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Abstract. The knowledge representation tradition in computational lexicon de-
sign represents words as static encapsulations of purely lexica knowledge. We
suggest that this view poses certain limitations on the ability of the lexicon to
generate nuance-laden and context-sensitive meanings, because word boundaries
are obstructive, and the impact of non-lexical knowledge on meaning is unac-
counted for. Hoping to address these problematics, we explore a context-
centered approach to lexicon design called a Bubble Lexicon. Inspired by Ross
Quillian’s Semantic Memory System, we represent word-concepts as nodes on a
symbolic-connectionist network. In aBubble Lexicon, aword's meaning is de-
fined by a dynamically grown context-sensitive bubble; thus giving a more natu-
ral account of systematic polysemy. Linguistic assembly tasks such as attribute
attachment are made context-sensitive, and the incorporation of general world
knowledge improves generative capability. Indicative trials over an implemen-
tation of the Bubble Lexicon lends support to our hypothesis that unpacking
meaning from predefined word structures is a step toward a more natural han-
dling of context in language.

1 Motivation

Packing meaning (semantic knowledge) into words (lexical items) has long been the
knowledge representation tradition of lexical semantics. However, as the field of
computational semantics becomes more mature, certain problematics of this paradigm
are beginning to reveal themselves. Words, when computed as discrete and static
encapsulations of meaning, cannot easily generate the range of nuance-laden and con-
text-sensitive meanings that the human language faculty seems able to produce so
effortlessly. Take one example: Miller and Fellbaum’s popular machine-readable
lexicon, WordNet [7], packages a small amount of dictionary-type knowledge into
each word sense, which represents a specific meaning of a word. Word senses are
partitioned a priori, and the lexicon does not provide an account of how senses are
determined or how they may be systematically related, a phenomenon known as sys-
tematic polysemy. The result is a sometimes arbitrary partitioning of word meaning.
For example, the WordNet entry for the noun form of “sleep” returns two senses, one
which means “a dumber” (i.e. along rest), and the other which means “a nap” (i.e. a
brief rest). The systematic relation between these two senses is unaccounted for, and
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their classification as separate senses indistinguishable from homonyms give the false
impression that there is a no-man’s land of meaning in between each predefined word
sense.

Hoping to address the inflexibility of lexicons like WordNet, Pustejovsky’s Gen-
erative Lexicon Theory (GLT) [19] packs a great deal more meaning into a word
entity, including knowledge about how a word participates in various semantic roles
known as “qualia,” which dates back to Aristotle. The hope is that a densely packed
word-entity will be able to generate a fuller range of nuance-laden meaning. In this
model, the generative ability of aword is afunction of the type and quantity of knowl-
edge encoded inside that word. For example, the lexical compound “good rock” only
makes sense because one of the functions encoded into “rock” is “to climb on,” and
associated with “to climb on” is some notion of “goodness.” GLT improves upon the
sophistication of previous models; however, as with previous models, GLT represents
words as discrete and pre-defined packages of meaning. We argue that this underlying
word-as-prepackaged-meaning paradigm poses certain limitations on the generative
power of the lexicon. We describe two problematics below:

1) Artificial word boundary. By representing words as discrete objects with pre-
defined meaning boundaries, lexicon designers must make a priori and sometimes
arbitrary decisions about how to partition word senses, what knowledge to encode
into a word, and what to leave out. This is problematic because it would not be
feasible (or efficient) to pack into a word all the knowledge that would be needed
to anticipate all possible intended meanings of that word.

2) Exclusion of non-lexical knowledge. When representing a word as a predeter-
mined, static encapsulation of meaning, it is common practice to encode only
knowledge that formally characterizes the word, namely, lexical knowledge (e.g.
the qualia structure of GLT). We suggest that non-lexical knowledge such as gen-
eral world knowledge also shapes the generative power and meaning of words.
General world knowledge differs from lexical knowledge in at least two ways.

a) First, general world knowledge is largely concerned with defeasible knowl-
edge, describing relationships between concepts that can hold true or often
holds true (connotative). By comparison, lexical knowledge is usually a more
formal characterization of aword and therefore describes relationships between
concepts that usually holds true (denotative). But the generative power of
words and richness of natural language may lie in defeasible knowledge. For
example, in interpreting the phrase “ funny punch,” it is helpful to know that
“fruit punch can sometimes be spiked with alcohol.” Defeasible knowledge is
largely missing from WordNet, which knows that a*“ cat” isa* feline”, “ carni-
vore”, and “mammal”, but does not know that “a cat is often a pet.” While
some defeasible knowledge has crept into the qualia structures of GLT (e.g. “a
rock is often used to climb on”), most defeasible knowledge does not naturally
fit into any of GLT’slexically oriented qualiaroles.

b) Second, lexical knowledge by its nature characterizes only word-level con-
cepts (e.g. “kick”), whereas general world knowledge characterizes both word-
level and higher-order concepts (e.g. “kick someone”). Higher-order con-
cepts can al'so add meaning to the word-level concepts. For example, knowing
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that “kicking someone may cause them to feel pain” lends a particular interpre-

tation to the phrase “ an evil kick.” WordNet and GLT do not address general

world knowledge of higher-order concepts in the lexicon.
It is useful to think of the aforementioned problematics as issues of context. Word
boundaries seem artificia because meaning lies either wholly inside the context of a
word, or wholly outside. Non-lexical knowledge, defeasible and sometimes charac-
terizing higher-order concepts, represents a context of connotation about a word,
which serves to nuance the interpretation of words and lexical compounds. Consider-
ing these factors together, we suggest that a maor weakness of the word-as-
prepackaged-meaning paradigm lies in itsinability to handle context gracefully.

Having posed the problematics of the word-as-prepackaged-meaning paradigm as
an issue of context, we wonder how we might model the computational lexicon so that
meaning contexts are more seamless and non-lexical knowledge participates in the
meaning of words. We recognize that this is a difficult proposition with a scope ex-
tending beyond just lexicon design. The principle of modularity in computational
structures has been so successful because encapsulations like frames and objects help
researchers manage complexity when modeling problems. Removing word bounda-
ries from the lexicon necessarily increases the complexity of the system. This notwith-
standing, we adopt an experimental spirit and press on.

In this paper, we propose a context-centered model of the computational lexicon in-
spired by Ross Quillian’s work on semantic memory [21], which we dub as a Bubble
Lexicon. The Bubble Lexicon Architecture (BLA) is a symbolic connectionist net-
work whose representation of meaning is distributed over nodes and edges. Nodes are
labeled with a word-concept (our scheme does not consider certain classes of words
such as, inter alia, determiners, prepositions and pronouns). Edges specify both the
symbolic relation and connectionist strength of relation between nodes. A word-
concept node has no internal meaning, and is simply meant as a reference point, or,
indexical feature, (as Jackendoff would call it [9]) to which meaning is attached.
Without formal word boundaries, the “meaning” of a word becomes the dynamically
chosen, flexible context bubble (hence the lexicon’s name) around that word's node.
The size and shape of the bubble varies according to the strength of association of
knowledge and the influence of active contexts; thus, meaning is nuanced and made
context-sensitive. Defeasible knowledge can be represented in the graph with the help
of the connectionist properties of the network. Non-lexical knowledge involving
higher-order concepts (more than one word) are represented in the graph through
specia nodes called encapsulations, so that they may play a role in biasing meaning
determination.

The nuanceful generative capability of the BLA is demonstrated through the lin-
guistic assembly task of attribute attachment, which engages some simulation over the
network. For example, determining the meaning of alexical compound such as “fast
car’ involves the generation of possible interpretations of how the “fast” and “car”
nodes are conceptually related through dependency paths, followed by a valuation of
each generated interpretation with regard to its structural plausibility and contextual
plausibility. The proposed Bubble Lexicon is not being presented here as a perfect or
complete solution to computational lexicon design, but rather, as the implementation
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and indicative trials illustrate, we hope Bubble Lexicon is a step toward a more ele-
gant solution to the problem of context in language.

The organization of the rest of this paper is as follows. First, we present a more
detailed overview of the Bubble Lexicon Architecture, situating the representation in
the literature. Second, we present mechanisms associated with this lexicon, such as
context-sensitive interpretation of words and compounds. Third, we discuss an im-
plementation of Bubble Lexicon and present some evauation for the work through
some indicative trials. Fourth, we briefly review related work. In our conclusion we
return to revisit the bigger picture of the mental lexicon.

2 BubbleLexicon Architecture

This section introduces the proposed Bubble Lexicon Architecture (BLA) (Fig. 1)
through several subsections. We begin by situating the lexicon’s knowledge represen-
tation in the literature of symbolic connectionist networks. Next, we enumerate some
tenets and assumptions of the proposed architecture. Finally, we discuss the ontology
of types for nodes, relations, and operators.
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Fig. 1. A static snapshot of a Bubble Lexicon. We selectively depict some nodes and edges
relevant to the lexical items “car”, “road”, and “fast”. Edge weights are not shown. Nodes
cleaved in half are causal trans-nodes. The black nodes are context-activation nodes.
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2.1 Knowledge Representation Considerations

A Bubble Lexicon is represented by a symbolic-connectionist network specially pur-
posed to serve as a computational lexicon. Nodes function as indices for words, lexi-
cal compounds (linguistic units larger than words, such as phrases), and formal con-
texts (e.g. a discourse topic). Edges are labeled dually with a minimal set of structural
structural dependency relations to describe the relationships between nodes, and with a
numerical weight. Operators are specia relations which can hold between nodes,
between edges, and between operator relations themselves; they introduce boolean
logic and the notion of ordering, which is necessary to represent certain types of
knowledge (e.g. ordering is needed to represent a sequence of events).

Because the meaning representation is distributed over the nodes and edges, words
only have an interpretive meaning, arising out of some simulation of the graph.
Spreading activation (cf. [5]) is ordinarily used in semantic networks to determine
semantic proximity. We employ a version of spreading activation to dynamically
create a context bubble of interpretive meaning for a word or lexical compound. In
growing and shaping the bubble, our spreading activation algorithm tries to model the
influence of active contexts (such as discourse topic), and of relevant non-lexical
knowledge, both of which contribute to meaning.

Some properties of the representation are further discussed below.

Connectionist weights. Connectionism and lexicon design are not usually considered
together because weights tend to introduce significant complexity to the lexicon.
However, there are several reasons why connectionism is necessary to gracefully
model the context problem in the lexicon.

First, not all knowledge contributes equally to a word's meaning, so we need nu-
merical weights on edges as an indication of semantic relevance, and to distinguish
between certain from defeasible knowledge. Defeasible knowledge may in most cases
be less central to aword’s meaning, but in certain contexts, their influenceisfelt.

Second, connectionist weights lend the semantic network notions of memory and
learning, exemplified in [16], [17], and [22]. For the purposes of growing a computa-
tional lexicon, it may be desirable to perform supervised training on the lexicon to
learn particular meaning bubbles for words, under certain contexts. Learning can also
be useful when importing existing lexiconsinto a Bubble Lexicon through an exposure
process similar to semantic priming [1].

Third, connectionism gives the graph intrinsic semantics, meaning that even with-
out symbolic labels on nodes and edges, the graded inter-connectedness of nodes is
meaningful. This is useful in conceptual analogy over Bubble Lexicons. Goldstone
and Rogosky [8] have demonstrated that it is possible to identify conceptua corre-
spondences across two connectionist webs without symbolic identity. If we are also
given symbolic labels on relations, as we are in BLA, the structure-mapping anal ogy-
making methodology described by Falkenhainer et al. [6] becomes possible.

Finally, although not the focus of this paper, a self-organizing connectionist lexicon
would help to support lexicon evolution tasks such as lexical acquisition (new word
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meanings), generaization (merging meanings), and individuation (cleaving mean-
ings). A discussion of this appears elsewhere[11].

Ontology of Conceptual Dependency Relations. In a Bubble Lexicon, edges are
relations which hold between word, compound, and context nodes. In addition to
having a numerical weight as discussed above, edges aso have a symbolic label repre-
senting a dependency relation between the two words/concepts. The choice of the
relational ontology represents an important tradeoff. Very relaxed ontologies that
allow for arbitrary predicates like bi t e( dog, mai | nan) in Peirce’'s existentia
graphs [18] or node-specific predicates as in Brachman's description logics system [2]
are not suitable for highly generalized reasoning. Efforts to engineer ontologies that
enumerate a priori a complete set of primitive semantic relations, such as Ceccato’'s
correlational nets [3], Masterman's primitive concept types [14], and Schank’s Con-
ceptual Dependency [23], show little agreement and are difficult to engineer. A small
but insufficiently generic set of relations such as WordNet's nyms [7] could also se-
verely curtail the expressive power of the lexicon.

Because lexicons emphasize words, we want to focus meaning around the word-
concept nodes rather than on the edges. Thus we propose a small ontology of generic
structural relations for the BLA. For example, instead of growm(tr ee, f ast), we
have abi lity(tree, grow) and parameter(grow, fast). These relations
are meant as a more expressive set of those found in Quillian’s original Semantic
Memory System. These structural relations become useful to linguistic assembly tasks
when building larger compound expressions from lexical items. They can be thought
of asasort of semantic grammar, dictating how concepts can assemble.

2.2 Tenetsand Assumptions

Tenets. While the static graph of the BLA (Fig. 1) depicts the meaning representa-
tion, it is equally important to talk about the simulations over the graph, which are
responsible for meaning determination. We give two tenets below:

1) No coherent meaning without simulation. In the Bubble Lexicon graph, different
and possibly conflicting meanings can attach to each word-concept node; therefore,
words hardly have any coherent meaning in the static view. We suggest that when
human minds think about what a word or phrase means, meaning is always evaluated
in some context. Similarly, a word only becomes coherently meaningful in a bubble
lexicon as a result of simulation (graph traversal) via spreading activation (edges are
weighted, though Fig. 1 does not show the weights) from the origin node, toward some
destination. This helps to exclude meaning attachments which are irrelevant in the
current context, to hammer down a more coherent meaning.

2) Activated nodes in the context biases inter pretation. The meaning of a word or
phrase is the collection of nodes and relations it has “ harvested” along the path toward
its destination. However, there may be multiple paths representing different interpre-
tations, perhaps each representing one “word sense”. In BLA, the relevance of each
word sense path depends upon context biases near the path which may boost the acti-
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vation energy of that path. Thus meaning is naturally influenced by context, as con-
text nodes prefers certain interpretations by activating certain paths.

Assumptions. We have made the following assumptions about our representation:

1) Nodes in BLA are word-concepts. We do not give any account of words like
determiners, pronouns, and prepositions.

2) Nodes may also be higher-order concepts like “fast car,” constructed through en-
capsulation. Inlexical evolution, intermediate transient nodes also exist.

3) Inour examples, we show selected nodes and edges, although the success of such a
lexicon design thrives on the network being sufficiently well-connected and dense.

4) Homonyms, which are non-systematic word senses (e.g. fast: not eat, vs. quick) are
represented by different nodes. Only systematic polysemy shares the same node. We
assume we can cleanly distinguish between these two classes of word senses.

5) Though not shown, relations are always numerically weighted between 0.0 and 1.0,
in addition to the predicate label, and nodes aso have a stable activation energy,
which isafunction of how often active a node is within the current discourse.

2.3 Ontology of Nodes, Relations, and Operators

We propose three types of nodes (Fig. 2). Normal nodes may be word-concepts, or
larger encapsulated lexical expressions. However, some kinds of meaning i.e. actions,
beliefs, implications are difficult to represent because they have some notion of syn-
tax. Some semantic networks have overcome this problem by introducing a causal
relation [22], [17]. We opted for a causal node called a TransNode because we feel
that it offers a more precise account of causality as being inherent in some word-
concepts, like actions. This also allows us to maintain a generic structural relation
ontology. Because meaning determination is dynamic, TransNodes behave causally
during smulation. TransNodes derive from Minsky’s genera interpretation [15] of
Schankian transfer [23], and is explained more fully elsewhere [11].

Types of Nodes Types of Relations Types of Operators

|
NOT

O @ —function x.y()—»  —param x(y,— 1) R -XOR:
Normal TransNode

RLES —ability x.y()—»  isA xiy (subtype)}» I
. R AND 12

ContextNode TransientNode ~—Property xy—>  —value x=y— l
(

ORDERING)
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Fig. 2. Ontology of node, relation, and operator types.

While normal nodes can act as contexts when they are activated in the BLA, there is
no formal definition to those groupings. We suggest that sometimes, human minds
may employ more formal and explicit notions of context which define a topic or do-
main of discourse (e.g.: “automotives,” “finance’). For example, the meaning of the
formal context “finance” is somewhat different than the meaning that is attached to
that word-concept node. For one, the formal context “finance” may be a well-defined
term in the financial community. The externa definition of certain concepts like for-
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mal contexts is supported by Putnam’s idea of semantic externalism [20]. We intro-
duce ContextNodes as an explicit representation of externally-defined formal con-
texts. ContextNodes use the assoc (generic association) relation, along with operators,
to cause the network to be in some state when they are activated. They can be thought
of as externally grounded contexts. Meta-level ContextNodes that control a layer of
ContextNodes are also possible. In Figure 1, the “formal auto context” ContextNode is
meant to represent formally the domain of automotives, to the best of a person’s un-
derstanding of the community definition of that context.

Because ContextNodes help to group and organize nodes, they are also useful in
representing perspectives, just as a semantic frame might. Let us consider again the
example of a car, as depicted in Figure 1. A car can be thought of as an assembly of
itsindividual parts, or it can be thought of functionally as something that is a type of
transportation that people use to drive from point A to point B. We can use Con-
textNodes to separate these two perspectives of a car. After all, we can view a per-
spective as atype of packaged context.

So far we have only talked about nodes which are stable word-concepts and stable
contexts in the lexicon. These can be thought of as being stable in memory, and
changing slowly. However, it is aso desirable to represent more temporary concepts,
such as those used in thought. For example, to reason about “fast cars’, one might
encapsulate one particular sense path of fast car into a TransientNode. Or one can
instantiate a concept and overload its meaning. TransientNodes explain how fleeting
concepts in thought can be reconciled with the lexicon, which contains more stable
elements. The interaction of concepts and ideas constructed out of them should not be
a strange idea because in the human mental model, there is no line drawn between
them. In the next section we illustrate the instantiation of a TransientNode.

We present a small ontology of structural relations to represent fairly generic
structural relations between concepts. Object-oriented programming notation is useful
shorthand because the process of meaning determination in the network engages in
structural marker passing of relations, where symbol binding occurs. It is aso im-
portant to remember, that each edge carries not only a named relation, but also a nu-
merical weight. Connectionist weights are critically important in al processes of
Bubble Lexicons, especialy spreading activation and learning.

Operators put certain conditions on relations. In Figure 1, road material may only
take on the value of pavement or dirt, and not both at once. Some operators will only
hold in a certain instantiation or a certain context; so operators can be conditionally
activated by a context or node. For example, a person can drive and walk, but under
the time context, a person can only drive XOR walk.

3 BubbleLexicon Mechanisms
We now explain the processes that are core themes of the Bubble Lexicon.

Meaning Deter mination. One of the important tenets of the lexicon's representation
in Bubble Lexicons is that coherent meaning can only arise out of simulation. That is
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to say, out-of-context, word-concepts have so many possible meanings associated with
each of them that we can only hope to make sense of a word by putting it into some
context, be it aformal topic area (e.g. traversing from “car” toward the ContextNode
of “transportation”) or lexical context (e.g. traversing from “car” toward the normal
node of “fast”). We motivate this meaning as simulation idea with the example of
attribute attachment for “fast car”, as depicted in Figure 1. Figure 3 shows some of
the different interpretations generated for “fast car”.

As illustrated in Figure 3, “fast car” produces many different interpretations given
no other context. Novel to Bubble Lexicons, not only are numerical weights passed,
structural messages are also passed. For example, in Figure 1, “drying time” will not
aways relate to “fast” in the same sense. It depends on whether or not pavement is
drying or a washed car is drying. Therefore, the history of traversal functions to nu-
ance the meaning of the current node. Unlike Charniak’s earlier notion of marker
passing [4] used to mark paths, structural marker passing in Bubble Lexiconsis accre-
tive, meaning that each node contributes to the message being passed.

'—- b—b‘-{a b)= c-b‘ @) The car whose top speed is fast
f.—a b(c) speed -a.b{c=d,
b—b‘—(a b).c
2.y »‘—(a b).c:
a() . b.a(c) e) The car that can be washed at a speed that is fast

abic) cd& speed\ c.d=e § {f) The car that can be driven on a road whose speed fimit is fast.
a.b(c) limit a.b(c)
1o d ef& ef=g& {g) The car that can be driven
a. b(»‘—a P.';: g(f,@,cadbe &§®—-ﬂ c d e on a road whose road material
a. b(c) is pavement, whose drying time
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(b) The car that can be driven at a speed that is fast.
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Fig. 3. Different meanings of “fast car,” resulting from network traversal. Numerical weights
and other context nodes are not shown. Edges are |abeled with message passing, in OOP nota-
tion. Thei" letter correspondsto thei"node in atraversal.

Although graph traversal produces many meanings for “fast car,” most of the senses
will not be very energetic, that is to say, they are not very plausible in most contexts.
The senses given in Figure 3 are ordered by plausibility. Plausibility is determined by
the activation energy of the traversal path. Spreading activation across a traversal path

is different than classical spreading activation from the literature.

active
contexts

AZond @ ALTYS G, aAs

n=i

Equation (1) shows how atypical activation energy for the xth path between nodes i
and j is calculated in classical spreading activation systems. It is the summation over
al nodes in the path, of the product of the activation energy of each node n along the
path, times the magnitude of the edge weight leading into node n. However, in a Bub-
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ble Lexicon, we would like to make use of extra information to arrive at a more pre-
cise evaluation of a path’s activation energy, especially against all other paths between
i and j. This can be thought of as meaning disambiguation, because in the end, we
inhibit the incorrect paths which represent incorrect interpretations.

To perform this disambiguation, the influence of contexts that are active (i.e. other
parts of the lexical expression, relevant and active non-lexical knowledge, discourse
context, and topic ContextNodes), and the plausibility of the structural message being
passed, are factored in. If we are evaluating a traversal path in a larger context, such
as a part of a sentence or larger discourse structure, or some topic is active, then there
will likely be a set of word-concept nodes and ContextNodes which have remained
active. These contexts are factored into our spreading activation valuation function (2)
as the sum over all active contexts c of al pathsfrom cto n.

The plausibility of the structural message being passed Y is aso important.

Admittedly, for different linguistic assembly tasks, different heuristics will be needed.
In attribute attachment (e.g. adj-noun compounds), the heuristic is fairly straightfor-
ward: The case in which the attribute characterizes the noun-concept directly is pre-
ferred, followed by the adjective characterizing the noun-concept’ s ability or use (e.g.
Fig. 3(b)) or subpart (e.g. Fig. 3(a,c,d)), followed by the adjective characterizing some
external manipulation of the noun-concept (e.g. Fig. 3(€)). What is not preferred is
when the adjective characterizes another noun-concept that is a sister concept (e.g.
Fig. 3(f,g)). Our spreading activation function (2) incorporates classic spreading acti-
vation considerations of node activation energy and edge weight, with context influ-
ence on every node in the path, and structural plausibility.

Recall that the plausibility ordering given in Figure 3 assumed no major active
contexts. However, let's consider how the interpretation might change had the dis-
course context been a conversation at a car wash. In such a case, “car wash” might be
an active ContextNode. So the meaning depicted in Fig. 3(e) would experience in-

creased activation energy from the context term, A.., . was,- 1HiS boost makes
(e) aplausible, if not the preferred, interpretation.

* fast .
car ‘

|sA
assoc assoc assoc
functlon param speed value

Fig. 4. Encapsulation. One meaning of “fast car” is encapsulated into a TransientNode, making
it easy to reference and overload.

Encapsulation. Once a specific meaning is determined for a lexical compound, it
may be desirable to refer to it, so, we assign to it anew index. This happens through a
process called encapsulation, in which a specific traversal of the network is captured
into a new TransientNode. (Of course, if the node is used enough, over time, it may
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become a stable node). The new node inherits just the specific relations present in the
nodes along the traversal path. Figure 4 illustrates sense (b) of “fast car”.

More than just lexical compounds can be encapsulated. For example, groupings of
concepts (such as a group of specific cars) can be encapsulated, along with objects that
share a set of properties or descriptive features (Jackendoff calls these kinds [9]), and
even assertions and whole lines of reasoning can be encapsulated (with the help of the
Boolean and ordering operators). And encapsulation is more than just a useful way of
abstraction-making. Once a concept has been encapsulated, its meaning can be over-
loaded, evolving away from the original meaning. For example, we might instantiate
“car’ into “Mary’s car,” and then add a set of properties specific to Mary’s car. We
believe encapsulation, along with classical weight learning, supports accounts of lexi-
cal evolution, namely, it helps to explain how new concepts may be acquired, concepts
may be generalized (concept intersection), or individuated (concept overloading).
Lexical evolution mechanisms are discussed elsewhere [11].

Importing Existing Knowledge into the Bubble Lexicon. One question which may
be looming in the reader’s mind is how a Bubble Lexicon might be practically con-
structed. One practical solution is to bootstrap the network by learning frame knowl-
edge from existing lexicons, such as GLT, or even Cyc [10], a database of lexical and
non-lexical world knowledge. Taking the example of Cyc, we might map Cyc con-
tainers into nodes, predicates into TransNodes, and map micro-theories (Cyc’s version
of contexts) into ContextNodes, which activate concepts within each micro-theory.
Assertional knowledge can be encapsulated into new nodes. To learn the intrinsic
weights on edges, supervised learning can be used to semantically prime the network
to the knowledge being imported. Cyc suffers from the problem of rigidity, especialy
contextual rigidity, as exhibited by microtheories which pre-fix context boundaries.
However, once imported into a Bubble Lexicon, meaning determination may become
more dynamic and context-sensitive. Contexts will evolve, based on the notion of
lexical utility, not just on predefinition.

4 Implementation

To test the ideas put forth in this paper, we implemented a Bubble Lexicon over a
adapted subset of the Open Mind Commonsense Semantic Network (OMCSNet) [13]
based on the Open Mind Commonsense knowledge base [24]. We use the adaptive
weight training algorithm developed for a Commonsense Robust Inference System
(CRIS) [12]. OMCSNEet is a large-scale semantic network of 140,000 items of genera
world knowledge including lexical and non-lexical, certain and defeasible. Its scale
provides BLA with arich basis from which meaning can be drawn.

With the goal of running trials, edge weights were assigned an a priori fixed value,
based on the type of relation. The spreading activation evaluation function described
in equation (2) was implemented. We also labeled three existing nodes in OMCSNet
as ContextNodes and trand ated the nodes hasCollocate relations, into the assoc rela-
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tion in the Bubble Lexicon. Predefining nodes, while not generally necessary, was
done in this case to make it easier to observe the effects of context bias in indicative
trials. Trials were run over four lexical compounds, alternatingly activating each of
these ContextNodes plus the null ContextNode. Context activations were set to a very
high value to exaggerate, for illustrative purposes, the effect of context on meaning
determination. Table 1 summarizes the results.

One discrepancy between the proposed and implemented systems is that assertional
knowledge (e.g. “ Gas money to work can be cheap” ) in the implementation is allowed
to beinthetraversal path. Assertional knowledge is encapsulated as nodes.

The creative and nuanceful interpretations produced by the BLA demonstrate
clearly the effects of active context on meaning determination. The incorporation of
non-lexical knowledge into the phrasal meaning is visible (e.g. “Horse that races,
which wins money, is fast”). By comparison, WordNet and GLT would not have
produced the varied and informal interpretations produced by BLA.

Table 1. Resultsof trialsillustrate effects of active context on attribute attachment.

Compound (context) Top Interpretation ( A i x score in %)
Fast horse () Horse that is fast. (30%)
Fast horse (money) Horse that races, which wins money, is fast. (60%)

Fast horse (culture)
Fast horse (transportation)

Horse that is fast (30%)
Horseis used to ride, which can be fast. (55%)

Cheap apartment () Apartment that has a cost which can be cheap. (22%)

Cheap apartment (money) Apartment that has a cost which can be cheap. (80%)

Cheap apartment (culture) Apartment is used for living, which is cheap in New Y ork. (60%)
Cheap apartment (transportation) Apartment that is near work; Gas money to work can be cheap (20%)
Lovetree() Treeisapart of nature, which can be loved (15%)

Love tree (money) Buying atree costs money; money is loved. (25%)

Lovetree (culture) People who arein love kiss under atree. (25%)

Love tree (transportation) Treeisapart of nature, which can be loved (20%)

Tak music () Music is alanguage which has use to talk. (30%)

Talk music (money) Music is used for advertisement, which is an ability of talk radio. (22%)

Talk music (culture)
Talk music (transportation)

Music that is classical is talked about by people. (30%)
Music is used in elevators where people talk. (30%)

However, the implementation also reveals some difficulties associated with the BLA.
Meaning interpretation is very sensitive to the quality and signal-to-noise ratio of
concepts/relations’/knowledge present in the lexicon, which in our case, amounts to
knowledge present in OMCSNet. For example, in the last example in Table 1, “talk
music” in the transportation context was interpreted as “music is used in elevators,
where people talk.” This interpretation singled out elevators, even though music is
played in buses, cars, planes, and elsewhere in transportation. This has to do with the
sparseness of relations in OMCSNet. Although those other transportation concepts
existed, they were not properly connected to “music’. What this suggests is that
meaning is not only influenced by what exists in the network, it is also heavily influ-
enced by what is absent, such as the absence of arelation that should exist.

Also, judging the relevance of meaning relies largely on the evolution of good nu-
merical weights on edges; but admittedly, learning the proper weights is a difficult
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proposition: Though we point out that even a rough estimate of weights (for example,
separating lexical and non-lexical knowledge by 0.5), as was employed in our imple-
mentation, vastly improved the performance of meaning determination.

Though the complexity and knowledge requirements remain lingering challenges
for the BLA, the implementation and indicative trials do seem to support our hypothe-
sis that unpacking meaning from predefined word structures is a step toward a more
natural handling of nuance and context in language.

5 Related Work

Ross Quillian’s Semantic Memory System [21] was the initial inspiration for this
work, as it was one of the first to explore meaning being distributed over a graph. In
the semantic memory system, Quillian sought to demonstrate some basic semantic
capabilities over a network of word-concepts, namely, comparing and contrasting
words. The relations initially proposed represented minimal structural dependencies,
only later to be augmented with some other relations including proximity, conse-
guence, precedence, and similarity. The type of knowledge represented in the network
was denotative and dictionary-like. With the Bubble Lexicon, we attempt to build on
Quillian’s work. We explain how such a semantic memory might be used to circum-
vent the limitations of traditional lexicons. We populate the network with lexical and
non-lexical knowledge, and demonstrate their influences on meaning. We give an
account of context-sensitive meaning determination by modifying spreading activation
to account for contextual and structural plausibility; and introduce connectionism as a
vehicle for conceptual analogy and learning.

6 Conclusion

In this paper, we examined certain limitations that the word-as-prepackaged-meaning
paradigm imposes on the ability of the lexicon to generated highly nuanced interpreta-
tions. We formulated these problematics as issues of context, and hypothesized that a
context-centered design of the computational lexicon would lend itself more to nu-
anced generation. We proposed a context-sensitive symbolic-connectionist network
called a Bubble Lexicon. Rather than representing words as static encapsulations of
meaning, the Bubble Lexicon dynamically generates context bubbles of meaning
which vary based on active contexts. The inclusion of non-lexical knowledge such as
defeasible and higher-order conceptual knowledge, along with intrinsic weights on
relations, al serve to nuance to meaning determination. More than a static structure,
the Bubble Lexicon is a platform for performing nuanceful linguistic assembly tasks
such as context-sensitive attribute attachment (e.g. “fast car”).

An implementation of the Bubble Lexicon over a large repository of commonsense
called OMCSNet yielded some promising findings. In indicative trials, context had a
very clear effect in nuancing the interpretation of phrases, lending support to our hy-
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pothesis. However, these findings also tell a cautionary tale. The accuracy of a se-
mantic interpretation is heavily reliant on the concepts in the network being well-
connected and densely packed, and the numerical weights being properly learned. The
task of building lexicons over symbolic connectionist networks will necessarily have
to meet these needs and manage a great deal of complexity. However, we are optimis-
tic that the large repositories of world knowledge being gathered recently will serve as
a well-populated foundation for such alexicon. The research described in this paper
explores lexicons that approach the generative power of the human language faculty.
We cannot help but note that as such a lexicon theory grows toward its godl, it also
approaches a comprehensive model of thought and semantic memory.
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