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\,; hat Is an Algorithm?

ANNIS N. MOSCHOVAKIS™

: Introduction

fhen algorithms are defined rigorously in Computer Science literature (which
» y happens rarely), they are generally identified with abstract machines, math-
batical models of computers, sometimes idealized by allowing access to “un-
bunded memory”.! My aims here are to argue that this does not square with
brintuitions about algorithms and the way we interpret and apply results about
fem; to promote the problem of defining algorithms correctly; and to describe
fefly a plausible solution, by which algorithms are recursive definitions while
achines model implementations, a special kind of algorithms.

Consider, for example, a function f : N — N on the natural numbers
hich is Turing computable, or, equivalently general recursive, i.e., definable
b a simple system of recursive equations.” Now, there are many algorithms
i computing f: the claim is that the “essential, implementation-independent
Joperties” of each of them are captured by a recursive definition, while some
gorithms which compute f” cannot be “represented faithfully” by a Turing
Jachine — or any other type of machine, for that matter. Moreover, this failure of
pressiveness of machine models is even more significant for algorithms which
Perate on “abstract data” or “run forever”, interacting with their environment.
¢ This problem of defining algorithms is mathematically challenging, as it
ppears that our intuitive notion is quite intricate and its correct, mathematical
0deling may be quite abstract — much as a “measurable function on a probabil-
i space” is far removed from the naive (but complex) conception of a “random
fiable”. In addition, a rigorous notion of algorithm would free many results
dcomplexity theory from their dependence on specific (machine) models of
fipPutation, and it might simplify their proofs.

j Section 2 is a brief review of the basic definitions and facts about abstract
pehines and continuous, least-fixed-point recursion, which (I hope) makes the
cle accessible to non-experts. 3 In Sect. 3, I argue that the familiar mergesort ' ‘

} am grateful to the Graduate Program in Logic and Algorithms (MPLA) in Athens,
¢ce, for some financial and much moral support. D
¢, for example, Knuth’s classic [7], which is, in fact, the only standard reference I
°W In which algorithms are defined where they should be, in Sect. 1.1.
.o % Kleene’s {6], or, better still, McCarthy s [9], which introduced the correct notion
P “system of recursive equations”. ‘
glis > Paper is, primarily, expository, and much of the material comes from [14], and [
er Papers cited there, beginning with [11]. The more general ‘continuous recur-
" introduced here can model interactive algorithms with “infinite output”, and
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'algorithms are defined rigorously in Computer Science literature (which
happens rarely), they are generally identified with abstract machines, math-
tical models of computers, sometimes idealized by allowing access to “un-
ided memory”.! My aims here are to argue that this does not square with
ntuitions about algorithms and the way we interpret and apply results about
; to promote the problem of defining algorithms correctly; and to describe
ly a plausible solution, by which algorithms are recursive definitions while
hines model implementations, a special kind of algorithms.
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What Is an Algorithm?

Yiannis N. MoscHOVAKIs*

1. Introduction

When algorithms are defined rigorously in Computer Science literature (which
only happens rarely), they are generally identified with abstract machines, math-
ematical models of computers, sometimes idealized by allowing access to “un-
bounded memory”.! My aims here are to argue that this does not square with
our intuitions about algorithms and the way we interpret and apply results about
them; to promote the problem of defining algorithms correctly; and to describe
briefly a plausible solution, by which algorithms are recursive definitions while
machines model implementations, a special kind of algorithms.

Consider, for example, a function f ¢ N — N on the natural numbers
which is Turing computable, or, equivalently general recursive, i.e., definable
by a simple system of recursive equations.” Now, there are many algorithms
for computing £: the claim is that the “essential, implementation-independent
properties” of each of them are captured by a recursive definition, while some
“algorithms which compute f” cannot be “represented faithfully” by a Turing
machine - or any other type of machine, for that matter. Moreover, this failure of
expressiveness of machine models is even more significant for algorithms which
Operate on “abstract data” or “run forever”, interacting with their environment.

This problem of defining algorithms is mathematically challenging, as it
appears that our intuitive notion is quite intricate and its correct, mathematical
modeling may be quite abstract — much as a “measurable function on a probabil-
ity space” s far removed from the naive (but complex) conception of a “random
Variable”. In addition, a rigorous notion of algorithm would free many results
in complexity theory from their dependence on specific (machine) models of
Computation, and it might simplify their proofs.

Section 2 is a brief review of the basic definitions and facts about abstract
Machines and continuous, least-fixed-point recursion, which (I'hope) makes the
article accessible to non-experts.? In Sect. 3, L argue that the familiar mergesort
\

*lam grateful to the Graduate Program in Logic and Algorithms (MPLA) in Athens,
reece, for some financial and much moral support.
See, f?r example, Knuth’s classic [7], which is, in fact, the only standard reference I
OW In which algorithms are defined where they should be, in Sect. 1.1.
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car lff Papers cited there, beginning with [11]. The more general “continuous recur-
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algorithm cannot be faithfully modeled by a machine, and in the following
Sects. 46, [ sketch outa theory which purports to model, faithfully and usefully,
all single-valued algorithms. Section 7 describes an extension of the theory
to discontinuous (absolutely non-implementable!) algorithms, and a plausible
axiomatic version of it, and the last, Sect. 8 discusses three significant open
problems and uncharted directions in the foundations of algorithms.

In the natural scheme of things, much of this paper is concerned with my
own ideas of what algorithms are. I would not claim, however, that mine is the
only approach, or the best approach — or, perhaps, even an adequate approach:
my chief goal is to convince the reader that the problem of founding the theory
of algorithms is important, and that it is ripe for solution.

2. Abstract Machines and Recursive Definitions

2.1 Abstract Machines

The best-known model of mechanical computation is (still) the first, introduced
by Turing [18], and after half a century of study, few doubt the truth of the
fundamental Church-Turing Thesis: A function f : N — N on the natural
numbers (or, more generally, on strings from a finite alphabet) is computable in
principle exactly when it can be computed by a Turing Machine. The Church-
Turing Thesis grounds proofs of undecidability and it is essential for the most
important applications of logic. On the other hand, it cannot be argued seriously
that Turing machines model faithfully all algorithms on the natural numbers.
I, for example, we code the input 7 in binary (rather than unary) notation, then
the time needed for the computation of f(n) can sometimes be considerably
shortened; and if we let the machine use two tapes rather than one, then (in
some cases) we may gain a quadratic speedup of the computation, see [8]. This
means that important aspects of the complexity of algorithms are not captured
by Turing machines.

For the present purpose of comparing models of computation with recursive
definitions, we will adopt a most general notion of machine which, in particular,
incorporates the mode of using the input and producing output.*

B DEFINITION 2.1 For any two sets X and Y, an abstract (or sequential) ma-
chine ¢ : X ~» Y is a quadruple (S, sg, o, T, 0), where:

(1) §is an arbitrary set, the set of states of ¢, and sg € S is the initial staté;
(2) o: X x §— §isthe transition function of ¢;

the development of the theory outlined in Sects. 4-6, is considerably simpler th
previous versions. ]
4 All, standard models of computation are covered by this definition, including rando ‘
access machines and the abstract state machines of Gurevich [2] and earlier paper™
cited there; except that Gurevich, in effect, “identifies” the output with the computatiot
50(x), s1(x), ..., so he can model algorithms which “run forever”. I will base !
argument for the insufficiency of machine models in Sect. 3 on an algorithm whi ‘
naturally computes a total function, so that this extra wrinkle is not relevant.
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(3) T < S is the set of terminal states of ¢, and
4) o: X x T — Y is the output function of ¢.

The computation of ¢ for a given x € X is the sequence of states {s, (x)},eN
defined recursively by
Sn(x), ifsn(x) € T’

so(x) = sp, Snt1(x) = , o(x,su(x)), otherwise;

the length of the computation on the input x (if it is finite) is
£(x) = (the least n such that s,,(x) € T) + 1;

and the (partial) function ¢ : X — Y computed by ¢ is defined by the formula

@ (x) = o(x, sex)(x))  (£(x) finite).

Two machines M and M’ are isomorphic, if there exists a bijection p : § —
§' such that p(sp) = s, p[T]1=T',and forallx € X, s € S,

plo(x,s)) =a'(x, p(s)), olx,s) =0 (x,p(s)).

It is generally conceded that this broad notion models the manner in which
every conceivable (deterministic, discrete, digital) mechanical device with ac-
cess to unbounded “memory” computes a (partial) function, and so it captures
the mathematical structure of mechanical computation. It does not capture the
effectivity of mechanical computation, because it allows arbitrary sets of states
and transition and output functions, but I will disregard this problem; it is easy
enough to solve by imposing definability or finiteness restrictions on the com-
ponents of abstract machines, as Turing did.

2.2 Least-Fixed-Point Recursion

The basic mathematical fact about recursive definitions is the following simple
result, where a poset (partially ordered set) D is complete if every chain (linearly
ordered subset) C has a least upper bound sup C, and a mapping f : D — E
from one poset to another is continuous, if for every chain C € Dand y € D3

y =supC = f(y) =sup f[C].

\

] The empty set is a chain, bounded above by every point in D, and so every complete
Poset has a least element, | = sup(%). We can view every set X as a discrete poset,
Partially ordered by the identity relation =, and also as imbedded in its complete
(“flat™) borrom lifting

X1 =XU{Ll},

}”hiCh consists of just the (discrete) X with a new, least element L added below it —

3

Objectifying the undefined” in Dana Scott’s eloquent description;
a partial function f : X — Y isafunction f : X — Y,

With £(x) = 1 signifying that £ is “undefined” at x.
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B PROPOSITION 2.2 (Least-Fixed-Point Lemma) Every continuous map, in
T : D — D on a complete poset has a least fixed point d*, character,
by the conditions

d* = r(d*), T(e) <e=d* <e.

Proof. Define the iterates of t by the recursion d® = 1, gn+! = T(d"), m
take d* = sup{d" |n =0,1,...}.5 o
This is the basic tool used by Scott’ in his denotational semantics of
gramming languages, where most of the basic notions (values, computatio
behaviors, etc.) are naturally modeled by points in suitable, complete pose
For a simple but basic example of how this is done, notice that the partial fune-
tion ¢ : X — Y computed by an abstract machine ¢ is determined by the
so-called tail recursion E

é(x) = p(s0)
p(s) = if s € T then o(x, s) else p(o(x, 5)),

in the precise sense that
é(x) = 7, (s0),

where, for each x € X, the partial function P, is the least solution of the
point equation’

p = (As € S)[if s € T then o(x, s) else plo(x,s)],
guaranteed by applying 2.2 to the partial function space (S — §).

The Cartesian product D x E of complete posets is complete, and the space (X -
W) of all functions on any poset X to a complete poset W is complete, under
pointwise partial ordering, as is its subspace of all continuous functions. In particular
the space (X =~ Y) = (X — ¥ ) of all partial functions on X to Y is complete.

Notice that every continuous f : D — E is monotone because if x =Y
y = sup{x, y}, and so f(y) = sup{f(x), f ()}, which means that f(x) < f();
that every monotone function f : D — C into a flat poset is, trivially, contin

6 The lemma holds for monotone mappings 7 : D — D which may be disconti
and with the same proof, using now ordinal recursion to define the sequence {

7 The fundamental paper is Scott-Strachey [ 17], which started an extensive develo
of what is alternatively called the fixed-point theory of programs, domain the
denotational semantics, depending on what one does with it. See [19] for a
elementary exposition of denotational semantics in the proper context. Part
motivation for my own work on the topic of this paper is the absence of refere!
algorithms in this theory, which seems unnatural.

8 “Suitable” here covers a multitude of sins, “Scott domains”, “information s ;
etc., which arise naturally in the mathematical development of least-fixed-pol
cursion. We can avoid introducing these notions here, as they are not neede
simple observations on recursive definitions we want to make.

9 In Church’s notation, standard in logic, (As € S)[...s...] is the function
assigns to each s € S the value p(s) = [...s... i
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For more general recursive definitions, we often need to use systems of
recursive equations

di = a1(dy, ..., dx)
: abbreviated d = 1, (d), 3)
dr = op(dy, ..., dy),

where; : D — D; with D = Dy x - .. x Dy the (complete) Cartesian product
of k complete posets; and, as in tail recursions, some (or all) of the D;’s may
be function posets, so that the individual recursive equations take the form

Pi(s) =ﬁ(S, Pls--. ,Pk)-

3. The Insufficiency of Machine Models

Consider the problem of sorting a finite string u = (uy, ..., u,_1) of distinct
elements from a set L equipped with a linear ordering <, i.e., computing the
unique, increasing permutation of

sort(u) = (u,-o, Uijsson s u,-n_,), (u,-o <Uj; <. < u,-n_l).

Among the myriad of known sorting algorithms, the mergesort is asymptotically
optimal with respect to the number of comparisons that it requires. It can be
defined succinctly by the recursive equation

u, if u) <1,

sort(u) =

G { merge(sort(hy (), sort(hy(«))),  otherwise, )
where |u/ is the length of u (= 0 when u is the empty string @); k() and hy (i)
are the first and second halves of the string u (appropriately adjusted when |u|

is odd); and merge(v, w) is also defined recursively by the equation

w, ifv =g,

v, else, if w = @,
(vo) * merge(tail(v), w), else, if vy < wy,
(wo) * merge(v, tail(w)), otherwise.

merge(v, w) =

®)

Here u x ¢ ig the concatenation operation,

(0, ... tp_q) % (0, Vno1) = (uo, ... Uy, vg, . .. | Vu_1),
and tail () is the “beheading” operation on non-empty strings,
@il((uo, 1, .. s Um—1)) = (1, ... ,um_1) (form > 0).

lTROPOSITI()N 3.1 (a) Equation (5) determines a unique function on
n8s, and such that if v and w are sorted, then

merge(v, w) = sort(v * w), (6)

»Merge(v, w) is the “merge” of v and w in this case,

e — — —= = e =
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(b) For any v and w, merge(v, w) can be computed from (5) using no more
than |v| + |w| — 1 comparisons of members of L.
(c) The sorting function sort(u) satisfies equation (4).

(d) For any u, sort(u) can be computed from (4) using no more than
|u|logy(|ul) comparisons of members of L, where log,(m) = the least n such

that m < 2",

Proof (as it would be presented in a standard, undergraduate course).
(a) is proved by induction on |u| + |v], and (c) is trivial.

The proof of (b) is also by induction on |v| + |w|, and at the basis, When |

eitherv = Jorw = @, (5) gives the value of merge(v, w) using no comparisons

at all. If both v and w are non-empty, then we need to compare vg with wq to

determine which of the last two cases in (5) applies, and then (by the induction

hypothesis) we need no more than |v| + |w| — 2 additional comparisons to
complete the computation. ]

Finally, we prove (d) for the special case!? where |u| = 2", by induc-
tion n, and it is immediate when n = 0, since (4) yields sort(u) = u using
no comparisons at all when u = (ug) has length 20 = 1. If |u| = 2”"'1‘

then each half of u has length 2", and the induction hypothesis guarantees
that we can compute sort((«)) and sort(hy(u)) by (4) using no more than
n2" comparisons for each, i.e., n2ntl comparisons in all; by (b) now, the
computation of merge(sort(/(«)), sort(ha(u))) can be done by (6) using no
more than 2"*+! — 1 additional comparisons, for a grand total of no more than
n2n+l +2n+l =1 (a4 l)2n+l. !!':

If algorithms are machines, then which machine is the mergesort? Well, thi§

is a recursive algorithm, defined implicitly by the equations (4), (5), and there
are many, standard ways to construct from recursive equations such as these &
machine which expresses the computation process they embody, for example
by using a stack. These methods are not simple, but they are precise enou
so that they can be automated. One of the most important tasks of a compilé
for a “higher level” language like Pascal or Lisp is exactly the conversion of
recursive programs to sets of instructions in the assembly language of a specific
processor which can then run them: in the present terminology, the processo!
and the compiled assembly program together define an abstract machine whicll
then models — is, up to machine isomorphism — the mergesort algorithm, on the
assumption that algorithms are machines. 3
Now the first obvious problem is that there are many compilation pro
dures, and so we don’t get one, but many machines with competing claims ‘&
be” the mergesort algorithm. Moreover, there are essential differences amon
these machines, for example in the way the compilation process implements '
stitution: in computing the value of the term merge(sort(h1 (1)), soﬂ(hz("f
do we compute first, sort(/(«)) or sort(hy(u)) — or do we compute them '|.'“
simultaneously, in parallel? On an intuitive level, these machines are, of cou.,
equivalent, but it is hard to see how to make this notion of equivalence prectst
short of saying that “they all implement the mergesort algorithm”, which bég

10 The general case is proved by the same argument, with a little more arithmetic.
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the question; and if we could make the relevant equivalence relation precise,
then one could argue that the mergesort algorithm is the appropriate equiv-
alence class (which is much wider than machine isomorphism), and not any
particular member of it.

One might try to get out of this dilemma by choosing some one, “natural”,
“most general” machine which implements the mergesort, perhaps that which
assumes parallel computation of the subterms in the composition and uses some
canonical stack construction. Itis not clear how that could be done in a systematic
way for all recursive algorithms, but in any case, it would not suffice: because we
want to know that the conclusion of Prop. 3.1 holds for all “implementations
of the mergesort”, not just the most general one, and so we would still need
to define and study the relation between “the mergesort algorithm” and its
implementations.

The second problem is that the details of particular implementations are
irrelevant for the elementary proof of Prop. 3.1, which seems to flow naturally
from the equations (4), (5); for the order of evaluation, for example, the proof
simply assumes (in the inductive step) that “we can compute sort(h(x)) and
sort(ha (1)) by (4) ... ”.

The conclusion from all this is that the mergesort algorithm is some one
object msort, completely determined by the system of equations (4), (5); that
Prop. 3.1 is about this object msort; and that with msort are associated certain
fnachines which “implement it”, and so “inherit” some of its properties, includ-
ing the use of resources. The most obvious choice is to say that msort simply
is the system (4), (5), and, in effect, this is what we will do, except that it must
be done with some care.

4. Continuous Recursive Definitions (Recursors)

A recursive definition is obtained from a system of fixed-point equations like (3),
by adding an “output mapping” as in (1) and dependence on a parameter. These
are the “more abstract” machines which model single-valued algorithms, and I
haYe avoided the word “definition” in their name since it suggests syntactical
objects, which algorithms are not.!!

|
DEFINITION 4.1 For any poset X and any complete poset W, a continuous
recursor o, : X ~» Wis a tuple

a=(ag,op,...,0),
Such that for suitable, complete posets Dy, ... , Dy:
(1) i?g;ﬁgt ® X XDy x---Dy - Dy, (i =1,...,k)is a continuous
(2) The Output mapping oy : X x Dy x - x Dy — W is also continuous.
s

Recy :
0perartsors arerelated to systems of recursive equations in the same way that differential
Ors are related to differential equations.
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The product D, = Dj x -+ x Dy is the solution set'? of «; its transition
mapping is

To(x,d) = (¢1(x,d), ..., 0,(x, d)),
on X x Dy to Dgy; and the function @ : X — W computed by « is
o(x) =ap(x,dy) (x € X),
where d, is the least fixed point of the system of equations
d=r1u(x,d).
We express all this succinctly by writing!3

a(x) = ag(x, d) where {d = 7, (x, d)}, (7
a(x) = ag(x, d) where {d = 74 (x, d)}. )]

The definition allows k = 0, in which case'* o = ( f) for some continuous

function f : X — W, o = f, and equation (7) takes the awkward (but still
useful) form

a(x) = f(x)where{ }.

We will see that it is important to maintain the distinction between a function
f and the trivial recursor (f) associated with it.

For a non-trivial example, consider the following recursor ry which ex-
presses the tail recursion (1), (2) determined by an abstract machine ¢ =
(50,0, T, 0):

2 1tis tempting to avoid explicit reference to the components of the solution set, i.e., to
let recursors be pairs & = (), To) With 7y : X X Dy — Dg. This was done in [14],
because it leads to a simple notion of recursor isomorphism, but it complicates the
constructions and proofs of the basic facts about recursor combinations. Here I have
returned to the original concept of [12], which, in effect, models directly the notion
of mutual recursion.

13 Formally, ‘ where’ and ‘ where’ denote operators which take (suitable) tuples of
continuous mappings as arguments, so that where («q, ... , @) is a recursor and
where (ag, . .. , &) is a continuous mapping.

14 Here Dy = {1} (by convention or a literal reading of the definition of product poset),
and 1y (x,d) =d.

15 Here X7 : S — {1, 0} is the characteristic function of T,

) = 1, ifsel,
Xr'\s) = 0, otherwise,

0, o and the (nullary, constant) s are viewed as functions into S} ,and p : S| — S1
is the strict liftup of p,

B = S ifs € S,
PSI=1)1, ifs=L1.
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r¢(x) = p(in) where {in = sq, t(s) = x7(s), 9
p(s) = if ¢(s) then g(s) else r(s),
q(s) = o(s), r(s) = p(w(s)), w(s) = o (x,s5)}.

Why such a complex object, with six parts, and not the simpler

rﬁ/,(x) = p(so) where (10)
{p(s) = if x7(s) then o(s) else p(o (x,s))}?

The point is that, in addition to expressing the “while loop” of ¢ by a (tail)
recursion, ry also takes into account the explicit computation steps done by ¢.
In the next section we will introduce an alternative reading of (10) which makes
rg and r’¢ isomorphic by the following, natural notion.

® DEFINITION 4.2 Two recursors «, B : X ~» W are isomorphic if they have
the same number of parts, say k, and there is a permutation (/{,...,J) of
(1,..., k) and poset isomorphisms p; : Dy j — Dpg,;, such that the induced
isomorphism p : Dy — Dg on the solution sets preserves the recursor struc-
tures, i.e., forall x € X,d € D,

p(ta(x, d)) = 78(x, p(d))
ag(x,d) = Bo(x, p(d)).

In effect, we can reorder a system of equations and replace the components of
the solution set by isomorphic copies without changing the isomorphism type
of the recursor. The idea is that isomorphic recursors model the same algorithm,
and so we will simply write

a(x) = B(x)
to indicate that & and B are isomorphic.

It is easy to check that two abstract machines ¢ and  are isomorphic if
and only if the corresponding recursors rg, ry, are isomorphic.

5. Operations on Recursors

Algorithms are definable recursors, and so we first consider in this section
some basic methods of combining recursive definitions. These operations are
introduced in five, simple lemmas which establish their basic properties, and
the missing proofs are easy.

B LEMMA 5.1 (Composition with a Function) If 8 : ¥ ~» W is a continuous
recursor, f : X — Y is a continuous function, and we set

a(x) = B(f(x)) =ar Bo(f(x),d) where {d = 15(f(x),d)},

thena : X ~» W and @(x) = B(f(x)).




928 Y. N. MOSCHOVAKIS

® LEMMA 5.2 (Composition of Recursors) Suppose B : V x X ~ W, y :
X ~ V, and set k

alx) = Blyx),x)
=df Bo(v, x,d) where {d = t5(v, x,d), v = yp(x, ), e = 7, (x, &) };

thena : X ~ W, and @(x) = B(¥(x), x).

In particular, if 8 = (f) and y = (g) are both trivial recursors, then their
recursor composition

a(x) = (/)((g)(x), x) = f(v, x) where {v = g(x)}

is not isomorphic with the trivial recursor
o' (x) = f(g(x), x) where { }

associated with the function composition 2(x) = f(g(x), x). This is because
a “keeps track” of the fact that it defines a composition, and assigns a “compu-
tational cost” (of an extra “stage” in the recursion) to it, while &’ does not.

The next two operations are also compositions, but of a special form worth
listing separately.

B LEMMA 5.3 (Conditional) Suppose 8 : X ~» {1,0}1, ¥,6 : X ~» W, and
set

a(x) = if B(x) then y(x) else §(x)
=q¢¢ if u then v else w where {d = t4(x, d), e = 1, (x, e), f = 75(x, 1),
u=Po(x,d), v =y(x,e), w = dx, D},

where the (strict) conditional is defined as usual, for u € {1, 0},

v, ifu=1,
ifuthenvelsew =4{ w, ifu=0,
1 if =13

thena : X ~ W and @(x) = if B(x) then ¥ (x) else §(x).
B LEMMA 5.4 (A-Abstraction) IfB8: X x Y ~» W and we set

ax) = Ay eY)Bx,y)
=dr (\y € Y)Bo(x,y,q(y)) where {q = (Ay € Y)1p(x, y, q(y))},

thena : X ~ (Y - W), and o(x)(y) = B(x, y). Here the expression q =
(Ay € YV)1g(x, y, q(y)) stands for the tuple of equations

g1 =Ry e V)B1(x,y,q4(3), ..., qm = Ay € Y)Bm(x, y, q(¥))-

Finally, the most important operation on recursors is recursion:

i e A b= S i s 6 B
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® LEMMA 5.5 (Recursor Combination) Suppose that for i = 1,....k B :
XxD1x'--kawD,',ﬁO:XxDlx'-~ka->W,andset

ax) = B, d)where{d| = B'(x,d), ..., dp = B (x,d)}
=at BY(x,d, e%) where {di = B} (x,d, "), ..., di = B5(x,d, ¢,
= ‘Eﬂo(x,d, eo),

el = rﬁn(x,d,el),

ek = e (x, d, My
thena : X ~» W, and
() = BO(x, d) where {d, = B (x, d), ..., d = B (x, D).

Moreover, if each i = (ﬁé) is a trivial recursor, then the present definition
of the where construct coincides with that of Definition 4.1.

Messy to read, but all we are doing here is combining k systems of recursive
equations (with output functions) in the obvious way and then observing that
the correct continuous function is being defined; the proof is a simple exercise
in least-fixed-point recursion. The second assertion in the lemma allows us to
assume that, in every definition of the form

a(x) = ao(x) where {d = 1o (x, d)},
the head aq and the parts of
(X, d) = (1 (%, d), ... a(x, d))

are recursors, consistently with earlier uses of the notation.
These operations are related by several identities, of which most useful are
the following five. The proofs are all simple, by chasing poset isomorphisms.

B PROPOSITION 5.6 For all recursors, when the notation makes sense:
1. Recursor Composition. B(y (x), x) = B(v, x) where {v = y (x)}.
2. Rearranging the Parts. If 1y, . .. , li is any permutation of 1, ... , k, then

ao(x, d) where {d = 7(x, d)}
= ag(x, d) where {d;, = oy, (x,d), ... ,dy = oy (x, d)}.

3. Currying in the Parts. Withu € U,v € V, (u, v)eUxV,

a(x, d) where {d = (\u)(Av)B(x, u, v, d)}
= a(x, Au)(\v)e(u, v))
where {e = (A (u, v))B(x, u, v, (Au)(Av)e(u, v))}.
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4. The Head Reduction Rule.
[ao(x, e, d) where {d = 7, (x, e, d)}] where {e = 73(x, )}
= agp(x, e,d) where {d = 74 (x, e, d), e = 75(x, €)}.
5. The Bekic-Scott Rule.
ag(x, eg, d) where {eg = Bo(x, e, d, e) where {e = t4(x, g, d, €)},
d = 174(x, eg, d)}

= ag(x, eg, d) where {eg = Bo(x, €9, d, €), e = 14(x, ¢g, d, &),
d=1,(x, e, d)}.

Using these rules and the definitions, it is easy to show that the two recursors
assigned to an abstract machine by (9) and (10) above are isomorphic, if we in-

terpret the symbols sy, xr, 0, 0, as standing for the trivial recursors associated

with these functions.

6. Continuous Algorithms

Algorithms are not absolute, but relative to a set of “given” operations which
represent the available resources. Typically these are functions or relations, for
example, the ordering and the string-manipulation functions tail(), u * v, etc.,
for the mergesort, but it is simpler to allow arbitrary recursors as “given” and
include functions among them via their associated, trivial recursors.

B DEFINITION 6.1 A continuous algorithm o : X ~» W relative to a set & of
given continuous recursors k : X, — W,, is a recursor which can be defined
by repeated applications of the schemes in Table 1, as detailed below, using «
in & in applications of (I).16

The most significant schemes (V)—(VIII) are recursor and conditional com-
positions, A-abstraction, and recursor combination, as these were explained
in the preceding section. Scheme (IV) is composition with projections as in
Lemma 5.1:here B : Y1 x --- x Y, ~» W, Xy, = Y; fori = 1,...,m, and
a(x) = B(w(x)), with w(x) = (xg,, ... , Xk, ). This can be used with (V) and
(VID) to justify full “explicit definitions”, e.g.,

a(x, y,2) = B(y, (A(s, 1) € S x T)y (s, y, 1), 8(x)).

(I), Continuous and strict function application. For any poset X and any
complete poset W, the (trivial) recursor

evx,w(p,X) = px)where{} (pe (X — W),xeX)

16 This definition may be viewed as a generalized and (more significantly) algorithmic
reading of McCarthy’s systems of recursive equations in [9].

3
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TABLE 1
@ a®) = «(x) Schemes for algorithms,
(I a(p.x) =evx,w(p,X) =p®,  a(p,s)=ev§ y(p.s) = ps) S TN LF T
(111) a(x) = a(x)
av) a(x) = B(xgy, - s Xky)
V) a(x) = B(y(x),x)
(VD) a(x) = if B(x) then y (x) else §(x)
(VID) a(x) = (Ay € V)B(x,y)
(VIIT) ax) = BO(x, d) where {d; = BL(x,d), ..., d; = *(x, d)}

is an algorithm from every set of givens; and so is the recursor
evfgyw(p, s) = p(s)where{} (p:S— W,seS)),

for every set (discrete poset) S and any complete W, where the strict liftup 5 of
p is defined in Footnote 15.

(II), Absolute givens. It is not entirely clear (and not very important) which
recursors other than those in (IT) should be considered as “absolute” givens, not
to be counted among the resources required for the construction of algorithms,
but there should be little controversy about accepting for free inclusions and
Boolean partial functions: For any X and any complete poset W D X;, the
inclusion'8

a;w(xi, ..., x,) = x; where { }

is an algorithm relative to every set of givens; and so is the trivial recursor
associated with every n-ary, partial function a : {1, 0} — {1, 0}. Notice that
forany set X, a; x, =id: X — X is the identity function on X.

We consider some examples, starting with a review of the arguments about
the mergesort algorithm in Sect. 3.

6.1 Counting Comparisons — the Mergesort

To see how we can prove rigorously Prop. 3.1 with this notion of algorithm, we
must start with a precise definition of “the number of required comparisons”.

B DEFINITION 6.2 Suppose f : A — B is a partial function, & : X ~» C| is
an algorithm relative to <& U{ f'} which computes a partial function@ : X — C,

17 We are using lists of variables in these schemes to specify functions on product posets,
sothat, x =xp,... , x4 € X{ X X Xp, Yy =y{,... yYm.d=dj,...,dg, and

X,y =X[seoesXns Yoo YIm EXXY =X X+ Xy XYoo X Yy

The notation has “too many dots”, as a distinguished computer scientist complained
to me once, but the categorical alternative which he favors (with explicit product and
projection functions) requires too many arrows.

The pedantic “where { }” can be safely omitted in practice, since the givens are always
recursors — never functions — and so no confusion can arise.
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and
a(x) = B(x, r) where {r = f},

where B : X x (A — B) ~» C_ is an algorithm relative to & . Suppose also
that @(x) = w € C, for some x. We say that @(x) is computed by o using no
more than n calls to f, if there exists some finite partial function r’ < r, such
that B(u, ') = w, and the domain of ' is of size no more than n.

' This is not the most general definition of “resource use”, but it is simple,

believable, and it applies easily to the proof of Prop. 3.1. First, if merge is the
algorithm for merging defined by (5), then by the rules of Prop. 5.6, easily,

merge(v, w) = B(v, w, r) where {r = x<}, (11

where x< is the characteristic function of the given ordering, and B is de-
fined simply by replacing vg < wq by r(vg, wo) in (5) (and adding the “head”
merge(v, w)). With this definition of “counting comparisons”, the proof of (b)
of Prop. 3.1 works almost word-for-word. Finally, for the mergesort algorithm
msort, we prove in the same way that

msort(u) = y (u, r) where {r = x<},
where y is now simple enough so we can retype it,

y(u, r) = sort(u) where {sort(x) = if |u| < 1 then id(«)
else B(sort(hy(u)), sort(hy(u)), r)},

and the argument for (d) is exactly as given informally.

6.2 Infinite Output — the Sieve of Eratosthenes .

Consider the following recursor representation of the sieve of Eratosthenes
algorithm which “prints out” the sequence of prime numbers:

Primes = p(ug) where
{up = (2,3,4,...),
p(u) = Print(head(u))” p(sieve(head(u), tail(u))),
sieve(x, v) = if (x | head(v)) then sieve(x, tail(v))

else head(v) sieve(x, tail(v))}.

Here x varies over integers (> 2), u and v vary over finite and infinite sequences
of integers, the functions head, tail, x (uq, u1,...) = {(x, ug, 4y, .. .), etc., are
the obvious ones, represented by their associated, trivial recursors, and each p ()
is a sequence of print acts. There are many implementations of this algorithm,
but its correctness (and most of the basic facts about it) can be established
directly from this recursor which models it.

| B
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6.3 Non-determinism — Graph Reachability
If we let, for any set A and p : A — {1, 0},
) L 1 if, forsome s € A, p(s) =1,
@39)p6) =F3(p) = { Py (12)

1

then the non-deterministic!® mapping Hi (A~ {1,0}) = {1,0} .expresses
«search” over the set A, and we can use it (as a given) to define succinctly one
of the standard algorithms for graph reachability: with

reach(x,y) = p(y) where
1
{p(s) = if xr(x,s) then 1 else AZ1)[p(1) & xr(t, $)1}.

Here R(s, t) is the edge relation on the given graph (G, R), and easily,
reach(x,y) =1 <= there is a path joining x to y.

There are many implementations of this algorithm for finite (or countable)
graphs, which depend, to begin with, on some, assumed representation of the
given graph G, but, again, its correctness and the basic facts about it are easy
to read off its recursor representation.

7. Discontinuous and Axiomatic Algorithms

It was noted in Footnote 6 that the Least-Fixed-Point Lemma 2.2 holds for
monotone mappings 7 : D — D, which need not be continuous. This has been
used to develop a theory of monotone least-fixed-point recursion, which has
found important applications in Definability Theory. For example, if we let, for
prA—{1,0}

1, if there exists some x € A, such that plx) =1,
da(p) = 0, ifforallx € A, p(x) =0,

then the mapping 34 which “embodies (full) quantification over the set A”
according to Kleene, is monotone, but, obviously discontinuous, if A is infi-
nite. Kleene [4,5] used such mappings to develop his higher-type recursion,
later (and much better) formulated in terms of monotone, least-fixed-point re-
cursion by Platek [15].20 The theory of inductive definability on first-order
structures [10] is also a chapter of monotone, least-fixed-point recursion, and
it, too, has applications, to Proof Theory, Set Theory and Computer Science.

19 The “half-quantifier” EI% has similar properties to Plotkin’s parallel conditionals
in [16]. A monotone mapping f : (A — B) — C is deterministic if whenever
f(p) = w € C, there exists a least partial function p’ < p such that f (p)‘ = w.
Useful definitions of “determinism” for more general mappings require considering
complete posets with additional structure, which we are not doing here, see Footnote 8.

0 See also [1] and [3]. Higher-type recursion is not well known, but it is a beautiful
theory with substantial applications, even in Set Theory!
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Now, the basic theory of continuous recursors and algorithms, outlined in
Sects. 4-6, never uses the continuity hypotheses, except to infer that certain
systems of recursive equations have least fixed points; and so it can be gen-
eralized, word-for-word, to a theory of single-valued, monotone recursors and )I
algorithms, which, in particular, provides an algorithmic “underpinning” to
Higher Type Recursion and Inductive Definability. It can be argued that we
should not label “algorithms” these “infinitary” definitonal schemes which can-
not (in general) be implemented, but one can also argue that the name fits and
serves a useful purpose, cf. Sect. 9 of [14]. i

Going one step further, the elementary theory of recursors and algorithms
never uses the fact that systems of recursive equations have least fixed points,
once the basic Lemmas 5.1-5.5 have been established, only that recursors have
been defined in terms of systems with canonical fixed points, for which these
Lemmas can be established. The observation leads to an axiomatic theory of %
algorithms, built “over” a theory of fixed point recursion with suitable properties,
which has applications: it is especially useful in “guiding” the development
of multiple-valued (concurrent) recursion, which poses serious conceptual and
mathematical challenges. See [13] and the references there to the classical work
on this topic.

8. Problems

The connection between an algorithm and its implementations and the question
of “identity” for algorithms are, I believe, fundamental conceptual problems
which must be confronted in any attempt to provide foundations for the theory
of algorithms, and “algorithm-based” complexity theory is the most promising
direction in which to look for applications of the proposed enterprise. I will
comment briefly on these topics here, assuming that algorithms are definable
EeCursors.

8.1 Implementations

What is the basic relation between an algorithm and its implementations —
and, for that matter, what are implementations? There is a plausible answer for
algorithms which compute partial functions @ : X — ¥, sketched out in Sect. 7
of [14], which goes like this.

First, a relation o <, B of reduction (or simulation) between recursors is
defined, which, roughly, says that the “abstract computations” of & are “canoni-
cally imbedded” in those of 8. This is a natural extension to recursive definitions
of classical “state-mapping-reductions”, normally defined for machines. Sec-
ond, it is assumed that implementations are abstract machines, which is natural
enough for algorithms which compute partial functions. And finally, we call a
machine ¢ an implementation of «, if o <, ry, where ry is the (tail) recursor
associated with ¢. The definition covers the usual implementations of recursion
by a stack, and it behaves well with respect to resource-use, e.g., it justifies
extending to all the implementations of the mergesort the comparison counts
established for the algorithm.
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For more general algorithms « : X ~» W with output in an arbitrary com-
plete poset (like primes, or algorithms which depend on a state), the guide
should be Programming Language Theory, a large part of which is concerned
with the construction of operational semantics (i.e., implementations) of a given
language L, and establishing their correctness relative to the denotational se-
mantics of L, cf. [19]. It is not, however, simple to extract from this work a
natural and language-independent notion of what it means “to implement an
algorithm”. Put another way, the sieve-of-Eratosthenes algorithm can be ex-
pressed naturally in many programming languages (with notation for streams),
but I do not see clearly what object “the L implementation of primes” would be,
or how to relate it to “the L’ implementation of primes”, for another language L’.

8.2 Recursor Isomorphism and Algorithm Identity
Ify:X~Y,B:Y xY ~ W,are algorithms, relative to some &, then
ax) =By (x), y(x)) = Bu, v) where {u = y(x), v = y(x)},

by the rules of Prop. 5.6, so that to compute B(¥ (x), 7(x)) by o we need to
compute ¥ (x) twice. If the computation of ¥ (x) has no side-effects, we would
rather use the simpler

o' (x) = B(u, u) where {u = y(x)}

which is not isomorphic with «: does this mean that recursor composition does
not model faithfully “algorithm composition”, or that recursor isomorphism
does not capture “algorithm identity”? I would argue that neither of these claims
is true, and that, however understood, o’ is different from & — an “optimization”
of «, if you wish.

It is, however, a fact, that recursor isomorphism is a very fine equivalence
relation on algorithms, not preserved by many of the algorithm transformations
we use in practice when we simplify or optimize programs; and that, to be useful
in applications, the theory of recursors should be enriched by a substantive
study of equivalence relations coarser than isomorphism, which are preserved
by simple optimizing transformations like the move from « to o'

8.3 Algorithm-Based Complexity

Ahint of what I mean by this was given by the analysis of the mergesort in Sect. 3
and Subsect. 6.1, and it is probably enough to suggest the possibilities: I would
guess that many results in the analysis of algorithms are, in fact, discovered by
staring at recursive equations (or informal procedures which can be expressed by
Systems of recursive equations), and then the proofs are re-written and grounded
on some specific model of computation for lack of a rigorous way to explain
the “informal” argument.

On the other hand, it is not so obvious how to develop for this kind of
complexity a useful analog of the complexity classes (like P and NP) which
have been so useful in classical complexity theory. This is, really, the same
Problem of “natural” equivalence relations among algorithms discussed in the
Preceding subsection, and it is wide open.

_L -
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From Number Crunching
to Virtual Reality:
Mathematics, Physics and Computation

RisTo M. NIEMINEN

1. Introductory Remarks

The exponential growth in the availability of affordable computing power has
caused a paradigm shift in many areas of science and engineering. Within its tra-
ditional stronghold, the physical sciences, mathematical modeling is flourishing
as ever more sophisticated models are introduced to describe complex phenom-
ena. The numerical solutions of the models are coupled to massive amounts of
data with powerful analysis and visualization tools. The art and science of mod-
eling is also consolidating itself in many non-traditional areas of application,
such as life and social sciences.

In this article,  examine some of the current trends in computational sciences
from the particular viewpoint of mathematical methods and algorithms. With
examples from computational condensed matter physics and biology, frontline
capabilities of mathematical and numerical modeling are highlighted. Exposed
both against the foreseeable progress in computer technology and the true com-
plexity of Nature, future challenges for the computational approach to scientific
research are discussed.

The Hungarian-born theoretical physicist E. P. Wigner, one of the true giants
of 20th century physics, spoke of the unreasonable effectiveness of mathematics
as the language of science [1]. Wigner observed “that the enormous usefulness
of mathematics in the natural sciences is something bordering on the mysterious
and there is no rational explanation for it. It is not at all natural that ‘laws of
Nature’ exist, much less that man is able to discover them. The miracle of the
appropriateness of the language of mathematics for the formulation of the laws
of physics is a wonderful gift we neither understand nor deserve”.

One reflection of that power is the quantitative accuracy it provides us, at
least in principle, in making statements of complex phenomena dressed in the
form of mathematical formulae. Those formulae and equations, continuous or
discrete, deterministic or stochastic, can be expressed in terms of numerical al-
gorithms and fed into a digital computer. Such an approach to scientific research
has become so commonplace and widespread that catch words such as “com-
Putational science and engineering”, “mathematical modeling” and “numerical
simulation” now permeate the pages of professional (and sometimes popular)
literature. This development owes of course much to the phenomenal increase
in the raw computing power available for scientists and engineers in the latter
half of the 20th century. However, the discovery and design of new algorithms
and computing tools has been an equally important factor.
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