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This article describes a new theory of propositional reasoning, that is, deductions depending on if,
or, and, and not. The theory proposes that reasoning is a semantic process based on mental models.
It assumes that people are able to maintain models of only a limited number of alternative states of
affairs, and they accordingly use models representing as much information as possible in an im-
plicit way. They represent a disjunctive proposition, such as “There is a circle or there is a triangle,”
by imagining initially 2 alternative possibilities: one in which there is a circle and the other in which
there is a triangle. This representation can, if necessary, be fleshed out to yield an explicit represen-
tation of an exclusive or an inclusive disjunction. The theory elucidates all the robust phenomena of
propositional reasoning. It also makes several novel predictions, which were corroborated by the

results of 4 experiments.

Propositional reasoning is ubiquitous in daily life. It consists
of combining information from propositions containing such
connectives as iff and, or, and not. For example, take the follow-
ing premises:

If there is fog, then the plane will be diverted.
There is a fog.
It is easy to draw the following conclusion:
The plane will be diverted

It is natural to suppose that the mind must contain a corre-
sponding formal rule of inference:

If A, then B.
A
. B

It is also natural to suppose that the inference proceeds by

matching the logical form of the premises to this rule of modus

ponens. The rule can then be used to derive the conclusion.
The dominant theoretical tradition is indeed that human
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beings are equipped with formal rules of inference that enable
them to make deductions. Versions of such theories have been
proposed by most of the those who have worked on the psychol-
ogy of deductive reasoning. The idea goes back to Boole in the
nineteenth century, who wrote of his formal calculus for propo-
sitional reasoning, “The laws we have to examine are the laws of
one of the most important mental faculties. The mathematics
we have to construct are the mathematics of the human intel-
lect” (1847/1948, p. 7). In our era, the formal view has been
advocated by Piaget and his colleagues: “Reasoning is nothing
more than the propositional calculus itself” (Inhelder & Piaget,
1958, p. 305). Piaget’s views about logic were idiosyncratic (e.g.,
see Braine & Rumain, 1983), but more recent proponents of
formal rules have based their systems on orthodox logic. In
particular, they have used the logical method of natural deduc-
tion, which has separate rules of inference for each of the con-
nectives, not, iff and, and or. Many theorists have proposed such
accounts of the psychology of propositional reasoning (e.g.,
Braine, 1978; Braine, Reiser, & Rumain, 1984; Johnson-Laird,
1975; Macnamara, 1986; Osherson, 1974-1976, 1975; Pollock,
1989; Rips, 1983, 1988; Sperber & Wilson, 1986). They all hold
the view aptly expressed by Rips (1983) in the following terms:

. . . deductive reasoning consists in the application of mental in-
ference rules to the premises and conclusion of an argument. The
sequence of applied rules forms a mental proof or derivation of
the conclusion from the premises, where these implicit proofs are
analogous to the explicit proofs of elementary logic (p. 40).

Henceforth, we will refer to these accounts of reasoning as rule
theories.

Our view of deductive competence is that people are rational
in principle, but they err in practice. Any set of deductive prem-
ises yields an infinite number of valid conclusions, but most of
them are banal, such as an arbitrary number of conjunctions of
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a premise with itself. Logically untutored individuals never
draw such conclusions. In general, they eschew conclusions that
contain less semantic information than premises. Hence, sup-
pose they are asked what follows logically from the following
premise:

Anne is at the party and Alan is at the game.
They do not spontaneously draw the conclusion:
Anne is at the party.

Similarly, they seek conclusions that are more parsimonious
than the premises. Hence, suppose they are asked what follows
from the following premises:

Betty is here.
Brian is at work.
They do not spontaneously draw the conclusion:
Betty is here and Brian is at work.

They also do not bother to repeat in their conclusions what is
asserted categorically by a premise (cf. Grice, 1975). They try
instead to draw conclusions that make explicit some informa-
tion only implicit in the premises. In short, to deduce is to
maintain semantic information, to simplify, and to reach a new
conclusion. Where there is no valid conclusion that meets these
three constraints, logically untrained individuals declare that
nothing follows from the premises (Johnson-Laird, 1983). Any
theory of how people reason should accordingly reflect these
constraints, though they be may emergent properties of other
principles.

In thisarticle, we aim to present a new explanation of proposi-
tional reasoning. Our hypothesis is that the underlying deduc-
tive machinery depends not on syntactic processes that use for-
mal rules but on semantic procedures that manipulate mental
models. This theory is in part inspired by the model-theoretic
approach to logic. Semantic procedures construct models of
the premises, formulate parsimonious conclusions from them,
and test their validity by ensuring that no alternative models of
the premises refute them. This approach is akin to the analysis
of problem solving as a heuristic search through a problem
space in which each state corresponds to a mental model (Ne-
well, 1990; Newell & Simon, 1972; Simon, 1990).

Various sorts of mental models have been postulated as un-
derlying deduction (e.g., see Erickson, 1974; Guyote & Stern-
berg, 1981; Levesque, 1986; Newell, 1981; Polk & Newell,
1988). Our view is that models have a structure that corre-
sponds directly to the structure of situations. Each individual in
asituation is represented by a corresponding mental token, and
the properties of individuals and the relations among them are
likewise modeled in an isomorphic way (see Johnson-Laird,
1983, p. 419-447). This theory has been applied to spatial rea-
soning (Byrne & Johnson-Laird, 1989), to reasoning with single
quantifiers (see Johnson-Laird & Bara, 1984; Johnson-Laird &
Byrne, 1989), and to reasoning with multiple quantifiers (John-
son-Laird, Byrne, & Tabossi, 1989). It has not, however, been
applied to propositional reasoning. Hence, as many critics have
pointed out (Braine et al., 1984; Evans, 1987; Rips, 1986, 1990),
the model theory has been radically incomplete. In the present

article, which supersedes the suggestions in Johnson-Laird and
Byrne (1991), we remedy this deficiency. We present a compre-
hensive model theory of propositional reasoning.

Our plan is to consider those connectives that can be accom-
modated within rule theories, namely, not, and, or, and if We
begin by outlining the distinction in logic between rules and
models. We describe some representative rule theories in psy-
chology and the contrasting model theory, including its com-
puter implementation. This theory motivates a reanalysis of the
major experimental studies, and we show how it explains their
principal phenomena. The theory leads to novel predictions,
and we report some experiments designed to test them. Finally,
we consider the chief differences between rules and models.

Rules and Models in Logic

Logicians distinguish between reasoning based on formal
rules of inference (proof-theoretic methods) and reasoning
based on models (model-theoretic methods). A proof-theoretic
method uses formal rules of inference to derive conclusions
from premises in a syntactic way. Here, for example, is a formal
rule of inference for inclusive disjunction:

A or B, or both.
Not-A.
Therefore, B,

where A and B can be any propositions. The rule can be used to
make the following deduction:

Lisa is in Cambridge or Ben is in Dublin, or both.
Lisa is not in Cambridge.
Therefore, Ben is in Dublin.

The disjunctive rule is part of most psychological theories
based on formal rules (e.g., Braine, 1978; Johnson-Laird, 1975;
Rips, 1983).

A formal calculus can be given a semantic interpretation in
terms of models, and the standard model-theoretic method for
the propositional calculus is based on truth tables. The mean-
ing of each connective is specified by a truth table. An inclusive
disjunction of two propositions, A or B or both, is true provided
that at least one of the two propositions is true, and is false only
if they are both false. This truth-functional definition can be
stated in a truth table, where T denotes true, and F denotes
false, and each row states a separate possibility:

A B A or B, or both
T T T
T F T
F T T
F F F

The connectives of the propositional calculus can all be defined
by truth tables. Strictly speaking, it is a mistake to assign truth
values to sentences in natural language: The same sentence can
be used to assert many different propositions; for example, the
sentence “I felt ill yesterday™ asserts different propositions de-
pending on who asserts it and when it is asserted. Hence, it is
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propositions, not sentences, that have truth values (Strawson,
1950).

Deductions can be made using truth tables rather than for-
mal rules. Each premise is used to eliminate otherwise possible
combinations of the atomic propositions that occur as constitu-
ents of the premises. Thus, the deduction above concerns four
possibilities of two atomic propositions:

Lisa is in Cambridge Ben is in Dublin

T T
T F n
F T
F F

The first premise, Lisa is in Cambridge or Ben is in Dublin, or
both, eliminates the fourth possibility in the table, which is not
compatibie with the truth of this premise. The second premise,
Lisa is not in Cambridge, eliminates the first 2 possibilities.
When you have eliminated the impossible, then whatever re-
mains must be the case. What remains is, of course, the third
possibility, in which it is true that Ben is in Dublin. This conclu-
sion therefore follows validly from the premises, and the deduc-
tion is made solely by using the meanings of the premises to
eliminate possibilities. This method needs procedures for con-
structing truth tables and for eliminating possibilities from
them, but it does not need any formal rule of inference, such as
the rule for disjunction that we described earlier.

The fact that semantic procedures do not depend on formal
rules of inference can be hard to grasp. Skeptics often ask,
“Where do the truth tables come from-——surely one needs to
know the formal rules to construct the truth tables?” The an-
swer is that truth tables are merely a systematic way of spelling
out a knowledge of the meanings of connectives. To know the
meaning of an inclusive disjunction, A or B, is to know that the
assertion is true if at least one of the propositions is true and
that it is false only if both of the propositions are false. The
skeptic, however, persists: “Surely this knowledge must derive
from formal rules of inference?” In fact, the formal rules for
propositional connectives are consistent with more than one
possible semantics (e.g., see Kneale & Kneale, 1962, p. 678).
Hence, although it is sometimes suggested that the meaning of
a term derives from, implicitly reflects, or is nothing more than
the rules of inference for it, this idea is unworkable (see Osher-
son, 1974-1976, Vol. 3, p. 253; Johnson-Laird, 1983, p. 41;
Prior, 1960). On the contrary, the rules of inference must reflect
the meanings of the connectives. The meaning of an assertion
relates it to the world, and the meaning of a connective makes a
contribution to these truth conditions. A rule of inference en-
ables a reasoner to pass from a set of premises to a conclusion in
a purely formal way, but this step is constrained by the truth
conditions of the assertions.

A major part of modern logic concerns the relations between
proof-theoretic methods that rely on formal rules and model-
theoretic methods that rely on the meanings of expressions.
Logicians have proved that any propositional inference that is
valid according to the truth-tabie method can be derived using
the formal rules of the propositional calculus. The calculus is
therefore said to be complete. Logicians have also proved that
any propositional inference that can be derived using the calcu-

lus can also be validated using truth tables. The calculus is
therefore said to be sound (e.g., see Jeffrey, 1981). What must be
emphasized, particularly in the context of psychological the-
ories, is that the two approaches are distinct: One is syntactic
and based on formal rules of inference, and the other is seman-
tic and based on the meanings of connectives. To deny this
point is to deny the significance of these proofs of completeness
and soundness.

Rule Theories of Propositional Reasoning

Natural deduction has been advocated as the most plausible
account of mental logic by many theorists (e.g., Braine, 1978;
Braine et al., 1984; Johnson-Laird, 1975; Macnamara, 1986;
Osherson, 19741976, 1975; Pollock, 1989; Rips, 1983, 1988;
Sperber & Wilson, 1986), and at least one simulation program
uses it to construct both forward and backward chains of infer-
ence (Rips, 1983). All of these theories posit an initial process
of recovering the logical form of the premises. Indeed, what
they have in common outweighs their differences, but here we
outline three of them to enable readers to make up their own
minds.

Johnson-Laird (1975) proposed a theory of propositional
reasoning partly based on natural deduction. It distinguishes
between primary and auxiliary rules of inference. The primary
rules include the rule for disjunction presented earlier and the
rule for modus ponens: .

If A, then B.
A
Therefore, B.
The following is the rule introducing disjunctive conclusions:
A
Therefore, A or B, or both.

This leads to deductions that throw semantic information
away; that is, the conclusion rules out fewer states of affairs than
does the premise. Valid inferences that reduce information in
this way, as we noted above, are not spontaneously drawn by
logically untutored reasoners and strike them as odd or absurd
(eg., see Matalon, 1962). Yet, without this rule, it would be
difficult to make the following inference:

If it is frosty or it is foggy, then the game will not be played.
It is frosty.
Therefore, the game will not be played.

Johnson-Laird therefore proposed that the rule (and others like
it) is an auxiliary one that can be used only to prepare the way
for a primary rule, such as modus ponens.

Braine and his colleagues described a series of formal the-
ories based on natural deduction (see Braine, 1978; Braine &
Rumain, 1983). Their rules differ in format from Johnson-
Laird’s (1975) in two ways. First, and and or can connect any
number of propositions, and so, for example, the rule introduc-
ing the conjunction of premises has the following form in their
theory:
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P,,P,, --- P,.
Therefore, P, and P, and - - - P,.

Second, Braine and his colleagues avoided the need for some
auxiliary rules, such as the disjunctive rule above, by building
their effects directly into the main rules. He included, for exam-
ple, the rule for modus ponens:

If Ph PZ’ et
P,.
Therefore, Q.

or P, then Q.

Again, this allows for any number of propositions in the dis-
junctive antecedent. Sperber and Wilson (1986) also adopted
this idea.

Rips (1983) proposed a theory of propositional reasoning,
which he simulated in a program called ANDS (A Natural
Deduction System). The rules are used by the program in the
form of procedures. The program evaluates given conclusions
and builds both forward- and backward chains of deduction,
and therefore it maintains a set of goals separate from the asser-
tions that it has derived. Pollock (1989) proposed a similar
system in which propositional rules are systematically divided
into those that can be used in forward chains and those that can
be used in backward chains. In ANDS, certain rules are treated
as auxiliaries that can be used only when they are triggered by a
goal, as in this example:

A, B.
Therefore, A and B.

This rule could otherwise be used ad infinitum at any point in
the proof'to generate an unlimited series of valid conclusions. If
the program can find no rule to apply during a proof, then it
declares that the argument is invalid. Rips assumes that rules of
inference are available to human reasoners on a probabilistic
basis. We consider the evidence for rule theories later, but first
we describe the model theory of propositional reasoning.

The Model Theory of Propositional Reasoning

Deductive reasoning according to the model theory depends
on three main processes. First, the starting point of the deduc-
tion—verbal premises, or perceptual observations—is used to
construct a set of mental models, typically a single model. In
the case of verbal premises, this model is constructed on the
basis of their meaning and any relevant general knowledge. In
the case of observations, the end product of perception is a
model of the world (Marr, 1982). Second, if no conclusion is
available or provided by the experimenter, then an attempt is
made to formulate one from the model: The conclusion should
express information that is not directly asserted by the prem-
ises. If reasoners base their conclusions on models, then, as we
point out, they are bound to maintain the semantic informa-
tion in the premises. If there is no conclusion expressing some-
thing that is not explicit in the premises, then the response
“nothing follows” is made. Third, if a conclusion is forthcom-
ing, then its validity can be checked by ensuring that no model
of the premises renders it false. If there is no such model, then

the conclusion is valid, that is, it must be true given that the
premises are true. If there is such a model, then it is necessary to
return to the second stage to determine whether there is any
conclusion that holds over all the models so far constructed. If it
is uncertain whether such an alternative model exists, then the
conclusion can be drawn on a tentative or probabilistic basis
(cf. Kahneman & Tversky, 1982).

So much for the general theory. How in particular can it be
applied to propositional reasoning? In fact, all that is needed is
an account of how the meanings of connectives are used in the
construction of models. Once this account is available, the rest
of the deductive machinery is already in place to deal with the
domain. The same deductive machinery can be used for all
domains: What changes are the relevant terms (quantifiers,
connectives, etc) and the concomitant semantics underlying
the construction of models? The question of meaning can best
be approached in the following way. Because we are concerned
here only with connectives for which formal rules of inference
are appropriate, we assume that the connectives are truth-func-
tional, that is, their meanings can be specified by truth tables.
The mental representation of their meanings, however, is un-
likely to take the form of truth tables because they are too bulky
to be mentally manipulated (see later). The problem is there-
fore to reconcile the semantics of truth tables with the con-
straints of mental processing and to do so in a way that explains
the phenomena of propositional reasoning. Truth tables need
to be replaced with psychologically plausible modeis.

In essence, the model theory assumes that human reasoners
represent as little information as possible explicitly and that
models can contain abstract symbols that do not directly corre-
spond to anything in the physical world. (For a defense of these
symbols, see Johnson-Laird, 1983, ch. 15; Polk & Newell, 1988;
and Johnson-Laird & Byrne, 1991). The more information that
has to be represented explicitly, the greater the load on the pro-
cessing capacity of working memory, and so the initial models
of a proposition represent as much information as possible im-
plicitly. Implicit information is not immediately available for
processing, but it becomes available when it is made explicit.
This process adds to the number of explicit models to be taken
into account in reasoning from the premises.

We illustrate these ideas by considering the representation of
various sorts of proposition. Consider the model of a conjunc-
tion, such as the following:

There is a circle and there is a triangle.

This calls for both conjuncts to be incorporated within one
model of the state of affairs:

O A
Consider next the further premise:
There is not a circle.

It cannot be added to this model without contradiction. The
model may take the form of a visual image, but the crux of the
theory concerns not subjective experience but the structure and
number of models that are required to make inferences. The
initial representation of a disjunction, such as, Thereis a circle or
there is a triangle, calls for two models:
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A

In these models we adopt the notational convention that each
line in a diagram denotes a separate mental model of a different
possible situation. The first line above denotes a model of the
situation in which there is a circle, and the second line denotes a
model of the situation in which there is a triangle. The further
assertion of the categorical premise,

There 1s not a circle,

can be integrated with the disjunctive models in only one way.
The model representing the circle must be eliminated because
it is inconsistent with the premise, and the information that
there is not a circle must be incorporated within the one re-
maining model:

-0 A

In this model — denotes an abstract mental symbol represent-
ing negation. A procedure that scans models for conclusions
not directly stated in premises will yield the following conclu-
sion:

There is a triangle.

There is no alternative model of the premises that refutes this
conclusion, and so it is valid. The deduction can therefore be
drawn without using the formal rule of disjunctive inference
and without representing the disjunction as inclusive or exclu-
sive. The conclusion emerges from a semantic procedure that
constructs and evaluates models based on the meaning of the
premises. This procedure depends on rules, but, to reiterate the
important point, these rules are not formal rules of inference
such as modus ponens.

The initial representation of a disjunction by the models
above is consistent with either an inclusive interpretation ( circle
or triangle, or both) or an exclusive interpretation (circle or
triangle, but not both), and the models can be fleshed out ex-
plicitly to represent either sort of disjunction. The distinction
depends on making explicit that all instances of a particular
contingency, such as those in which there is a circle, have been
exhaustively represented in the set of models. In other words,
reasoners may know that there could be other instances of a
circle or that they have represented all of them exhaustively. A
contingency that has been exhaustively represented cannot be
added to the set of models. (Strictly speaking, the notion is
relative: One contingency is exhaustively represented in relation
to another, but we ignore this aspect of the notion for the time
being and treat the contrast as a binary one) We use square
brackets as our notation for an exhaustive representation. Thus,
the exclusive disjunction,

Either there is a circle or else there is a triangle, but not both,
has the following models:
[O]
[(A]

These models represent explicitly that all states containing cir-
cles and all states containing triangles have been exhausted. For

example, a triangle cannot be added to the first model. Con-
sider an inclusive disjunction, such as the following:

There is a circle or there is a triangle, or both.
This calls for three distinct possibilities:
(O [A]
(O]
[A]

including the joint contingency of the circle and the triangle.
The same principle applies to conditionals. The initial mod-
els of a conditional, such as,
If there is a circle, then there is a triangle, are as follows:

[0] A

[}

where the first model represents the joint occurrence of circle
and triangle. If means that there may be an alternative to the
situation in which the antecedent is true, and the second model
depicted by the three dots allows for this possibility. This model
initially has no explicit content but allows for its subsequent
specification. The possibility of this alternative situation rules
out any simple conjunctive description of the models. (The con-
junctive state of affairs satisfies a conditional description, but it
does not capture its meaning, which allows for at least one
alternative possibility) Because the triangle is not exhaustively
represented, the initial models can be fleshed out in two dis-
tinct ways. One way corresponds to a conditional interpreta-
tion, and the other way corresponds to a biconditional interpre-
tation (“If and only if there is a circle, then there is a triangle”).
The conditional interpretation allows that there can be a trian-
gle without a circle:

(O] [A]
[A)

The biconditional interpretation does not allow a triangle with-
out a circle:

(O] [4]

Given the initial models of the conditional, the categorical
premise,

There is a circle,

picks out the situation represented in the first model and elimi-
nates the second model. The remaining model,

(O] [A]
yields the modus ponens conclusion:
There is a triangle.

Similarly, the inference from the conditional and the categori-
cal premise,
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There is a triangle,
to the conclusion,
There is a circle,

is almost equally as easy, apart from the difficulty of arguing in
the opposite direction to the one in which the information from
the conditional entered working memory (see Johnson-Laird &
Bara, 1984; and Evans & Beck, 1981, who also argued that infer-
ences from antecedent to consequent are easier than those in an
opposite direction). This inference with a conditional is fal-
lacious, but it is frequently made (e.g., see Evans, 1982).

The valid deduction modus tollens has the following sort of
premises:

If there is a circle, then there is a triangle.
There is not a triangle.
If there is a circle, then there is a triangle.
There is not a triangle.

The initial models of the conditional are, as before:

[C] A

The categorical premise (there is not a triangle) eliminates the
first model and adds explicit information to the second model:

[—A]

There is no obvious conclusion to be drawn, because the model
contains only the information in the categorical premise.
Hence, the procedure for formulating conclusions asserts,
“nothing follows.” This response, as we show, is often made by
subjects. In order for the modus tollens conclusion to be drawn,
it is necessary to flesh out the initial models completely so that
they represent the cases that do not contain circles or triangles.
In the case of a conditional interpretation, the models are,

o A
-0 A
-0 —A

Because the models are compiete, we have for simplicity omit-
ted the square brackets representing exhaustiveness. In the case
of a biconditional interpretation, the models are,

o A
-0 —A

Whichever interpretation is made, the categorical premise calls
for the elimination of the models containing the triangles, and
so this process leaves behind only one model,

—0O =A,
which yields the modus tollens conclusion:
There is not a circle.

The same conclusion is derived from the models of the bicondi-
tional. In either case, the inference is harder to draw than

modus ponens, because it depends on a greater number of ex-
plicit models, which have to be fleshed out in the course of the
deduction.

Negation calls for forming the complement of the relevant set
of models. Thus, as we have shown, the representation of the
negation,

There is not a triangle,

calls for constructing the complement of the model of the trian-
gle:

—A

Similarly, the negation of a conjunction,
There is not both a circle and a triangle, calls for forming the
complement of the model of the conjunction:

O A

This process consists of enumerating explicitly all the other
possibilities for the two components:

-0 —A
The negation of a disjunction,
There is not either a circle or a triangle,
or, in its more familiar guise,
There is neither a circle nor a triangle,
yields the following model:
-0 —A

Logically untutored reasoners spontaneously draw conclu-
sions that maintain the semantic information of premises. Lo-
gicians define semantic information in terms of the states of
affairs that a proposition rules out as false, that is, the propor-
tion of false entries in the proposition’s truth table(see John-
son-Laird, 1983, p. 36). Given two assertions, p and ¢, the cate-
gorical assertion of p rules out half the entries in the truth table,
whereas the assertion of the conjunction, p and q, rules out
three-quarters of the entries. The conjunction conveys more
semantic information than p, and so a valid deduction of the
form

pand g
" p

throws away semantic information. The model theory assumes
that reasoners formulate conclusions by framing parsimonious
descriptions of the models they have constructed from the
premises. They do not need, however, to include categorical
premises as part of their conclusions, because there is no need
to repeat the obvious (Grice, 1975). For example, consider the
interpretation of these premises:
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If there is a circle, then there is a triangle.
There is a circle.
The premises yield the following model:
O A

There is no need to describe the circle, because it corresponds
to the categorical premises, and so the following conclusion
will be framed:

There is a triangle.

In general, the parsimonious description of a set of models is
bound to maintain the semantic information in the premises.

The initial models of a premise can be highly implicit; for
example,

[O] A

but they can become completely explicit about instances and
their complements:

o A
-0 A
-0 —A

Table | presents the initial models and the final wholly explicit
models for each of the main connectives. Most inferences in
daily life are probably made using initial models. They repre-
sent only those contingencies that directly correspond to the
atomic propositions in the premises. In what circumstances do
reasoners flesh out initial models explicitly? The principal
barrier is the processing capacity of working memory, and so
the following conditions must be met: (a) The premises must
be simple, for example, a conditional interrelating two or three

Table 1
Initial Models and the Final Wholly Explicit Models for the
Main Propositional Connectives of Assertions p and q

Model
Connective Initial Explicit
pandg P 4
porg Inclusive Exclusive
14 p q P —9
q P —9q -p q
—-p q
If p,theng Conditional  Biconditional
]l ¢ p q P q
T 4 q Y 9
=P -9
ponlyifq [pl ¢ P q 4 q
—p [—q] —p q P v

Note. Each row represents an alternative model. — is a symbol for
negation.

atomic propositions; and (b) nothing follows from the initial
models. One factor that can assist the process of fleshing out is
existing knowledge about the contingencies to be added to the
models. Consider the following premises, for example:

If it was foggy, then the match was cancelled.

The match was not cancelled.
They are likely to yield the modus tollens conclusion:
It was not foggy.

People know the relations between fog and sports, and they can
use this knowledge to flesh out their models of the conditional.
No such existing knowledge assists the process in the case of a
neutral conditional, such as,

If there is an A, then there is a 2.

Some evidence exists to support such effects of knowledge (e.g.,
Byrne, 1989; Cheng & Holyoak, 1985; Cummins, Lubart, Alks-
nis, & Rist, 1989; Griggs, 1983; Thompson, 1989). In any event,
people try to use models that make explicit as little information
as possible.

The relation between the models in Table | and truth tables
should now be evident. Consider, for example, the truth table
presented earlier for inclusive disjunction: A or B, or both. The
explicit models of a disjunction correspond to those rows in the
truth table that are true:

A B —the first line in the truth table.
A —B —the second line in the truth table.

—A B —the third line in the truth table.

There is, however, a crucial distinction: Models are less bulky
than truth tables. In particular, the number of entries for a truth
table based on n atomic propositions is 2", but the number of
initial models does not increase exponentially. A conjunction of
n atomic propositions requires only one model, and a disjunc-
tion of » atomic propositions requires only # initial models.
Osherson (1974-1976) reported only low correlations between
the size of truth tables and his subjects’ difficulty with argu-
ments, but, as should now be obvious, this finding in no way
impugns the model theory.

A Psychological and an Artificial Intelligence ( Al)
Algorithm for Propositional Reasoning With Models

Most propositional deductions in daily life are simple and
can be carried out without using fully explicit models. Experi-
ments have shown, however, that subjects can make deductions
from premises containing several connectives. In this section,
we describe an algorithm for making such deductions and an
Al extension of it that reasons with wholly explicit models. The
computer programs that implement the algorithms take as in-
put the following sort of problem:
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If there is a circle or an asterisk, then there is a triangle.
There is a circle.
.. There is a triangle.

They then determine whether the conclusion follows from the
premises. For convenience, the programs will also take as input
expressions using p, ¢, r, and so forth as variables denoting
atomic propositions.

The process of constructing models of the premises is, in
theory, informed by any relevant general knowledge, but we
have not implemented this assumption. The programs con-
struct models relying solely on a parser, a context-free grammar,
and a lexicon. The lexicon specifies the syntactic category and
meaning of each word in its vocabulary. The meaning of the
connectives and, or, and if are functions that combine models in
ways that we explain later.

The grammar contains the rules for analyzing the syntax of
input premises, and each rule has an associated semantic rule
so that the interpretation of a premise can be built up on a stack
as the premise is parsed. The grammar contains a rule, for
instance, that specifies that a single variable, such as p, is a
well-formed sentence. This rule includes a semantic function
that is evaluated whenever the rule is used by the parser, and its
evaluation examines the contents of the stack and returns a
model corresponding to the value of the variable. The parser
accordingly builds up the models for a premise in a composi-
tional way; that is, each time it uses a rule in the grammar in
parsing a sentence, it also evaluates the corresponding semantic
function. Thus, when it parses the italicized constituent,

If there is a triangle,
it builds a model of the clause:
A
When it parses the next claus;e,
then there is a circle,
it builds another model:
O
When it finally uses the rule that identifies the constituents,
if sentence, then sentence,

as themselves making up a sentence, it evaluates the rule’s asso-
ciated semantics. This evaluation leads to the application of the
meaning of if to the interpretations of the two constituent sen-
tences.

In the psychological algorithm, the meanings of the connec-
tives, which are specified in the lexicon, generate only the ini-
tial models shown in Table 1. There is no need to represent
which instances are exhaustively represented, and so the mean-
ing of if yields one model formed from a conjunction of the
antecedent and consequent models and then adds an implicit
model:

A O

The meaning of or yields two alternative sets of models corre-
sponding to its constituents. The meaning of not calls for form-
ing the complement of a set of models. If the set of models to be
negated includes an implicit model, then the set is fleshed out
explicitly prior to negating it. The interpretative system has to
allow for building up the representation of premises containing
any number of connectives, and so the lexical meanings are, in
essence, instructions for forming new sets of models out of old.
For example, the interpretation of the premise,
Ifcor h, then p,
leads first to the interpretation of the disjunction,
c

h

which is then treated as the antecedent set of models in the
interpretation of the conditional:

c j/
h p

The meaning of and plays a central role in the program. It is
elicited by the connective, and it is also used to combine sepa-
rate premises. Two premises, such as

If c or A, then p.

c

are equivalent to the conjunction,

If cor A, then p, and c.

Hence, the program combines the interpretations of premises

using conjunction. The semantics of 4 and B, where A and B

both denote sets of models, calls for conjoining each model in A

with each model in B according to the following principles:

1. If the model in A is implicit (i.e., denoted by three dots), and the
model in B is implicit, then the result is an implicit model.

2. If the model in A is implicit but the model in B is explicit, or vice
versa, then no new model is formed from them. The explicit model
will occur in other combinations, and it does not need to be re-
peated (see the example below).

3. If the models are inconsistent, that is, one contains an atom and the
other contains its negation, then no new model is formed from
them.

4. Otherwise, the two models are joined together eliminating any re-
dundancies.

Hence, the process of combining the two sets of models (corre-

sponding to premises in the previous example):

c p
h p andc

The process proceeds as follows:

¢ p x ¢ yields ¢ p,
h p x c yields ¢ h p,
. X ¢ vyields nil.
The final result is therefore
4 p
¢ h p.

The high-level function controlling the building of models
loops through the list of premises conjoining the models for the
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current premise with the models representing all the previous
premises. The problems in the Appendix illustrate the outcome
of the program for a variety of propositional deductions.

One apparent anomaly arises from dropping the use of
square brackets. Strictly speaking, exhaustive representation is
a relative notion. In the models for “If there is a triangle, then
there is a circle,” the representation of the triangle is exhausted
in relation to the circles, but exhaustion can be treated in this
case as an absolute notion because there are no other shapes.
Consider, however, the representation of the two conditionals:

If there is a triangle, then there is a circle.
If there is a cross, then there is a circle.

A completely explicit set of models, as constructed by the Al
algorithm, is as follows:

+ O

-+ O

-A + O
—A =+ O
—A —+ —O

According to the model theory, however, human reasoners do
not represent this set but rather they construct the following
initial models:

(] [+] ©

What the exhaustion symbols (brackets) mean here is (a) the
triangles are exhaustively represented in relation to the circles,
(b) the crosses are exhaustively represented in relation to the
circles, but (c) the triangles and crosses are not exhaustively
represented in relation to one another. Hence, if a triangle oc-
curs in a model subsequently constructed by fleshing out the
implicit model, then it must be accompanied by a circle, and
likewise if a cross occurs in a model subsequently constructed
by fleshing out the implicit model, then it must be accompa-
nied by a circle. The first step in fleshing out the models above
is, accordingly,

[A] [+] ©
(4] O
[+] ©

The process of fleshing out is necessary only when no conclu-
sion follows from the initial models. It is a remarkable fact,
however, that the vast majority of deductions in daily life do not
require any fleshing out; for example, it is not required for any
ofthe 61 direct reasoning problems investigated by Braine et al.
(1984). Our psychological algorithm does not include a flesh-
ing out procedure, and so it does not use exhaustion: The square
brackets would be an idle wheel. However, the theory, as op-
posed to this computer implementation of part of it, always
postulates the use of exhaustion. When the program constructs

models for the pair of conditionals above, it yields the follow-
ing:

A+ O

Readers should bear in mind that this representation is a delib-
erate simplification and that the proper initial models should
have the form,

(A} [+] O

The Al algorithm that we have devised is sufficiently power-
ful to make all and only the valid deductions in the proposi-
tional calculus (within the limitations of the computer’s speed
and memory). If no conclusion is presented, then the program
formulates a parsimonious conclusion for itself. Because the
conclusion is based on models, it automatically maintains the
semantic information in the premises. The program treats each
premise as though it were a potential conclusion by evaluating it
in relation to the previous premises. If it follows from the pre-
vious premises, or vice versa, then the program outputs this
information. The program constructs only fully explicit mod-
els. Hence, the meaning of and combines each model in one set
with each model in the other set but eliminates inconsistent
combinations and redundant atoms. The meanings of the other
connectives are then defined in terms of negation and conjunc-
tion,

The advantages of the model-based procedures are twofold.
First, they obviate the need to search for a formal derivation ofa
conclusion. Such searches call for the simulation of a nondeter-
ministic automaton and can therefore be costly—far too time-
consuming even for simple deductions that human reasoners
can make in a few seconds. Second, the procedures draw con-
clusions from premises (as opposed to mere evaluation of given
conclusions). A mark of human intelligence, as we noted, is the
ability to draw conclusions that are parsimonious. The task has
been avoided by most previous computer models of proposi-
tional reasoning in both psychology and artificial intelligence
(eg., see Bledsoe, 1977; Reiter, 1973; Rips, 1983). The Al pro-
gram, however, contains a procedure guaranteed to construct a
maximally parsimonious conclusion, that is, a description of
the models that uses each atomic proposition as few times as
possible (see Johnson-Laird, 1990). A solution to this problem
has been proposed for descriptions that use only conjunction,
disjunction, and negation (e.g., see Brayton, Hachtel, McMul-
len, & SangiovanniVincentelli, 1984; McCluskey, 1956; Quine,
1955). Our algorithm uses all the propositional connectives,
and so it can produce still more parsimonious descriptions.

Large-Scale Empirical Studies
of Propositional Reasoning

A new theory should explain existing phenomena and, ide-
ally, account for hitherto unexplained aspects of them. In this
section, we show how the model theory throws light on some
representative studies of propositional reasoning. In the next
section, we show how the theory accounts for the principal
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phenomena of propositional reasoning. In the section after
that, we report the results of some experiments designed to test
some novel predictions of the model theory. The theory makes
two principal predictions: (a) The greater the number of ex-
plicit models to be constructed in a deduction, the harder the
task should be; that is, the task should take longer, be more
likely to lead to errors, and be rated as more difficult; and (b)
when subjects draw conclusions for themselves, their erroneous
conclusions should correspond to a proper subset of the possi-
ble models of the premises. This second prediction is of con-
cern in the subsequent sections.

The pioneering studies of large sets of propositional deduc-
tions were carried out by Osherson (1974-1976), who exam-
ined children’s and adolescents’ ability to evaluate various sorts
of deduction. He proposed a formal rule theory, though unlike
most formalists he left open the possibility of a semantic
theory. He carried out too many experiments for us to review in
detail, but fortunately we can finesse such a description be-
cause we can consider instead his three main theoretical as-
sumptions about the weighting of formal rules. His first as-
sumption is that conjunctions are easier than disjunctions. Al-
though many studies of concepts bear out this assumption (e.g.,
Bourne & O’Banion, 1971; Bruner, Goodnow, & Austin, 1956;
Haygood & Bourne, 1965; Neisser & Weene, 1962 ), we know of
no simple explanation of the phenomenon in deductive reason-
ing. It follows directly from the model theory, however, because
a conjunction calls for only one explicit model, whereas a dis-
junction calls for at least two explicit models.

Osherson’s (1974-1976) second assumption is that modus
ponens is easier than modus tollens. Subsequent rule theories,
as we show here, have offered an explanation of this difference.
The model theory explains it in terms of the need to flesh out
more models explicitly in the case of modus tollens.

Osherson’s (1974-1976) third assumption is that negative
premises cause difficulty. All theories acknowledge that nega-
tions call for additional processing during comprehension (e.g.,
see Clark & Clark, 1977; Wason & Johnson-Laird, 1972). How-
ever, it is important to distinguish the effects of negation on
comprehension from those on reasoning. An assertion that
contains, in effect, two negatives, such as,

It is false that there is not a X on the blackboard,
is harder to understand than the simple affirmative,
There is a X on the blackboard.

A double negation takes time to understand, but once it is
properly understood it should have no effects on reasoning.
Both of the following negative assertions similarly take time to
understand:

It is not the case that there is an A or there is a B.

It is not the case that there is both an A and a B.
The first assertion, however, is equivalent to,
There is neither an A nor a B,
which corresponds to just a single model,
—A —B
Hence, once you have understood the assertion, reasoning with

it should be straightforward. The second assertion calls for
three distinct models:

—A —B

Reasoning with this assertion should be difficult. The model
theory therefore introduces an additional effect of negation: the
number of models that negation yields.

A second major study of propositional reasoning was con-
ducted by Rips (1983). He reported an experiment in which
subjects evaluated a set of 32 deductions. The subjects’ task was
to assess the validity of the given conclusion for each problem.
The overall performance was at chance, but Rips was able to fit
his theory to the data by assessing the availability of each of his
postulated rules. The correlation between the predicted and
observed proportions of correct responses was high, but King
(personal communication, 1989) has drawn our attention to a
worrying feature of the results. Although the observed solution
rates for the individual problems are fairly evenly scattered be-
tween 16% and 92%, the predicted solution rates cluster in two
regions: one around 33% and the other around 75%. Only three
predictions fall between 40% and 70% correct, whereas nearly a
third of the observed percentages lie in this range. King com-
mented, “In other words, the model is not correctly specified
because there is extreme patterning in the residuals, which
make Rips’s claim to having a correct theory very suspect.”
There is also some doubt about whether Rips’s subjects were
really reasoning—always a potential problem when subjects
have to evaluate given conclusions. In commenting on the sub-
jects’ failure to evaluate certain inferences correctly, Braine et
al. (1984) wrote, “So high a failure rate on transparent problems
suggests that the experiment often failed to engage the reason-
ing procedures of subjects” (p. 360).

An interesting feature of Rips’s (1983) design, on which he
made no comment, is that half the deductions maintained the
semantic information of the premises, whereas the other half
had conclusions with less semantic information than their
premises, such as the following:

not-p and g.
.. g and not both p and r.

King noted that some pairs of problems that Rips predicted to
be equally difficult yielded large differences in their actual so-
lution rates. For example, the following two problems were pre-
dicted to be solved on 41.2% and 40.5% of occasions, respec-
tively:

If p or g, then not-s.
s
C.not-pand s,
and
p
If p or g, then not-r.
*. p and not both r and s.

In fact, the solution rate was 55.6% for the first problem, which
maintains semantic information, but only 33.3% for the second
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problem, which reduces semantic information. To throw infor-
mation away is to violate one of the fundamental principles of
human deductive competence, and so we can predict that per-
formance with these problems should be poorer. Overall, the
subjects correctly evaluated the 16 inferences that maintained
information on 66.3% of occasions, but they correctly evaluated
the 16 inferences that threw semantic information away on only
34.8% of occasions. This difference was highly significant
(Kendall’s S = 202.4 corrected for ties, z = 3.82; p < .0001,
one-tailed). Only one of the problems that threw away semantic
information was evaluated at better than chance level, whereas
only two of the problems that maintained semantic informa-
tion were evaluated at worse than chance level.

A third study of a large set of propositional deductions was
carried out by Braine et al. (1984), and here we analyze their
main experiment in detail. The subjects evaluated deductions
about letters on an imaginary blackboard; for example,

If there is either a C or an H, then there is a P.
Thereisa C.

Therefore, there is a P.

Their task was to rate the difficulty of the deduction on a 9-
point scale, where 1 signified the easiest of problems and 9
signified the hardest of problems. Some of the problems had
conclusions that followed from the premises, and some of the
problems had conclusions that were inconsistent with the prem-
ises. Braine and his colleagues examined three potential indices
of difficulty: the length of the problem, the number of steps in a
deduction according to their theory, and the difficulty weights
of these steps as estimated from the data. The most striking
finding was that the rated difficulty of the problems was pre-
dicted by a regression equation based on two parameters: the
length of the problem and the number of steps in its derivation.
The first parameter is a multiplying constant for the number of
words in a problem, and it was estimated from a separate set of
problems. The second parameter was a multiplying constant
for the number of steps in the derivations according to the rule
theory, and it was estimated from the main data. The correla-
tion between the predicted and the obtained ratings was .79.

We consider the 61 direct reasoning problems for which the
authors present complete data, and we show that the model
theory also yields a reasonable fit. All of the problems can be
correctly evaluated by the algorithm that uses initial models,
and so we used the program to count up the number of explicit
models required in order to interpret the premises. For exam-
ple, consider the following problem:

If e or k, then o.
eand v
.. Noto.
The first premise elicits the following models:
e 0
k o

[2 explicit models]

The second premise elicits the following models:

e v [1 explicit model}

The result of combining them is,

e o v

e k o v [2 explicit models]
Hence, a total of 3 models has to be constructed to understand
the premises. The final models are inconsistent with the model
of the conclusion. Some sample problems are shown in the
Appendix, together with the models generated by the computer
program.

A multiple regression (using the BMDP stepwise program)
based on the number of premise models accounted for 53% of
the variance in the observed ratings. Nine of the problems con-
tained a double-negative premise, and the addition of this vari-
able to the regression analysis accounted for a further11% of the
variance, that is, a correlation of .80.

The model theory also makes certain new predictions, which
are corroborated by Braine et al’s (1984) results. The main
prediction is that the more models that have to be constructed,
the harder the deductive task should be. We tested this predic-
tion in two main ways. First, the theory predicts the following
relative difficulty of connectives ceteris paribus in terms of the
number of initial models that they require:

and: I explicit model.
if: 1 explicit and 1 implicit model.
or: 2 explicit models.
not both: 3 explicit models.

The mean ratings of problems based on one premise containing
one of these connectives, and one simple categorical premise,
corroborated this prediction: for and, 1.79; for if 1.88; for or,
2.66; and for not both, 3.18 (Kendall’s S = 20; z = 2.55,
p <.006).

Second, we tested whether the number of models required to
interpret the premises predicted the difficulty of the ratings for
the problems in which the conclusion consisted of a single
atomic proposition. We excluded problems with complex con-
clusions or with double-negative premises, because we needed
to be certain that the ratings reflected only the number of mod-
els required in interpreting the premises. We then assessed the
predicted difficulty of the problems by running the computer
program that constructs initial models. There are 11 problems
with valid conclusions, and the correlation between the num-
ber of models to be constructed and the rated difficulty was .93
(Kendall’s r; z = 3.8, p < .001). There are 16 problems with
inconsistent conclusions, and the correlation between the num-
ber of models to be constructed and the rated difficulty was .83
(Kendall’s 7; z = 4.9, p < .00005). In short, the number of
explicit models that have to be constructed has a highly signifi-
cant relation to the rated difficulty of the deductions.

Finally, other factors do affect performance. Braine et al.
(1984) found a relation between the length of a problem and the
ratings, and they pointed out that what is at stake is not mere
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verbosity. We suspected that the critical factor was the number
of atomic propositions, that is, the number of items in a model.
One model based, for example, on the conjunction of two prop-
ositions is likely to be harder to construct and to retain than one
model based on a single atomic proposition. We tested this
prediction with 28 problems, which were matched in pairs:
Half had conclusions consisting of a single atomic proposition,
and each of these problems was matched with a problem con-
taining the same or similar premises but a conclusion based on
more than one atomic proposition.! For example, consider the
following problem:

Not both g and i.
g

. not .
This was matched with the problem,
Not both / and s.
.. If Ithen not s

The second problem should be harder, because the conclusion
contains more than one atomic proposition. The overall mean
ratings were 2.77 for problems with one-atom conclusions and
3.46 for problems with multiple-atom conclusions (Wilcoxon’s
T=13;n=14, p<.001).

The Phenomena of Propositional Reasoning

Researchers have established experimentally a number of ro-
bust phenomena of propositional reasoning (e.g., see Evans,
1982, for a review), and in this section we examine them in the
light of the model theory. The first phenomenon concerns the
interpretation of disjunctions and conditionals. When psychol-
ogists test whether a disjunction, such as,

There is a circle, or there is a triangle,

is interpreted inclusively or exclusively, they find that subjects
do not respond in a uniform way. Typically, they are biased
toward an inclusive interpretation, but a sizeable minority
prefer the exclusive interpretation (Evans & Newstead, 1980;
Roberge, 1978). The results are not consistent from one experi-
ment to another, although a semblance of consistency occurs if
content or context suggests one of the two interpretations
(Newstead & Griggs, 1983). Conditionals yield a similar phe-
nomenon. When content and context are neutral, an “if . . .
then” premise is interpreted sometimes as a conditional and
sometimes as a biconditional: Individuals are neither consistent
with one another nor consistent from one occasion to another
(see Evans, 1982; Staudenmayer, 1975; Staudenmayer &
Bourne, 1978; Wason & Johnson-Laird, 1972). Where the con-
text is binary, then a conditional is taken as implying its con-
verse. Legrenzi (1970) demonstrated this point by using such
conditionals as,

If the ball rolls to the left, then the red light comes on.

These conditionals were in a situation where the ball could roll
either to the right or to the left and the light was either red or
green.

The lack of uniformity in the interpretations of disjunctions
and conditionals is puzzling because people are neither nor-
mally aware of the two possible interpretations nor of settling
on one interpretation as opposed to the other. The puzzie is
magnified when it is viewed through the spectacles of rule the-
ories, because these theories presuppose an initial recovery of
the logical form of premises, which presumably should make
explicit that or is inclusive or exclusive and that if' is a condi-
tional or a biconditional.

The model theory readily accounts for the vagaries in the
interpretations of disjunctions and conditionals. The initial
models of a disjunction, as we showed earlier, are compatible
with either an inclusive or an exclusive interpretation; the initial
models of an “if. . . then” assertion are compatible with either
a conditional or a biconditional interpretation. If there is no
reason to decide whether or is inclusive or exclusive, or whether
if denotes a conditional or a biconditional, they can be repre-
sented by their initial models, which even enable certain valid
deductions to be drawn (e.g., see the first disjunctive inference
in the section The Model Theory of Propositional Reasoning).

The second phenomenon is the difference between modus
ponens and modus tollens. Deductions in the form of modus
ponens,

If there is a circle, then there is a triangle.
There is a circle.
Therefore, there is a triangle,

are easier than those in the form of modus tollens:
If there is a circle, then there is a triangle.
There is not a triangle.

Therefore, there is not a circle.

Many intelligent individuals say that nothing follows in the
modus tollens case (see Evans, 1982; Wason & Johnson-Laird,
1972, for reviews). Formalists explain the difference by assum-
ing that the mind contains a rule for modus ponens but does not
contain a rule for modus tollens. To carry out modus tollens, it
is accordingly necessary to make a sequence of deductions.
Given premises of the form,

If p, then g
not-q
reasoners can hypothesize p:

p [by hypothesis]

From this, they can use the first premise to derive:

q [by modus ponens]

! The pairs of problems, in Braine, Reiser, and Rumain’s (1984 ) num-
bering, were as follows: valid conclusions, 4-3, 9-27, 1-37, 12-13,
7-31, 11-38, and 43-41; and inconsistent conclusions, 15-23, 17-32,
19-36, 6-39, 2050, 42-56, and 44-57.
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This conclusion, together with the second premise, yields a
self-contradiction:

¢ and not-g [by conjunction]
The rule of reductio ad absurdum entitles the reasoner to derive
the negation of any hypothesis that leads to a self-contradiction:

.. not-p [by reductio]
Rule theories predict that the longer the derivation of a conclu-
sion, the harder the inferential task will be. Hence, modus tol-
lens should be harder than modus ponens.

The model theory explains the difference between modus
ponens and modus tollens, too. Modus ponens depends on one
explicit model, whereas modus tollens depends on two or three
explicit models, depending on whether the “if. . . then” prem-
ise is interpreted as a conditional or biconditional. Unlike rule
theories, the model theory also explains why this difference
disappears when the conditional information is expressed us-
ing only if (see Evans, 1977; Evans & Beck, 1981; Roberge,
1978). For example, take the following assertion:

There is a circle only if there is a triangle.
It has the same truth conditions as another assertion,
If there is a circle, then there is a triangle,

because both are faise only when there is a circle in the absence
of a triangle. Braine (1978, p. 6) argued as follows:

The behavior of p only if g can be explained if we try to derive the
meaning of only ifas a compound of the meanings of onlyand if In
ordinary usage, only is equivalent to a double negative or no . . .
other than (e.g., Only conservatives voted for Goldwater = No one
other than conservatives voted for Goldwater). We can use this
equivalence to paraphrase only away from p only if g, for example,
by the following steps: ponly if g= not pif other than q= if not g then
not p.

One trouble with this account is that it appears to predict a
reversal in the difficulty of modus ponens and modus tollens
rather than its disappearance.

According to the model theory, the assertion, “there is a cir-
cle only if there is a triangle,” makes explicit two contingencies
right from the start (Johnson-Laird & Byrne, 1989). Where
there is a circle there has to be a triangle, and where there is not
a triangle there cannot be a circle:

[O] A
—0 [—4]

These initial models allow both modus ponens and modus tol-
lens to be made without any further fleshing out. Because two
models are required, both deductions should be more difficult
than modus ponens with an ordinary conditional. The data
confirm this prediction (e.g., see Evans, 1982).

The third phenomenon concerns disjunction: When people
reason from a disjunction and a categorical premise, the task is
easier with an exclusive disjunction than with an inclusive dis-
junction. Newstead and Griggs (1983, p. 97) argued that exclu-

sive disjunctions are straightforward because the deductions
are symmetrical: The truth of one component implies the fal-
sity of the other, and vice versa. It is not clear, however, why
such a symmetry should make deductions easier. The model
theory suggests a simple alternative explanation: Exclusive dis-
junctions call for a smaller number of explicit models than
inclusive disjunctions.

Finally, one well-established phenomenon is that different
contents can exert a qualitative effect on the nature of the infer-
ences that subjects draw (e.g., see Byrne, 1989; Cheng, Holyoak,
Nisbett, & Olivier, 1986; Griggs & Cox, 1982; Wason, 1983;
Wason & Johnson-Laird, 1972). Space does not permit us to
consider these effects here, other than to make one observation.
Because formal rules of inference are, by definition, blind to
content, the only way in which rule theories can explain these
effects is in terms of the initial interpretation of the premises
(eg., see Braine & Rumain, 1983; Henle, 1962) or as a result of
censorship following the deductive process. As Manktelow and
Over (1987) point out, however, the effects cannot be satisfacto-
rily explained in this way. We show elsewhere that they can be
accounted for by the model theory (Johnson-Laird & Byrne,
1991).

Experimental Tests of the Model Theory

A new theory shouid suggest new phenomena. The present
theory does indeed lead to some novel predictions, and we
report the results of four experiments designed to test them. In
all four of the experiments, we tested the predictions of the
model theory about the conclusions that subjects spontane-
ously draw from verbal premises.

Experiment 1: Conditional and Disjunctive Deductions

The model theory predicts that it should be harder to reason
from an exclusive disjunction, such as,

Linda is in Amsterdam or Cathy is in Majorca, but not both,
than to reason from a conditional, such as,
If Linda is in Amsterdam, then Cathy is in Majorca.

The exclusive disjunction yields two explicit models: one repre-
senting Linda in Amsterdam, and the other representing Cathy
in Majorca, whereas the conditional yields, at least initially, one
explicit model. Hence, in general, deductions based on exclu-
sive disjunctions should be harder to make than those based on
conditionals, because disjunctions from the outset place a
greater load on the capacity of working memory: They demand
an immediate representation of two explicit models, whereas
the conditionals initially require only one. Some corroboratory
evidence already exists in the literature. Roberge (1978), for
example, obtained such an effect, but his study was limited to
only one sort of deduction. Evans and Newstead (1980) simi-
larly report that when one constituent of a conditional is ne-
gated, reasoners can still cope, but they become hopelessly lost
when one constituent of a disjunction is negated. The present
experiment was designed to make a systematic comparison of
deductions based on exclusive disjunctions with those based on
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conditionals. Consider, for example, a deduction based on the
following premises:

Linda is in Amsterdam, or Cathy is in Majorca, but not both.
Linda is in Amsterdam.

The deduction has an affirmative categorical premise and im-
plies the following conclusion:

Cathy is not in Majorca.

It initially requires two explicit models. The analogous affirma-
tive deduction based on a conditional is, of course, a case of
modus ponens, and it initially requires one explicit model. A
deduction based on such premises as,

Linda is in Amsterdam, or Cathy is in Majorca, but not both.
Cathy is not in Majorca.

has a negative categorical premise and implies the following
conclusion:

Linda is in Amsterdam.

It again requires initially two explicit models. The analogous
negative deduction with a conditional is modus tollens, and it
initially requires an explicit model and an implicit model,
which is then fleshed out with one or two further explicit mod-
els. The number depends on whether the assertion is inter-
preted as a conditional or a biconditional.

We can predict that the negative deductions should be harder
overall than the affirmative deductions, because the negative
deductions require an inconsistency to be detected between the
model of the categorical premise and the model for one of the
disjuncts. In principle, a negative deduction with a conditional
calls for two or three models to be made explicit, whereas with
the disjunction it calls for only two models to be made explicit.
This process of fleshing out occurs after the initial interpreta-
tions of the main premises, however, and so reasoners should
already have run into trouble with the disjunctions. Should the
two variables interact? It is not entirely clear. The difference
between the two conditional deductions should be relatively
large (one model vs. two or three models), whereas the only
difference between the disjunctive deductions is that the nega-
tive inference calls for detecting an inconsistency. However, the
two factors are not commensurable.

Method. The subjects acted as their own controls and carried out
four deductions in each of four conditions: affirmative conditional
(modus ponens), negative conditional (modus tollens), affirmative
disjunction, and negative disjunction. The 16 experimental trials oc-
curred in a different random order for each subject, and in addition
there were a further six filler items that occurred in fixed positions
throughout the experiment. The lexical content of the problems con-
cerned people and well-known places (as in the examples above). We
used an equal number of male and female proper names, and no place
name occurred in more than one deduction. We devised two sets of
such materials and assigned them at random to the problems in two
different ways. Half the subjects received one set of materials, and the
other half received the other set of materials. Hence, no subject en-
countered a particular content more than once.

The subjects were tested individually. Each premise of a problem was
printed on a separate sheet of paper. The subjects read aloud the first
premise, and when they were ready, they were given the second premise

to read aloud. Finally, they wrote down what conclusion, if any, they
thought followed from the premises. They were told that they could
take as much time as they wanted for each problem. They were given a
single practice trial prior to the start of the experiment proper.

We tested 14 members (10 female and 4 male) of the Medical Re-
search Council (MRC) Applied Psychology Unit, Cambridge, subject
panel, whose ages ranged from 24 to 60 years. These subjects came
from a variety of occupations and were more representative of the
population at Jarge than university students. We paid them £3.60 per hr
for participating in the experiment, which lasted for about 1 5 min. We
rejected 3 of the subjects prior to the analysis of the data because they
could not perform the task.

Results and discussion. The percentages of correct conclu-
sions to the deductions were as follows: 91 for affirmative con-
ditionals, 64 for negative conditionals, 48 for affirmative dis-
Jjunctions, and 30 for negative disjunctions. Overall, as we pre-
dicted, the conditional deductions were easier than the
disjunctive deductions for every subject, apart from three ties
(p=.5%). Likewise, the affirmative deductions were easier than
the negative deductions for every subject, apart from two ties
(p=.5%). Although the trend suggested an interaction between
these two variables, it was not quite significant (Wilcoxon’s 7=
12, n =7, p > .05). However, the difference between the two
sorts of conditional deductions was significant (Wilcoxon’s T'=
5.5, n= 8, p < .05), whereas the difference between the two
sorts of disjunctive deductions was not (Wilcoxons 7= 7.0, n =
8, p>.05).

The experiment confirmed the critical prediction that con-
ditional inferences would be easier than disjunctive inferences.
Hence, the number of explicit models that have to be con-
structed ab initio does appear to affect the difficulty of a deduc-
tion, and, similarly, the need to detect an inconsistency also
increased the difficulty of the task. The possible prediction of
an interaction was not confirmed, though the trend was in the
correct direction. A more powerful experiment might have
yielded a reliable result.

Experiments 2 and 3: Conditional and Biconditional
Deductions

The model theory predicts that modus ponens should be
equally easy whether the main premise is a conditional or a
biconditional, but that modus tollens should be easier with a
biconditional than with a conditional. Modus tollens requires
explicit models, and for the biconditional,

If and only if there is a circle, then there is a triangle,
they are as follows:

c A
-0 —A

The corresponding conditional, however, has these fully ex-
plicit models:

o A
-0 A
-0 —A

In both cases, the correct response is the same. Given the cate-
gorical premise,
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There is not a triangle,
it follows from both conditional and biconditional that,
.. There is not a circle.

However, modus tollens should be easier with a biconditional,
which requires two explicit models, than with a conditional,
which requires three explicit models. The simpler modus pon-
ens deduction can be made from the single initially explicit
model whether the premise is a conditional or a biconditional.
Experiment 2 tested these predictions.

Method. The subjects acted as their own controls and carried out
two inferences in each of eight different conditions. The conditions
depended on whether a deduction was in the form of modus ponens or
modus tollens, whether the first premise was a conditional (if . then )
or a biconditional ({fand only if . then _), and, for the sake of a varied
set of problems, whether there were two premises, as in the example
above, or three premises, such as the following:

If Mary is in Dublin, then Joe is in Limerick.
If Joe is in Limerick, then Lisa is in Princeton.
Mary is in Dublin.

What follows?

Half the subjects received all the deductions based on conditionals and
then all the deductions based on biconditionals, and the other half
received the two blocks in the opposite order. Within each block, the
order of the deductions was randomized for each subject.

The modus tollens deductions were based on premises containing
contrary atomic propositions, for example,

If Mary is in Dublin, then Joe is in Limerick.
Joe is in Cambridge.
What follows?

We deliberately used these inconsistencies rather than negations to
keep the design of the experiment simple; that is, we could compare
the deductions without having to worry about the location of the nega-
tion (in the conditional or the categorical premise).

The lexical contents of the problems referred to the locations of
people in well-known cities. As in the previous experiment, we used an
equal number of male and female proper names, and no city occurred
in more than one deduction. We randomly assigned the lexical con-
tents to the problems in four ways, with the restriction that any items
assigned to a conditional in one set were assigned to a biconditional in
a different set. The resulting sets of materials were assigned to the
subjects at random.

The subjects were tested individually and given two practice prob-
lems based on quantifiers, They were asked to state what, if anything,
followed from each set of statements. If they considered that nothing
followed, then they were to say so. The problems were printed on sepa-
rate sheets of paper, and the subjects gave their responses orally. They
were under no time pressure.

We tested 16 subjects (14 female and 2 male) from the subject panel
of the MRC Applied Psychology Unit, whose ages ranged from 22 to 57
years. We paid them £3.60 per hr for taking part in the experiment,
which lasted for about 15 min.

Results, replication, and discussion. Table 2 presents the per-
centages of correct conclusions drawn by the subjects for each
sort of deduction. We have collapsed the data from the two
different orders of presentation of the two blocks of deductions
because there was no reliable difference in accuracy between

Table 2
Percentages of Correct Deductions Made in Experiments 2 and 3
Modus Ponens Modus Tollens
Condition Exp 2 Exp 3 Exp 2 Exp 3
Two-premise
Conditional 97 96 38 56
Biconditional 97 98 59 67
Three-premise
Conditional 88 96 38 42
Biconditional 84 100 44 65

Note. Exp = experiment.

them. Overall, modus ponens was reliably easier than modus
tollens (Wilcoxon’s T = 1.5, n = 12, p < .005, one-tailed); two-
premise problems were marginally easier than three-premise
problems (Wilcoxon’s T'= 3.0, n = 7, p < .05, one-tailed); and
there was no reliable difference between conditional and bi-
conditional problems (Wilcoxons T= 9.5, n = 8). Although the
trend was in the right direction, the overall interaction between
the type of deduction and the type of conditional was not signif-
icant (Wilcoxons 7= 6.5, n = 8). However, this interaction was
significant for the two-premise problems: the difference be-
tween modus ponens and modus tollens was larger for condi-
tionals than for biconditionals (Wilcoxon's T= 0, n =6, p <
.005). Indeed, modus tollens with a biconditional was signifi-
cantly easier than with a conditional (Wilcoxons T=0,n= 35,
p <.005).

Although the results were promising, the failure to obtain an
overall interaction led us to carry out Experiment 3, which was
a replication of Experiment 2, but with increased power. We
tested 24 volunteer students at the University of Leuven (15
female and 9 male) whose ages were 17 to 18 years. The percent-
ages of correct conclusions are also shown in Table 2. Once
again, we have collapsed the data from the two different orders
of presentation of the deductions because there was no reliable
difference in accuracy between them. Overall, modus ponens
was reliably easier than modus tollens for every single subject
(Wilcoxons T=0,n =17, p <.005, one-tailed); and the bicon-
ditional problems were 10% easier than the conditional prob-
lems (Wilcoxon’s T= 7.5, n = 10, p <.025). The main finding,
however, was that the overall interaction between the type of
deduction and the type of conditional was significant (Wil-
coxon’s T= 7.5, n=10, p <.025). There was no reliable differ-
ence between the two sorts of conditional for modus ponens
(Wilcoxon T = 1, n = 2, ns), but modus tollens was reliably
easier with a biconditional than with a conditional (Wilcoxon
T=45n=10, p<.01).

The experiments confirmed the prediction that the greater
the number of explicit models required to make a deduction,
the harder the deduction is to make. The use of a conditional or
biconditional premise did not affect modus ponens, but the
subjects were more likely to draw the correct modus tollens
conclusion with a biconditional than with a conditional. The
effect of the form of the argument (modus ponens vs. modus
tollens) was greater than the effect of the type of the condi-
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tional (conditional vs. biconditional). The difference is to be
expected, however, because modus tollens also calls for the
detection of an inconsistency between the two sets of models.

Experiment 4. Double Disjunctions

A major prediction of the model theory that we have not so
far examined is that erroneous conclusions should correspond
to some of the possible models of the premises. If the theory is
correct, then as soon as the number of models that reasoners
have to construct exceeds the capacity of their working memo-
ries, they are likely to be unable to reach a correct conclusion.
The difficulty should be particularly exacerbated by disjunctive
premises. If you wish to experience this phenomenon, then ask
yourself what, if anything, follows from these premises:

June is in Wales, or Charles is in Scotland, but not both.
Charles is in Scotland, or Kate is in Ireland, but not both.

Each premise calls for two explicit models, but when the two
sets are combined they yield only two models:

(W] (1]
(8]

where W denotes June in Wales, I denotes Kate in Ireland, and
S denotes Charles in Scotland. The two models support the
following conclusion:

June is in Wales, and Kate is in Ireland,
or Charles is in Scotland, but not both.

Exclusive disjunctions should be easier to cope with than inclu-
sive disjunctions, such as these:

June is in Wales, or Charles is in Scotland, or both.
Charles is in Scotland, or Kate is in Ireland, or both.

This is because each of these premises calls for three explicit
models that combine to yield five models:

(W1 (8] [i]

(W] I[S]

[W] (1]
(S] [1]
[S]

The models support the following conclusion:
June is in Wales, and Kate is in Ireland,
or Charles is in Scotland, or both.

Hence, a double exclusive disjunction should be reliably easier
than a double inclusive disjunction.

The aim of the present experiment was, in part, to test this
prediction, and we also compared negative deductions in which
a constituent and its contrary occur in the two premises; for
example,

June is in Wales, or Charles is in Scotland, or both.

Charles is in England, or Kate 1s in Ireland, or both.

Of course, if Charles is in Scotland, then he is not in England.
According to the model theory, affirmative deductions should
be easier than such negative deductions because the latter call
for the detection of the inconsistency between the contrary
constituents.

Exclusive 2 models per 2 final models
affirmative: premise
Exclusive negative: 2 models per 3 final models +
premise inconsistency
Inclusive 3 models per 5 final models
affirmative: premise
Inclusive negative: 3 models per 5 final models +
premise inconsistency

The principal goal of the experiment, however, was to examine
the nature of the erroneous conclusions that the subjects in-
ferred. Any deduction that calls for three or more models
should be very difficult, and so we expected that the subjects
would make many errors. The key question was, would the
errors correspond to a proper subset of the possible models of
the premises?

Method. The subjects acted as their own controls and carried out
two deductions in four conditions based on inclusive or exclusive dis-
junctions and an affirmative or negative relation between the constitu-
ents common to the two premises. In addition to the experimental
materials, there were 16 filler items based on simple disjunctive deduc-
tions. Half the subjects carried out all of the deductions based on
exclusive disjunctions and then all of the deductions based on inclusive
disjunctions, and half the subjects received the two biocks in the oppo-
site order. The order of the problems (including the filler items) within
the blocks was randomized for each subject.

The lexical materials again concerned people in cities, and we as-
signed them twice at random to the forms of problems, with the con-
straint that items assigned to an exclusive disjunction in one set were
assigned to an inclusive disjunction in the other set. Half the subjects
were tested with one set of materials, and half the subjects were tested
with the other set of materials.

The procedure was the same as in the previous experiments: The
subjects were asked to say what, if anything, followed from the prem-
ises. The subjects were tested individually. The difference between an
inclusive disjunction and an exclusive disjunction was explained to
them, and they were given two practice problems. The problems were
printed on separate sheets of paper, and the subjects gave their re-
sponses orally.

We tested 24 subjects (16 female and 8 male) from the subject panel
of the MRC Applied Psychology Unit. Their ages ranged from 18 to 59
years. They were paid £3.60 per hr for taking part in the experiment,
which lasted approximately 20 min.

Results and discussion. The percentages of valid conclu-
sions to the four sorts of deduction were as follows:

Exclusive affirmative: 21
Exclusive negative: 8
Inclusive affirmative: 6

Inclusive negative: 2

We have collapsed the results from the different orders of pre-
sentation because they had no effect on accuracy. As the model
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theory predicted, exclusive disjunctions were reliably easier
than inclusive disjunctions (Wilcoxons 7= 4.5, n=10, p<.01),
and the affirmative problems were reliably easier than the nega-
tive ones (Wilcoxon's T= 2, n= 6, p < .04). As we expected, the
task was very difficult and there was a floor effect: Once a
deduction called for three models, it became almost impossible
for our subjects (see Johnson-Laird & Bara, 1984, for the same
effect in syllogistic reasoning).

The subjects drew many erroneous conclusions. Figure 1 pre-
sents the percentages of erroneous conclusions according to
their consistency with one or more models of the premises.
Most conclusions that combine the atomic propositions in the
problems with connectives are not compatible with a subset of
the premise models (discussed shortly). Yet, as the figure
shows, nearly all the subjects’ erroneous conclusions can be
accounted for by the model theory: Only a small percentage
were not consistent with any subset of the models of the exclu-
sive disjunctions, and there were none whatsoever for the inclu-
sive disjunctions. Indeed, the figure shows a striking peak in
the results for all four sorts of deduction: The most frequent
category of response was a conclusion based on just a single
model of the premises. For example, the double disjunction,

June is in Wales or Charles is in Scotland, but not both.

Charles is in Scotland or Kate is in Ireland, but not both.
elicited the following typical error:
June is in Wales, and Kate is in Ireland.
A small proportion of conclusions were consistent with more
than five models: They consisted of logically very weak conclu-

sions, such as “If Linda is in Amsterdam, then maybe Cathy is
in Palermo and maybe Fiona is in Stockholm.” They appeared
to have been constructed not by examining all of the models
but rather by making a prudent qualification with a word such
as maybe of a conclusion based on a subset of models.

The only responses that are not shown in the figure were of
the form “no valid conclusion,” and they occurred overall on
Just under a third of the trials (exclusive affirmative 23%, exclu-
sive negative 29%, inclusive affirmative 25%, and inclusive nega-
tive 44%). As we saw earlier, the model theory proposes that the
response, “no valid conclusion,” is made whenever the models
of the premises fail to support any conclusion that is both novel
and parsimonious, for example, in the case of the initial models
for a modus tollens argument. Naturally, if reasoners are unable
to construct a set of models or are unable to discern what holds
over all of them, they will also make the same response. Hence,
the response is more frequent when subjects work under time
pressure: The response increased reliably in a study of syllo-
gisms when there was a limit of 10 s in which to try to draw a
conclusion (Johnson-Laird & Bara, 1984).

Could the subjects’ erroneous conclusions be the result of
guessing? The answer is negative because of the sheer improba-
bility of guessing a conclusion that would correspond to a sub-
set of the premise models. For example, there are eight distinct
ways in which three individuals could be located, but only two
of them are consistent with the exclusive affirmative premises.
Moreover, if subjects guess a conclusion that combines two
atomic propositions with a connective—and many errors had
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Figure I. The percentages of responses in Experiment 4 as a function of the number of models of the

premises with which they were consistent. (Excl. Aff. = exclusive affirmative; Excl. Neg. = exclusive
negative; Incl. Aff. = inclusive affirmative; Incl. Neg. = inclusive negative)
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that form—then they would need to guess the propositions and
the connective. If we assume that the subjects’ guesses never
include negations and that they restrict their connectives to
truth-functional ones, then the probability of guessing a con-
clusion that is a subset of the premise models for the exclusive
affirmatives is less than a third. Hence, two-thirds of the errone-
ous conclusions should not correspond to any subsets of the
models; in fact less than 15% of the conclusions fell into this
category (see Figure 1).

The model theory predicts a simple way in which to prevent
subjects from being swamped by a double disjunction: They
should be given a categorical premise in addition to the two
disjunctions; for example,

Mary is in Oxford.
Mary is in Dublin, or Joe is in Limerick, or both.
Joe is in Cambridge, or Ann is in Galway, or both.

What will then happen is that the interpretation of the first 2
premises will yield only a single model:

OL

where O represents Mary in Oxford and L represents Joe in
Limerick. The combination of this model with the models for
the third premise yields the following:

OLG

where G represents Ann in Galway. Hence, the number of mod-
els that have to be kept in mind at any one time is much reduced
in such a deduction. Our experiment included such conditions,
which constituted the filler items, and the task was indeed very
much easier in this case.

One salient aspect of double disjunctions is that the deriva-
tion of a conclusion according to formal rules is relatively
straightforward and calls for no more steps than the derivation
of the modus tollens deductions in Experiment 1. Given two
inclusive disjunctions of the form,

porq: Maryisin Dublin, or Joe is in Limerick, or both.

rors: Joeisin Cambridge, or Ann is in Galway, or both.

and the premise establishing that Joe cannot be in both places,
If g, then not r: If Joe is in Limerick,

then he is not in Cambridge.

a formal derivation proceeds as follows:

Not p [by hypothesis]
q [disjunctive rule from the first premise]
Not r [modus ponens from the third premise]
s [disjunctive rule from the second premise]

If not p, then s [Conditional proof]

Part of the difficulty of a double disjunction might be that
subjects rarely reason hypothetically from any premises apart
from conditionals (see also Braine et al., 1984). Yet, it is diffi-
cult to see how a rule theory could account for the fact that the
erroneous conclusions tend to correspond to subsets of the
premise models. Existing rule theories have yet to address this

problem, presumably because they have almost always been
tested by asking subjects to evaluate given conclusions. In con-
trast, the model theory predicts the models that can be built
from the premises: Valid conclusions correspond to all the mod-
els, but when there are many models reasoners are likely either
to respond that there is no valid conclusion or to draw an errone-
ous conclusion on the basis of a subset of the models.

General Discussion

The model theory accounts for the principal phenomena of
propositional reasoning. It explains the vagaries in the interpre-
tation of conditionals and disjunctions, the greater ease of
modus ponens over modus tollens, and the disappearance of
this difficulty for only if assertions. The model theory has also
led to a number of novel phenomena. It predicts the following
rank order of difficulty of connectives in simple deductions:
and, if, or, and not both; this prediction was borne out by Braine
et al’s (1984) data. The model theory predicts that deductions
based on conditionals should be easier than those based on
exclusive disjunctions, that modus tollens with a biconditional
should be easier than modus tollens with a conditional, and
that deductions from exclusive disjunctions should be easier
than deductions from inclusive disjunctions. Most important,
the theory predicts that erroneous conclusions should corre-
spond to subsets of possible models of the premises. Our exper-
iments have corroborated all of these predictions.

Although it is tempting to regard the experiments as provid-
ing a crucial comparison between the model theory and the-
ories based on formal rules, we resist the temptation. On the
one hand, none of the evidence rules out a theory based on both
models and rules: Only parsimony could count against a combi-
nation of both these modes of reasoning. On the other hand, a
rule theory might be developed that would be consistent with
our findings. Because the form of rules is not constrained, rule
theories have the power of a universal Turing machine, and so
they should be able to accommodate any results. Indeed, as we
show here, some authors argue that the model theory is just
another sort of formal rule theory.

The task of framing a rule theory that explains our results
will not be easy—at least if the theory is within the confines of
existing rule theories, that is, operating on the logical form of
premises. The lengths of the formal derivations of simple de-
ductions from if'and or are likely to be identical—they call for
only a single application of a rule. Hence, a rule theory could
account for the difference in difficulty only in terms of the ease
of use (or availability) of the rules of inference. This factor,
however, is precisely the one that has to be assessed from data
in current rule theories. Similarly, the finding that erroneous
conclusions correspond to subsets of models of the premises is
hard to reconcile with rule theories. Errors are supposed to
arise from the failure to retrieve, or to use properly, a formal
rule that is needed in a derivation. Such a spanner in the works
can hardly explain the pattern of errors. Indeed, rule theories
are placed in jeopardy by any fallacious conclusions that can-
not be the result of misinterpretations of the premises.

What are the differences between reasoning by rule and rea-
soning by model? We raise the question because some authors,
such as Goldman (1986, p. 292) and Rips (1990), deny the
existence of any differences. The distinction between formal
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rules and mental models collapses, they say, because of the
abstract nature of the procedures for constructing models. In-
deed, the following represents an explicit set of models for, say,
the premise, “There is either a circle, or there is a triangle, or
both™

o A
o —A
-0 A

This premise is isomorphic to an expression in so-called dis-
Junctive normal form (DNF), which consists of a disjunctive
combination of a series of conjunctions:

There is a circle, and there is a triangle,
or there is a circle, and there is not a triangle,

or there is not a circle, and there is a triangle.

Hence, in principle, it is possible to mimic the model theory of
propositional reasoning by framing rules that convert each
premise into DNF (with initial implicit clauses) and then carry
out the operations equivalent to those postulated by the model
theory. The computer program that models our theory is pre-
cisely such an emulation, because no existing programs have
any real grasp of meaning, that is, the truth conditions of asser-
tions.

Three points need to be made about a formal theory that
mimics the model theory. First, such a theory would have en-
tirely different empirical consequences from orthodox rule the-
ories. These theories use representations of the logical form of
premises, and the process of deduction consists of the applica-
tion of natural deduction rules to these logical forms in a search
for a derivation that leads from premises to conclusion (see the
quotation from Rips, 1983, in our introduction). The model
theory does not need to search for a derivation.

Second, no existing rule theory remotely resembles the re-
construction of model theory within a framework of disjunc-
tive normal forms: DNF is not a plausible linguistic representa-
tion of the logical form of sentences. Moreover, the model
theory postulates representations that transcend truth-func-
tional connectives; for example, it readily incorporates connec-
tives that are not truth-functional, such as before and after. In-
deed, a central distinction between the two sorts of theories is
that those based on rules postulate different formal rules for
different connectives, whereas the model theory postulates dif-
ferent meanings for different connectives. To accommodate a
new connective, a rule theory must provide appropriate formal
rules of inference governing its use. If the theory is also to ac-
count for how the term is understood, then it must also provide
a semantic analysis of its meaning. These two accounts must be
compatible with one another, but, as we argued in the introduc-
tion, the semantic analysis cannot be reduced to a set of formal
rules of inference. For the model theory to accommodate a new
connective, however, it needs only an account of its semantics.
Its existing inferential procedures will then immediately extend
to the new connective.

Third, human beings genuinely understand the meaning of

assertions, and the model theory postulates that they use this
ability to make deductions (cf. Johnson-Laird, 1983, p. 399).
Semantics cannot be reduced to formal rules. The very idea is
akin to mistaking proof theory for model theory—a mistake
that renders proofs of completeness vacuous. Indeed, the origi-
nal formalist program in logic was brought to an end by Godel’s
celebrated incompleteness proofs. Some theorists (eg.,
Penrose, 1989) argue that these proofs show that human se-
mantic competence cannot be a computational matter. That an
abstract computational device, such as a Turing machine, has
no grasp of semantics seems self-evident, but robots can repre-
sent the world, and in principle they could be equipped with
symbolic methods of communication that rely on an underly-
ing semantics. What is crucial for the present argument, how-
ever, is that human beings can understand the meaning of con-
nectives and that this process cannot consist of transforming a
premise into disjunctive normal form. DNF is merely another
linguistic expression, which in turn would need a semantic in-
terpretation. The model theory assumes that human beings are
conceptually equipped to envisage alternative situations—to
construct alternative models—and that they learn how the se-
mantics of connectives relates to sets of these envisaged alterna-
tives.

In conclusion, the evidence challenges existing rule theories,
but it is accounted for by the model theory. This theory is in
principle simple to refute: An easy deduction that depends on
many models violates its principal prediction. Yet, as we men-
tioned at the outset, the theory also accounts for the phenom-
ena of relational reasoning, reasoning with single quantifiers,
and reasoning with multiple quantifiers. The model theory has
thus been corroborated in all of the main domains of deductive
reasoning, whereas there are as yet no psychological theories
based on formal rules for reasoning with quantifiers.
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Appendix

Table Al

Some Examples of the Relation Between Number of Models and Rated
Difficulty in the Data of Braine, Reiser, and Rumain (1984)

Problem

Premise models

No. of

models  Rating

Problems with valid conclusions

4
oandz [
70

9

if corh, thenp
c
?p

12
if f, then 1
if r, then 1 . r
forr
N

43
land, rorw 1r,lr z 1
iflandr, thenz 1 w 1 wr z
if 1 and w, then z
7z

58
borz b ,—zb—az,
not z z —b
not both b and r
?notr

60
lorw 1, 1 —e,
if 1 then not e w
if w, then not e
eoro
?0

o

[~ ¢}
ey -]
00
=
o=~

w l—e

—b —r

1 1.42

5 2.50

fL L flr,f ,f1lr

6 2.61

rz,l wz I wr z

7 3.86

b—r, b—z —r

e, w—e, wl—e,e, wl-—eo

(o]

10 5.80

Problems with conclusions inconsistent with the premises

notm —m
7m

21
if e, then not k
e

7k

e —k,e, e —k
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Table Al (continued)

No. of
Problem Premise models models  Rating

Problems with conclusions inconsistent with the premises (continued)

28

if a and m, then not s am--s§,a,am—s, m,am-—s

a

m

7s 5 2.79
20

ife, then not v e—v,0 —v,e—V 0, , €V 0

if o, then not v 0

eoro

?7v 6 3.17
44

band,torz bt btn,bz n, bzn, bzt

if bandt, thenn bz -+ bztn

ifband z, thenn

?notn 7 3.91
61

eorx e,e--h, e—h,x—h,e—hx,h ,e—hxt

if e, then not h X e xe—h --- t

if x, thennoth

hort

?nott 10 6.00

Note. Each entry shows the problem number in Braine et al.’s appendix, the premises, the models
required to interpret the premises, the number of models, and the difficulty rating of the problem.
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