RESPONSE: THE MODELS ARE BROKEN, THE MODELS
ARE BROKEN!t

Allen Newell*

I. INTRODUCTION

I was asked to give a computer scientist’s perspective on the issue
of patentability and algorithms, mainly in response to Professor
Chisum’s Article.! I am almost entirely innocent of matters of patent
law. Thirty years ago, at the Rand Corporation, some colleagues and
I unsuccessfully tried to patent list processing. I was baffled at the
time, and have paid no attention to the patent field ever since. Yet the
issue of patenting algorithms is of considerable importance and read-
ing Professor Chisum’s Article has stirred in me some thoughts,
which may be worth sharing.

Professor Chisum’s Article launches a full scale attack on Gott-
schalk v. Benson,?> which held—erroneously in Chisum’s view—that
algorithms are not patentable. Chisum may well be right that the
Benson case has brought on much analytic confusion in the software
patent area. He may also be right in supposing that, if Benson had
only been decided differently, the specific confusion that occurred in
its aftermath would not have materialized. It seems to be his view
that a different holding in Benson would have brought about analytic
sweetness and light.

My point is precisely to the contrary. Regardless how the Ben-
son case was decided-—whether that algorithm or any other was held
patentable or not patentable—confusion would have ensued. The
confusions that bedevil algorithms and patentability arise from the
basic conceptual models that we use to think about algorithms and
their use. That is why I have entitled my remarks, “The Models are
Broken, the Models are Broken.”

I realize that this title makes me sound a little like Paul Revere:
“The British are coming, the British are coming.” I am sounding a

t © Copyright 1986, Allen Newell.

* U.A. and Helen Whitaker University Professor of Computer Science, Carnegie Mellon
University.

1. Chisum, The Patentability of Algorithms, 47 U. Pr1T. L. REV. 959 (1986).

2. 409 U.S. 63 (1972).

1023

HeinOnline --- 47 U. Pitt. L. Rev. 1023 (1985—1986)|




1024 UNIVERSITY OF PITTSBURGH LAW REVIEW [Vol. 47:1023

call to arms—to do what it takes to banish the confusion and to make
a new set of concepts to replace the old.

But then again, it may sound like Chicken Little: “The sky is
falling, the sky is falling!” I am unsure of which of these two interpre-
tations I think you ought to put on my remarks—or indeed which
one I should either. Be that as it may, this theme is exactly what I
want to lay before you. The models we have for understanding the
entire arena of the patentability of algorithms are inadequate—not
just somewhat inadequate, but fundamentally so. They are broken.

Let me say at the start that I have no opinion about whether
algorithms should be patentable—whether they are a patentable sub-
ject matter to which notions of invention, novelty, fair reward, and
the like, apply. Whatever latent inclinations I might have originally
possessed were washed away under the impact of reading Professor
Chisum’s trenchant analysis. However, as I assimilated his argu-
ments, I gradually perceived difficulty after difficulty with the under-
lying conceptual groundwork on which he was necessarily forced to
build. By now, these models seem to me to be sufficiently broken that
arguments sprout on all sides of the question. Thus, all I can attempt
is to iterate through the conceptual difficulties.

II. THE NATURE OF ALGORITHMS

Interestingly, the one thing that does not present conceptual diffi-
culties is the notion of an algorithm itself. A standard definition is:
An algorithm is an unambiguous specification of a conditional se-
quence of steps or operations for solving a class of problems. This
definition is perfectly reasonable, it is not arcane, and I believe we can
all live with it. The confusion, then, is not in the nature of algorithms.
It is all the things around it that get confused.

The first confusion is using involvement with numbers as the
hallmark for distinguishing mathematics from nonmathematics, as an
aid to determining what is an algorithm. This confusion is easily
cleared up. Algorithms are certainly mathematical objects. That is
an acceptable model. However, mathematics deals with both non-
numerical things and numerical things. Correspondingly, there are
both numerical and nonnumerical algorithms. Therefore, any at-
tempt to find a helpful or cutting distinction between mathematics
and nonmathematics, as between numerical or nonnumerical, is
doomed. Indeed, in the mid-1930s the central argument of a famous
proof, by the mathematician Kurt Godel, involved showing that all of

HeinOnline --- 47 U. Pitt. L. Rev. 1024 (1985—1986)|




1986] THE MODELS ARE BROKEN 1025

logic is a part of number theory. The scheme, which ever after has
been called Godel numbering, assigns an integer to each logical ex-
pression, such that all the truths in logic become theorems about the
integers. Although lawyers need never become acquainted with
Godel numbering, they should realize there is an underlying identity
between the numerical and the nonnumerical realms that will con-
found any attempt to create a useful distinction between them.

Next consider algorithms and mental steps. The main line of
progress in psychology for the last thirty years (called cognitive psy-
chology) has been to describe human behavior as computational. We
model what is going on inside the thinking human brain, as the carry-
ing out of computational steps. Therefore, humans think by means of
algorithms. Sequences of mental steps and algorithms are the same
thing. Any attempt in the law to make distinctions that depend upon
contrasting mental steps versus algorithms is doomed to eventual con-
fusion. It is not important whether you accept this computational
view of human thinking. There can be controversy about whether
such an approach is the correct one for psychology. What is impor-
tant is that such a view is a major one in the study of the human
mind—that many psychologists see the mind this way and that
thousands of technical papers are written from within this view, cov-
ering large expanses of psychological phenomena. Any attempt to
erect a patent system for algorithms that tries to distinguish algo-
rithms as one sort of thing and mental steps as another, will ulti-
mately end up in a quagmire.

Just avoiding the use of this distinction is only half the story. An
identity between algorithms and mental steps leads to such questions
as whether you can keep people from thinking patented thoughts.
You might attempt to avoid such an untenable position by invoking a
doctrine of fair use. Indeed, I found the comments by Professor
Chisum on the problem of fair use? interesting. But the implications
of this identity go much further. We are talking about people who
engage in those patented thoughts daily and hourly—even every few
seconds—in the pursuit of their business and who make their money
and their livelihood by so doing. I expect that any doctrine of fair use
would experience substantial strain under such challenges.

3. Chisum, supra note 1, at 1018-19.

HeinOnline --- 47 U. Pitt. L. Rev. 1025 (1985—1986)|




1026 UNIVERSITY OF PITTSBURGH LAW REVIEW [Vol. 47:1023

III. AI1LGORITHMS AND BAsIC TRUTHS

Let us talk about natural law and mathematical truths. One
model underlying the patent system posits the existence of a gap be-
tween general scientific discovery and its application to matters of so-
cial and economic value. The discovery of a natural law or
mathematical truth does not wear its practical application on its
sleeve, so to speak. Additional discoveries and inventions must occur.
However, no great intrinsic motivation exists for making such practi-
cal inventions. (Natural human curiosity and the prospect of fame
presumably suffice to keep some of us seeking the general truths of
nature.) Thus, economic rewards must be proffered to encourage
jumping this gap with the additional inventions. The patent system is
designed to provide such rewards.

In light of this model, the natural question is whether algorithms
are to be considered either natural laws or mathematical truths, hence
not to be encouraged by patents; or whether they are inventions that
jump the gap from such laws and truths to application, hence to be
encouraged by patents. One view comes from observing how practi-
cal algorithms can be. They are directly related to use in specific
tasks, tasks that can be of the utmost value. That would seem to place
them as devices to jump the gap to application, hence as patentable.

But a more confounding answer flows from the general nature of
computer science. All of computer science is directly related to use.
There is essentially no gap, no matter how pure or basic the science is.
With rare exceptions, scientific knowledge in computer science is in
the form of means-ends relationships—what to do to obtain some-
thing of value. Indeed, this is just the essence of algorithms: what to
do to perform a task. But algorithms, far from being an applied part
of computer science, are at the center of its basic theoretical structure.
For example, we spend our theoretical energies analyzing how to sort
a collection of objects, that is, how to arrange them in order. Nothing
could be more practical than that. But nothing (for a time) offered
more interesting basic theoretical questions. We understand sorting
pretty well by now, but the theoretical analysis of other algorithms
has taken its place. In sum, it is not possible to do anything in com-
puter science without having it be almost immediately related to use,
with only small efforts of the imagination. So where is the gap?
Hence, where is the rewardable, risky, inventive effort?

Let us pursue the consequences of patenting algorithms. Would
it have been possible to patent the integers? “No,” comes the reply—

HeinOnline --- 47 U. Pitt. L. Rev. 1026 (1985—1986)|




1986] THE MODELS ARE BROKEN 1027

integers are mathematical truths. Even I know that. Actually, the
integers are abstract, mathematical objects, and mathematical truths
are things like, “Between every two consecutive odd integers there is
exactly one even integer.” But let that pass. So the integers cannot be
patented. But certainly one might contemplate patenting addition.
“Well, that is still not true,” comes the reply—addition is defined to
be a mapping of pairs of integers (the addends), to integers (the sum).
That is not even a truth, that is just a definition. Ah, but if you want
actually to do addition—that requires doing a sequence of things, not
to the integers, which are abstract (so you cannot do things to them
anyhow), but to some representation of the integers. Doing addition
is accomplished by carrying out an algorithm. If algorithms are pat-
entable, then I can keep you from doing addition with the algorithms
invented for it. There would be ever so many things that the poor
would not be able to do, such as add up their grocery bill.

However, a further response is possible. Addition is not an al-
gorithm, for there are many methods to do addition. Consequently,
you cannot patent addition. Certainly, an essential part of our notion
of method is that many methods exist to attain any particular end,
each of which has to be discovered or invented. A patent rewards
diligence in finding one method, but it leaves open other methods for
other inventors to find. Perhaps, then, I can patent some particular
method of doing addition. Maybe that seems all right. But we are
not yet out of the woods. Addition algorithms work on a given repre-
sentation. For any such representation, it is plausible that there are
only a finite number of relevantly different algorithms that are of any
reasonable efficiency. Although an indefinite number of algorithms
for addition exist, if the representation is specified and only efficient
algorithms are considered, it seems to me quite possible to exhaust the
reasonable algorithms. Such a result would have the character of a
mathematical truth. Indeed, it is even conceivable that this fact (there
is only one more addition method for such and such representation
with such and such qualifications) could be proved before we actually
discovered the exact last algorithm. So we could find ourselves in the
following situation. We have allowed patents on addition algorithms.
We discover that there is only one more reasonable algorithm left to
be discovered. Continuity with past patent actions indicates we
should permit its patenting when found. But to do so permits, not
just a monopoly, but a stranglehold on a basic behavior, to wit, being
able to add. An odd situation, to say the least.

HeinOnline --- 47 U. Pitt. L. Rev. 1027 (1985—1986)|




1028 UNIVERSITY OF PITTSBURGH LAW REVIEW [Vol. 47:1023

There is one last way to avoid the swamp that seems to await the
patenting of addition methods. We can focus on the primeval charac-
ter of addition. Yes, it might have been a problem, but not now. Ad-
dition cannot be patented, because it is already in the public domain.
Moreover, it is special—we will not see its like again in terms of gen-
erality and pervasiveness. But this answer will not do. Computer sci-
ence is nothing but a breeding ground for new algorithms, and
computer science is hardly out of its swaddling clothes. Algorithms
of immense generality and scope will continue to emerge for as long as
the science endures. Examples are easy to come by. The simplex al-
gorithm for doing linear programming was invented by G. Dantzig in
1948. It was, until recently, the only practical algorithm for solving a
huge class of management and production problems. The fast fourier
transform was invented by J.W. Cooley and J. Tukey in 1965. It es-
sentially created the entire field of digital signal processing. Although
considering the patenting of algorithms for addition may seem a bit
melodramatic, it is perhaps not entirely unrepresentative.

IV. THE EMBODIMENTS OF ALGORITHMS

Let us turn to the embodiments of algorithms. Computer science
understands well the essential feature of a digital computer. First,
there is a machine (call it the operations-machine) that can perform
any of a collection of operations. For standard computers these are
mostly operations that modify, store or retrieve data; but many other
sorts of operations are possible. This is a real machine, by anyone’s
standards. However, when turned on, it does not actually do any of
its operations, but awaits some signals from the outside to evoke
them. Second, there is a specification (the program) of what behavior
is desired, that is, what operations are to be performed and in what
sequence. This specification is essentially a textual document,
although it is not encoded as marks on paper, but as marks in some
other medium. Lastly, there is an interpreter, which is also a real
machine by anyone’s standards. Except that electrons are very quiet
it would clank. If you feed the specification into the interpreter, the
interpreter will send signals to the operations-machine to make it
carry out the sequence of steps specified. By now there is nothing
obscure about this arrangement and I daresay you are all familiar
with it.

There may be nothing obscure about the arrangement, but sev-
eral remarkable consequences flow from it. The one of interest to us

HeinOnline --- 47 U. Pitt. L. Rev. 1028 (1985—1986)|




1986] THE MODELS ARE BROKEN 1029

can be called the zransfer of creativity. The operations-machine has a
certain scope for action. It is a physical arena in which one can imag-
ine inventing how the machine might do new things and then reduc-
ing this to practice. What the interpreter does is to transfer all these
possibilities for action to the specification. Going through the inter-
preter does not lose any of the capabilities of the operations-machine
for behavior. Consequently, nothing is added to the nature of crea-
tion and invention beyond that which happens in the programming
language. (The interpreter makes a number of differences, and there
is ample scope for ingenuity in its construction; it just does not restrict
the scope of the operations-machine.)

What is true of programs is true of algorithms. An algorithm is
just an abstract program, which is to say, just an abstract specifica-
tion. The abstraction involved in an algorithm concerns relatively
routine matters—what exact representation of the data to use, how to
modify these representations in detail to accomplish the primitive
steps specified by the algorithm, etc. These are important and their
choice may make important efficiency differences. But the essential
issues of what is to be done are reserved to the algorithm. Indeed, the
whole point of writing an algorithm is to convey the essentials of what
the operations-machine is to do. Thus, any attempt, for the purposes
of locating creativity and invention, to distinguish between the al-
gorithm and any particular embodiment of it turns out to be ex-
tremely difficult.

This also explains why algorithms cannot be distinguished from
programs. Computer science makes the distinction all right, but to
express degrees of abstraction. An algorithm is more abstract than a
program. Given an algorithm, it is possible to code it up in any pro-
gramming language. You might think that a program should be
something like an algorithm plus implementation details. Thus, you
examine the text of a purported algorithm—if you find an implemen-
tation detail, you know it is a mere program. But it is not so, at least
not in any way useful to the law. For a program is also abstract. Itis
a general specification for action that is interpreted for a particular
occasion by the interpreter. The program is missing certain details,
which must be added when the program is to be run (by other pro-
grams variously called compilers, assemblers and loaders). The root
difficulty is that one man’s detail is another man’s essential. It all
depends on the purposes.

This analysis can be turned around. Since an algorithm deter-

HeinOnline --- 47 U. Pitt. L. Rev. 1029 (1985—1986)|




1030 UNIVERSITY OF PITTSBURGH LAW REVIEW [Vol. 47:1023
!

mines the sequence of steps to be performed, then there must exist
some, perhaps powerful, interpreter than can go directly from the
specification of the algorithm to carrying out the steps. The existence
of such an interpreter is the acid test of whether an algorithm has
really been given. But then the algorithm in this high-level represen-
tation looks just like a programming language of a high-level and
powerful interpreter. There are certainly matters of degree—algo-
rithms are conventionally more abstract than programs. But there
are no separations of kind, even though in the current art we often do
not know enough to construct the powerful interpreters. This state of
affairs, by the way, is reflected currently in the automatic program-
ming field, where they refuse to draw any hard and fast line between
systems to design algorithms and systems to design programs. From
their point of view, it is just a continuum of design tasks. The com-
puter science field maintains a distinction (so you can buy textbooks
on algorithms and textbooks on programming), but it is more the dis-
tinction between what specifications to write to do tasks of interest
versus the details of particular schemes for writing the specifications.

These considerations lead to understanding the difficulty with
another distinction, namely, algorithms versus methods and
processes. Taking the latter to involve transformations of matter, we
understand them clearly to be a patentable domain. We also believe
firmly that any physical technological domain admits of methods and
processes. Now for the rub. It is entirely conceivable that some areas
of technology will end up with all of the inventive activity in terms of
algorithms. That is, with the transfer of creativity, as discussed
above, even though a domain involves transformations of matter, yet
all inventions of useful transformations occur by the invention of
algorithms.

This has not happened yet, but the handwriting is on the wall.
Consider, as possible examples, technologies that compose durable
physical objects arbitrarily from a continuous medium, such as cast
iron, plastics, or powder metal technology. Suppose, now, we get the
construction of forms for the medium under suitable computer con-
trol. That is, from a data structure in the computer, an automatic,
essentially robotic, device constructs the form or mold from which
routine art produces the physical objects. This is just a special version
of our operations-machine. This is only done currently in crude ways
and in part, but it is an active area of research. Actually, it was ac-
complished a long time ago in the area of numerically controlled

HeinOnline --- 47 U. Pitt. L. Rev. 1030 (1985—1986)|




1986] THE MODELS ARE BROKEN 1031

machine tools, but as far as I know the dilemmas for patentability
have not become serious there.

However, do not bet the foundations of patent law on its not
happening for important domains. Such advances imply that the en-
tire realm of invention for a technological domain would come to re-
side in the computer. To reside in the computer implies that
algorithms will be developed that are the direct analogues of methods
and processes. For instance, there could be algorithms for taking a
data structure that defines a rough casting, and polishing it—which is
to say, producing a new data structure that defines a smooth and
pleasing shape. The entire evolution of such technological domains
may come to reside in the continual discovery and refinement of algo-
rithms. An almost instinctive objection to this arises from a belief
that simulation cannot be that good—that one cannot capture a big
hunk of rich, raw, resplendent reality in a computer, so that all that
can be invented in the real world can now be invented in the symbolic
world. But many indications to the contrary exist. The advance of
computer animation in the movies is just one. The development of
CAD systems for dealing interactively with the 3-dimensional geo-
metric world is another. One should be prudent in betting the foun-
dations of the law on instinctive reactions.

With the exception of the last one, my examples all seemed to
support the notion that patenting algorithms was fraught with diffi-
culties—that the conservative position was to err on the side of not
patenting algorithms. This last example counts on the other side. If
methods and processes over large technological domains become an
exercise in algorithms, then it is extraordinarily dangerous nof to pat-
ent algorithms. To do so would abandon the whole economic scheme
that stands behind patentability as an appropriate energizer of human
effort towards desirable social ends.

V. THE FORM OF ALGORITHMS

Let us talk about how to recognize an algorithm when you see
one. The definition of algorithm at the beginning says it determines a
sequence of steps. Thus, we might expect an algorithm to be in the
form of a procedure—do this, and then do this, and then do this, and
so on. Anyone can tell a procedure, for it lays out exactly the steps to
be taken. Sometimes there is conditionality on the data, so that a
procedure has to include something of the form: if the situation is
thus and so, then do this, otherwise do that. So that is a model for

HeinOnline --- 47 U. Pitt. L. Rev. 1031 (1985—1986)|




1032 UNIVERSITY OF PITTSBURGH LAW REVIEW [Vol. 47:1023

how to tell an algorithm when you see one. Look at the text and
examine its form to see if it is a procedure. Historically, that de-
scribes pretty closely what programming languages (Fortran, Ada,
Cobol, assembly languages, etc.) and informal notations for algo-
rithms (in textbooks, etc.) are like.

But alas, for our models, the reality of computer science moves
on. This reality leads to conceptually richer ground that is highly
productive for both theory and application. But it destroys the clean
model whereby an algorithm could be recognized by its having a pro-
cedural form. Computer science takes an algorithm to be any specifi-
cation that determines the behavior of a system. These specifications
can be of any kind whatsoever as long as they actually provide the
determination through the interpreter.. Consequently, the form of the
specification need no longer be procedural. Sequences of steps must
march out after interpretation, but sequences of steps need not march
into the interpreter.

This is hardly an idle possibility. We now have languages for
writing algorithms that look very different from a sequence of steps.
For instance, in some programming systems one simply provides a set
of constraints that are to be satisfied by the ultimate actions, and the
interpreter (or compiler) determines what actions are needed to sat-
isfy them, and then executes them. A set of constraints does not look
like a step-by-step procedure, but it is just as good as one, because it
determines the steps. Other cases are no longer even esoteric and
have moved well beyond the realm of research. The form of many
expert systems is simply a collection of if-then rules that provide the
knowledge that is needed to perform a task. There is no easy way of
seeing such an expert system as a sequence of steps—except that the
rule interpreter determines at each moment one rule to fire. Some of
you may be familiar with the rhetoric of PROLOG, a prominent ex-
pert-system language, “You don’t have to say how it’s done, you can
simply give to the system the knowledge about the task and it will go
and do it.” The rhetoric is a little overblown, but it illustrates how
difficult it will be to detect whether some text is an algorithm from its
form alone. If all that counts is the knowledge, then the specifications
can look declarative or procedural or any other way.

That these difficulties are upon us can be seen in the Article by
Duncan Davidson.# He wanted to put the data structure outside his

4. Davidson, Common Law, Uncommon Software, 47 U. PiTT. L. REV. 1037 (1986).

HeinOnline --- 47 U. Pitt. L. Rev. 1032 (1985—1986)|




1986] THE MODELS ARE BROKEN 1033

“black box.” As anyone in computer science knows, the boundary
between data and program—that is, what is data and what is proce-
dure—is very fluid. In fact, as our discussion of the forms of algo-
rithms indicated, there is no principled distinction in terms of form or
representation of which is which. What counts is the total body of
knowledge represented somehow in the assembled symbolic expres-
sions. This totality determines the ultimate behavior of the machine.
The better the interpreters, the further away the specification can be
from an explicit “do this, then do this” form. Because of this, what is
outside his black box and what is inside it is open to great manipula-
tion, either to avoid or to create copyright problems, as the case may
be.

VI. INCREASING THE INVENTION OF ALGORITHMS

My final example concerns whether patenting algorithms will
lead to more or less innovation in the software field. The standard
economic model lying behind the patent system, which was in evi-
dence in several places in Professor Chisum’s Article, is that inventors
produce inventions that, in turn, produce more of the consumables
that society desires. Giving control of the invention to the inventors
increases the price of the ultimate products to society, over what
would be the case if the inventions were available for all to use. But
this cost is more than offset by the increased number of inventions
that become available to society, due to the incentive to inventors.
These inventions raise the net productivity of the economy.

Consider an alternative model, in which inventions produce, not
consumables, but “inventables.” That is, suppose the primary effect
of every product is to enable additional inventions. There will be con-
sumption as well, but mostly new invention based on ownership of the
products. To be clear about the key assumption: New invention
comes from the products produced by the original invention, not from
the original invention itself. The price increase due to the patent mo-
nopoly will restrict the amount of product sold, just as in the original
model. But now this implies that the number of new inventions that
occur will also be restricted. As long as there is some baseline flow of
inventions in society, then it is possible that the loss of inventions to
society from the monopoly price restrictions will more than offset the
gains in inventions from the financial encouragement. The patent sys-
tem could discourage invention rather than encourage it.

This may seem like an extreme alternative model. However,

HeinOnline --- 47 U. Pitt. L. Rev. 1033 (1985—1986)|




1034 UNIVERSITY OF PITTSBURGH LAW REVIEW [Vol. 47:1023

some computer communities may approximate it. There, people take
each other’s programs freely, then enhance them, and then pass them
on to others, who do more of the same. Of course, they also use them
as well. But consuming the behavior of a program does not consume
the program. Furthermore, it is the possession of the previously in-
vented program that permits the new invention to occur. For the new
inventor adds, modifies, enhances and reshapes the existing system,
mostly in small ways, though occasionally substantially. The capabil-
ities of the system evolve and grow. The motivations for such en-
hancements are partly that one benefits from the inventions
themselves, for one gets to use the enhanced system. But the motiva-
tions are also partly those that keep the artist and the mathematician
creating—it becomes a medium of expression and a coin of the realm.
If patentability implies that mostly what is used is left untouched and
unenhanced, then the total improvements in the community’s
software may well decrease, even though some people are induced to
work harder at innovating to capture the rewards from patents. They
must do their inventing from a poorer base.

1 do not seriously defend this alternative model. My goal is more
modest—to point out that the world of algorithms and computers
may have a different character than the standard economic model of
incentives that underlies the patent law. Even this model may be
broken.

VII. CONCLUSION

So what have I told you? I have told you the models are broken.
What I hope you have heard is that we are in a hell of a shape. What
is to be done about it? If you think I’'m Chicken Little, then the right
thing to do is to go your own way. Do not follow me and you will be
all right—for that is the lesson of Chicken Little.

If you are more inclined to take me seriously, then you must
either throw the models away or you must fix them. The law by itself
cannot fix these broken models. The models belong to computer sci-
ence. However, these models are not broken for computer science’s
own purposes. They are serving it just fine. Computer science is de-
veloping into a pervasive technology, backed up by a deepening scien-
tific understanding, that encompasses all information processing from
the most restricted to the most intelligent, and whether by machines
or by humans. Computer science is full of promise and positive
challenge.

HeinOnline --- 47 U. Pitt. L. Rev. 1034 (1985—1986)|




1986] THE MODELS ARE BROKEN 1035

That the models are good for computer science does not auto-
matically make them good for dealing with computers and the law.
In particular, computer science can thrive on continued radical
change, even when we hardly understand it. The law has other re-
quirements, such as stability of concepts over time and being able to
make clear distinctions for the sake of property rights.

I think fixing the models is an important intellectual task. It will
be difficult. The concepts that are being jumbled together—methods,
processes, mental steps, abstraction, algorithms, procedures, deter-
minism—ramify throughout the social and economic fabric. I am not
worried about how new and refurbished models, if we could get them,
will get back into the law. They will migrate back by becoming part
of legal arguments, or legislation or whatnot. There are many differ-
ent paths. The task is to get the new models. There is a fertile field to
be plowed here, to understand what models might work for the law.
It is a job for lawyers and, importantly, theoretical computer scien-
tists. It could also use some philosophers of computation, if we could
ever grow some. It is not a job for a committee or a commission. It
will require sustained intellectual labor.

And, remember, nothing I have said here tells whether to allow
algorithms to be patented or not. To tell that requires fixing the
models.

HeinOnline --- 47 U. Pitt. L. Rev. 1035 (1985—1986)|




HeinOnline --- 47 U. Pitt. L. Rev. 1036 (1985-1986)|




