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Understanding Complex Information-
processing Systems

[...] Almost never can a complex system of any
kind be understood as a simple extrapolation from
the properties of its elementary components. Con-
sider, for example, some gas in a bottle. A descrip-
tion of thermodynamic effects — temperature,
pressure, density, and the relationships among
these factors — is not formulated by using a large
set of equations, one for each of the particles
involved. Such effects are described at their own
level, that of an enormous collection of particles;
the effort is to show that in principle the micro-
scopic and macroscopic descriptions are consistent
with one another. If one hopes to achieve a full
understanding of a system as complicated as a
nervous system, a developing embryo, a set of
metabolic pathways, a bottle of gas, or even a
large computer program, then one must be pre-
pared to contemplate different kinds of explana-
tion at different levels of description that are
linked, at least in principle, into a cohesive
whole, even if linking the levels in complete detail
is impractical. For the specific case of a system that
solves an information-processing problem, there
are in addition the twin strands of process and
representation, and both these ideas need some
discussion.

Marr, D., Vision (:C; 1982 by W. H. Freeman and Com-
pany. Used with permission).
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Representation and description

A representation is a formal system for making
explicit certain entities or types of information,
together with a specification of how the system
does this. And I shall call the result of using a
representation to describe a given entity a descrip-
tion of the entity in that representation (Marr and
Nishihara, 1978).

For example, the Arabic, Roman, and binary
numeral systems are all formal systems for repres-
enting numbers. The Arabic representation con-
sists of a string of symbols drawn from the set (0,
1,2,3,4,5,6,7,8,9), and the rule for construct-
ing the description of a particular integer z - that
one decomposes # into a sum of multiples of
powers of 10 and unites these multiples into a
string with the largest powers on the left and the
smallest on the right. Thus, thirty-seven equals
3 x 10! + 7 x 10°, which becomes 37, the Arabic
numeral system’s description of the number.
What this description makes explicit is the
number’s decomposition into powers of 10.
The binary numeral system’s description of
the number thirty-seven is 100101, and
this description makes explicit the number’s
decomposition into powers of 2. In the Roman
numeral system, thirty-seven is represented as
XXXVIL

This definition of a representation is quite gen-
eral. For example, a representation for shape
would be a formal scheme for describing some
aspects of shape, together with rules that specify
how the scheme is applied to any particular shape.
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A musical score provides a way of representing 2
svmphony; the alphabet allows the construction of
a written representation of words; and so forth.
The phrase ‘‘formal scheme” is critical to the
definition, but the reader should not be frightened
by it. The reason is simply that we are dealing with
information-processing machines, and the way
such machines work is by using symbols to stand
for things — to represent things, in our termi-
nology. To say that something is a formal
scheme means only that it is a set of symbols
with rules for putting them together — no more
and no less.

A representation, therefore, is not a foreign idea
at all — we all use representations all the time.
However, the notion that one can capture some
aspect of reality by making a description of it using
a symbol and that to do so can be useful seems to
me a fascinating and powerful idea. But even the
simple examples we have discussed introduce
some rather general and important issues that
arise whenever one chooses to use one particular
representation. For example, if one chooses the
Arabic numeral representation, it is easy to dis-
cover whether a number is a power of 10 but
difficult to discover whether it is a power of 2. If
one chooses the binary representation, the situa-
tion is reversed. Thus, there is a trade-off; any
particular representation makes certain informa-
tion explicit at the expense of information that is
pushed into the background and may be quite hard
to recover.

This issue is important, because how informa-
tion 1s represented can greatly affect how easy it is
to do different things with it. This is evident even
from our numbers example: It is easy to add, to
subtract, and even to multiply if the Arabic or
binary representations are used, but it is not at all
easy to do these things — especially multiplication —
with Roman numerals. This is a key reason why
the Roman culture failed to develop mathematics
in the way the earlier Arabic cultures had.

An analogous problem faces computer engineers
today. Electronic technology is much more suited
to a binary number system than to the conven-
tional base 10 system, yet humans supply their
data and require the results in base 10. The design
decision facing the engineer, therefore, is: Should
one pay the cost of conversion into base 2, carry
out the arithmetic in a binary representation, and
then convert back into decimal numbers on out-
put; or should one sacrifice efficiency of circuitry
to carry out operations directly in a decimal repres-

entation’ On the whole, business computers and
pocket calculators take the second approach, and
general purpose computers take the first. But even
though one is not restricted to using just one
representation system for a given type of informa-
tion, the choice of which to use is important and
cannot be taken lightly. It determines what informa-
tion is made explicit and hence what is pushed
further into the background, and it has a far-reach-
ing effect on the ease and difficulty with which
operations may subsequently be carried out on that
information.

Process

The term process is very broad. For example, addi-
tion is a process, and so is taking a Fourier trans-
form. But so is making a cup of tea, or going
shopping. For the purposes of this book, I want
to restrict our attention to the meanings associated
with machines that are carrying out information-
processing tasks. So let us examine in depth the
notions behind one simple such device, a cash
register at the checkout counter of a supermarket.

There are several levels at which one needs to
understand such a device, and it is perhaps most
useful to think in terms of three of them. The most
abstract is the level of what the device does and
why. What it does is arithmetic, so our first task is
to master the theory of addition. Addition is a
mapping, usually denoted by +, from pairs of
numbers into single numbers, for example, +
maps the pair (3, 4) to 7, and I shall write this in
the form (3 +4) — 7. Addition has a number of
abstract properties, however. It is commutative:
both (3 +4) and (4 + 3) are equal to 7; and asso-
ciative: the sum of 3 + (4 + 5) is the same as the
sum of (3 + 4) + 5. Then there is the unique dis-
tinguished element, zero, the adding of which has
no effect: (4+0) — 4. Also, for every number
there is a unique “‘inverse,” written (—4) in the
case of 4, which when added to the number gives
zero: [4 + (—4)] — 0.

Notice that these properties are part of the
fundamental theory of addition. They are true no
matter how the numbers are written — whether in
binary, Arabic, or Roman representation — and no
matter how the addition is executed. Thus part of
this first level is something that might be charac-
terized as what is being computed.

The other half of this level of explanation has to
do with the question of why the cash register per-
forms addition and not, for instance, multiplication



when combining the prices of the purchased items
to arrive at a final bill. The reason is that the ruies
we intuitively feel to be appropriate for combining
the individual prices in fact define the mathema-
tical operation of addition. These can be formu-
lated as constraints in the following way:

1 If vou buy nothing, it should cost you nothing;
and buying nothing and something should cost
the same as buying just the something. (The
rules for zero.)

2 The order in which goods are presented to the
cashier should not affect the total. (Commut-
ativity.)

3 Arranging the goods into two piles and paying
for each pile separately should not affect the
total amount you pay. (Associativity: the basic
operation for combining prices.)

4 If you buy an item and then return it for a
refund, your total expenditure should be zero.
(Inverses.)

It is a mathematical theorem that these conditions
define the operation of addition, which is therefore
the appropriate computation to use.

This whole argument is what I call the computa-
tional theory of the cash register. Its important
features are (1) that it contains separate arguments
about what is computed and why and (2) that the
resulting operation is defined uniquely by the con-
straints it has to satisfv. In the theory of visual
processes, the underlying task is to reliably derive
properties of the world from images of it; the
business of isolating constraints that are both
powerful enough to allow a process to be defined
and generally true of the world is a central theme
of our inquiry.

In order that a process shall actually run, how-
ever, one has to realize it in some way and there-
fore choose a representation for the entities that
the process manipulates. The second level of the
analysis of a process, therefore, involves choosing
two things: (1) a representation for the input and for
the output of the process and (2) an algorithm by
which the transformation may actually be accom-
plished. For addition, of course, the input and out-
put representations can both be the same, because
they both consist of numbers. However this is not
true in general. In the case of a Fourier transform,
for example, the input representation may be the
time domain, and the output, the frequency
domain. If the first of our levels specifies what
and why, this second level specifies #ow. For addi-
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tion, we might choose Arabic numerals for the
representations, and for the algorithm we could
follow the usual rules about adding the least sig-
nificant digits first and ‘‘carrying” if the sum
exceeds 9. Cash registers, whether mechanical or
electronic, usually use this type of representation
and algorithm.

There are three important points here. First,
there is usually a wide choice of representation.
Second, the choice of algorithm often depends
rather critically on the particular representation
that is employed. And third, even for a given
fixed representation, there are often several poss-
ible algorithms for carrying out the same process.
Which one is chosen will usually depend on any
particularly desirable or undesirable characteristics
that the algorithms may have; for example, one
algorithm may be much more efficient than
another, or another may be slightly less
efficient but more robust (that is, less sensitive to
slight inaccuracies in the data on which it
must run). Or again, one algorithm may be
parallel, and another, serial. The choice, then,
may depend on the type of hardware or machinery
in which the algorithm is to be embodied
physically.

This brings us to the third level, that of the
device in which the process is to be realized phys-
ically. The important point here is that, once
again, the same algorithm may be implemented
in quite different technologies. The child who
methodically adds two numbers from right to
left, carrying a digit when necessary, may be
using the same algorithm that is implemented by
the wires and transistors of the cash register in the
neighborhood supermarket, but the physical real-
ization of the algorithm is quite different in these
two cases. Another example: Many people have
written computer programs to play tic-tac-toe,
and there is a more or less standard algorithm
that cannot lose. This algorithm has in fact been
implemented by W. D. Hillis and B. Silverman in
a quite different technology, in a computer made
out of Tinkertoys, a children’s wooden building
set. The whole monstrously ungainly engine,
which actually works, currently resides in a
museum at the University of Missouri in St.
Louis.

Some styles of algorithm will suit some physical
substrates better than others. For example, in con-
ventional digital computers, the number of con-
nections is comparable to the number of gates,
while in a brain, the number of connections is

an
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much larger (x10*) than the number of nerve
cells. The underlying reason is that wires are
rather cheap in biological architecture, because
thev can grow individually and in three dimen-
sions. In conventional technology, wire laving is
more or less restricted to two dimensions, which
quite severely restricts the scope for using parallel
techniques and algorithms; the same operations are
often better carried out serially.

The three levels

We can summarize our discussion in something
like the manner shown in table 5.1, which illus-
trates the different levels at which an information-
processing device must be understood before one
can be said to have understood it completely. At
one extreme, the top level, is the abstract compu-
tational theory of the device, in which the perfor-
mance of the device is characterized as a mapping
from one kind of information to another, the
abstract properties of this mapping are defined
precisely, and its appropriateness and adequacy
for the task at hand are demonstrated. In the
center is the choice of representation for the
input and output and the algorithm to be used to
transform one into the other. And at the other
extreme are the details of how the algorithm and
representation are realized physically - the
detailed computer architecture, so to speak.
These three levels are coupled, but only loosely.
The choice of an algorithm is influenced for
example, by what it has to do and by the hardware
in which it must run. But there is a wide
choice available at each level, and the explication

Table 3.1 The three levels at which any machine
carrying out an information-processing task must be

understood
Computational Representation and ~ Hardware
theory algorithm implementation

What is the goal How can this How can the

of the computational representation
computation, theory be and algorithm be
why is it implemented? In  realized
appropriate, and particular, what is  physically?

what is the logic the representation
for the input and
output, and what is
the algorithm for the
transformation?

of the strategy
by which it can
be carried out?

a

of each level involves issues that are rather inde-
pendent of the other two.

Each of the three levels of description will have
its place in the eventual understanding of percep-
tual information processing, and of course they are
logically and causally related. But an important
point to note is that since the three levels are
onlv rather loosely related, some phenomena may
be explained at only one or two of them. This
means, for example, that a correct explanation of
some psvchophysical observation must be formu-
lated at the appropriate level. In attempts to relate
psvchophysical problems to physiology, too often
there is confusion about the level at which prob-
lems should be addressed. For instance, some are
related mainly to the physical mechanisms of
vision — such as afterimages (for example, the one
vou see after staring at a light bulb) or such as
the fact that any color can be matched by a suitable
mixture of the three primaries (a consequence
principally of the fact that we humans have three
types of cones). On the other hand, the ambiguity
of the Necker cube (figure 5.1) seems to demand a
different kind of explanation. To be sure, part of
the explanation of its perceptual reversal must
have to do with a bistable neural network (that is,
one with two distinct stable states) somewhere
inside the brain, but few would feel satisfied by
an account that failed to mention the existence of
two different but perfectly plausible three-dimen-
sional interpretations of this two-dimensional
image.

For some phenomena, the type of explanation
required is fairly obvious. Neuroanatomy, for
example, is clearly tied principally to the third
level, the physical realization of the computation.
The same holds for synaptic mechanisms, action
potentials, inhibitory interactions, and so forth.
Neurophysiology, too, is related mostly to this
level, but it can also help us to understand the
type of representations being used, particularly if
one accepts something along the lines of Barlow’s
views that I quoted earlier.! But one has to exercise
extreme caution in making inferences from neuro-
physiological findings about the algorithms and
representations being used, particularly until one
has a clear idea about what information needs to be
represented and what processes need to be imple-
mented.

Psychophysics, on the other hand, is related
more directly to the level of algorithm and repres-
entation. Different algorithms tend to fail in rad-
ically different ways as they are pushed to the
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(2)

(b) (c)

Figure 5.1 The so-called Necker illusion, named after L. A. Necker, the Swiss naturalist who developed it in 1832. The

essenc

¢ of the matter is that the two-dimensional representation (a) has collapsed the depth out of a cube and that

a2 certain aspect of human vision is to recover this missing third dimension. The depth of the cube can indeed be

perce
the other.

limits of their performance or are deprived of
critical information. As we shall see, primarily
psvchophysical evidence proved to Poggio and
mvself that our first stereo-matching algorithm
(,\’larr and Poggio, 1976) was not the one that is
used by the brain, and the best evidence that our
second algorithm (Marr and Poggio, 1979) s
roughly the one that is used also comes from
psvchophysics. Of course, the underlying computa-
tional theory remained the same in both cases, only
the algorithms were different.

Psychophysics can also help to determine the
nature of a representation. The work of Roger
Shepard (1975), Eleanor Rosch (1978), or Eliza-
beth Warrington (1975) provides some interesting
hints in this direction. More specifically, Stevens
(1979) argued from psychophysical experiments
that surface orientation is represented by the co-
ordinates of slant and tilt, rather than {for example)
the more traditional (p, 4) of gradient space (see
chapter 3). He also deduced from the uniformity of
the size of errors made by subjects judging surface
orientation over a wide range of orientations that
the representational quantities used for slant and
tilt are pure angles and not, for example, their
cosines, sines, or tangents.

More generally, if the idea that different pheno-
mena need to be explained at different levels is
kept clearly in mind, it often helps in the assess-
ment of the validity of the different kinds of objec-
tions that are raised from time to time. For
example, one favorite is that the brain is quite
different from a computer bécause one is parallel
and the other serial. The answer to this, of course,
is that the distinction between serial and parallel is

ived, but two interpretations are possible, (b) and (c). A person’s perception characteristically flips from one to

a distinction at the level of algorithm; it is not
fundamental at all — anything programmed in par-
allel can be rewritten serially (though not necess-
arily vice versa). The distinction, therefore,
provides no grounds for arguing that the brain
operates so differently from a computer that a
computer could not be programmed to perform
the same tasks.

Importance of computational theory

Although algorithms and mechanisms are empir-
ically more accessible, it is the top level, the level
of computational theory, which is critically impor-
tant from an information-processing point of view.
The reason for this is that the nature of the com-
putations that underlie perception depends more
upon the computational problems that have to be
solved than upon the particular hardware in which
their solutions are implemented. To phrase the
matter another way, an algorithm is likely to be
understood more readily by understanding the
nature of the problem being solved than by exam-
ining the mechanism (and the hardware) in which
it is embodied.

In a similar vein, trying to understand percep-
tion by studying only neurons is like trying to
understand bird flight by studying only feathers:
It just cannot be done. In order to understand bird
flight, we have to understand aerodynamics; only
then do the structure of feathers and the different
shapes of birds’ wings make sense. More to the
point, as we shall see, we cannot understand why
retinal ganglion cells and lateral geniculate neurons
have the receptive fields they do just by studying

@
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their anatomy and physiology. We can understand
how these cells and neurons behave as thev do by
studving their wiring and interactions, but in order
to understand w/hy the receptive fields are as they
are — why thev are circularly symmetrical and why
their excitatorv and inhibitory regions have char-
acteristic shapes and distributions — we have to
know a little of the theory of differential operators,
band-pass channels, and the mathematics of the
uncertainty principle (see chapter 2).

Perhaps it is not surprising that the verv special-
ized empirical disciplines of the neurosciences
failed to appreciate fullv the absence of computa-
tional theory, but it is surprising that this level of
approach did not play a more forceful role in the
early development of artificial intelligence. For far
too long, a heuristic program for carrying out some
task was held to be a theory of that task, and the
distinction between what a program did and how it
did it was not taken seriouslv. As a result, (1) a
style of explanation evolved that invoked the use of
special mechanisms to solve particular problems,
(2) particular data structures, such as the lists of
attribute value pairs called property lists in the
LISP programing language, were held to amount
to theories of the representation of knowledge, and
(3) there was frequently no way to determine
whether a program would deal with a particular
case other than by running the program.

Failure to recognize this theoretical distinction
between what and how also greatly hampered com-
munication between the fields of artificial intelli-
gence and linguistics. Chomsky’s (1965) theory of
transformational grammar 1s a true computational
theory in the sense defined earlier. It is concerned
solelv with specifying what the syntactic decom-
position of an English sentence should be, and not
at all with how that decomposition should be
achieved. Chomsky himself was very clear about
this — it is roughly his distinction between com-
petence and performance, though his idea of
performance did include other factors, like stopping
in midutterance — but the fact that his theory was
defined by transformations, which look like com-
putations, seems to have confused many people.
Winograd (1972), for example, felt able to criticize
Chomsky's theory on the grounds that it cannot be
inverted and so cannot be made to run on a com-
puter; I had heard reflections of the same argu-
ment made by Chomsky’s colleagues in linguistics
as they turn their attention to how grammatical
structure might actually be computed from a real
English sentence.

The explanation is simply that finding algo.-
rithms by which Chomsky’s theory may be imple-
mented is a completely different endeavor from
formulating the theory itself. In our terms, it is 3
study at a different level, and both tasks have to be
done. This point was appreciated by Marcus
(1980), who was concerned preciselv with how
Chomsky’s theorv can be realized and with the
kinds of constraints on the power of the human
grammatical processor that might give rise to the
structural constraints in svntax that Chomsky
found. It even appears that the emerging “trace”
theory of grammar (Chomsky and Lasnik, 1977)
may provide a wayv of svnthesizing the two
approaches — showing that, for example, some of
the rather ad hoc restrictions that form part of the
computational theory may be consequences of
weaknesses in the computational power that is
available for implementing syntactical decoding.

The approach of J. F. Gibson

In perception, perhaps the nearest anyone came to
the level of computational theory was Gibson
(1966). However, although some aspects of his
thinking were on the right lines, he did not under-
stand properly what information processing was,
which led him to seriously underestimate the com-
plexity of the information-processing problems
involved in vision and the consequent subtlety
that is necessary in approaching them.

Gibson’s important contribution was to take the
debate away from the philosophical considerations
of sense-data and the affective qualities of sensa-
tion and to note instead that the important thing
about the senses is that they are channels for
perception of the real world outside or, in the
case of vision, of the visible surfaces. He therefore
asked the critically important question, How does
one obtain constant perceptions in everyday life on
the basis of continually changing sensations? This
is exactly the right question, showing that Gibson
correctly regarded the problem of perception as
that of recovering from sensory information
“valid” properties of the external world. His prob-
lem was that he had a much oversimplified view of
how this should be done. His approach led him to
consider higher-order variables — stimulus energy,
ratios, proportions, and so on — as “invariants” of
the movement of an observer and of changes in
stimulation intensity.

“These invariants,” he wrote, “correspond to
permanent properties of the environment. They



constitute, therefore, information about the per-
manent environment.” This led him to a view 1n
which the function of the brain was to ‘‘detect
invariants” despite changes in “‘sensations” of
light, pressure, or loudness of sound. Thus, he
says that the “function of the brain, when looped
with its perceptual organs, is not to decode signals,
nor to interpret messages, NOT to accept images,
nor to organize the sensory input or to process the
data, in modern terminology. It is to seek and
extract information about the environment from
the flowing array of ambient energy,” and he
thought of the nervous system as in some way
“resonating” to these invariants. He then
embarked on a broad study of animals in their
environments, looking for invariants to which
thev might resonate. This was the basic idea
behind the notion of ecological optics (Gibson,
1966, 1979).

Although one can criticize certain shortcomings
in the quality of Gibson’s analysis, its major and,
in my view, fatal shortcoming lies at a deeper level
and results from a failure to realize two things.
First, the detection of physical invariants, like
image surfaces, is exactly and precisely an informa-
tion-processing problem, in modern termino-
logy- And second, he vastly underrated the sheer
difficulty of such detection. In discussing the
recovery of three-dimensional information from
the movement of an observer, he says that “in
motion, perspective information alone can be
used” (Gibson, 1966: 202). And perhaps the key
to Gibson is the following:

The detection of non-change when an object
moves in the world is not as difficult as 1t
might appear. It is only made to seem difficult
when we assume that the perception of constant
dimensions of the object must depend on the
correcting of sensations of inconstant form and
size. The information for the constant dimen-
sion of an object is normally carried by invariant
relations in an optic array Rigidity is specified.
(emphasis added)

Yes, to be sure, but ~ow? Detecting physical invar-
iants is just as difficult as Gibson feared, but
nevertheless we can do it. And the only way to
understand how is to treat it as an information-
processing problem.

The underlying point is that visual information
processing is actually very complicated, and Gib-
son was not the only thinker who was misled by
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the apparent simplicity of the act of seeing. The
whole tradition of philosophical inquiry into the
nature of perception seems not to have taken seri-
ously enough the complexity of the information
processing involved. For example, Austin’s (1962)
Sense and Sensibilia entertainingly demolishes the
argument, apparently favored by earlier philo-
sophers, that since we are sometimes deluded by
illusions (for example, a straight stick appears bent
if it is partly submerged in water), we see sense-
data rather than material things. The answer is
simply that usually our perceptual processing
does run correctly (it delivers a true description
of what is there), but although evolution has seen
to it that our processing allows for many changes
(like inconstant illumination), the perturbation due
to the refraction of light by water is not one of
them. And incidentally, although the example of
the bent stick has been discussed since Aristotle, I
have seen no philosophical inquiry into the nature
of the perceptions of, for instance, a heron, which
is a bird that feeds by pecking up fish first seen
from above the water surface. For such birds the
visual correction might be present.

Anyway, my main point here is another one.
Austin (1962) spends much time on the idea
that perception tells one about real properties of
the external world, and one thing he considers
is “real shape” (p. 66), a notion which had
cropped up earlier in his discussion of a coin that
“looked elliptical” from some points of view. Even
S0,

it had a real shape which remained unchanged.
But coins in fact are rather special cases. For one
thing their outlines are well defined and very
highly stable, and for another they have a known
and a nameable shape. But there are plenty of
things of which this is not true. What is the real
shape of a cloud?...or of a cat? Does its real
shape change whenever it moves? If not, in what
posture #s its real shape on display? Further-
more, is its real shape such as to be fairly smooth
outlines, or must it be finely enough serrated to
take account of each hair? It is pretty obvious that
there is no answer to these questions — no rules
according to which, no procedure by which, answers
are to be determined. (emphasis added) (p. 67)

But there are answers to these questions. There
are ways of describing the shape of a cat to an
arbitrary level of precision (see chapter 5), and
there are rules and procedures for arriving at

as
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such descriptions. That is exactly what vision is
about, and precisely what makes it complicated.

A Representational Framework for
Vision

Vision is a process that produces from images of
the external world a description that is useful to
the viewer and not cluttered with irrelevant inform-
ation (Marr, 1976; Marr and Nishihara, 1978). We
have already seen that a process may be thought of
as a mapping from one representation to another,
and in the case of human vision, the initial
representation is in no doubt — it consists of
arrays of image intensity values as detected by
the photoreceptors in the retina.

It is quite proper to think of an image as a
representation; the items that are made explicit
are the image intensity values at each point in the
array, which we can conveniently denote by 7/ (x,y)
at coordinate (x,y). In order to simplify our dis-
cussion, we shall neglect for the moment the fact
that there are several different types of receptor,
and imagine instead that there is just one, so that
the image is black-and-white. Each value of I (x,y)
thus specifies a particular level of gray; we shall
refer to each detector as a picture element or pixel
and to the whole array 7 as an image.

But what of the output of the process of vision?
We have already agreed that it must consist of a
useful description of the world, but that require-
ment is rather nebulous. Can we not do better?
Well, it is perfectly true that, unlike the input, the
result of vision is much harder to discern, let alone
specify precisely, and an important aspect of this
new approach is that it makes quite concrete pro-
posals about what that end is. But before we begin
that discussion, let us step back a little and spend a
little time formulating the more general issues that
are raised by these questions.

The purpose of vision

The usefulness of a representation depends upon
how well suited it is to the purpose for which it is
used. A pigeon uses vision to help it navigate, fly,
and seek out food. Many types of jumping spider
use vision to tell the difference between a potential
meal and a potential mate. One type, for example,
has a curious retina formed of two diagonal strips
arranged in a V. If it detects a red V on the back of
an object lying in front of it, the spider has found a

mate. Otherwise, maybe a meal. The frog detects
bugs with its retina; and the rabbit retina is full of
special gadgets, including what is apparently 3
hawk detector, since it responds well to the pattern
made by a preying hawk hovering overhead.
Human vision, on the other hand, seems to be
very much more general, although it clearly con-
tains a variety of special-purpose mechanisms that
can, for example, direct the eye toward an un-
expected movement in the visual field or cause
one to blink or otherwise avoid something that
approaches one’s head too quickly.

Vision, in short, is used in such a bewildering
variety of ways that the visual systems of different
animals must differ significantly from one another.
Can the type of formulation that I have been
advocating, in terms of representations and pro-
cesses, possibly prove adequate for them all? |
think so. The general point here is that because
vision is used by different animals for such a wide
variety of purposes, it is inconceivable that all
seeing animals use the same representations; each
can confidently be expected to use one or more
representations that are nicely tailored to the own-
er’s purposes.

As an example, let us consider briefly a primit-
ive but highly efficient visual system that has the
added virtue of being well understood. Werner
Reichardt’s group in Tiibingen has spent the last
14 vears patiently unraveling the visual flight-
control system of the housefly, and in a famous
collaboration, Reichardt and Tomaso Poggio have
gone far toward solving the problem (Reichardt
and Poggio, 1976, 1979; Poggio and Reichardt,
1976). Roughly speaking, the fly’s visual apparatus
controls its flight through a collection of about five
independent, rigidly inflexible, very fast respond-
ing systems (the time from visual stimulus to
change of torque is only 21 ms). For example,
one of these systems is the landing system; if the
visual field “explodes” fast enough (because a
surface looms nearby), the fly automatically
“lands” toward its center. If this center is above
the fly, the fly automatically inverts to land
upside down. When the feet touch, power to the
wings is cut off. Conversely, to take off, the fly
jumps; when the feet no longer touch the ground,
power is restored to the wings, and the insect flies
again.

In-flight control is achieved by independent
systems controlling the fly’s vertical velocity
(through control of the lift generated by the
wings) and horizontal direction (determined by
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Frgure 5.2 The honizontal component of the visual input R to the fly’s <ﬂight system is described by the formula
R = D(w) — r(¥)¥, where 1 is the direction of the stimulus and ¥ is its angular velocity in the fly’s visual field. D() is
an odd function, as shown in (a), which has the effect of keeping the target centered in the fly’s visual field; (1) is

essentially constant as shown in (b).

the torque produced by the asymmetry of the
horizontal thrust from the left and right wings).
The visual input to the horizontal control system,
for example, is completely described by the two

terms
(W) + D(2)

where r and D have the form illustrated in figure
5.2. This input describes how the fly tracks an
object that is present at angle 1 in the visual field
and has angular velocity 1. This system is trig-
gered to track objects of a certain angular dimen-
sion in the visual field, and the motor strategy is
such that if the visible object was another fly a few
inches away, then it would be intercepted success-
fully. If the target was an elephant 100 yd away,
interception would fail because the fly’s built-in
parameters are for another fly nearby, not an ele-
phant far away.

Thus, fly vision delivers a representation in
which at least these three things are specified: (1)
whether the visual field is looming sufficiently fast
that the fly should contemplate landing; (2)
whether there is a small patch — it could be a
black speck or, it turns out, a textured figure in

front of a textured ground — having some kind of
motion relative to its background; and if there is
such a patch, (3) ¥ and Y for this patch are deliv-
ered to the motor system. And that is probably
about 60% of fly vision. In particular, it is ex-
tremely unlikely that the fly has any explicit repres-
entation of the visual world around him — no true
conception of a surface, for example, but just a few
triggers and some specifically fly-centered para-
meters like ¥ and w

It is clear that human vision is much more
complex than this, although it may well incorpor-
ate subsystems not unlike the fly’s to help with
specific and rather low-level tasks like the control
of pursuit eye movements. Nevertheless, as Poggio
and Reichardt have shown, even these simple sys-
tems can be understood in the same sort of way, as
information-processing tasks. And one of the fas-
cinating aspects of their work is how they have
managed not only to formulate the differential
equations that accurately describe the visual con-
trol system of the fly but also to express these
equations, using the Volterra series expansion, in
a way that gives direct information about the min-
imum possible complexity of connections of the
underlying neuronal networks.

an
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Advanced vision

Visual systems like the fly’s serve adequately and
with speed and precision the needs of their owners,
but they are not very complicated; very little
objective information about the world is obtained.
The information is all very much subjective — the
angular size of the stimulus as the fly sees it rather
than the objective size of the object out there, the
angle that the object has in the fly’s visual field
rather than its position relative to the fly or to
some external reference, and the object’s angular
velocity, again in the fly’s visual field, rather than
any assessment of its true velocity relative to the
fly or to some stationary reference point.

One reason for this simplicity must be that these
facts provide the fly with sufficient information for
it to survive. Of course, the information is not
optimal and from time to time the fly will fritter
away its energy chasing a falling leaf a medium
distance away or an elephant a long way away as a
direct consequence of the inadequacies of its per-
ceptual system. But this apparently does not mat-
ter very much — the fly has sufficient excess energy
for it to be able to absorb these extra costs.
Another reason is certainly that translating these
rather subjective measurements into more object-
ive qualities involves much more computation.
How, then, should one think about more advanced
visual systems — human vision, for example. What
are the issues? What kind of information is vision
really delivering, and what are the representational
issues involved?

My approach to these problems was very much
influenced by the fascinating accounts of clinical
neurology, such as Critchley (1953) and Warring-
ton and Taylor (1973). Particularly important was a
lecture that Elizabeth Warrington gave at MIT in
October 1973, in which she described the capacities
and limitations of patients who had suffered left or
right parietal lesions. For me, the most important
thing that she did was to draw a distinction between
the two classes of patient (see Warrington and
Taylor, 1978). For those with lesions on the right
side, recognition of a common object was possible
provided that the patient’s view of it was in some
sense straightforward. She used the words conven-
tional and unconventional — a water pail or a clarinet
seen from the side gave ‘“‘conventional” views but
seen end-on gave ‘“‘unconventional’” views. If these
patients recognized the object at all, they knew its
name and its semantics — that is, its use and pur-
pose, how big it was, how much it weighed, what it

was made of, and so forth. If their view was uncon-
ventional — a pail seen from above, for example -
not only would the patients fail to recognize it, byt
they would vehemently deny that it could be a view
of a pail. Patients with left parietal lesions behaved
completely differently. Often these patients had no
language, so thev were unable to name the viewed
object or state its purpose and semantics. But they
could convey that they correctly perceived its geo-~
metry — that is, its shape — even from the uncon-
ventional view.

Warrington's talk suggested two things. First,
the representation of the shape of an object is
stored in a different place and is therefore a quite
different kind of thing from the representation of
its use and purpose. And second, vision alone can
deliver an internal description of the shape of a
viewed object, even when the object was not
recognized in the conventional sense of under-
standing its use and purpose.

This was an important moment for me for two
reasons. The general trend in the computer vision
community was to believe that recognition was so
difficult that it required every possible kind of
information. The results of this point of view
duly appeared a few years later in programs like
Freuder’s (1974) and Tenenbaum and Barrow’s
(1976). In the latter program, knowledge about
offices — for example, that desks have telephones
on them and that telephones are black — was used
to help “segment’ out a black blob halfwayv up an
image and “‘recognize” it as a telephone. Freuder’s
program used a similar approach to “‘segment’”’ and
“recognize’’ a hammer in a scene. Clearly, we do
use such knowledge in real life; I once saw a brown
blob quivering amongst the lettuce in my garden
and correctly identified it as a rabbit, even though
the visual information alone was inadequate. And
yet here was this young woman calmly telling us
not only that her patients could convey to her that
they had grasped the shapes of things that she had
shown them, even though they could not name the
objects or say how they were used, but also that
they could happily continue to do so even if she
made the task extremely difficult visually by show-
ing them peculiar views or by illuminating the
objects in peculiar ways. It seemed clear that the
intuitions of the computer vision people were com-
pletely wrong and that even in difficult circum-
stances shapes could be determined by vision
alone.

The second important thing, I thought, was that
Elizabeth Warrington had put her finger on what



was somehow the quintessential fact of human
vision — that it tells about shape and space and
spatial arrangement. Here lay a way to formulate
its purpose — building a description of the shapes
and positions of things from images. Of course, that
is by no means all that vision can do; it also tells
about the illumination and about the reflectances of
the surfaces that make the shapes — their bright-
nesses and colors and visual textures — and about
their motion. But these things seemed secondary;
they could be hung off a theory in which the
main job of vision was to derive a representation

of shape.

To the desirable via the possible

Finally, one has to come to terms with cold reality.
Desirable as it may be to have vision deliver a
completely invariant shape description from an
image (whatever that may mean in detail), it is
almost certainly impossible in only one step. We
can only do what is possible and proceed from
there toward what is desirable. Thus we arrived
at the idea of a sequence of representations, start-
ing with descriptions that could be obtained
straight from an image but that are carefully
designed to facilitate the subsequent recovery of
gradually more objective, physical properties about
an object’s shape. The main stepping stone toward
this goal is describing the geometry of the
visible surfaces, since the information encoded in
images, for example by stereopsis, shading,
texture, contours, or visual motion, is due to a
shape’s local surface properties. The objective of
many early visual computations is to extract this
information.

However, this description of the visible surfaces
turns out to be unsuitable for recognition tasks.
There are several reasons why, perhaps the most
prominent being that like all early visual processes,
it depends critically on the vantage point. The
final step therefore consists of transforming the
viewer-centered surface description into a repres-
entation of the three-dimensional shape and spatial
arrangement of an object that does not depend
upon the direction from which the object is being
viewed. This final description is object centered
rather than viewer centered.

The overall framework described here therefore
divides the derivation of shape information from
images into three representational stages (table
5.2): (1) the representation of properties of the
two-dimensional image,
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Table 5.2 Representational framework for deriving
shape information from images

Name Purpose Primitives

Represents intensity. Intensity value
at each point
in the image

Image(s)

Primal sketch ~ Makes explicit Zero-crossings
important Blobs
information about ~ Terminations
the two-dimensional and

image, primarily the discontinuities
Edge segments

Virtual lines

intensity changes
there and their

geometrical Groups

distribution and Curvilinear

organization. organization
Boundaries

Local surface
orientation (the

2% -Dsketch  Makes explicit the
orientation and
rough depth of the
visible surfaces, and primitives)
Distance from

viewer

“needles”

contours of
discontinuities in
these quantities in a Discontinuities

viewer-centered in depth
coordinate frame. Discontinuities
in surface
orientation
3-D model Describes shapes and 3-D models
representation  their spatial organi- arranged
zation in an object-  hierarchically,

each one based
frame, using a on a spatial
modular hierarchical configuration of
representation that  a few sticks or
includes volumetric axes, to which
primitives (i.e., volumetric or
primitives that surface shape
represent the volume primitives are
of space that a shape attached
occupies) as well as

surface primitives.

centered coordinate

such as intensity changes and local two-dimen-
sional geometry; (2) the representation of proper-
ties of the visible surfaces in a viewer-centered
coordinate system, such as surface orientation, dis-
tance from the viewer, and discontinuities in these
quantities; surface reflectance; and some coarse
description of the prevailing illumination; and (3)
an object-centered representation of the three-
dimensional structure and of the organization of
the viewed shape, together with some description
of its surface properties.
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This framework is summarized in table 5.2.
Chapters 2 through 5 give a more detailed account.

[

Synopsis

Our survey of this new, computational approach to
vision 1s now complete. Although there are many
gaps in the account, [ hope that it is solid enough
to establish a firm point of view about the subject
and to prompt the reader to begin to judge its
value. In this brief chapter, I shall take a very
broad view of the whole approach, inquiring into
its most important general features and how they
relate to one another, and trying to say something
about the stvle of research that this approach
implies. It is convenient to divide the discussion
into four main points.

The first point is one that we have met through-
out the account — the notion of different levels of
explanation. The central tenet of the approach is
that to understand what vision is and how it works,
an understanding at only one level is insufficient. It
is not enough to be able to describe the responses of
single cells, nor is it enough to be able to predict
locally the results of psychophysical experiments.
Nor is it enough even to be able to write computer
programs that perform approximately in the
desired way. One has to do all these things at
once and also be very aware of the additional level
of explanation that I have called the level of com-~
putational theory. The recognition of the existence
and importance of this level is one of the most
important aspects of this approach. Having recog-
nized this, one can formulate the three levels of
explanation explicitly (computational theory, algo-
rithm, and implementation), and it then becomes
clear how these different levels are related to the
different types of empirical observation and theo-
retical analysis that can be conducted. I have laid
particular stress on the level of computational the-
ory, not because I regard it as inherently more
important than the other two levels — the real
power of the approach lies in the integration of all
three levels of attack — but because it is a level of
explanation that has not previously been recog-
nized and acted upon. It is therefore probably one
of the most difficult ideas for newcomers to the field
to grasp, and for this reason alone its importance
should not be understated. [. . .]

The second main point is that by taking an
information-processing point of view, we have

been able to formulate a rather clear overall frame.
work for the process of vision. This framework ig
based on the idea that the critical 1ssues in visiop
revolve around the nature of the representationg
used — that is, the particular characteristics of the
world that are made explicit during vision — anq
the nature of the processes that recover these char-
acteristics, create and maintain the representa-
tions, and eventually read them. By analvzing the
spatial aspects of the problem of vision, we arrived
at an overall framework for visual informatiop
processing that hinges on three principal represent-
ations: (1) the primal sketch, which is concerned
with making explicit properties of the two-dimen-
sional image, ranging from the amount and dis-
position of the intensity changes there to primitive
representations of the local image geometry, and
including at the more sophisticated end a hierarch-
ical description of any higher-order structure pres-
ent in the underlying reflectance distributions; (2)
the 2% -D sketch, which is a viewer~centered
representation of the depth and orientation of the
visible surfaces and includes contours of disconti-
nuities in these quantities; and (3) the 3-D mode]
representation, whose important features are that
its coordinate system is object centered, that it
includes volumetric primitives (which make expli-
cit the organization of the space occupied by an
object and not just its visible surfaces), and that
primitives of various size are included, arranged in
a modular, hierarchical organization.

The third main point concerns the study of
processes for recovering the various aspects of
the physical characteristics of a scene from images
of it. The critical act in formulating computational
theories for such processes is the discovery of vald
constraints on the way the world behaves that
provide suffictent additional information to allow
recovery of the desired characteristic. We saw
many examples of this in chapter 3, and they
were summarized in Table 3-3. The power of
this type of analysis resides in the fact that the
discovery of valid, sufficiently universal con-
straints leads to conclusions about vision that
have the same permanence as conclusions in
other branches of science.

Furthermore, once a computational theory for a
process has been formulated, algorithms for imple-
menting it may be designed, and their performance
compared with that of the human visual processor.
This allows two kinds of results. First, if perfor-
mance is essentially identical, we have good
evidence that the constraints of the underlying
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computational theory are valid and may be implicit
in the human processor; second, if a process
matches human performance, 1t is probably suffi-
ciently powerful to form part of a general purpose
vision machine.

The final point concerns the methodology or
stvle of this type of approach, and it involves two
main observations. First, the duality between
representations and processes, which is set out
explicitly in figure 5.3, often provides a useful
aid to thinking how best to proceed when studying

Note

| Editor’s note: the passages to which Marr here refers
are as follows (from pp. 12-13 of Vision).

If one explores the responsiveness of single ganglion
cells in the frog’s retina using handheld targets, one
finds that one particular type of ganglion cell is most
effectively driven by something like a black disc sub-
tending a degree or so moved rapidly to and fro
within the unit’s receptive field. This causes a vigor-
ous discharge which can be maintained without much
decrement as long as the movement is continued.
Now, if the stimulus which is optimal for this class
of cells is presented to intact frogs, the behavioral
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a particular problem. In the studv both of repre-
sentations and of processes, general problems are
often suggested by evervday experience or by psy-
chophysical or even neurophysiological findings of
a quite general nature. Such general observations
can often lead to the formulation of a particular
process or representational theory, specific exam-
ples of which can be programmed or subjected to
detailed psychophysical testing. Once we have suf-
ficient confidence in the correctness of the process
or representation at this level, we can inquire about
its detailed implementation, which involves the
ultimate and very difficult problems of neurophy-
siology and neuroanatomy.

The second observation is that there is no real
recipe for this type of research — even though I
have sometimes suggested that there is —any more
than there is a straightforward procedure for dis-
covering things in any other branch of science.
Indeed, part of the fun is that we never really
know where the next key is going to come from —
a piece of daily experience, the report of a neuro-
logical deficit, a theorem about three-dimensional
geometry, a psychophysical finding in hyperacuity,
a neurophysiological observation, or the careful
analysis of a representational problem. All these
kinds of information have played important roles
in establishing the framework that I have
described, and they will presumably continue to
contribute to its advancement in an interesting and
unpredictable way. [ hope only that these observa-
tions may persuade some of my readers to join in
the adventures we have had and to help in the long
but rewarding task of unraveling the mysteries of
human visual perception.

response is often dramatic; they turn towards the
target and make repeated feeding responses consist-
ing of a jump and snap. The selectivity of the retinal
neurons and the frog’s reaction when they are selec-
tively stimulated, suggest that they are “bug detec-
tors” (Barlow, 1953) performing a primitive but
vitally important form of recognition. The result
makes one suddenly realize that a large part of the
sensory machinery involved in a frog’s feeding
responses may actually reside in the retina rather
than in mysterious “centers” that would be too diffi-
cult to understand by physiological methods. The
essential lock-like property resides in each member
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of a whole class of neurons and allows the cell to
discharge only to the appropriate key pattern of sen-
sory stimulation. Lettvin et al. (1959) suggested that
there were five different classes of cell in the frog, and
Barlow, Hill, and Levick (1964) found an even larger
number of categories in the rabbit. [Barlow et al.]
called these key patterns “‘trigger features,” and
Maturana et al. (1960) emphasized another important
aspect of the behavior of these ganglion cells; a cell
continues to respond to the same trigger feature in
spite of changes in light intensity over many decades.
The properties of the retina are such that a ganglion
cell can, figuratively speaking, reach out and deter-
mine that something specific is happening in front of
the eve. Light is the agent by which it does this, but it
is the detailed pattern of the light that carries the
information, and the overall level of illumination
prevailing at the time is almost totally disregarded
(Barlow, 1972 373).

The cumulative effect of all the changes I have tried
to outline above has been to make us realize that each
single neuron can perform a much more complex and
subtie task than had previously been thought [emphasis
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