task faced by children. In this problem, the learner
is presented with a sequence of utterances, each being
a sequence of words. Each utterance is paired with a
set of expressions representing possible meanings for
that whole utterance. This set of possible meaning
expressions would be constructed by a general percep-
tual and conceptual apparatus that is independent of
language. For example, the learner might hear the
utterance Mommy raised the ball, look out into tEEJ
world and see Mommy grasping and lifting the ball,
and conjecture that CAUSE(mother, GO(ball, UP))
and GRASP(mother, ball) could be representations
of potential meanings of that utterance. Not all utter-
ances refer to observed events however. Perhaps the
utterance meant that Mommy wanted the ball. Thus
WANT (mother, ball) might be a representation of an-
other potential meaning of that utterance. Since the]
learner might not be precisely sure of what some utter-
ance means, the model allows her to conjecture a sef
of possible meanings. Such uncertainty on the part of
the learner as to what each utterance means is termed|
referential uncertainty.

In theory, the set of referentially uncertain meanings
could be infinite. This is the essence of the philosoph-
ical ‘Gavagai’ quandary discussed by Quine (1960).
Thus the set of meaning representations paired with
each utterance as input to the lexical acquisition al-
gorithm is not intended to be the set of all true facts
about the world in the situation where an utterance is
heard. It is only the finite, possibly small, set of po
tential meanings that the learner conjectures based on
some measure of salience. Sometimes this set will con-
tain the correct meaning, while other times it will not.
An utterance is considered to be noisy if it is paired
with only incorrect meaning expressions. The only re-
quirement for successful lexical acquisition is that ut-
terances be non-noisy a sufficient fraction of the time.

This paper assumes that the learner brings to bear
a language-independent theory of naive physics and
naive psychology embodied in an elaborate percep-
tual and conceptual apparatus to hypothesize potential
meanings for each utterance. However, issues such as
the organization of this apparatus, and whether the
knowledge it contains is innate or acquired, are or-
r thogonal to questions about lexical acquisition. The
essence of lexical acquisition is simply the process of]
learning the mapping between external words and in-
ternal conceptual representations.

We know very little about the conceptual represen-|
tations used by the brain. Thus this paper makes
as few assumptions as possible about such representa-
tions. It assumes only that conceptual representations
take the form of expressions in some logic. It doesn’t

care about the particular inventory of constant, func-
tion, predicate, and logical connective symbols used to
construct such expressions. The symbol L is used to
represent the meaning of words that fall outside the
chosen representational calculus. The learning algo-
rithm makes no use of the semantics or truth condi-
tions of the meaning expressions themselves. As far as
the lexical acquisition is concerned, these expressions
are simply strings of uninterpreted symbols. The repé_l
resentations of Schank (1973), Jackendoff (1983), an
Pinker (1989), for example, are all compatible with this
minimal assumption.

In order to fully specify the mapping problem, one |
must specify the process by which the meanings of
words combine to form the meanings of utterances con-
taining those words. Here again, this paper makes as
few assumptions as possible about this semantic inter-
pretation process. It assumes that the lexicon L for
a given language maps each word to a set of expres-
sions denoting the meanings of different senses for that
word, and that the meaning of an utterance u, consist-
ing of an unordered multiset of words {wi,...,wn},
is a member of the set computed by choosing some
sense t; € L(w,) for each word w; in the utterance, and
applying the function INTERPRET to the unordered
multiset of expressions {t;,...,t,}. No claim that the
actual human semantic interpretation process ignores
word order is intended. This is simply a minimal as-
sumption. If lexical acquisition can be successful under
such an underspecified semantic interpretation rule,
a fortiori it can be successful when stronger constraints
are added.

The function INTERPRET is left unspecified ex-:
cept for the following condition. If t €
INTERPRET({?1,...,t,}) then all symbols that appear
in t must appear in at least one of t;,...,¢,, and all
symbols that appear a total of k times in t4,.. '
except for variable symbols and the distinguished sym-
bol L, must appear at least k times in ¢t. This is
simply the requirement that semantic interpretation
be compositional and ‘partially linear.” It shares with
linearity the property that it cannot delete informa-
tion from the meanings of words when producing the
meaning of an utterance, and cannot add information
to the meaning of an utterance that does not come%;
from the meaning of some word in the utterance. It j
need not be truly linear since it can, however, copy !
information from a word or phrase so that it appears;
more than once in the resulting utterance meaning.
Beyond this property, the lexical acquisition process:
uses INTERPRET as a ‘black box’ (with the exception
of the RECONSTRUCT(m, N(s)) procedure to be de-:
scribed later). i

The mapping problem can now be stated formally ‘4
as follows. The learner is presented with a corpus of
utterances u, each paired with a set M of hypothesizetg-i

-,tn,

meaning expressions. A hidden lexicon L was used
generate the corpus. L maps each word in the corpus

Lexical Acquisition 761



to a set of senses, each represented as an expression.
Some subset of the utterances in the corpus have the
property that

(3t € L(wr)) - -- (3tn € L(wn))
INTERPRET({t1,...,tn})) N M # 0

where u = {w;,...,w,}. The learner must find the
lexicon L used to generate the corpus.

The Noise-Free Monosemous Case

Before presenting the full lexical acquisition algorithm, ]
capable of dealing with noise and homonymy, I will
first present a simplified algorithm that handles only
noise-free input under the assumption that all words
are monosemous. This algorithm receives as input a
sequence of pairs {u, M) where each utterance u is an

unordered multiset of words and M is the set of expres- |

sions representing referentially uncertain hypothesized
meanings of u.

The algorithm is on line in the sense that it makes a
single pass through the input corpus, processing each
utterance in turn and discarding it before processing
the next utterance. The algorithm retains only a small
amount of inter-utterance information. This informa-
tion takes the form of a number of maps from words
to sets of senses, and from senses to sets of symbols
and meaning expressions. The table L{w) maps each
word w to a set of senses. The table N(s) maps each
sense s to a set of symbols that have been determined
to be necessarily part of the meaning of s. Likewise,
the table P(s) maps each sense s to a set of symbols
that have been determined to be possibly part of the
meaning of s. N(s) initially maps each sense to the
empty set 9, while P(s) initially maps each sense to
the universal set T. At all times, N(s) C P(s) for
all senses s. The algorithm monotonically adds ele-
ments to N(s) and removes elements from P(s) un-
til N(s) = P(s). When this happens, the algorithm is

o

said to have converged on the symbols for the sense s,
denoted CONVERGEDONSYMBOLS?(s).

Having converged on the symbols for a given sense
does not imply knowing its meaning.
ple, knowing that some sense for the word raise con-
tains precisely the set {CAUSE,GO,UP} as its set
of (non-variable) symbols does not specify whether
the expression representing the meaning of that
sense is CAUSE(z,GO(y,UP)), GO(CAUSE,UP),
UP(CAUSE(z),GO(z,y)), and so forth. For this,
the algorithm maintains a fourth table D(s) that
maps each sense s to a set of possible meaning ex-
pressions. D(s) initially maps each sense s to the
universal set T. The algorithm monotonically re-
moves elements from D(s) until D(s) is a single-
ton. When this happens, the algorithm is said to
have converged on the meaning of the sense s, de-
noted CONVERGEDONMEANING?(s).

The algorithm maintains a fifth table T'(s) that maps

For exam-
———

each sense to a temperature, a non-negative integer.
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T (s) initially maps each sense to zero. The tempera-
ture of a sense increases as the learner become more
confident that she has not mistakingly hypothesized
that sense to explain a noisy utterance. There are
two integer constants, u and p,, denoting freezing
points. A sense s is frozen, denoted FROZEN?(s), if
it has converged on meaning and either D(s) = {L}
and T(s) > py1, or D(s) # {L} and T(s) > p. Senses
are subject to a garbage collection process unless they
are frozen.

Each sense passes through four stages, starting out
unconverged, converging on symbols, then converging
on meaning, and finally being frozen. Different senses
can be in different stages at the same time. The pro-
cesses that move senses through each of these stages
are interleaved. They are implemented by the proce-
dure PROCESS(S, M). The input to PROCESS(S, M)
consists of an unordered multiset S of senses and a
set M of expressions. In the noise-free monosemous
case, the lexicon L maps each word w to a set contain- ;
ing a single sense. Each utterance u = {wy,...,Wa},
paired with a set M, is processed by letting s; be the
single element of L(w;), for each word w; in the utter-
ance, forming the unordered multiset S = {s1,...,5.},
and calling PROCESS(S, M). In the following descrip-
tion, F'(m) denotes the set of all symbols that appear
in the expression m, while F}(m) denotes the set of all
symbols that appear only once in m.

E—

Procedure PROCESS(S, M):

Step 1 Ignore those hypothesized utterance meanings
that contain a symbol that is not possibly con-
tributed by some word in the utterance or that are
missing a symbol that is necessarily contributed by
some word in the utterance.

Me{me M|[N(s) S F(m) AF(m) C | P(s)}
sES s€S

Step 2 For each word in the utterance, remove from
the set of possible symbols for that word, any sym-
bols that do not appear in some remaining hypoth-
esized utterance meaning.

for s € Sdo P(s)«P(s)N U F(m) od
meM

Step 3 For each word in the utterance, add to the set
of necessary symbols for that word, any symbols that
appear in every remaining hypothesized utterance
meaning but are missing from the set of possible
symbols of all other words in the utterance.

forse S
do N(s)«N(s)u

(ﬂ F(m))\ U P6)
meM s'€S,s'#s

od




Step 4 For each word in the utterance, remove from
the set of possible symbols for that word, any sym-
bols that appear only once in every remaining hy-
pothesized utterance meaning if they are necessarily
contributed by some other word in the utterance.

forse S
do P(s)«P(s)\
<ﬂ Fl(m)>ﬂ U N(s)
meM s'€8,s'#s
od
Step 5 For each word in the utterance that

has converged on meaning, call the function
RECONSTRUCT(m, N(s)) to compute the set of all
fragments of the expression m that contain precisely
the set of non-variable symbols N(s), and remove
from D(s) any expressions not in that set.!

forse S
do if CONVERGEDONSYMBOLS?(s)
then D(s)«<D(s)N
|J REconsTRUCT(m, N(s))

meM
fi od

Step 6 If all words in the utterance have converged
on symbols, for each word in the utterance, remove
from the set of possible meaning expressions for that
word, those meanings for which there do not exist
possible meanings for the other words in the utter-
ance that are compatible with one of the remaining
hypothesized utterance meanings. This is a general-
ized form of arc consistency (Mackworth 1992).

if (Vs € S)CONVERGEDONSYMBOLS?(s)
then for s € S
do if (Vs' € S)[s' #5 — D(s") # T]
then D(s)«{t € D(s)|
(3t, € D(s1)) - (3t € D(sn))

{s,51,...,52 }=S
(Im € M)
m € INTERPRET({¢,t,,.... t.H}
fiodfi

Step 7 If all senses have converged on meaning, then
increment the temperature of those senses that do
mean L if all senses that don’t mean L are frozen,
and likewise increment the temperature of those
senses that don’t mean L if all senses that do mean L
are frozen.

if (Vs € S)CONVERGEDONMEANING?(s)
then fors € S
do if [D(s) = {L}A
(Vs € S)(s # {L} = FROZEN?(s))]V
[D(s) # {L}A
(Vs € S)(s = {L} = FROZEN?(s)}]
then T(s)«T(s)+1fiodfi O

! A future paper will describe the algorithm for comput-
ing RECONSTRUCT(m, N(s)) in greater detail.

While steps 1 through 4 always take a small amount
of time, steps 5 and 6 can potentially take a large
amount of time. Thus steps 5 and 6 are simply aborted
if they take too long. This happens only a small frac-
tion of the time in practice, usually for long utterances,
and doesn’t appear to significantly decrease the conver-

gence rate of the algorithm. .

The tables N(s) and P(s) are reminiscent of
Mitchell’s (1977) version-space algorithm. In the
version-space algorithm, a concept is a set of instances.
A concept is more general than its subsets and more
specific than its supersets. When learning a concept,
the version-space algorithm keeps two sets of concepts
that bound the target concept from above and below.
The target concept must be more general than each el-
ement of the lower bound and more specific than each
element of the upper bound. Since the generality re-
lation between concepts is transitive, each time a con-
cept is added to the upper bound, any other concepts
from the upper bound that are strictly more general
are redundant and can be removed. Likewise, each
time a concept is added to the lower bound, any other
concepts from the lower bound that are strictly more
specific are also redundant and can be removed. Be-
cause the addition of a new concept to either the upper
or the lower bound will not always result in such a re-
dundancy, the upper and lower bounds may grow to
be sets of more than one element. _

The algorithm presented here differs from the
version-space algorithm in two important ways. First,
the upper bound will always contain precisely two con-
cepts. The sets N(s) and P(s) each denote a sin-
gle concept, namely the set of expressions m such
that N(s) C F(m) or that F(m) C P(s) respectively.
Both of these concepts can be seen as members of the
upper bound. The target concept must be more spe-
cific than each of these concepts. Each time a symbol is
added to N(s), a new concept results that is necessarily
more specific than the prior N(s) concept yet is neither
more specific nor more general than the P(s) concept.
Thus adding a symbol to N(s) replaces the prior N(s)
concept and leaves the P(s) concept unchanged. Simi-
larly, each time a symbol is removed from P(s), a new
concept results that is necessarily more specific than
the prior P(s) concept yet is neither more specific nor
more general than the N(s) concept. Thus removing
a symbol from P(s) replaces the prior P(s) concept
and leaves the N(s) concept unchanged. Thus by in-
duction, the upper bound will always contain precisely
two concepts.

Second, the algorithm presented here has no ana-
log to the version-space lower bound.  Instead,
the algorithm utilizes the domain specific fact that
when N(s) = P(s) the upper bound admits only two
concepts, one a singleton and one empty. Since in this
domain, all target concepts are singletons, the empty
concept can be implicitly ruled out. Thus while in gen-
eral, the version-space algorithm requires convergence
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of the upper and lower bounds to uniquely identify
target concepts, a special property of this domain al-
lows target concepts to be identified using only upper
bound reasoning. Thus the algorithm presented here is
an important efficient special case of the version-space
algorithm for the particular representation chosen for
word meanings.

As normally viewed, the version-space algorithm
generalizes the lower bound on the basis of observed
positive instances of a concept and specializes the up-
per bound on the basis of observed negative instances.
A common maxim in the linguistic community is that
children rarely if ever receive negative evidence of any
linguistic phenomena. In the particular case of learn-
ing word meanings, this means that children might be
told or shown examples of what a word like bicycle
means, but they are never told or shown examples of
what bicycle does not mean. A naive interpretation
of this fact would be that a learner could only apply
half of the version-space algorithm to learn the lower
bound, but could not learn the upper bound. This has
prompted Berwick (1986) to propose the Subset Princi-
ple, the claim that learners are conservative, adopting
only those concepts on the fringe of the lower bound.

This raises an apparent paradox. Since the algo-
rithm presented here maintains only an upper bound
and no lower bound, it would appear that it is learn-
ing only from negative evidence and not from positive
evidence. Deeper inspection however reveals that the
algorithm is taking advantage of two particular kinds
of implicit negative evidence available when learn-
ing word meanings: inference between the same word
heard in different non-linguistic contexts and inference
between different words in the same sentence. The
former is traditionally held by psychologists to be the
basis of lexical acquisition in children (cf. Pinker 1989,
Event Category Labeling). What is not traditionally
acknowledged is that this is a form of implicit negative
evidence. Hearing a word in multiple contexts and con-
cluding that it must mean something shared by those
contexts carries with it the implicit claim that a word
cannot mean something that is not contained in the
set of meanings hypothesized for an utterance contain-
ing that word. Use of the later form of implicit nega-
tive evidence, however, appears to be new. Given the
particular semantic interpretation rule presented ear-
lier, a learner hearing John rode a bicycle after having
determined that John must mean John could infer
that bicycle could not also mean John. Both of these
forms of reasoning aid a learner in determining what
words might not mean and allow the upper half of the
version-space algorithm to apply. This has the im-
portant consequence that the Subset Principle is not
strictly necessary, as had been previously thought, even
if no explicit negative evidence is available.
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Dealing with Noise and Homonymy

A sense s is termed consistent if N(s) C P(s)
and D(s) # @. The simplified algorithm will produce
inconsistent senses if it is used to process a corpus that
exhibits noise or homonymy. Nonetheless, the proce-
dure PROCESS(S, M) can be used as a subroutine by
an extended algorithm that can deal with noise and
homonymy.

In the simplified algorithm, PROCESS(S, M) perma-
nently updates the tables N, P, D, and 7. The
extended algorithm will additionally make use of a
variant of this procedure, CONSISTENT?(S, M), that
doesn’t actually perform the updates but returns true
if and only if every sense s € S would remain consistent
if PROCESS(S, M) were called.

In the extended algorithm, L may map words to sets
of senses, not just singleton senses. Initially, L maps
each word to a unique singleton sense. The extended
algorithm makes use of the following function.

ALTERNATIVES(u, M) =
{{s1,---,8n}|51 € L(w1) A~ A sp € L{wa) A

s

~
{wi,....;wn}=u

CONSISTENT? ({s1,...,S}, M)}
The extended algorithm is presented below.
Procedure PROCESSUTTERANCE(u, M):
Step 1 If ALTERNATIVES(u, M) # @, choose the el-

ement {si,...,S,} € ALTERNATIVES(u, M) with
the maximum value of T(s1) + --- + T(sn), per-
form PROCESS({s1,...,5n}, M), and return.

Step 2 Otherwise, find the smallest subset v’ C u
such that if a new unique sense is added to L(w)
for each w € v/, ALTERNATIVES(u, M) # 0.

Step 3 Add a new unique sense to L(w) for each w €
u'.

Step 4 Now ALTERNATIVES(u, M) must not be
empty, so choose the element {si,...,s.} €
ALTERNATIVES(u, M) with the maximum value
of T(s;) + --- + T(sn), call the procedure
PRrocess({s1,...,Sn}, M), and return. O

Since either step 2 in the above algorithm, or the
computation of ALTERNATIVES(u, M), may take a long
time, an utterance is simply discarded if these compu-
tations exceed a certain time limit. The top-level pro-
cedure simply evaluates PROCESSUTTERANCE(u, M)
for each input sample (u, M).

The intuitive idea behind this algorithm is as fol-
lows. The algorithm operates under the default as-
sumption that each word has a single sense. Under
this assumption, it tries to construct a lexicon that ex-
plains all of the utterances in the corpus, i.e. one that
allows each utterance to take on as its meaning, one
of the referentially uncertain expressions paired with
that utterance. If the corpus does not exhibit noise
or homonymy, it will succeed at this task. If however,



the corpus does exhibit noise or homonymy, some of
the word senses will become inconsistent during the
execution of the acquisition algorithm. This can hap-
pen for one of three reasons. Either (a) the current
utterance contains a word used in a different sense
than the current senses hypothesized for that word,
(b) the current utterance is noise, or (c) some previous
utterance was noise and processing that utterance pol-
luted the hypothesized meanings of some words shared
with the current utterance. The single mechanism
of splitting word senses, embodied in steps 2 and 3
of PROCESSUTTERANCE(u, M), is used to cope with
all three of these cases. If the current utterance does
indeed contain words used in a different sense then
previously hypothesized, it is likely that an attempt to
merge the two senses into one will yield an inconsis-
tency. Selecting the minimal set of senses to split to
resolve such an inconsistency will likely correlate with
the actual homonymous words encountered. Noisy ut-
terances are also likely to yield an inconsistency. Pay-
ing attention to noisy utterances simply causes the cre-
ation of spurious new word senses to account for those
utterances. These spurious senses are unlikely to be
encountered more than once since they were created
solely to account for a random noisy utterance. Thus
these senses are unlikely to progress very far along the
path to convergence on symbols, meaning, or being
frozen. These senses are filtered out every so often by
having the top-level procedure remove the non-frozen
senses of each word if some sense for that word is frozen
and the senses of each word that haven’t converged on
symbols if some sense for that word has converged on
symbols.

Experiments

Since the algorithm presented learns from utterances
paired with hypothesized utterance meanings, and
there do not exist corpora of naturally occurring ut-
terances paired with such meaning representations,
it has been tested on synthetic corpora, generated
randomly according to controllable distributional pa-
rameters. In one such experiment, a random lexi-
con mapping 1,000 words to 1,680 senses was gener-
ated. The ‘words’ in this lexicon were simply the sym-
bols w; ... wyggo while the ‘senses’ were randomly con-
structed S-expressions over a conceptual vocabulary of
250 conceptual symbols, denoted s . .. so50. A uniform
distribution was used to select the conceptual symbols
when constructing the random S-expressions. Of these
1,680 senses, 800 were variable-free expressions. These
had a maximal depth of 2 and a maximal branching
factor of 3 and were intended to model noun-like word
senses. Another 800 senses contained from 1 to 3 vari-
ables denoting open argument positions. These were
intended to model verb-like word senses and had the
same maximal depth and branching factor. A uniform
distribution was used to control the choice of depth
and branching factor used to generate each synthetic

word sense. The final 80 word senses were taken to
be L to model function words. These 1,680 senses were
uniformly distributed among the 1,000 words. Some
words contained only a single sense while others con-
tained several. A given word could have a mixture of
noun-like, verb-like, and function-word-like senses.

Using this lexicon, a corpus of 246,439 random ut-
terances containing 1,269,153 words was generated. A
uniform distribution was used to select the words when
generating the utterances. These utterances ranged in
length from 2 to 27 words with an average of 5.15 words
per utterance. The lexicon was used to parse each
utterance and construct a semantic representation.
80% of the utterances were paired with their correct
semantic representation along with the semantic rep-
resentation of 9 other randomly generated utterances.
20% of the utterances were paired with 10 incorrect se-
mantic representations corresponding to 10 other ran-
domly generated utterances. Thus the corpus exhib-
ited a degree of referential uncertainty of 10 represen-
tations per utterances and a noise rate of 20%. Finally,
each utterance in the corpus was permuted randomly
before being presented to the acquisition algorithm to
guarantee that the algorithm did not make any use of
word order.

This corpus was then presented to the lexical ac-
quisition algorithm. During acquisition, of course, the
algorithm had no access to the lexicon used to generate
the corpus. After completion, the lexicon acquired by
the algorithm was compared with the original lexicon
used to generate the corpus. In a little over three days
of CPU time on a Sun SPARCclassic,™ the algorithm
succeeded in recovering at least one correct meaning
for each of the 1,000 words in the lexicon. It failed
to find 33 of the 1,680 word-to-meaning mappings and
mistakingly conjectured 9 incorrect word-to-meaning
mappings for a combined error rate of 2.5%. Due to
computer resource limitations, for this experiment, the
algorithm was set to terminate after it had acquired
98% of the word senses in the lexicon, thus account-
ing for the 33 false negatives. It appears likely that
the algorithm would have succeeded in acquiring all
1,680 senses if it was left to run on a somewhat longer
corpus.

It appears that the length of the corpus needed
to learn a lexicon of a given size can depend signif-
icantly on the homonymy rate. Another experiment
was conducted where the lexicon did not exhibit any
homonymy but where all other corpus construction
were kept parameters the same. In particular, the cor-
pus still exhibited a degree of referential uncertainty
of 10 and noise rate of 20%. For this experiment, the
algorithm correctly acquired 1029 out of 1050 word-to-
meaning mappings, making only a single mistake. Here
again the algorithm was terminated before it could
acquire the remaining 21 word-to-meaning mappings
but would likely have done so with a somewhat longer
corpus. The important difference is that this run re-
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quired a corpus of only 12,840 utterances, less than
one-twentieth the size of the first experiment. More
work is necessary to determine whether this difference
reflects a fundamental difficulty inherent in coping with
homonymy or whether this is an artifact of the partic-
ular lexical acquisition algorithm presented here.

No claim is intended that these examples reflect all
of the complexities faced by children learning their na-
tive language. First of all, it is unclear how to select
appropriate values for corpus parameters such as noise
rate, homonymy rate, and degree of referential uncer-
tainty. In the above experiments, the noise rate of
20% and the value of 10 for the degree of referential
uncertainty were chosen arbitrarily, purely to test the
acquisition algorithm. Our current impoverished level
of understanding of how conceptual representations are
constructed from perceptual input, either by adults or
by infants, makes it difficult to select a more motivated
noise rate or degree of referential uncertainty. It is also
difficult to accurately assess the homonymy rate in a
given language as that depends on how one decides
when two senses differ. The homonymy rate of 1.68
senses per word was chosen for the experiments pre-
sented here since the WORDNET database (Beckwith
et al. 1991) exhibits a homonymy rate of 1.68. No
claim that children face similar noise and homonymy
rates is intended.

Conclusion

A number of further questions must be answered be-
fore this algorithm can be proposed as a theory of how
children learn word meanings. Currently, not much is
known about the cognitive representations that chil-
dren bring to the task of language learning, how wide
the range of hypotheses that they construct is, how
severe the noise problem is, or how much homonymy
they face. But the present work shows that an algo-
rithm that can cope with these problems exists and
that despite quite pessimistic assumptions about the
values of these parameters, the algorithm has reason-
able running times and convergence rates. This re-
search suggests that exploring the space of potential
lexical acquisition procedures to find those that work
will give insight into the lexical acquisition task, lead to
a better understanding of how children might accom-
plish that task, and motivate experiments to determine
how they actually do so.
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